1
|
Rai S, Singh VS, Gupta P, Tripathi AK. Identification and functional characterization of a fructose-inducible phosphotransferase system in Azospirillum brasilense Sp7. Appl Environ Microbiol 2025; 91:e0082824. [PMID: 39817736 PMCID: PMC11837500 DOI: 10.1128/aem.00828-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Plant growth-promoting rhizobacterium Azospirillum brasilense Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of A. brasilense Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose. Inactivation of fruA gene of both the Fru-PTS showed that Fru-PTS1 is the main PTS involved in fructose utilization. Overexpression of fruA1 in A. brasilense Sp7 enhanced its growth on fructose showing improved consumption of fructose. This suggested that fructose utilization in A. brasilense Sp7 is limited due to the limitation of EIIBC component. A FruR-type regulator, encoded divergently to the Fru-PTS1 operon, was required for chemotaxis toward fructose. Although not an absolute necessity for the growth of fructose, FruR was required for the optimal growth of fructose. The fruB1 promoter was activated by fructose and repressed by malate, but FruR does not seem to regulate its expression. A 27-nucleotide stem-loop structure located between the -125 and -99 promoter proximal region of fruB1 was involved in fructose inducibility and malate repression. Fructose also upregulated several proteins involved in the biogenesis of a Type 6 secretion system. Here, we have shown that A. brasilense Sp7 was able to inhibit the growth of Escherichia coli and Agrobacterium tumefaciens in the presence of fructose, and that an intact T6SS was required for contact-dependent growth inhibition of the two Gram-negative bacteria.IMPORTANCEAzospirillum brasilense, a plant growth-promoting rhizobacterium, has limited ability to utilize carbohydrates and sugars. Although it is known to utilize fructose via a fructose phosphotransferase system (fructose-PTS), the genes involved in fructose utilization and the role of fructose in its biology were not well characterized. This study has shown that out of the two units of fructose-PTS encoded in its genome, fructose-PTS1 plays the major role in fructose utilization. Overexpression of the membrane component (EIIBC) improved the growth of A. brasilense on fructose. The ability of fructose to induce proteins of the Type 6 Secretion System (T6SS) enables A. brasilense to cause contact-dependent inhibition of the growth of Escherichia coli as well as A. tumefaciens. This is the first report on the fructose inducibility of T6SS in A. brasilense, which may provide a handle to control the growth of undesirable bacteria using T6SS of A. brasilense in a mixed culture.
Collapse
Affiliation(s)
- Sushant Rai
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Parikshit Gupta
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Martínez-Márquez A, Martins V, Sellés-Marchart S, Gerós H, Corchete P, Bru-Martínez R. The grapevine ABC transporter B family member 15 is a trans-resveratrol transporter out of grapevine cells. FRONTIERS IN PLANT SCIENCE 2025; 15:1450638. [PMID: 39906227 PMCID: PMC11792551 DOI: 10.3389/fpls.2024.1450638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
Stilbenes, particularly trans-resveratrol, play a highly relevant defense role in grapevines as phytoalexin is induced in response to stress. Metabolism and transport of stilbenes can be conveniently investigated in grapevine cell culture since large amounts of trans-resveratrol are accumulated in the extracellular medium upon treatment with the elicitor methylated cyclodextrin, either alone or combined with methyl jasmonate. A proteomic approach on grapevine cell membrane fractions was performed to find trans-resveratrol transporter candidates. The candidate VvABCB15 was functionally characterized. Its stable expression in both yeast and Silybum marianum cells' heterologous systems led to increased trans-resveratrol transport in these hosts. Transient expression in Vitis cells showed an enhanced absorbent- or elicitor-assisted accumulation of extracellular trans-resveratrol in VvABCB15-expressing or VvGSTU10/VvABCB15-co-expressing cell suspension cultures. Experiments of transient expression in Vitis cell suspensions using light-switchable stilbene synthase (pHYH::VvSTS3) and VvABCB15 further confirmed the candidate's role as a trans-resveratrol transporter. VvABCB15-YFP fusion proteins in Nicotiana leaf showed localization in the plasma membrane, consistent with a functional role in trans-resveratrol transport. This is the first report to provide evidence for the involvement of an ABC transporter B type, VvABCB15, in trans-resveratrol transport to the extracellular medium of grapevine cells.
Collapse
Affiliation(s)
- Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, de Gualtar, Braga, Portugal
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, Alicante, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, de Gualtar, Braga, Portugal
| | - Purificación Corchete
- Department of Plant Physiology, Miguel de Unamuno, University of Salamanca, Salamanca, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, Alicante, Spain
| |
Collapse
|
3
|
Yousaf A, Baldi P, Piazza S, Gualandri V, Komjanc M, Dalla Costa L, Patocchi A, Malnoy M. The Hansen's baccata #2 gene Rvi12_Cd5 confers scab resistance to the susceptible apple cultivar "Gala Galaxy". THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17214. [PMID: 39693099 PMCID: PMC11776037 DOI: 10.1111/tpj.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
To enhance the breeding of new scab-resistant apple cultivars, a comprehensive understanding of the mechanisms governing major scab resistance genes is essential. Rvi12_Cd5 was previously identified as the best candidate gene for the Rvi12 scab resistance of the crab apple "Hansen's baccata #2" by gene prediction and in silico analysis. In the present study, Rvi12_Cd5 was used to transform the scab-susceptible apple cultivar "Gala Galaxy." Two constructs were prepared: the first carrying Rvi12_Cd5 under the control of a 35S promoter and E9 terminator, and the second carrying Rvi12_Cd5 under the control of its native promoter and terminator. All the transgenic lines were analyzed for T-DNA integration, copy number, and expression of Rvi12_Cd5 and phenotypically evaluated for scab resistance. The "Gala Galaxy" lines carrying the 35S promoter expressed Rvi12_Cd5 at a high level, showing partial to high resistance against a mixed inoculum of Venturia inaequalis, with symptoms ranging from class 0 to 3b on the Chevalier scale. The transgenic lines carrying the native promoter showed a lower expression of Rvi12_Cd5 compared with the 35S lines. Nevertheless, the low expression was sufficient to induce a resistance level comparable to that of the transgenic lines carrying the 35S promoter. These results indicate that Rvi12_Cd5 confers scab resistance to a susceptible apple cultivar and that even a low level of gene transcript can trigger a plant response to V. inaequalis infection. After HcrVf2 and Vr2-C, Rvi12_Cd5 is the third major apple scab resistance gene being functionally proven.
Collapse
Affiliation(s)
- Ayesha Yousaf
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
- Department of Agricultural, Food, Environmental and Animal SciencesUniversità Degli Studi di UdineUdineItaly
| | - Paolo Baldi
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Valeria Gualandri
- Technology Transfer Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Matteo Komjanc
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| | - Andrea Patocchi
- Fruit Breeding Group, Department of Plant BreedingAgroscopeWaedenswilSwitzerland
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
4
|
Nagamura R, Kujirai T, Kato J, Shuto Y, Kusakizako T, Hirano H, Endo M, Toki S, Saika H, Kurumizaka H, Nureki O. Structural insights into how Cas9 targets nucleosomes. Nat Commun 2024; 15:10744. [PMID: 39737984 DOI: 10.1038/s41467-024-54768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome. In the present study, we perform native-polyacrylamide gel electrophoresis (PAGE) analyses and find that Cas9 targets the linker DNA and the entry-exit DNA region of the nucleosome but not the DNA tightly wrapped around the histone octamer. We further determine cryo-electron microscopy (cryo-EM) structure of the Cas9-sgRNA-nucleosome ternary complex that targets linker DNA in nucleosomes. The structure suggests interactions between Cas9 and nucleosomes at multiple sites. Mutants that reduce the interaction between nucleosomal DNA and Cas9 improve nucleosomal DNA cleavage activity in vitro, although inhibition by the interaction between Cas9 and nucleosomes is limited in vivo. These findings will contribute to the development of novel genome editing tools in chromatin.
Collapse
Affiliation(s)
- Reina Nagamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hisato Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Laboratory of Plant Genome Engineering, Department of Life Science, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Xie L, Li Y, Sun W, Pu M, Zhou J, He Y, Peng Y, Zheng C, Jiang C, Xu X, Xie X. OsPIL15-Induced Delay in Rice Heading Date via Direct Binding to the OsLF Promoter is Dependent on Functional Phytochrome B. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39737650 DOI: 10.1111/pce.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Heading date of rice (Oryza sativa) is a key factor determining rice production and regional adaptability. We analysed the molecular mechanism of OsPIL15, encoding phytochrome-interacting factor-like protein, in delaying rice heading date. Overexpression of OsPIL15 delayed rice heading date by upregulating Hd1 and inhibiting Hd3a and RFT1 expression. OsLF, encoding one rice heading repressor, was found to be the putative candidate regulated by OsPIL15 through a chromatin immunoprecipitation sequencing assay and a transcriptome sequencing assay. OsPIL15 could directly bind to the OsLF promoter and activated its expression. Knocking-out OsLF in OsPIL15-overexpressing lines resulted in flowering 2-3 days earlier, partially rescuing the delayed phenotype. This indicates that overexpression of OsPIL15 overexpression delays heading date partially through OsLF. Protein-protein interaction assay of OsPIL15 or OsPIL15-∆APB (OsPIL15 lacking the active phytochrome B [phyB]-binding [APB] motif) with PHYB showed that the APB motif was required for the interaction between OsPIL15 and PHYB. Furthermore, overexpression of either OsPIL15-∆APB in the wild type or OsPIL15 in the phyB mutant did not delay rice heading date under natural long-day conditions, suggesting that phyB influences OsPIL15-mediated delay in rice heading date.
