1
|
Habibu B, Aluwong T, Yaqub LS, Buhari HU, Makun HJ, Kawu MU. Metabolic adjustments in neonatal dwarf and normal-sized goat kids: Relationship between serum metabolites and body size. PLoS One 2023; 18:e0289809. [PMID: 37972032 PMCID: PMC10653417 DOI: 10.1371/journal.pone.0289809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/26/2023] [Indexed: 11/19/2023] Open
Abstract
The relationship between body size and metabolism of goats remains poorly studied. The study evaluated the neonatal metabolic adjustments and elucidated the relationship between serum metabolites and body size in 39 single-born dwarf and normal-sized goat kids. Body weight, length and height of kids were recorded at birth and blood samples were collected from the dwarf and normal-sized (Red Sokoto and Sahel) goats on Days 0 (birth), 3, 10 and 20, postnatal. Also, the body mass index (BMI) was calculated and the concentration of metabolic markers was determined. Results revealed that values of BMI, body weight, length and height were lowest (P < 0.01) in the dwarf, followed by values in Red Sokoto kids, while the Sahel kids had the highest (P < 0.01) values. Conversely, the concentration of triglyceride at birth was highest (P < 0.05) in the dwarf, moderate in Red Sokoto and lowest in Sahel goats. Similarly, the Sahel goat kids had the lowest neonatal (P < 0.05) concentration of serum cholesterol. Neonatal concentrations of serum albumin and urea were higher in Sahel than Red Sokoto (P < 0.05) and the dwarf (P > 0.05) goats. Concentration of serum albumin was lower (P < 0.05) at birth, but significantly increased later, while values of serum urea concentration were higher (P < 0.05) at birth, but significantly decreased in subsequent postnatal days. Unlike the BMI, birth weight showed significant negative (P < 0.05) correlation with the concentration of most serum metabolites, especially triglyceride, which showed negative correlation at birth and in subsequent postnatal days. We concluded that dwarfism or small body size is associated with high serum triglyceride in single-born neonatal goats, and this is probably due to the accumulation of body energy reserve in the form of body fat to compensate for lower body tissue mass.
Collapse
Affiliation(s)
- Buhari Habibu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Tagang Aluwong
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Hajarah Uwale Buhari
- Samaru College of Agriculture, Division of Agricultural Colleges, Ahmadu Bello University, Zaria, Nigeria
| | - Hussaina Joan Makun
- National Animal Production Research Institute, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Umaru Kawu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
2
|
Hu Z, Ai N, Chen W, Wong QWL, Ge W. Loss of Growth Hormone Gene (gh1) in Zebrafish Arrests Folliculogenesis in Females and Delays Spermatogenesis in Males. Endocrinology 2019; 160:568-586. [PMID: 30668682 DOI: 10.1210/en.2018-00878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
As a master hormone controlling growth and metabolism, GH is also known to regulate reproduction. Studies in mammals have shown that mutations in GH or its receptor (GHR) not only result in retardation in body growth but also reproductive dysfunctions in both sexes. However, the roles of GH in reproduction of other vertebrates are poorly defined. In this study, we created two zebrafish GH (gh1) mutant lines using CRISPR/Cas9. The mutant developed normally up to 14 days postfertilization (dpf); however, a high rate of mortality was observed afterward in both lines, and only a small number of mutant fish could survive to adult stage. The body growth of the mutants was significantly retarded in both sexes in a gene dose-dependent manner compared with their wild-type siblings. A severe dysfunction of gonadal development was observed in survived mutant females, with ovarian folliculogenesis being arrested completely at primary growth stage until 100 dpf. Interestingly, the folliculogenesis in the mutant resumed after months of delay with a certain number of follicles entering vitellogenic growth. As for male reproduction, although the spermatogenesis in mutant males seemed normal in adults, the GH-insufficient heterozygote showed an obvious delay of spermatogenesis (puberty onset) at early developmental stages. The adult mutant males could not breed with wild-type females through natural spawning; however, the sperm isolated from the mutant testes could fertilize eggs through artificial fertilization. This study provides further genetic evidence for the dependence of puberty onset on somatic growth, but not age, in fish.
Collapse
Affiliation(s)
- Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing-Lei Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
3
|
Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 2014; 386:34-45. [PMID: 24035867 PMCID: PMC3943600 DOI: 10.1016/j.mce.2013.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Bruce Kelder
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Elahu S Gosney
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
4
|
McMenamin SK, Minchin JEN, Gordon TN, Rawls JF, Parichy DM. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini. Endocrinology 2013; 154:1476-87. [PMID: 23456361 PMCID: PMC3602633 DOI: 10.1210/en.2012-1734] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity.