Collapse
Affiliation(s)
- Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yaping Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Sun
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Menglin Pu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jinjun Zhou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanan He
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongbin Peng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongke Zheng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Conghui Jiang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
6
|
Oostlander AG, Brodde L, von Bargen M, Slippers B, Becker Y, Brandt U, Klawonn F, Grobler C, Well L, Stenlid J, Oliva J, Elfstrand M, Fleissner A. Development of a molecular genetics and cell biology toolbox for the filamentous fungus Diplodia sapinea. PLoS One 2024; 19:e0308794. [PMID: 39729429 DOI: 10.1371/journal.pone.0308794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 12/29/2024] Open
Abstract
Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species. Its impact on forest health is currently intensified, likely due to climate change, posing an increasing threat to global ecosystems and forestry. Despite extensive and successful research on this pathogen system, fundamental questions about its biology and plant-associated lifestyle remain unanswered. Addressing these questions will necessitate the development of additional experimental tools, including protocols for molecular genetics and cell biology approaches. In this study, we continue to address this need by establishing an Agrobacterium-mediated genetic transformation protocol for D. sapinea, enabling targeted mutagenesis and heterologous gene expression. We utilized this methodology to localize the histone H2B by tagging it with the fluorescent protein mCherry. Additionally, we established a time- and space-efficient laboratory-scale infection assay using two-week-old Pinus sylvestris seedlings. Integrating these tools in a proof-of-concept study enabled the visualization of D. sapinea in planta growth through the fluorescently labeled reporter strain.
Collapse
Affiliation(s)
| | - Laura Brodde
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Miriam von Bargen
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Ulrike Brandt
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank Klawonn
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christiaan Grobler
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lucas Well
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonas Oliva
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andre Fleissner
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Veremeichik GN, Solomatina TO, Khopta AA, Brodovskaya EV, Gorpenchenko TY, Grigorchuk VP, Bulgakov DV, Bulgakov VP. Agropine-type rolA modulates ROS homeostasis in an auxin-dependent manner in rolA-expressing cell cultures of Rubia cordifolia L. PLANTA 2024; 261:20. [PMID: 39714533 DOI: 10.1007/s00425-024-04597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
MAIN CONCLUSION Long-term cultured calli may experience a biosynthetic shift due to the IAA-dependent expression of the rolA gene, which also affects ROS metabolism. The "hairy root" syndrome is caused by the root-inducing Ri-plasmid of Rhizobium rhizogenes, also known as Agrobacterium rhizogenes. The Ri-plasmid contains genes known as rol genes or root oncogenic loci, which promote root development. The important implications of the rolA gene from the T-DNA include reduced plant size, resistance to infections, and the activation of specialised metabolism. Nevertheless, rolA does not belong to the plast gene group because its function is still uncertain. Recent investigations have shown two important effects of the rolA gene. First, the production of secondary metabolites has changed in long-term cultivated rolA-transgenic calli of Rubia cordifolia L. Second, the expression of both the rolA and rolB genes has a strong auxin-dependent antagonistic effect on reactive oxygen species (ROS) homeostasis. In this work, we attempted to elucidate two rolA gene phenomena: what caused the secondary metabolism of long-term cultured calli to change? How does the individual expression of the rolA gene affect ROS homeostasis? We analysed SNPs in the 5' untranslated region and coding region of the rolA gene. These mutations do not affect the known essential amino acids of the RolA proteins. Notably, in the promoter of the rolA gene, an ACTTTA motif for auxin-mediated transcription factors was identified. Using two separate cell cultures, we demonstrated the strong auxin dependence of rolA gene expression. The expression of genes involved in ROS metabolism decreased in response to an auxin-mediated increase in rolA gene expression. Two assumptions can be made. The long-term cultivation of calli may cause changes in the hormonal state of the culture over time, which may modulate the action of the RolA protein. Moreover, auxin-dependent expression of the rolA gene led to a decrease in ROS metabolism. It can be assumed that the antagonistic interaction between rolA and rolB prevents strong rolB-induced auxin sensitivity and oxidative bursts to balance the cell state.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia.
| | - Taisia O Solomatina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Anastasia A Khopta
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Evgenia V Brodovskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Tatiana Yu Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| |
Collapse
|
8
|
Adedibu PA, Noskova YA, Yugay YA, Ovsiannikova DM, Vasyutkina EA, Kudinova OD, Grigorchuk VP, Shkryl YN, Tekutyeva LA, Balabanova LA. Expression and Characterization of Alkaline Phosphatase from Cobetia amphilecti KMM 296 in Transiently Transformed Tobacco Leaves and Transgenic Calli. PLANTS (BASEL, SWITZERLAND) 2024; 13:3570. [PMID: 39771268 PMCID: PMC11679904 DOI: 10.3390/plants13243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders. This study aims to produce recombinant ALP from the marine bacterium Cobetia amphilecti KMM 296 (CmAP) in transformed leaves and calli of Nicotiana tabacum and to elucidate the influence of the plant host on its physical and chemical properties. N. tabacum has proven to be versatile and is extensively used as a heterologous host in molecular farming. The alp gene encoding for CmAP was cloned into the binary vectors pEff and pHREAC and transformed into N. tabacum leaves through agroinfiltration and the leaf disc method for callus induction using Agrobacterium tumefaciens strain EHA105. Transformed plants were screened for recombinant CmAP (rCmAP) production by its enzymatic activity and protein electrophoresis, corresponding to 55 kDa of mature CmAP. A higher rCmAP activity (14.6 U/mg) was detected in a homogenate of leaves bearing the pEFF-CmAP construct, which was further purified 150-fold using metal affinity, followed by anion exchange chromatography. Enzymatic activity and stability were assessed at different temperatures (15-75 °C) and exposure times (≤1 h), with different buffers, pHs, divalent metal ions, and salt concentrations. The results show that rCmAP is relatively thermostable, retaining its activity at 15-45 °C for up to 1 h. Its activity is highest in Tris HCl (pH 9.0-11.0) at 35 °C for 40 min. rCmAP shows higher salt-tolerance and divalent metal-dependence than obtained in Escherichia coli. This can be further explored for cost-effective and massively scalable production of LPS-free CmAP for possible biomedical and agricultural applications.
Collapse
Affiliation(s)
- Peter Adeolu Adedibu
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Yulia Aleksandrovna Noskova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Yulia Anatolievna Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Daria Mikhailovna Ovsiannikova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Elena Anatolievna Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Olesya Dmitrievna Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Valeria Petrovna Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Yury Nikolaevich Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Liudmila Aleksandrovna Tekutyeva
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Larissa Anatolievna Balabanova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| |
Collapse
|
9
|
Chaulagain D, Schnabel E, Kappes M, Lin EX, Müller LM, Frugoli JA. TML1 and TML2 synergistically regulate nodulation and affect arbuscular mycorrhiza in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2024; 15:1504404. [PMID: 39722877 PMCID: PMC11668588 DOI: 10.3389/fpls.2024.1504404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of nodulation (AON) and autoregulation of mycorrhizal symbiosis (AOM) both negatively regulate their respective processes and share multiple components-plants that make too many nodules usually have higher arbuscular mycorrhiza (AM) fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in Lotus japonicus. Medicago truncatula has two sequence homologs: MtTML1 and MtTML2. We report the generation of stable single and double mutants harboring multiple allelic variations in MtTML1 and MtTML2 using CRISPR-Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations in MtTML1 or MtTML2 produced two to three times the nodules of wild-type plants, whereas plants containing mutations in both genes displayed a synergistic effect, forming 20× more nodules compared to wild-type plants. Examination of expression and heterozygote effects suggests that genetic compensation may play a role in the observed synergy. Plants with mutations in both TMLs only showed mild increases in AM fungal root colonization at later timepoints in our experiments, suggesting that these genes may also play a minor role in AM symbiosis regulation. The mutants created will be useful tools to dissect the mechanism of synergistic action of MtTML1 and MtTML2 in M. truncatula symbiosis with beneficial microbes.
Collapse
Affiliation(s)
- Diptee Chaulagain
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Elise Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Mikayla Kappes
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Erica Xinlei Lin
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Lena Maria Müller
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Julia A. Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Hanafy MS, Desouky AF, Asker MS, Zaki ER. Impact of homologous overexpression of PR10a gene on improving salt stress tolerance in transgenic Solanum tuberosum. J Genet Eng Biotechnol 2024; 22:100437. [PMID: 39674650 PMCID: PMC11600784 DOI: 10.1016/j.jgeb.2024.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 10/28/2024] [Indexed: 12/16/2024]
Abstract
Abiotic stresses severely affected crop productivity and considered to be a major yield limiting factor for crop plant. The tolerance to these stresses is a very complex phenomenon involving a wide array of molecular, biochemical and physiological changes in plant cells. Therefore, it is challenging to understand the molecular basis of abiotic stress tolerance to manipulate it for improving abiotic stress tolerance of major crops. Biotechnological approaches and genetic engineering including homologous gene overexpression can be implemented to understand gene functions under well-defined conditions. The Pathogenesis-related proteins (PR10) such as PR10a play multiple roles in biotic and abiotic stress tolerance and, hence, plant development. A PR10a gene from potato cv. Deseree was introduced into three cultivars of potato (Solanum tuberosum L.) by Agrobacterium tumefaciens-mediated genetic transformation. Transgenic plants were selected on a medium containing 1.0 mg/l phosphinothricin (PPT) and confirmed by polymerase chain reaction (PCR), herbicide (BASTA®) leaf paint assay, and Real-Time- quantitative PCR analyses (qPCR). All of the selected transformants showed completely tolerance to the application of PPT application. Experiments designed for testing salt tolerance revealed that there was enhanced salt tolerance of the transgenic lines in vitro in terms of morphological (plant FW, plant DW and plant height) and antioxidant activates as compared to the non-transgenic control plants. qRT-PCR showed that the expression of PR10a gene in the transgenic potato is higher than that in non-transgenic control under salt stress. The relative PR10a gene-expression patterns in the transgenic plants shed lights into the molecular response of homologues overexpressed PR10a potato to salt-stress conditions. The obtained results provide insights on the fact that PR10a plays a major role regarding salt stress tolerance in potato plants.
Collapse
Affiliation(s)
- Moemen S Hanafy
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt.
| | - Abeer F Desouky
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt
| | - Mohsen S Asker
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt
| | - Eman R Zaki
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt
| |
Collapse
|
11
|
Chaulagain D, Schnabel E, Kappes M, Lin EX, Müller LM, Frugoli JA. TML1 AND TML2 SYNERGISTICALLY REGULATE NODULATION AND AFFECT ARBUSCULAR MYCORRHIZA IN MEDICAGO TRUNCATULA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570674. [PMID: 38106087 PMCID: PMC10723381 DOI: 10.1101/2023.12.07.570674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of Nodulation (AON) and Autoregulation of Mycorrhization (AOM) both negatively regulate their respective processes and share multiple components - plants that make too many nodules usually have higher AM fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in Lotus japonicus . M. truncatula has two sequence homologs: Mt TML1 and Mt TML2. We report the generation of stable single and double mutants harboring multiple allelic variations in MtTML1 and MtTML2 using CRISPR-Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations in Mt TML1 or Mt TML2 produced 2-3 times the nodules of wild-type plants whereas plants containing mutations in both genes displayed a synergistic effect, forming 20x more nodules compared to wild type plants. Examination of expression and heterozygote effects suggest genetic compensation may play a role in the observed synergy. Plants with mutations in both TMLs only showed mild increases in AM fungal root colonization at later timepoints in our experiments, suggesting these genes may also play a minor role in AM symbiosis regulation. The mutants created will be useful tools to dissect the mechanism of synergistic action of Mt TML1 and Mt TML2 in M. truncatula symbiosis with beneficial microbes.
Collapse
|
12
|
Maletich G, Pushin A, Rybalkin E, Plugatar Y, Dolgov S, Khvatkov P. Organogenesis in a Broad Spectrum of Grape Genotypes and Agrobacterium-Mediated Transformation of the Podarok Magaracha Grapevine Cultivar. PLANTS (BASEL, SWITZERLAND) 2024; 13:2779. [PMID: 39409649 PMCID: PMC11478747 DOI: 10.3390/plants13192779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
We present data on the ability for organogenesis in 22 genotypes of grapevine and developed a direct organogenesis protocol for the cultivar Podarok Magaracha and the rootstock Kober 5BB. The protocol does not require replacement of culture media and growth regulators, and the duration is 11 weeks. The cultivation of explants occurs on modified MS medium with the addition of 2.0 mg L-1 benzyladenine and indole-3-butyric acid (0.15 mg L-1 for the rootstock Kober 5BB or 0.05 mg L-1 for the cultivar Podarok Magaracha). The direct organogenesis protocol consists of three time periods: (1) culturing explants for 2 weeks in dark conditions for meristematic bulk tissue, (2) followed by 4 weeks of cultivation in light conditions for regeneration, and (3) 5 weeks of cultivation in dark conditions for shoot elongation. Based on this protocol, conditions for the Agrobacterium-mediated transformation of the Podarok Magaracha cultivar were developed with an efficiency of 2.0% transgenic plants per 100 explants. Two stably transformed lines with integration into the genome of the pBin35SGFP plasmid construction, confirmed by Southern blotting, were obtained.
Collapse
Affiliation(s)
- Galina Maletich
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| | - Alexander Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| | - Evgeniy Rybalkin
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| | - Yuri Plugatar
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| |
Collapse
|
13
|
Kumar M, Ayzenshtat D, Rather GA, Zemach H, Belausov E, Eshed Williams L, Bocobza S. A dynamic WUSCHEL/Layer 1 interplay directs shoot apical meristem formation during regeneration in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:578-597. [PMID: 39215624 DOI: 10.1111/tpj.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
De novo shoot apical meristem (SAM) organogenesis during regeneration in tissue culture has been investigated for several decades, but the precise mechanisms governing early-stage cell fate specification remain elusive. In contrast to SAM establishment during embryogenesis, in vitro SAM formation occurs without positional cues and is characterized by autonomous initiation of cellular patterning. Here, we report on the initial stages of SAM organogenesis and on the molecular mechanisms that orchestrate gene patterning to establish SAM homeostasis. We found that SAM organogenesis in tobacco calli starts with protuberance formation followed by the formation of an intact L1 layer covering the nascent protuberance. We also exposed a complex interdependent relationship between L1 and WUS expression and revealed that any disruption in this interplay compromises shoot formation. Silencing WUS in nascent protuberances prevented L1 formation and caused the disorganization of the outer cell layers exhibiting both anticlinal and periclinal divisions, suggesting WUS plays a critical role in the proper establishment and organization of L1 during SAM organogenesis. We further discovered that silencing TONNEAU1 prevents the exclusive occurrence of anticlinal divisions in the outermost layer of the protuberances and suppresses the acquisition of L1 cellular identity and L1 formation, ultimately impeding SAM formation and regeneration. This study provides a novel molecular framework for the characterization of a WUS/L1 interplay that mediates SAM formation during regeneration.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Gulzar A Rather
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Hanita Zemach
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| |
Collapse
|
14
|
Alabed D, Tibebu R, Ariyaratne M, Shao M, Milner MJ, Thomson JG. Novel Agrobacterium fabrum str. 1D1416 for Citrus Transformation. Microorganisms 2024; 12:1999. [PMID: 39458308 PMCID: PMC11509345 DOI: 10.3390/microorganisms12101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Citrus is one of the world's most important and widely produced fruit crops, with over a 100 million metric tons harvested from nearly 10 million hectares in 2023. Challenges in crop maintenance, production, and fruit quality necessitate developing new traits through Agrobacterium-mediated genetic transformation. While a few Agrobacterium strains (EHA105, GV3101, LBA4404) are known to transform citrus, many wild strains remain untested. We screened forty-one wild-type Agrobacterium strains isolated from various woody species and identified five capable of DNA transfer into citrus cells. Strain 1D1416 demonstrated the highest transient transformation frequency in Carrizo epicotyl explants (88%), outperforming the control EHA105 (84%) with comparable shoot regeneration rates (32% and 42%, respectively). Notably, 1D1416 exhibited no overgrowth and had the lowest necrosis and mortality rates in transformed tissues. It efficiently transferred the DsRed gene and induced galls in mature tissues of Mexican lime (70%), lemon (48%), Washington navel orange (25%), and clementine (6%). Genome sequencing of 1D1416 allowed for the disarming of the native T-DNA and addition of GAANTRY technology. This novel strain, combined with an optimized transformation procedure, make it a valuable tool for advancing citrus transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - James G. Thomson
- USDA-ARS Crop Improvement and Genetics, Western Regional Research Center, Albany, CA 94710, USA; (D.A.); (R.T.); (M.A.); (M.S.); (M.J.M.)
| |
Collapse
|
15
|
Krajciova D, Holic R. The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. J Fungi (Basel) 2024; 10:649. [PMID: 39330409 PMCID: PMC11433134 DOI: 10.3390/jof10090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Punicic acid (PuA) is a conjugated fatty acid with a wide range of nutraceutical properties naturally present in pomegranate seed oil. To meet the rising demand for pomegranate seed oil, a single-cell oil enriched in PuA provides a sustainable biomass-derived alternative. This study describes the production of a PuA-enriched single-cell oil through the engineering of the red yeast Rhodotorula toruloides grown in glucose and a low-cost substrate, crude glycerol. The gene for Punica granatum fatty acid conjugase, PgFADX, was randomly integrated into the genome of R. toruloides without disrupting the carotenoid synthesis. In shake flask studies, the effects of three promoters (PPGI1, PNAR1, and PPMA1) on PuA production were evaluated. PuA titers of 105.77 mg/L and 72.81 mg/L were obtained from engineered cells expressing PgFADX from the PPMA1 promoter cultivated for 72 h in glucose and for 168 h in crude glycerol, respectively. Furthermore, the detailed lipid analysis revealed a high enrichment PuA in the triacylglycerol lipid structures, even without substantial modifications to the metabolic pathways. This report demonstrates the high potential of R. toruloides in the upcycling of a low-cost substrate, crude glycerol, into a value-added product such as PuA. The findings support the feasibility of using engineered R. toruloides for sustainable production of PuA-enriched single-cell oil.