Collapse
Affiliation(s)
- Sarah K McMenamin
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800, USA
| | | | | | | | | |
Collapse
|
5
|
Steyn FJ, Xie TY, Huang L, Ngo ST, Veldhuis JD, Waters MJ, Chen C. Increased adiposity and insulin correlates with the progressive suppression of pulsatile GH secretion during weight gain. J Endocrinol 2013; 218:233-44. [PMID: 23708999 DOI: 10.1530/joe-13-0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pathological changes associated with obesity are thought to contribute to GH deficiency. However, recent observations suggest that impaired GH secretion relative to excess calorie consumption contributes to progressive weight gain and thus may contribute to the development of obesity. To clarify this association between adiposity and GH secretion, we investigated the relationship between pulsatile GH secretion and body weight; epididymal fat mass; and circulating levels of leptin, insulin, non-esterified free fatty acids (NEFAs), and glucose. Data were obtained from male mice maintained on a standard or high-fat diet. We confirm the suppression of pulsatile GH secretion following dietary-induced weight gain. Correlation analyses reveal an inverse relationship between measures of pulsatile GH secretion, body weight, and epididymal fat mass. Moreover, we demonstrate an inverse relationship between measures of pulsatile GH secretion and circulating levels of leptin and insulin. The secretion of GH did not change relative to circulating levels of NEFAs or glucose. We conclude that impaired pulsatile GH secretion in the mouse occurs alongside progressive weight gain and thus precedes the development of obesity. Moreover, data illustrate key interactions between GH secretion and circulating levels of insulin and reflect the potential physiological role of GH in modulation of insulin-induced lipogenesis throughout positive energy balance.
Collapse
Affiliation(s)
- F J Steyn
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Taneja SK, Jain M, Mandal R, Megha K. Excessive zinc in diet induces leptin resistance in Wistar rat through increased uptake of nutrients at intestinal level. J Trace Elem Med Biol 2012; 26:267-72. [PMID: 22683053 DOI: 10.1016/j.jtemb.2012.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/21/2012] [Accepted: 03/19/2012] [Indexed: 12/12/2022]
Abstract
PROJECT The ob gene has either been found to be mutant defective resulting in a deficiency of its product leptin or leptin has been found to be resistant to its receptors in obese human and rodents. The factors inducing leptin resistance have not been identified. Since excessive bioavailability of Zn has been implicated in obesity, we investigated if its excess in diet induces leptin resistance. PROCEDURE For the investigations, three groups of Wistar rats were included in this study and they were fed on equicalories semi synthetic basal diet containing 20 mg, 40 mg or 80 mg Zn/kg diet for 120 days. There after they were sacrificed for hormonal status and intestinal investigations. RESULTS The data of this study revealed that the food intake, gain in body weight, serum leptin, glucose, insulin, cortisol increased with increased Zn concentration in diet. TEM study showed a positive correlation between Zn concentration in diet and number of microvilli/unit surface area of the mucosal epithelial cells of the intestine. CONCLUSION The results of this study suggest that excessive bioavailability of Zn induces leptin resistance through increased uptake of nutrients at intestinal level, leading to the growth of the fat cells which aggravated the leptin synthesis and its release in the blood stream. In spite of its higher circulating level, it was unable to reduce the food intake and gain in body weight in Zn treated rats equivalent to the control group.
Collapse
|
7
|
Berryman DE, List EO, Sackmann-Sala L, Lubbers E, Munn R, Kopchick JJ. Growth hormone and adipose tissue: beyond the adipocyte. Growth Horm IGF Res 2011; 21:113-123. [PMID: 21470887 PMCID: PMC3112270 DOI: 10.1016/j.ghir.2011.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 01/04/2023]
Abstract
The last two decades have seen resurgence in research focused on adipose tissue. In part, the enhanced interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters fat mass, newer findings revealing the complexity of adipose tissue requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and to summarize our current knowledge of how GH may influence and contribute to these newer complexities of this tissue with special focus on the available data from mice with altered GH action.