Collapse
Affiliation(s)
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia;
| |
Collapse
|
16
|
Ishibashi K, Sukegawa S, Endo M, Hara N, Nureki O, Saika H, Toki S. Systemic delivery of engineered compact AsCas12f by a positive-strand RNA virus vector enables highly efficient targeted mutagenesis in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1454554. [PMID: 39323536 PMCID: PMC11423357 DOI: 10.3389/fpls.2024.1454554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Because virus vectors can spread systemically autonomously, they are powerful vehicles with which to deliver genome-editing tools into plant cells. Indeed, a vector based on a positive-strand RNA virus, potato virus X (PVX), harboring SpCas9 and its single guide RNA (sgRNA), achieved targeted mutagenesis in inoculated leaves of Nicotiana benthamiana. However, the large size of the SpCas9 gene makes it unstable in the PVX vector, hampering the introduction of mutations in systemic leaves. Smaller Cas variants are promising tools for virus vector-mediated genome editing; however, they exhibit far lower nuclease activity than SpCas9. Recently, AsCas12f, one of the smallest known Cas proteins so far (one-third the size of SpCas9), was engineered to improve genome-editing activity dramatically. Here, we first confirmed that engineered AsCas12f variants including I123Y/D195K/D208R/V232A exhibited enhanced genome-editing frequencies in rice. Then, a PVX vector harboring this AsCas12f variant was inoculated into N. benthamiana leaves by agroinfiltration. Remarkably, and unlike with PVX-SpCas9, highly efficient genome editing was achieved, not only in PVX-AsCas12f-inoculated leaves but also in leaves above the inoculated leaf (fourth to sixth upper leaves). Moreover, genome-edited shoots regenerated from systemic leaves were obtained at a rate of >60%, enabling foreign DNA-free genome editing. Taken together, our results demonstrate that AsCas12f is small enough to be maintained in the PVX vector during systemic infection in N. benthamiana and that engineered AsCas12f offers advantages over SpCas9 for plant genome editing using virus vectors.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Satoru Sukegawa
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naho Hara
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
17
|
Serrazina S, Martínez M, Soudani S, Candeias G, Berrocal-Lobo M, Piñeiro P, Malhó R, Costa RL, Corredoira E. Overexpression of Ginkbilobin-2 homologous domain gene improves tolerance to Phytophthora cinnamomi in somatic embryos of Quercus suber. Sci Rep 2024; 14:19357. [PMID: 39169119 PMCID: PMC11339267 DOI: 10.1038/s41598-024-70272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
In recent decades an extensive mortality and decline of Quercus suber populations mainly caused by Phytophthora cinnamomi has been observed. In the current study, a chestnut gene homologous to ginkbilobin-2 (Cast_Gnk2-like), which in Ginkgo biloba codifies an antifungal protein, was transferred into cork oak somatic embryos of three different embryogenic lines by Agrobacterium mediated transformation. The transformation efficiency varied on the genotype from 2.5 to 9.2%, and a total of 22 independent transformed lines were obtained. The presence of Cast_Gnk2-like gene in transgenic embryos was verified in all lines by PCR. The number of transgene copies was estimated by qPCR in embryogenic lines with high proliferation ability and it varied between 1 and 5. In addition, the expression levels of Cast_Gnk2-like gene were determined in the embryogenic lines, with higher levels in lines derived from the genotype ALM6-WT. Transgenic plants were obtained from all transgenic lines and evaluated after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In vitro tolerance tests made under controlled conditions and following zoospore treatment showed that plants overexpressing Cast_Gnk2-like gene improved tolerance against Pc when compared to wild type ones.
Collapse
Affiliation(s)
- Susana Serrazina
- Faculdade de Ciências, BioISI-Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - MªTeresa Martínez
- Misión Biológica de Galicia, Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Avda Vigo S/N, 15705, Santiago de Compostela, La Coruña, Spain
| | - Serine Soudani
- Centro Para La Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMFMN, Universidad Politécnica de Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Gonçalo Candeias
- Faculdade de Ciências, BioISI-Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Berrocal-Lobo
- Centro Para La Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMFMN, Universidad Politécnica de Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Pablo Piñeiro
- Misión Biológica de Galicia, Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Avda Vigo S/N, 15705, Santiago de Compostela, La Coruña, Spain
| | - Rui Malhó
- Faculdade de Ciências, BioISI-Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária E Veterinária I.P., Oeiras, Portugal
| | - Elena Corredoira
- Misión Biológica de Galicia, Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Avda Vigo S/N, 15705, Santiago de Compostela, La Coruña, Spain.
| |
Collapse
|
18
|
Balasubramaniam M, Thangavel T, Aiyanathan KEA, Rathnasamy SA, Rajagopalan VR, Subbarayalu M, Natesan S, Kanagarajan S, Muthurajan R, Manickam S. Unveiling mungbean yellow mosaic virus: molecular insights and infectivity validation in mung bean ( Vigna radiata) via infectious clones. FRONTIERS IN PLANT SCIENCE 2024; 15:1401526. [PMID: 39157510 PMCID: PMC11327075 DOI: 10.3389/fpls.2024.1401526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024]
Abstract
Yellow mosaic disease (YMD) with typical symptoms of alternating bright yellow to green patches associated with stunting, downward cupping, and wrinkling has been observed in mung bean on agricultural farms in Coimbatore, Tamil Nadu, India. PCR using gene-specific primers indicated the presence of the yellow mosaic virus in symptomatic plants. Rolling circle amplification (RCA) followed by restriction digestion detected ~2.7 kb of DNA-A and DNA-B, allowing the identification of a bipartite genome. The full-length genome sequences were deposited in NCBI GenBank with the accession numbers MK317961 (DNA-A) and MK317962 (DNA-B). Sequence analysis of DNA-A showed the highest sequence identity of 98.39% to the DNA-A of mungbean yellow mosaic virus (MYMV)-Vigna radiata (MW736047), while DNA-B exhibited the highest level of identity (98.21%) to the MYMV-Vigna aconitifolia isolate (DQ865203) reported from Tamil Nadu. Recombinant analysis revealed distinct evidence of recombinant breakpoints of DNA-A within the region encoding the open reading frame (ORF) AC2 (transcription activation protein), with the major parent identified as MYMV-PA1 (KC9111717) and the potential minor parent as MYMV-Namakkal (DQ86520.1). Interestingly, a recombination event in the common region (CR) of DNA-B, which encodes the nuclear shuttle protein and the movement protein, was detected. MYMIV-M120 (FM202447) and MYMV-Vigna (AJ132574) were identified as the event's major and minor parents, respectively. This large variation in DNA-B led us to suspect a recombination in DNA-B. Dimeric MYMV infectious clones were constructed, and the infectivity was confirmed through agroinoculation. In future prospects, unless relying on screening using whiteflies, breeders and plant pathologists can readily use this agroinoculation procedure to identify resistant and susceptible cultivars to YMD.
Collapse
Affiliation(s)
- Madhumitha Balasubramaniam
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Tamilnayagan Thangavel
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sakthi Ambothi Rathnasamy
- Department of Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Mohankumar Subbarayalu
- Department of Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Senthil Natesan
- Department of Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- School of Science and Technology, The Life Science Centre, Örebro University, Örebro, Sweden
| | - Raveendran Muthurajan
- Department of Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Department of Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
19
|
Renukadevi P, Devi RG, Jothika C, Karthikeyan G, Malathi VG, Balakrishnan N, Rajagopal B, Nakkeeran S, Abd-Allah EF. Genomic distinctiveness and recombination in tomato leaf curl New Delhi virus (ToLCNDV-BG) isolates infecting bitter gourd. 3 Biotech 2024; 14:184. [PMID: 39070236 PMCID: PMC11282025 DOI: 10.1007/s13205-024-04009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
There are two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV) infecting bitter gourd in India. An extensive survey conducted from 2019 to 2022 clearly established that infection by ToLCNDV is more predominant (92.43%) than BgYMV (44%). The ToLCNDV isolates infecting bitter gourd shared only 88% identity in the DNA-A component with other ToLCNDV isolates and were found to be a distinct variant. The predicted amino acid sequence of the viral proteins, replication initiation protein, coat protein, and the symptom determinant protein in the study isolates are markedly different. Especially the RCR motif I and RCR motif III are different from other geminiviruses. Infectivity of cloned components of one of the isolates ToLCNDV-BG NP was demonstrated in bitter gourd. Recombination analysis clearly revealed that the study isolates are recombinants with the major parent predicted as squash leaf curl Yunnan virus (GenBank Accession Number: MK064241) and the minor parent as ToLCNDV from Pakistan (GenBank Accession Number: AM747291). Due to distinct genomic features and less than 90% identity with the majority of ToLCNDV isolates, the study isolates deserve to be raised to the status of a distinct strain, designated as ToLCNDV-BG. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04009-3.
Collapse
Affiliation(s)
- P. Renukadevi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - R. Gomathi Devi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - C. Jothika
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - G. Karthikeyan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - V. G. Malathi
- GI, Sree Kumaran Hill Crest Apartment, Coimbatore, Tamil Nadu 641046 India
| | - N. Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - B. Rajagopal
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - S. Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Vandeputte W, Coussens G, Aesaert S, Haeghebaert J, Impens L, Karimi M, Debernardi JM, Pauwels L. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2116-2132. [PMID: 38923048 DOI: 10.1111/tpj.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.
Collapse
Affiliation(s)
- Wout Vandeputte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, California, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
21
|
Prudhomme N, Pastora R, Thomson S, Zheng E, Sproule A, Krieger JR, Murphy JP, Overy DP, Cossar D, McLean MD, Geddes‐McAlister J. Bacterial growth-mediated systems remodelling of Nicotiana benthamiana defines unique signatures of target protein production in molecular pharming. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2248-2266. [PMID: 38516995 PMCID: PMC11258984 DOI: 10.1111/pbi.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.