Collapse
Affiliation(s)
- Darlene E Berryman
- School of Applied Health Sciences and Wellness College of Health Sciences and Human Performance, Ohio University, Athens, OH 45701, United States.
| | | | | | | | | | | |
Collapse
|
8
|
Oberbauer AM, German JB, Murray JD. Growth hormone enhances arachidonic acid metabolites in a growth hormone transgenic mouse. Lipids 2011; 46:495-504. [PMID: 21442273 PMCID: PMC4982394 DOI: 10.1007/s11745-011-3548-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 03/04/2011] [Indexed: 02/04/2023]
Abstract
In a transgenic growth hormone (GH) mouse model, highly elevated GH increases overall growth and decreases adipose depots while low or moderate circulating GH enhances adipose deposition with differential effects on body growth. Using this model, the effects of low, moderate, and high chronic GH on fatty acid composition were determined for adipose and hepatic tissue and the metabolites of 20:4n-6 (arachidonic acid) were characterized to identify metabolic targets of action of elevated GH. The products of Δ-9 desaturase in hepatic, but not adipose, tissue were reduced in response to elevated GH. Proportional to the level of circulating GH, the products of Δ-5 and Δ-6 were increased in both adipose and hepatic tissue for the omega-6 lipids (e.g., 20:4n-6), while only the hepatic tissues showed an increase for omega-3 lipids (e.g., 22:6n-3). The eicosanoids, PGE₂ and 12-HETE, were elevated with high GH but circulating thromboxane was not. Hepatic PTGS1 and 2 (COX1 and COX 2), SOD1, and FADS2 (Δ-6 desaturase) mRNAs were increased with elevated GH while FAS mRNA was reduced; SCD1 (stearoyl-coenzyme A desaturase) and SCD2 mRNA did not significantly differ. The present study showed that GH influences the net flux through various aspects of lipid metabolism and especially the desaturase metabolic processes. The combination of altered metabolism and tissue specificity suggest that the regulation of membrane composition and its effects on signaling pathways, including the production and actions of eicosanoids, can be mediated by the GH regulatory axis.
Collapse
Affiliation(s)
- A M Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
9
|
Siewerdt F, Eisen EJ, Conrad-Brink JS, Murray JD. Gene action of the oMt1a-oGH transgene in two lines of mice with distinct selection backgrounds*. J Anim Breed Genet 2011. [DOI: 10.1111/j.1439-0388.1998.tb00344.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Palmer AJ, Chung MY, List EO, Walker J, Okada S, Kopchick JJ, Berryman DE. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 2009; 150:1353-60. [PMID: 18948397 PMCID: PMC2654748 DOI: 10.1210/en.2008-1199] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GH has a significant impact on body composition due to distinct anabolic and catabolic effects on lean and fat mass, respectively. Several studies have assessed body composition in mice expressing a GH transgene. Whereas all studies report enhanced growth of transgenic mice as compared with littermate controls, there are inconsistencies in terms of the relative proportion of lean mass to fat mass in these animals. The purpose of this study was to characterize the accumulation of adipose and lean mass with age and according to gender in a bovine (b) GH transgenic mouse line. Weight and body composition measurements were assessed in male and female bGH mice with corresponding littermate controls in the C57BL/6J genetic background. Body composition measurements began at 6 wk and continued through 1 yr of age. At the conclusion of the study, tissue weights were determined and triglyceride content was quantified in liver and kidney. Although body weights for bGH mice were significantly greater than their corresponding littermate controls at all time points, body composition measurements revealed an unexpected transition midway through analyses. That is, younger bGH mice had relatively more fat mass than nontransgenic littermates, whereas bGH mice became significantly leaner than controls by 4 months in males and 6 months in females. These results reveal the importance in timing and gender when conducting studies related to body composition or lean and fat tissue in GH transgenic mice or in other genetically manipulated mouse strains in which body composition may be impacted.
Collapse
Affiliation(s)
- Amanda J Palmer
- School of Human and Consumer Sciences, College of Health and Human Services, Edison Biotechnology Institute,Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Animal obesity models differ widely in type and extent of obesity. They are either based on environmental factors (e.g., high-fat diet-induced obesity), spontaneous mutants (i.e., ob/ob mice), genetically engineered animals (e.g., mice with melanocortin receptor subtype-4 gene disruption (knock-out), or mechanical intervention (e.g., chemical lesion of the ventromedial hypothalamus). This unit reviews available rodent models to study obesity and attempts to highlight the greatest utility for each model.
Collapse
|
12
|
Taneja SK, Mandal R. Assessment of minerals in obesity-related diseases in the Chandigarh (India) population. Biol Trace Elem Res 2008; 121:106-23. [PMID: 17952386 DOI: 10.1007/s12011-007-8035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Excessive Zn but normal Cu and Mg in the staple food consumed by the people of Chandigarh (Union territory and capital of Punjab and Haryana States of India) has been considered to be the major risk factor for the prevalence of obesity (33.15%) and obesity-related diseases in this region. Therefore, in the present investigations, in obesity-related diseases, the status of these minerals was estimated in their tissues, including hair, nails, and blood serum and urine, and compared with those of normal subjects. They were grouped as: normal subjects in control Group A, middle-aged diabetics in Group D(M), older diabetics in Group D(O), and diabetics with osteoarthritis in Group D+ OA, osteoarthritis in Group OA and rheumatoid arthritis in Group RA, respectively. The results evaluated in the order as: hair Zn, group D+OA>D(M)>OA>A (control)>RA>D(O) (p < 0.001); hair Cu, group A (control)>D(M)>OA>D+OA>D(O)>RA (p < 0.001); hair Mg, group A (control)>D(M)>OA>D+OA>RA>D(O) (p < 0.001, 0.01); hair Mn, group A (control)>RA>OA>D-OA>D(M)>D(O) (p < 0.001); nail Zn, group D(M)>D+OA>OA>A (control)>RA>D(O) (p < 0.001, 0.05); nail Cu, group A (control)>OA>D(M)>D+OA>RA>D(O) (p < 0.001); nail Mg, group A (control)>OA>D(M)>D(O)>D+OA >RA (p < 0.001); nail Mn, group A (control) >RA>OA>D+OA>D(M)>D(O) (p < 0.01); urine Zn, group D(O)>D(M)>D+OA>A (control)>RA>OA (p < 0.01); urine Cu, group RA>D+OA>D(O)>OA> D(M)>A (control) (p<0.001); urine Mg, group RA>OA>D+OA>D(O)>D(M)>A (control; p < 0.001); urine Mn, group D(O)>D(M)>OA>D+OA>RA>A (control; p < 0.001), respectively. The analysis of the mineral status in serum of diabetics further showed their highly significant rise from lower mean age subgroup to higher mean age subgroup than their control counter parts (p < 0.001, 0.01, and 0.05) with coincident deficiencies of Cu, Mg, and Mn in their tissues. This study would be helpful considering the status of minerals in these obesity-related diseases depending on the choice of the food consumed to improve the quality of life and prognosis for the diseases.
Collapse
|
13
|
In vivo quantification of fat content in mice using the Hologic QDR 4500A densitometer. Obes Res Clin Pract 2007; 1:1-78. [DOI: 10.1016/j.orcp.2006.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022]
|
14
|
Berryman DE, List EO, Kohn DT, Coschigano KT, Seeley RJ, Kopchick JJ. Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology 2006; 147:2801-8. [PMID: 16556764 DOI: 10.1210/en.2006-0086] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice with a deficiency in GH function due to disruption of the GH receptor/binding protein gene (GHR(-/-)) are long lived, insulin sensitive, and obese, whereas mice with excess GH function due to expression of a bovine GH transgene (bGH) are short lived, glucose intolerant, and lean. When challenged with a high-fat (HF) diet, we hypothesized that these mice would be differentially susceptible to diet-induced obesity. To test this hypothesis, GHR(-/-), bGH, and littermate control (WT) mice were fed a HF diet (40% kcal) or a nutrient-matched low-fat diet (9% kcal) for 12 wk. On the HF diet, all mice, regardless of genotype, showed a similar percent weight gain and exhibited a significant increase in percent body fat and the mass of epididymal, retroperitoneal, and sc fat pads. For bGH mice, the increase in adipose tissue was relatively small, compared with the WT or GHR(-/-) mice, suggesting some resiliency, although not immunity, to diet-induced obesity. GHR(-/-) mice, which are relatively obese on a low-fat diet, responded to the dietary challenge in a manner similar to WT controls. With HF feeding, all genotypes experienced an increase in insulin levels and depot-dependent effect of adipose tissue. Together, these results further support a role for GH in energy balance regulation and nutrient partitioning. More importantly, because there were genotype-specific effects of diet, these data stress the importance of diet selection and sampling multiple adipose depots in studies with these mouse models.
Collapse
Affiliation(s)
- Darlene E Berryman
- School of Human and Consumer Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Thomas AD, Murray JD, Oberbauer AM. Transgene transmission to progeny by oMt1a-oGH transgenic mice. Transgenic Res 2005; 14:441-8. [PMID: 16201410 DOI: 10.1007/s11248-005-4349-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Most studies utilizing transgenic technology focus on the impact to traits of interest, rather than propagation of the transgene to offspring. In animals containing growth hormone constructs, transgene transmission to progeny follows a Mendelian pattern of inheritance in the first few generations following generation of a founder animal, but decreases in subsequent generations. In the present study, the ovine metallothionein 1a-ovine growth hormone (oMt1a-oGH) transgenic mouse was used to determine whether transgene transmission rate to progeny was affected by overexpression of ovine growth hormone in the transgenic parent. The oMt1a-oGH mouse is a useful model for assessing transgene transmission, as the construct is easily regulatable and transgene inactivation results in a return of plasma GH to basal levels. Male and female hemizygous oMt1a-oGH mice were assigned to 1 of 3 treatment groups: (1) mice never actively expressing the transgene, (2) mice actively expressing the transgene from 3 weeks of age, and (3) mice actively expressing the transgene from 3 to 11 (males) or 3 to 8 (females) weeks of age. Transgenic mice were mated to wild type animals and the resulting progeny were genotyped. Males never actively expressing the transgene passed on the transgene to progeny in a Mendelian fashion, while males actively expressing the transgene transmitted the transgene to a smaller than expected number of progeny. However, following inactivation of the oMt1a-oGH construct in transgenic males, subsequent offspring demonstrated Mendelian inheritance of the transgene. In contrast, females expressing the transgene from 3 to 8 weeks of age were able to pass on the oMt1a-oGH construct in a Mendelian fashion, but females from other treatment groups were not. In oMt1a-oGH males, reduced transgene transmission appears to be due to selection against transgenic gametes. In females, however, selection against the transgenic genotype likely occurs at the embryonic level.