Collapse
Affiliation(s)
- Nicholas Prudhomme
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | | | - Sarah Thomson
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Edison Zheng
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Amanda Sproule
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | | | - J. Patrick Murphy
- Department of BiologyUniversity of Prince Edward IslandCharlottetownPECanada
| | - David P. Overy
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | | | | | | |
Collapse
|
22
|
Kiyokawa K, Sakuma T, Moriguchi K, Sugiyama M, Akao T, Yamamoto T, Suzuki K. Conversion of polyploid and alloploid Saccharomyces sensu stricto strains to leu2 mutants by genome DNA editing. Appl Microbiol Biotechnol 2024; 108:416. [PMID: 38995331 PMCID: PMC11245423 DOI: 10.1007/s00253-024-13242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 731-5193, Japan
| | - Tetsushi Sakuma
- Program of Mathematical and Life Sciences and Frontier Development Program for Genome Editing, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima City, Hiroshima, 731-5193, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima City, Hiroshima, 739-0046, Japan
| | - Takashi Yamamoto
- Program of Mathematical and Life Sciences and Frontier Development Program for Genome Editing, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 731-5193, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
23
|
Ben Saad R, Ben Romdhane W, Bouteraa MT, Jemli S, Ben Hsouna A, Hassairi A. Development of a marker-free engineered durum wheat overexpressing Lobularia maritima GASA1 with improved drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108775. [PMID: 38810521 DOI: 10.1016/j.plaphy.2024.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Due to their fixed lifestyle, plants must adapt to abiotic or biotic stresses by orchestrating various responses, including protective and growth control measures. Growth arrest is provoked upon abiotic stress and can impair plant production. Members of the plant-specific GASA (gibberellic acid-stimulated Arabidopsis) gene family play crucial roles in phytohormone responses, abiotic and biotic stresses, and plant growth. Here, we recognized and examined the LmGASA1 gene from the halophyte plant Lobularia maritima and developed marker-free engineered durum wheat plants overexpressing the gene. The LmGASA1 transcript profile revealed that it's induced by stressful events as well as by phytohormones including GA3, MeJA, and ABA, suggesting that the LmGASA1 gene may contribute to these stress and hormone signal transduction pathways. Transient expression of GFP-LmGASA1 fusion in onion epidermal cells indicated that LmGASA1 is localized to the cell membrane. Further analysis showed that overexpression of LmGASA1 in durum wheat plants enhanced tolerance to drought stress compared with that in non-transgenic (NT) plants, imposing no yield penalty and enabling seed production even following drought stress at the vegetative stage. Altogether, our data indicate that LmGASA1 regulates both the scavenging capacity of the antioxidant enzymatic system and the activation of at least six stress-related genes that function as positive regulators of drought stress tolerance. LmGASA1 appears to be a novel gene useful for further functional analysis and potential engineering for drought stress tolerance in crops.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
| | - Mohamed Taieb Bouteraa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia; Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Afif Hassairi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia; Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S. Targeting dermatophyte Cdc42 and Rac GTPase signaling to hinder hyphal elongation and virulence. iScience 2024; 27:110139. [PMID: 38952678 PMCID: PMC11215307 DOI: 10.1016/j.isci.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
The development of antifungal drugs requires novel molecular targets due to limited treatment options and drug resistance. Through chemical screening and establishment of a novel genetic technique to repress gene expression in Trichophyton rubrum, the primary causal fungus of dermatophytosis, we demonstrated that fungal Cdc42 and Rac GTPases are promising antifungal drug targets. Chemical inhibitors of these GTPases impair hyphal formation, which is crucial for growth and virulence in T. rubrum. Conditional repression of Cdc24, a guanine nucleotide exchange factor for Cdc42 and Rac, led to hyphal growth defects, abnormal cell morphology, and cell death. EHop-016 inhibited the promotion of the guanine nucleotide exchange reaction in Cdc42 and Rac by Cdc24 as well as germination and growth on the nail fragments of T. rubrum and improved animal survival in an invertebrate infection model of T. rubrum. Our results provide a novel antifungal therapeutic target and a potential lead compound.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2–522–1 Noshio, Kiyose, Tokyo 204–8588, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo 192-0395, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo 173-0003, Japan
| | - Hideko Uga
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Toshiaki Katada
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
25
|
Deng W, Takada Y, Nanasato Y, Kishida K, Stari L, Ohtsubo Y, Tabei Y, Watanabe M, Nagata Y. Transgenic Arabidopsis thaliana plants expressing bacterial γ-hexachlorocyclohexane dehydrochlorinase LinA. BMC Biotechnol 2024; 24:42. [PMID: 38898480 PMCID: PMC11186250 DOI: 10.1186/s12896-024-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation. RESULTS We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h. CONCLUSION The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.
Collapse
Affiliation(s)
- Wenhao Deng
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshinobu Takada
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization (FRMO), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Leonardo Stari
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yutaka Tabei
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-Machi, Ora-Gun, Gunma, 374-0193, Japan
| | - Masao Watanabe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
26
|
Trull BN, Sultana MS, Pfotenhauer AC, Stockdale JN, Pantalone V, Zhang B, Stewart CN. Robust soybean leaf agroinfiltration. PLANT CELL REPORTS 2024; 43:162. [PMID: 38837057 DOI: 10.1007/s00299-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.
Collapse
Affiliation(s)
- Bryce N Trull
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | | | | | - Jessica N Stockdale
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Vincent Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Bo Zhang
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
27
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
28
|
Tisseyre P, Cartieaux F, Chabrillange N, Gully D, Hocher V, Svistoonoff S, Gherbi H. Setting up Agrobacterium tumefaciens-mediated transformation of the tropical legume Aeschynomene evenia, a powerful tool for studying gene function in Nod Factor-independent symbiosis. PLoS One 2024; 19:e0297547. [PMID: 38625963 PMCID: PMC11020691 DOI: 10.1371/journal.pone.0297547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/09/2024] [Indexed: 04/18/2024] Open
Abstract
Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 μM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 μM) and BAP (2,2 μM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.
Collapse
Affiliation(s)
- Pierre Tisseyre
- IRD (French National Research Institute for Sustainable Development), UMR QualiSud, IRD-MONTPELLIER, Montpellier, France
| | - Fabienne Cartieaux
- IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France
| | - Nathalie Chabrillange
- IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France
| | - Djamel Gully
- IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France
| | - Valérie Hocher
- IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France
- Laboratoire commun de Microbiologie IRD/ISRA/UCAD, Centre de recherche de Bel Air, Dakar, Sénégal
| | - Sergio Svistoonoff
- IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France
| | - Hassen Gherbi
- IRD (French National Research Institute for Sustainable Development), UMR PHIM (Plant Health Institute of Montpellier), Montpellier, France
| |
Collapse
|
29
|
Akter N, Kulsum U, Moniruzzaman M, Yasuda N, Akama K. Truncation of the calmodulin binding domain in rice glutamate decarboxylase 4 ( OsGAD4) leads to accumulation of γ-aminobutyric acid and confers abiotic stress tolerance in rice seedlings. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:21. [PMID: 38435472 PMCID: PMC10904699 DOI: 10.1007/s11032-024-01460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
GABA (Gamma-aminobutyric acid) is a non-protein amino acid widely known as major inhibitory neurotransmitter. It is synthesized from glutamate via the enzyme glutamate decarboxylase (GAD). GAD is ubiquitous in all organisms, but only plant GAD has ability to bind Ca2+/calmodulin (CaM). This kind of binding suppresses the auto-inhibition of Ca2+/calmodulin binding domain (CaMBD) when the active site of GAD is unfolded resulting in stimulated GAD activity. OsGAD4 is one of the five GAD genes in rice genome. It was confirmed that OsGAD4 has ability to bind to Ca2+/CaM. Moreover, it exhibits strongest expression against several stress conditions among the five OsGAD genes. In this study, CRISPR/Cas9-mediated genome editing was performed to trim the coding region of CaMBD from the OsGAD4 gene, to remove its autoinhibitory function. DNA sequence analysis of the genome edited rice plants revealed the truncation of CaMBD (216 bp). Genome edited line (#14-1) produced 11.26 mg GABA/100 g grain, which is almost nine-fold in comparison to wild type. Short deletion in the coding region for CaMBD yielded in mutant (#14-6) with lower GABA content than wild type counterpart. Abiotic stresses like salinity, flooding and drought significantly enhanced GABA accumulation in #14-1 at various time points compared to wild-type and #14-6 under the same stress conditions. Moreover, upregulated mRNA expression in vegetative tissues seems correlated with the stress-responsiveness of OsGAD4 when exposed to the above-mentioned stresses. Stress tolerance of OsGAD4 genome edited lines was evidenced by the higher survival rate indicating the gene may induce tolerance against abiotic stresses in rice. This is the first report on abiotic stress tolerance in rice modulated by endogenous GABA. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01460-1.
Collapse
Affiliation(s)
- Nadia Akter
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
- Genetic Resources and Seed Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Ummey Kulsum
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Mohammad Moniruzzaman
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Norito Yasuda
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Kazuhito Akama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| |
Collapse
|
30
|
Du NH, Xiong RL, Zhu TT, Liu XY, Zhang JZ, Fu J, Wang HL, Lou HX, Cheng AX. Efficient Production of Flavonoid Glucuronides in Escherichia coli Using Flavonoid O-Glucuronosyltransferases Characterized from Marchantia polymorpha. JOURNAL OF NATURAL PRODUCTS 2024; 87:228-237. [PMID: 38266493 DOI: 10.1021/acs.jnatprod.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.
Collapse
Affiliation(s)
- Ni-Hong Du
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Rui-Lin Xiong
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266000, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
31
|
Barrell PJ, Latimer JM, Millar TR, Jacobs JME, Conner AJ. Intragenic Agrobacterium-mediated gene transfer mimics micro-translocations without foreign DNA. PLANTA 2024; 259:61. [PMID: 38319406 PMCID: PMC10847175 DOI: 10.1007/s00425-024-04329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
MAIN CONCLUSION Agrobacterium-mediated transformation of Nicotiana tabacum, using an intragenic T-DNA region derived entirely from the N. tabacum genome, results in the equivalence of micro-translocations within genomes. Intragenic Agrobacterium-mediated gene transfer was achieved in Nicotiana tabacum using a T-DNA composed entirely of N. tabacum DNA, including T-DNA borders and the acetohydroxyacid synthase gene conferring resistance to sulfonylurea herbicides. Genomic analysis of a resulting plant, with single locus inheritance of herbicide resistance, identified a single insertion of the intragenic T-DNA on chromosome 5. The insertion event was composed of three N. tabacum DNA fragments from other chromosomes, as assembled on the T-DNA vector. This validates that intragenic transformation of plants can mimic micro-translocations within genomes, with the absence of foreign DNA.