Collapse
Affiliation(s)
- A D Thomas
- Department of Animal Science, University of California Davis, CA 95616, USA
| | | | | |
Collapse
|
16
|
Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res 2004; 14:309-318. [PMID: 15231300 DOI: 10.1016/j.ghir.2004.02.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/04/2004] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Three mouse lines with altered growth hormone (GH) signaling were used to study GH's role in adiposity. Dwarf GH receptor knockout mice (GHR -/-) and bovine GH antagonist expressing mice (GHA) had an increased percent body fat with most of the excess fat mass accumulating in the subcutaneous region. Giant bovine GH expressing mice (bGH) had a reduced percent body fat. Only GHA mice consumed significantly more food per body weight. Serum leptin levels were significantly increased in GHA mice and decreased in bGH mice but unchanged in the GHR -/- mice. Interestingly, serum adiponectin levels were significantly increased in the GHR -/- and GHA lines but decreased in bGH mice. These data suggest that suppression or absence of GH action and enhanced GH action indeed have opposite metabolic effects in terms of adiposity. Interestingly, adiponectin levels were positively correlated with previously reported insulin sensitivity of these mice, but also positively correlated with adiposity, which is contrary to findings in other mouse models. Thus, adiponectin levels were negatively correlated with GH function suggesting a role for adiponectin in GH-induced insulin resistance.
Collapse
|
17
|
Rollo CD, Lai M, Whitehead K, Perreault ML, Lemon J, Chaudhry AM. Thermoregulation of transgenic growth hormone mice. CAN J ZOOL 2004. [DOI: 10.1139/z04-052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transgenic growth hormone (TG) mice (Mus musculus L., 1758) obtain enhanced growth via compensatory feeding at intermediate sizes and via higher growth efficiency. The latter involves diverting resources from other functions such as locomotion and wakefulness. Thermogenesis is a major expense for small mammals, so we explored whether TG mice express a trade-off between growth and thermoregulation. TG mice are hypothermic and cannot maintain their body temperature under cold stress. TG mice showed initial enlargement of brown adipose tissue and subsequent age-related decreases not seen in controls. Some TG mice became torpid after fasting durations not known to affect other mice. On a high-calorie diet, TG mice had higher body temperatures even though controls did not. Our background strain developed obesity on a high-protein and high-fat diet, and on a diet supplemented with carbohydrates, whereas TG mice never developed obesity. White adipose tissue deposits of TG females were relatively larger, but those of TG males were relatively smaller, than those of controls fed standard food. We also found significant effects of the three experimental diets, as well as gender, age, body mass, ambient temperature, and behavioural activity, on rectal temperatures of TG mice and controls in a large breeding colony. Thermogenesis of TG mice fed standard food appears energetically constrained, likely contributing to enhanced growth efficiency.
Collapse
|
18
|
Olsson B, Bohlooly-Y M, Brusehed O, Isaksson OGP, Ahrén B, Olofsson SO, Oscarsson J, Törnell J. Bovine growth hormone-transgenic mice have major alterations in hepatic expression of metabolic genes. Am J Physiol Endocrinol Metab 2003; 285:E504-11. [PMID: 12736163 DOI: 10.1152/ajpendo.00444.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice overexpressing growth hormone (GH) have been extensively used to study the chronic effects of elevated serum levels of GH. GH is known to have many acute effects in the liver, but little is known about the chronic effects of GH overexpression on hepatic gene expression. Therefore, we used DNA microarray to compare gene expression in livers from bovine GH (bGH)-transgenic mice and littermates. Hepatic expression of peroxisome proliferator-activated receptor-alpha (PPARalpha) and genes involved in fatty acid activation, peroxisomal and mitochondrial beta-oxidation, and production of ketone bodies was decreased. In line with this expression profile, bGH-transgenic mice had a reduced ability to form ketone bodies in both the fed and fasted states. Although the bGH mice were hyperinsulinemic, the expression of sterol regulatory element-binding protein (SREBP)-1 and most lipogenic enzymes regulated by SREBP-1 was reduced, indicating that these mice are different from other insulin-resistant models with respect to expression of SREBP-1 and its downstream genes. This study also provides several candidate genes for the well-known association between elevated GH levels and cardiovascular disease, e.g., decreased expression of scavenger receptor class B type I, hepatic lipase, and serum paraoxonase and increased expression of serum amyloid A-3 protein. We conclude that bGH-transgenic mice display marked changes in hepatic genes coding for metabolic enzymes and suggest that GH directly or indirectly regulates many of these hepatic genes via decreased expression of PPARalpha and SREBP-1.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Physiology, Göteborg University, SE-405 30 Goteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Valet P, Tavernier G, Castan-Laurell I, Saulnier-Blache JS, Langin D. Understanding adipose tissue development from transgenic animal models. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30458-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Frick F, Bohlooly-Y M, Lindén D, Olsson B, Törnell J, Edén S, Oscarsson J. Long-term growth hormone excess induces marked alterations in lipoprotein metabolism in mice. Am J Physiol Endocrinol Metab 2001; 281:E1230-9. [PMID: 11701438 DOI: 10.1152/ajpendo.2001.281.6.e1230] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of long-term chronic growth hormone (GH) excess on lipid and lipoprotein metabolism were investigated in 8-mo-old bovine GH (bGH)-transgenic mice. Total body weight, serum cholesterol, insulin-like growth factor-I, and insulin levels were higher, whereas serum levels of glucose, free fatty acids, and triglycerides were lower in transgenic mice. Very low-density lipoprotein (VLDL) cholesterol levels were lower, and low-density lipoprotein (LDL) cholesterol levels were higher, in transgenic mice irrespective of gender, whereas only transgenic male mice had higher high-density lipoprotein cholesterol levels. Total serum apolipoprotein B (apoB) levels were not affected, but the amount of apoB in the LDL fraction was higher in transgenic mice. Hepatic LDL receptor expression was unchanged, whereas apoB mRNA editing and hepatic triglyceride secretion rate were reduced in bGH-transgenic male mice. Both lipoprotein lipase activity in adipose and heart tissue and beta-adrenergic-stimulated lipolysis were increased in transgenic male mice. The relative weight of adipose tissue was lower in transgenic mice, whereas hepatic triglyceride content was unchanged. Fat feeding of the mice equalized serum triglycerides and free fatty acids in bGH-transgenic and control mice. In summary, long-term GH excess is associated with marked alterations in lipid and lipoprotein metabolism, indicating decreased production and increased degradation of VLDL and preferential flux of fatty acids to muscle tissues.
Collapse
Affiliation(s)
- F Frick
- Department of Physiology, Göteborg University, 405 30 Goteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen XL, Lee K, Hartzell DL, Dean RG, Hausman GJ, McGraw RA, Della-Fera MA, Baile CA. Adipocyte insensitivity to insulin in growth hormone-transgenic mice. Biochem Biophys Res Commun 2001; 283:933-7. [PMID: 11350075 DOI: 10.1006/bbrc.2001.4882] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) has an inhibitory effect on adipogenesis, and its effect is associated with insulin action in obesity. In this study, the relationship between GH effect on insulin sensitivity and adipocyte differentiation in vivo was investigated. Transgenic (TG) female mice expressing porcine GH had reduced body weights and weights of retroperitoneal and parametrial fat depots. Insulin treatment increased PPARgamma and GLUT4 expression in adipose tissue of WT mice but had no effect in TG mice. Content of transcription factors, PPARgamma and C/EBPalpha and beta, was higher in adipose tissue of WT mice, and for C/EBPalpha and PPARgamma, the difference occurred primarily in 24-, compared to 12-week-old, mice. Expression of preadipocyte factor-1 was higher in adipose tissue of TG mice, and expression of TNF-alpha and leptin was reduced in adipose tissue of 24-week-old TG mice. Our results suggest that increased expression of GH reduces adipogenesis by inducing adipocyte resistance to the adipogenic effect of insulin.