Collapse
Affiliation(s)
- Philippa J Barrell
- New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand.
| | - Julie M Latimer
- New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
| | - Timothy R Millar
- New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
| | | | | |
Collapse
|
32
|
Zhang CX, Li RJ, Baude L, Reinhardt D, Xie ZP, Staehelin C. CRISPR/Cas9-Mediated Generation of Mutant Lines in Medicago truncatula Indicates a Symbiotic Role of MtLYK10 during Nodule Formation. BIOLOGY 2024; 13:53. [PMID: 38275729 PMCID: PMC10812973 DOI: 10.3390/biology13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
CRISPR/Cas9 systems are commonly used for plant genome editing; however, the generation of homozygous mutant lines in Medicago truncatula remains challenging. Here, we present a CRISPR/Cas9-based protocol that allows the efficient generation of M. truncatula mutants. Gene editing was performed for the LysM receptor kinase gene MtLYK10 and two major facilitator superfamily transporter genes. The functionality of CRISPR/Cas9 vectors was tested in Nicotiana benthamiana leaves by editing a co-transformed GUSPlus gene. Transformed M. truncatula leaf explants were regenerated to whole plants at high efficiency (80%). An editing efficiency (frequency of mutations at a given target site) of up to 70% was reached in the regenerated plants. Plants with MtLYK10 knockout mutations were propagated, and three independent homozygous mutant lines were further characterized. No off-target mutations were identified in these lyk10 mutants. Finally, the lyk10 mutants and wild-type plants were compared with respect to the formation of root nodules induced by nitrogen-fixing Sinorhizobium meliloti bacteria. Nodule formation was considerably delayed in the three lyk10 mutant lines. Surprisingly, the size of the rare nodules in mutant plants was higher than in wild-type plants. In conclusion, the symbiotic characterization of lyk10 mutants generated with the developed CRISPR/Cas9 protocol indicated a role of MtLYK10 in nodule formation.
Collapse
Affiliation(s)
- Chun-Xiao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Laura Baude
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
33
|
Fousek J, Dušek J, Hoffmeisterová H, Čeřovská N, Kundu JK, Moravec T. Quantitative Estimation of Promoter Activity in Cannabis sativa Using Agroinfiltration-Based Transient Gene Expression. Methods Mol Biol 2024; 2787:245-253. [PMID: 38656494 DOI: 10.1007/978-1-0716-3778-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.
Collapse
Affiliation(s)
- Jan Fousek
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Dušek
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hoffmeisterová
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Noemi Čeřovská
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiban Kumar Kundu
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, Prague, Czech Republic
| | - Tomáš Moravec
- Laboratory of Virology, Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
34
|
Lim S, Kwon HJ, Jeong DG, Nie H, Lee S, Ko SR, Lee KS, Ryu YB, Mason HS, Kim HS, Shin AY, Kwon SY. Enhanced binding and inhibition of SARS-CoV-2 by a plant-derived ACE2 protein containing a fused mu tailpiece. Biotechnol J 2024; 19:e2300319. [PMID: 37853601 DOI: 10.1002/biot.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (μ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of μ-tp and KDEL to the ACE2 protein (ACE2 μK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 μK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 μK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.
Collapse
Affiliation(s)
- Sohee Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hualin Nie
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sanghee Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seo-Rin Ko
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute at ASU, Tempe, Arizona, USA
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
35
|
Suzuki M, Kitazawa Y, Iwabuchi N, Maejima K, Matsuyama J, Matsumoto O, Oshima K, Namba S, Yamaji Y. Target degradation specificity of phytoplasma effector phyllogen is regulated by the recruitment of host proteasome shuttle protein. MOLECULAR PLANT PATHOLOGY 2024; 25:e13410. [PMID: 38105442 PMCID: PMC10799209 DOI: 10.1111/mpp.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kenro Oshima
- Faculty of Bioscience, Hosei UniversityTokyoJapan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
36
|
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S. TrCla4 promotes actin polymerization at the hyphal tip and mycelial growth in Trichophyton rubrum. Microbiol Spectr 2023; 11:e0292323. [PMID: 37905917 PMCID: PMC10714743 DOI: 10.1128/spectrum.02923-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Superficial fungal infections, such as athlete's foot, affect more than 10% of the world's population and have a significant impact on quality of life. Despite the fact that treatment-resistant fungi are a concern, there are just a few antifungal drug targets accessible, as opposed to the wide range of therapeutic targets found in bacterial infections. As a result, additional alternatives are sought. In this study, we generated a PAK TrCla4 deletion strain (∆Trcla4) of Trichophyton rubrum. The ∆Trcla4 strain exhibited deficiencies in mycelial growth, hyphal morphology, and polarized actin localization at the hyphal tip. IPA-3 and FRAX486, small chemical inhibitors of mammalian PAK, were discovered to limit fungal mycelial proliferation. According to our findings, fungal PAKs are interesting therapeutic targets for the development of new antifungal medicines.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Hachioji, Tokyo, Japan
| | - Hideko Uga
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Toshiaki Katada
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
37
|
Hsieh JWA, Chang P, Kuang LY, Hsing YIC, Chen PY. Rice transformation treatments leave specific epigenome changes beyond tissue culture. PLANT PHYSIOLOGY 2023; 193:1297-1312. [PMID: 37394940 PMCID: PMC10517251 DOI: 10.1093/plphys/kiad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
During transgenic plant production, tissue culture often carries epigenetic, and genetic changes that underlie somaclonal variations, leading to unpredictable phenotypes. Additionally, specific treatments for rice (Oryza sativa) transformation processes may individually or jointly contribute to somaclonal variations, but their specific impacts on rice epigenomes toward transcriptional variations remain unknown. Here, the impact of individual transformation treatments on genome-wide DNA methylation and the transcriptome were examined. In addition to activating stress-responsive genes, individual transformation components targeted different gene expression modules that were enriched in specific functional categories. The transformation treatments strongly impacted DNA methylation and expression; 75% were independent of tissue culture. Furthermore, our genome-wide analysis showed that the transformation treatments consistently resulted in global hypo-CHH methylation enriched at promoters highly associated with downregulation, particularly when the promoters were colocalized with miniature inverted-repeat transposable elements. Our results clearly highlight the specificity of impacts triggered by individual transformation treatments during rice transformation with the potential association between DNA methylation and gene expression. These changes in gene expression and DNA methylation resulting from rice transformation treatments explain a significant portion of somaclonal variations, that is, way beyond the tissue culture effect.
Collapse
Affiliation(s)
- Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National
Taiwan University, Taipei 10617, Taiwan
| | - Pearl Chang
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Department of Tropical Agriculture and International Cooperation/Department
of Biological Science and Technology, National Pingtung University of Science and
Technology, Pingtung 91201, Taiwan
| | - Lin-Yun Kuang
- The Transgenic Plant Core Facility, Agricultural Biotechnology Research
Center, Academia Sinica, Taipei 115201, Taiwan
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica,
Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National
Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
38
|
Nishizawa‐Yokoi A, Gelvin SB. Transformation and regeneration of DNA polymerase Θ mutant rice plants. PLANT DIRECT 2023; 7:e526. [PMID: 37681196 PMCID: PMC10480422 DOI: 10.1002/pld3.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Agrobacterium T-DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non-homologous end-joining (NHEJ) protein DNA polymerase Θ, encoded by the PolQ gene, for T-DNA integration is controversial, with some groups claiming it is essential whereas others claim T-DNA integration in Arabidopsis and rice polQ mutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenic polQ mutant plants. We describe a protocol for regenerating transgenic polQ mutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species.
Collapse
Affiliation(s)
- Ayako Nishizawa‐Yokoi
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Stanton B. Gelvin
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
39
|
Kiyokawa K, Yamamoto S, Moriguchi K, Sugiyama M, Hisatomi T, Suzuki K. Construction of versatile yeast plasmid vectors transferable by Agrobacterium-mediated transformation and their application to bread-making yeast strains. J Biosci Bioeng 2023; 136:142-151. [PMID: 37263830 DOI: 10.1016/j.jbiosc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Agrobacterium-mediated transformation (AMT) potentially has great advantages over other DNA introduction methods: e.g., long DNA and numerous recipient strains can be dealt with at a time merely by co-cultivation with donor Agrobacterium cells. However, AMT was applied only to several laboratory yeast strains, and has never been considered as a standard gene-introduction method for yeast species. To disseminate the AMT method in yeast species, it is necessary to develop versatile AMT plasmid vectors including shuttle type ones, which have been unavailable yet for yeasts. In this study, we constructed a series of AMT plasmid vectors that consist of replicative (shuttle)- and integrative-types and harbor a gene conferring resistance to either G418 or aureobasidin A for application to prototrophic yeast strains. The vectors were successfully applied to five industrial yeast strains belonging to Saccharomyces cerevisiae after a modification of a previous AMT protocol, i.e., simply inputting a smaller number of yeast cells to the co-cultivation than that in the previous protocol. The revised protocol enabled all five yeast strains to generate recombinant colonies not only at high efficiency using replicative-type vectors, but also readily at an efficiency around 10-5 using integrative one. Further modification of the protocol demonstrated AMT for multiple yeast strains at a time with less labor. Therefore, AMT would facilitate molecular genetic approaches to many yeast strains in basic and applied sciences.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Kazuki Moriguchi
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima City, Hiroshima 731-519, Japan.
| | - Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan.
| | - Katsunori Suzuki
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
40
|
Meng D, Cao H, Yang Q, Zhang M, Borejsza-Wysocka E, Wang H, Dandekar AM, Fei Z, Cheng L. SnRK1 kinase-mediated phosphorylation of transcription factor bZIP39 regulates sorbitol metabolism in apple. PLANT PHYSIOLOGY 2023; 192:2123-2142. [PMID: 37067900 PMCID: PMC10315300 DOI: 10.1093/plphys/kiad226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Sorbitol is a major photosynthate produced in leaves and transported through the phloem of apple (Malus domestica) and other tree fruits in Rosaceae. Sorbitol stimulates its own metabolism, but the underlying molecular mechanism remains unknown. Here, we show that sucrose nonfermenting 1 (SNF1)-related protein kinase 1 (SnRK1) is involved in regulating the sorbitol-responsive expression of both SORBITOL DEHYDROGENASE 1 (SDH1) and ALDOSE-6-PHOSPHATE REDUCTASE (A6PR), encoding 2 key enzymes in sorbitol metabolism. SnRK1 expression is increased by feeding of exogenous sorbitol but decreased by sucrose. SnRK1 interacts with and phosphorylates the basic leucine zipper (bZIP) transcription factor bZIP39. bZIP39 binds to the promoters of both SDH1 and A6PR and activates their expression. Overexpression of SnRK1 in 'Royal Gala' apple increases its protein level and activity, upregulating transcript levels of both SDH1 and A6PR without altering the expression of bZIP39. Of all the sugars tested, sorbitol is the only 1 that stimulates SDH1 and A6PR expression, and this stimulation is blocked by RNA interference (RNAi)-induced repression of either SnRK1 or bZIP39. These findings reveal that sorbitol acts as a signal regulating its own metabolism via SnRK1-mediated phosphorylation of bZIP39, which integrates sorbitol signaling into the SnRK1-mediated sugar signaling network to modulate plant carbohydrate metabolism.
Collapse
Affiliation(s)
- Dong Meng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Hongyan Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mengxia Zhang
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ewa Borejsza-Wysocka
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Huicong Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Kobayashi NI, Takagi H, Yang X, Nishizawa-Yokoi A, Segawa T, Hoshina T, Oonishi T, Suzuki H, Iwata R, Toki S, Nakanishi TM, Tanoi K. Mutations in RZF1, a zinc-finger protein, reduce magnesium uptake in roots and translocation to shoots in rice. PLANT PHYSIOLOGY 2023; 192:342-355. [PMID: 36718554 PMCID: PMC10152673 DOI: 10.1093/plphys/kiad051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Magnesium (Mg) homeostasis is critical for maintaining many biological processes, but little information is available to comprehend the molecular mechanisms regulating Mg concentration in rice (Oryza sativa). To make up for the lack of information, we aimed to identify mutants defective in Mg homeostasis through a forward genetic approach. As a result of the screening of 2,825 M2 seedlings mutated by ion-beam irradiation, we found a rice mutant that showed reduced Mg content in leaves and slightly increased Mg content in roots. Radiotracer 28Mg experiments showed that this mutant, named low-magnesium content 1 (LMGC1), has decreased Mg2+ influx in the root and Mg2+ translocation from root to shoot. Consequently, LMGC1 is sensitive to the low Mg condition and prone to develop chlorosis in the young mature leaf. The MutMap method identified a 7.4-kbp deletion in the LMGC1 genome leading to a loss of two genes. Genome editing using CRISPR-Cas9 further revealed that one of the two lost genes, a gene belonging to the RanBP2-type zinc-finger family that we named RanBP2-TYPE ZINC FINGER1 (OsRZF1), was the causal gene of the low Mg phenotype. OsRZF1 is a nuclear protein and may have a fundamental role in maintaining Mg homeostasis in rice plants.
Collapse
Affiliation(s)
- Natsuko I Kobayashi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Xiaoyu Yang
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
| | - Tenta Segawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Tatsuaki Hoshina
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Oonishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Hisashi Suzuki
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama, Kanagawa 236-0027, Japan
| | - Tomoko M Nakanishi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Keitaro Tanoi
- Graduate School of Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
42
|
Jia T, Tang T, Cheng B, Li Z, Peng Y. Development of two protocols for Agrobacterium-mediated transformation of white clover (Trifolium repens) via the callus system. 3 Biotech 2023; 13:150. [PMID: 37131967 PMCID: PMC10148932 DOI: 10.1007/s13205-023-03591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 04/23/2023] [Indexed: 05/04/2023] Open
Abstract
White clover (Trifolium repens) is one of the most widely cultivated livestock forage plants whose persistence is severely affected by abiotic stresses. For the white clover, efficient regeneration systems is still a great necessity. In this study, inoculating 4-day-old cotyledons into MS media fortified with 0.4 mg·L-1 6-BA and 2 mg·L-1 2,4-D significantly increased the callus induction rate. Roots and cotyledons proved to be better explants, followed by hypocotyls, leaves, and petioles for callus induction. The development of differentiated structures occurred effectively on MS supplemented with 1 mg·L-1 6-BA and 0.1 mg·L-1 NAA. To increase transformation, we investigated various factors affecting the Agrobacterium tumefaciens transformation in white clover. The optimal conditions for root-derived callus and 4-day-old cotyledons were as follows: Agrobacterium suspension density with OD600 of 0.5, 20 mg·L-1 AS, and 4 days of co-cultivation duration. Subsequently, we developed two transformation protocols: transformation after callus induction from 4-day-old roots (Protocol A) and transformation before initiation of callus from cotyledons (Protocol B). The transformation frequencies varied from 1.92 to 3.17% in Protocol A and from 2.76 to 3.47% in Protocol B. We report the possibility to regenerate multiple transgenic white clover plants from a single genetic background. Our research may also contribute to successful genetic manipulation and genome editing in white clover. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03591-2.
Collapse
Affiliation(s)
- Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
43
|
Sukegawa S, Nureki O, Toki S, Saika H. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Front Genome Ed 2023; 5:1138843. [PMID: 36992681 PMCID: PMC10040665 DOI: 10.3389/fgeed.2023.1138843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Cas9 derived from Streptococcus pyogenes (SpCas9) is used widely in genome editing using the CRISPR-Cas system due to its high activity, but is a relatively large molecule (1,368 amino acid (a.a.) residues). Recently, targeted mutagenesis in human cells and maize using Cas12f derived from Syntrophomonas palmitatica (SpCas12f)—a very small Cas of 497 a.a, which is a more suitable size for virus vectors—was reported. However, there are no reports of genome editing using SpCas12f in crops other than maize. In this study, we applied SpCas12f to genome editing in rice—one of the most important staple crops in the world. An expression vector encoding rice codon-optimized SpCas12f and sgRNA for OsTubulin as a target was introduced into rice calli by Agrobacterium-mediated transformation. Molecular analysis of SpCas12f-transformed calli showed that mutations were introduced successfully into the target region. Detailed analysis by amplicon sequencing revealed estimated mutation frequencies (a ratio of the number of mutated calli to that of SpCas12f-transformed calli) of 28.8% and 55.6% in two targets. Most mutation patterns were deletions, but base substitutions and insertions were also confirmed at low frequency. Moreover, off-target mutations by SpCas12f were not found. Furthermore, mutant plants were regenerated successfully from the mutated calli. It was confirmed that the mutations in the regenerated plants were inherited to the next-generation. In the previous report in maize, mutations were introduced by treatment with heat shock at 45°C for 4 h per day for 3 days; no mutations were introduced under normal growth conditions at 28°C. Surprisingly, however, mutations can be introduced without heat-shock treatment in rice. This might be due to the culture conditions, with relatively higher temperature (30°C or higher) and constant light during callus proliferation. Taken together, we demonstrated that SpCas12f can be used to achieve targeted mutagenesis in rice. SpCas12f is thus a useful tool for genome editing in rice and is suitable for virus vector-mediated genome editing due to its very small size.
Collapse
Affiliation(s)
- Satoru Sukegawa
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- *Correspondence: Seiichi Toki, ; Hiroaki Saika,
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- *Correspondence: Seiichi Toki, ; Hiroaki Saika,
| |
Collapse
|
44
|
Cordeiro D, Alves A, Ferraz R, Casimiro B, Canhoto J, Correia S. An Efficient Agrobacterium-Mediated Genetic Transformation Method for Solanum betaceum Cav. Embryogenic Callus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1202. [PMID: 36904062 PMCID: PMC10005457 DOI: 10.3390/plants12051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using Agrobacterium tumefaciens is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two Agrobacterium strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for β-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for gus insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches.