Collapse
Affiliation(s)
- X L Chen
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Oberbauer AM, Runstadler JA, Murray JD, Havel PJ. Obesity and elevated plasma leptin concentration in oMT1A-o growth hormone transgenic mice. OBESITY RESEARCH 2001; 9:51-8. [PMID: 11346667 DOI: 10.1038/oby.2001.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This study was undertaken to evaluate plasma leptin concentration in the regulatable ovine metallothionein-ovine growth hormone (oMT1a-oGH) transgenic (TG) mouse model of obesity. RESEARCH METHODS AND PROCEDURES Transgene stimulus (zinc) was provided at 21 days of age to male and female wild-type (WT) and TG mice. Plasma leptin concentrations were measured by radioimmunoassay at 42, 63, 84, and 105 days of age and from inactivated TG mice at 84 and 105 days. RESULTS WT and TG mice did not differ significantly in plasma leptin concentration at any of the ages examined (42, 63, 84, and 105 days), although females showed consistently higher plasma leptin concentrations than males regardless of genotype throughout the duration of the study. Male and female TG mice in which the transgene was inactivated at 63 days had a 1.5-fold to 3.5-fold increase in plasma leptin concentration over WT mice and continuously activated TG mice at 84 and 105 days of age. The elevated plasma leptin concentration seen in the inactivated TG mice at 84 and 105 days of age reflects the >300% increase in white adipose tissue seen in this model and correlated with all adipose depot weights and overall body lipid at these later ages. When plasma leptin was expressed per gram of total body fat, the leptin adjusted for body lipid was significantly higher in WT mice than either continuously activated TG or activated and then inactivated TG groups. DISCUSSION The inactivated TG mice in this study had higher plasma leptin levels with increasing total body adiposity, but the relative proportion of circulating leptin, on a total body lipid basis, was reduced when compared with the WT mice. This reduction was also observed in activated TG mice at the older ages. Although the absolute levels of circulating leptin were elevated in the inactivated TG animals, the amount of leptin produced per gram of fat was lowered. With the inactivation of the transgene, the leptin remained depressed after the removal of the elevated growth hormone. This represents a potential explanation for the ensuing hypertrophy of the fat depots and the abnormal phenotypic response of inactivated TG mice to elevated plasma leptin concentrations resulting in the development of obesity.
Collapse
Affiliation(s)
- A M Oberbauer
- Department Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
23
|
Rollo CD, Kajiura LJ, Wylie B, D'Souza S. The growth hormone axis, feeding, and central allocative regulation: lessons from giant transgenic growth hormone mice. CAN J ZOOL 1999. [DOI: 10.1139/z99-162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lifetime consumption rates of male transgenic growth hormone (GH) mice and normal controls were measured on either a 38% protein diet (HP), the standard rodent diet (STD) (23.5% protein), or the standard diet supplemented with a free choice of sucrose (CARB). On STD, daily intake of normal mice increased little at sizes greater than 20 g, but larger transgenic mice ate progressively more. Both kinds of mice showed declining daily mass-specific consumption with increasing age. Transgenic mice consistently ate 13.3% less food than normal mice on a mass-specific basis across all ages. On the self-selective CARB diet, normal mice exhibited increasing age-specific daily consumption, whereas transgenic mice exhibited a trend towards age-related decline in mass-specific feeding that proved significant on the basis of body mass. Transgenic mice ingested more sucrose than standard chow and this did not vary with age. In contrast, normal mice ate less sucrose than chow and chose a declining proportion of sucrose with age. Transgenic and normal mice showed a unitary relationship of daily intake of HP in relation to body mass, resulting in constant mass-specific feeding across all ages. Transgenic GH animals, including livestock, show numerous defects that we have attributed to relative energetic stress associated with excessive allocation to lean growth. This is exacerbated by failure to offset increased demands of growth by increasing mass-specific feeding. Results presented here document altered feeding regulation in transgenic GH mice and suggest underlying mechanisms.
Collapse
|
24
|
|
25
|
Lee JH, Reed DR, Li WD, Xu W, Joo EJ, Kilker RL, Nanthakumar E, North M, Sakul H, Bell C, Price RA. Genome scan for human obesity and linkage to markers in 20q13. Am J Hum Genet 1999; 64:196-209. [PMID: 9915959 PMCID: PMC1377718 DOI: 10.1086/302195] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Obesity is a highly prevalent, multigenic trait that predicts increased morbidity and mortality. Here we report results from a genome scan based on 354 markers in 513 members of 92 nuclear families ascertained through extreme obesity and normal body weight. The average marker interval was approximately 10 cM. We examined four correlated obesity phenotypes, including the body-mass index (BMI) (both as a quantitative trait and as a discrete trait with a threshold of BMI > or /=30 kg/m2) and percentage of fat (both as a quantitative trait and as a discrete trait with a threshold of 40%) as assessed by bioelectrical impedance. In the initial stage of the genome scan, four markers in 20q gave positive evidence for linkage, which was consistent across most obesity phenotypes and analytic methods. After saturating 20q with additional markers (25 markers total) in an augmented sample of 713 members from 124 families, we found linkage to several markers in a region, 20q13, previously implicated in both human and animal studies. Three markers (D20S107, D20S211, and D20S149) in 20q13 had empirical P values (based on Monte Carlo simulations, which controlled for multiple testing) < or /=. 01 for single-point analysis. In addition, the parametric, affecteds-only analysis for D20S476 yielded a LOD score of 3.06 (P=. 00009), and the affected-sib-pair test yielded a LOD score of 3.17 (P=.000067). Multipoint analyses further strengthened and localized these findings. This region includes several plausible candidate genes for obesity. Our results suggest that one or more genes affecting obesity are located in 20q13.
Collapse
Affiliation(s)
- J H Lee
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998; 19:717-97. [PMID: 9861545 DOI: 10.1210/edrv.19.6.0353] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During the last decade, the GH axis has become the compelling focus of remarkably active and broad-ranging basic and clinical research. Molecular and genetic models, the discovery of human GHRH and its receptor, the cloning of the GHRP receptor, and the clinical availability of recombinant GH and IGF-I have allowed surprisingly rapid advances in our knowledge of the neuroregulation of the GH-IGF-I axis in many pathophysiological contexts. The complexity of the GHRH/somatostatin-GH-IGF-I axis thus commends itself to more formalized modeling (154, 155), since the multivalent feedback-control activities are difficult to assimilate fully on an intuitive scale. Understanding the dynamic neuroendocrine mechanisms that direct the pulsatile secretion of this fundamental growth-promoting and metabolic hormone remains a critical goal, the realization of which is challenged by the exponentially accumulating matrix of experimental and clinical data in this arena. To the above end, we review here the pathophysiology of the GHRH somatostatin-GH-IGF-I feedback axis consisting of corresponding key neurotransmitters, neuromodulators, and metabolic effectors, and their cloned receptors and signaling pathways. We propose that this system is best viewed as a multivalent feedback network that is exquisitely sensitive to an array of neuroregulators and environmental stressors and genetic restraints. Feedback and feedforward mechanisms acting within the intact somatotropic axis mediate homeostatic control throughout the human lifetime and are disrupted in disease. Novel effectors of the GH axis, such as GHRPs, also offer promise as investigative probes and possible therapeutic agents. Further understanding of the mechanisms of GH neuroregulation will likely allow development of progressively more specific molecular and clinical tools for the diagnosis and treatment of various conditions in which GH secretion is regulated abnormally. Thus, we predict that unexpected and enriching insights in the domain of the neuroendocrine pathophysiology of the GH axis are likely be achieved in the succeeding decades of basic and clinical research.
Collapse
Affiliation(s)
- A Giustina
- Department of Internal Medicine, University of Brescia, Italy
| | | |
Collapse
|
27
|
Brockmann GA, Haley CS, Renne U, Knott SA, Schwerin M. Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 1998; 150:369-81. [PMID: 9725853 PMCID: PMC1460298 DOI: 10.1093/genetics/150.1.369] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative trait loci (QTL) influencing body weight were mapped by linkage analysis in crosses between a high body weight selected line (DU6) and a control line (DUKs). The two mouse lines differ in body weight by 106% and in abdominal fat weight by 100% at 42 days. They were generated from the same base population and maintained as outbred colonies. Determination of line-specific allele frequencies at microsatellite markers spanning the genome indicated significant changes between the lines on 15 autosomes and the X chromosome. To confirm these effects, a QTL analysis was performed using structured F2 pedigrees derived from crosses of a single male from DU6 with a female from DUKs. QTL significant at the genome-wide level were mapped for body weight on chromosome 11; for abdominal fat weight on chromosomes 4, 11, and 13; for abdominal fat percentage on chromosomes 3 and 4; and for the weights of liver on chromosomes 4 and 11, of kidney on chromosomes 2 and 9, and of spleen on chromosome 11. The strong effect on body weight of the QTL on chromosome 11 was confirmed in three independent pedigrees. The effect was additive and independent of sex, accounting for 21-35% of the phenotypic variance of body weight within the corresponding F2 populations. The test for multiple QTL on chromosome 11 with combined data from all pedigrees indicated the segregation of two loci separated by 36 cM influencing body weight.
Collapse
Affiliation(s)
- G A Brockmann
- Research Institute for the Biology of Farm Animals, 18196 Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
28
|
Morin CL, Eckel RH. Transgenic and knockout rodents: Novel insights into mechanisms of body weight regulation. J Nutr Biochem 1997. [DOI: 10.1016/s0955-2863(97)00123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|