Collapse
Affiliation(s)
- Daniela Cordeiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| |
Collapse
|
45
|
Cai Z, Xian P, Cheng Y, Zhong Y, Yang Y, Zhou Q, Lian T, Ma Q, Nian H, Ge L. MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean. THE NEW PHYTOLOGIST 2023. [PMID: 36740575 DOI: 10.1111/nph.18792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Soybean is a major crop that produces valuable seed oil and protein for global consumption. Seed oil and protein are regulated by complex quantitative trait loci (QTLs) and have undergone intensive selections during the domestication of soybean. It is essential to identify the major genetic components and understand their mechanism behind seed oil and protein in soybean. We report that MOTHER-OF-FT-AND-TFL1 (GmMFT) is the gene of a classical QTL that has been reported to regulate seed oil and protein content in many studies. Mutation of MFT decreased seeds oil content and weight in both Arabidopsis and soybean, whereas increased expression of GmMFT enhanced seeds oil content and weight. Haplotype analysis showed that GmMFT has undergone selection, which resulted in the extended haplotype homozygosity in the cultivated soybean and the enriching of the oil-favorable allele in modern soybean cultivars. This work unraveled the GmMFT-mediated mechanism regulating seed oil and protein content and seed weight, and revealed a previously unknown function of MFT that provides new insights into targeted soybean improvement and breeding.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yiwang Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianghua Zhou
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Liangfa Ge
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
46
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
47
|
Trieu A, Belaffif MB, Hirannaiah P, Manjunatha S, Wood R, Bathula Y, Billingsley RL, Arpan A, Sacks EJ, Clemente TE, Moose SP, Reichert NA, Swaminathan K. Transformation and gene editing in the bioenergy grass Miscanthus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:148. [PMID: 36578060 PMCID: PMC9798709 DOI: 10.1186/s13068-022-02241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Miscanthus, a C4 member of Poaceae, is a promising perennial crop for bioenergy, renewable bioproducts, and carbon sequestration. Species of interest include nothospecies M. x giganteus and its parental species M. sacchariflorus and M. sinensis. Use of biotechnology-based procedures to genetically improve Miscanthus, to date, have only included plant transformation procedures for introduction of exogenous genes into the host genome at random, non-targeted sites. RESULTS We developed gene editing procedures for Miscanthus using CRISPR/Cas9 that enabled the mutation of a specific (targeted) endogenous gene to knock out its function. Classified as paleo-allopolyploids (duplicated ancient Sorghum-like DNA plus chromosome fusion event), design of guide RNAs (gRNAs) for Miscanthus needed to target both homeologs and their alleles to account for functional redundancy. Prior research in Zea mays demonstrated that editing the lemon white1 (lw1) gene, involved in chlorophyll and carotenoid biosynthesis, via CRISPR/Cas9 yielded pale green/yellow, striped or white leaf phenotypes making lw1 a promising target for visual confirmation of editing in other species. Using sequence information from both Miscanthus and sorghum, orthologs of maize lw1 were identified; a multi-step screening approach was used to select three gRNAs that could target homeologs of lw1. Embryogenic calli of M. sacchariflorus, M. sinensis and M. x giganteus were transformed via particle bombardment (biolistics) or Agrobacterium tumefaciens introducing the Cas9 gene and three gRNAs to edit lw1. Leaves on edited Miscanthus plants displayed the same phenotypes noted in maize. Sanger sequencing confirmed editing; deletions in lw1 ranged from 1 to 26 bp in length, and one deletion (433 bp) encompassed two target sites. Confocal microscopy verified lack of autofluorescence (chlorophyll) in edited leaves/sectors. CONCLUSIONS We developed procedures for gene editing via CRISPR/Cas9 in Miscanthus and, to the best of our knowledge, are the first to do so. This included five genotypes representing three Miscanthus species. Designed gRNAs targeted all copies of lw1 (homeologous copies and their alleles); results also confirmed lw1 made a good editing target in species other than Z. mays. The ability to target specific loci to enable endogenous gene editing presents a new avenue for genetic improvement of this important biomass crop.
Collapse
Affiliation(s)
- Anthony Trieu
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Mohammad B. Belaffif
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Pradeepa Hirannaiah
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Shilpa Manjunatha
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Rebekah Wood
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Yokshitha Bathula
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Rebecca L. Billingsley
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, 295 Lee Blvd., Mississippi State, MS 39762 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Anjali Arpan
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, 295 Lee Blvd., Mississippi State, MS 39762 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Erik J. Sacks
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, E.R. Madigan Laboratory, University of Illinois Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Thomas E. Clemente
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Stephen P. Moose
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, E.R. Madigan Laboratory, University of Illinois Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Nancy A. Reichert
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, 295 Lee Blvd., Mississippi State, MS 39762 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Kankshita Swaminathan
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
48
|
Vaia G, Pavese V, Moglia A, Cristofori V, Silvestri C. Knockout of phytoene desaturase gene using CRISPR/Cas9 in highbush blueberry. FRONTIERS IN PLANT SCIENCE 2022; 13:1074541. [PMID: 36589127 PMCID: PMC9800005 DOI: 10.3389/fpls.2022.1074541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Among the New Plant Breeding Techniques (NPBTs), the CRISPR/Cas9 system represents a useful tool for target gene editing, improving the traits of the plants rapidly. This technology allows targeting one or more sequences simultaneously, as well as introducing new genetic variations by homology-directed recombination. However, the technology of CRISPR/Cas9 remains a challenge for some polyploid woody species, since all the different alleles for which the mutation is required must be simultaneously targeted. In this work we describe improved protocols adapting the CRISPR/Cas9 system to highbush blueberry (Vaccinium corymbosum L.), using Agrobacterium-mediated transformation. As a proof of concept, we targeted the gene encoding for phytoene desaturase, whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Leaf explants of in vitro-cultured blueberry cv. Berkeley has been transformed with a CRISPR/Cas9 construct containing two guide RNAs (gRNA1 and gRNA2) targeting two conserved gene regions of pds and subsequently maintained on a selection medium enriched with kanamycin. After 4 weeks in culture on the selection medium, the kanamycin-resistant lines were isolated, and the genotyping of these lines through Sanger sequencing revealed successful gene editing. Some of mutant shoot lines included albino phenotypes, even if the editing efficiencies were quite low for both gRNAs, ranging between 2.1 and 9.6% for gRNA1 and 3.0 and 23.8 for gRNA2. Here we showed a very effective adventitious shoot regeneration protocol for the commercial cultivar of highbush blueberry "Berkeley", and a further improvement in the use of CRISPR/Cas9 system in Vaccinium corymbosum L., opening the way to the breeding mediated by biotechnological approaches.
Collapse
Affiliation(s)
- Giuseppe Vaia
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Valerio Cristofori
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Viterbo, Italy
| |
Collapse
|
49
|
Shkryl Y, Yugay Y, Vasyutkina E, Chukhlomina E, Rusapetova T, Bulgakov V. The RolB/RolC homolog from sweet potato promotes early flowering and triggers premature leaf senescence in transgenic Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:50-60. [PMID: 36323197 DOI: 10.1016/j.plaphy.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Expression of the root oncogenic loci (rol) genes from Agrobacterium rhizogenes provokes multiple divergent effects on physiological properties in transgenic plants and cell cultures. Recently, the homolog of the rolB and rolC oncogenes, named Ib-rolB/C, has been identified in the genome of a naturally transgenic food crop, i.e. sweet potato. In this study, we revealed that the Ipomoea batatas genome contains two full-length copies of Ib-rolB/C. The expression level of Ib-rolB/C in leaves of sweet potato showed a clear age-dependent pattern and increased as leaves senesce. Moreover, dark-induced senescence strongly up-regulates transcription of the Ib-rolB/C gene. Though Ib-rolB/C shares homology with its counterparts in A. rhizogenes, this gene was not capable to induce hairy roots or tumors in kalanchoe and tobacco plants. The Ib-rolB/C gene induced early-flowering phenotype, altered leaf morphology, and promoted premature leaf senescence in transgenic Arabidopsis thaliana plants. At the same time, Ib-rolB/C did not affect root morphology and biomass. Our results suggest that Ib-RolB/RolC participates in both age- and dark-triggered leaf senescence programs.
Collapse
Affiliation(s)
- Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Ekaterina Chukhlomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
50
|
Song GQ, Urban G, Ryner JT, Zhong GY. Gene Editing Profiles in 94 CRISPR-Cas9 Expressing T 0 Transgenic Tobacco Lines Reveal High Frequencies of Chimeric Editing of the Target Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:3494. [PMID: 36559603 PMCID: PMC9782292 DOI: 10.3390/plants11243494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Chimeric editing is often reported in gene editing. To assess how the general chimeric editing is, we created a transgenic tobacco line carrying a marker, beta-glucuronidase gene (gusA), introduced a CRISPR-Cas9 editing vector into the transgenic tobacco line for knocking out gusA, and then investigated the gusA editing efficiencies in T0 and subsequent generations. The editing vector carried a Cas9 gene, which was driven by the cauliflower mosaic virus 35S promoter, and two guide RNAs, gRNA1 and gRNA2, which were driven by Arabidopsis U6 (AtU6) and U3 (AtU3) promoter, respectively. The two gRNAs were designed to knock out a 42-nucleotide fragment of the coding region of gusA. The editing vector was transformed into gusA-containing tobacco leaves using Agrobacterium tumefaciens-mediated transformation and hygromycin selection. Hygromycin-resistant, independent T0 transgenic lines were used to evaluate gusA-editing efficiencies through histochemical GUS assays, polymerase chain reactions (PCR), and next-generation sequencing of PCR amplicons. Profiles of targeted sequences of 94 T0 transgenic lines revealed that these lines were regenerated from non-edited cells where subsequent editing occurred and created chimeric-edited cells in these lines during or after regeneration. Two of them had the target fragment of 42 bp pairs of nucleotides removed. Detail analysis showed that on-target mutations at the AtU6-gRNA1 site and the AtU3-gRNA2 site were found in 4.3% and 77.7% of T0 transgenic lines, respectively. To overcome the issue of extremely low editing efficiencies in T0 lines, we conducted a second round of shoot induction from the chimeric line(s) to enhance the success of obtaining lines with all or most cells edited. The mutation profiles in T0 transgenic lines provide valuable information to understand gene editing in plant cells with constitutively expressed CRISPR-Cas9 and gRNAs.
Collapse
Affiliation(s)
- Guo-Qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI 48824, USA
| | - Grace Urban
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI 48824, USA
| | - John T. Ryner
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI 48824, USA
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY 14456, USA
| |
Collapse
|