1
|
Kong X, Yu J, Zhu Z, Wang C, Zhang R, Qi J, Wang Y, Wang X, Pan S, Liu L, Feng R. Causal associations of histidine and 12 site-specific cancers: a bidirectional Mendelian randomization study. Mol Genet Genomics 2023; 298:1331-1341. [PMID: 37498357 DOI: 10.1007/s00438-023-02057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
An increasing number of studies indicate that cancer patients' histidine (HIS) circulating levels have changed. However, the causality between HIS and cancer is still not well established. Thus, to ascertain the causal link between HIS and cancers, we performed a bidirectional Mendelian randomization (MR) analysis. Summary-level data are derived from publicly available genome-wide association studies (GWAS). The causal effects were mainly estimated using the inverse-variance weighted method (IVW). The weighted-median (WM) method and MR-Egger regression were conducted as sensitivity analyses. In the forward-MR, we found malignant neoplasm of respiratory system and intrathoracic organs (OR: 1.020; 95% CI: 1.006-1.035; pIVW = 0.007) genetically associated with circulating HIS. And there was no significant genetic correlation between HIS and another 11 site-specific cancers using IVW method. In the reversed-MR, we did not observe the causal relationship between HIS and 12 site-specific cancers. Our findings help clarify that HIS, as a biomarker for malignant neoplasms of respiratory system and intrathoracic organs, is causal rather than a secondary biomarker of the cancerous progression. The mechanism between histidine and cancer progression deserves further investigation.
Collapse
Affiliation(s)
- Xiangju Kong
- Department of Gynaecology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Zhuolin Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Cheng Wang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Runan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Yiran Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Xiaoxin Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China.
| |
Collapse
|
2
|
Cheng YC, Lee HL, Hwang Y, Kim SW. The effects of standardized ileal digestible His to Lys ratio on growth performance, intestinal health, and mobilization of histidine-containing proteins in pigs at 7 to 11 kg body weight. J Anim Sci 2023; 101:skac396. [PMID: 36440959 PMCID: PMC9838802 DOI: 10.1093/jas/skac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The objectives were to evaluate the effects of standardized ileal digestible (SID) His:Lys ratio above the current NRC requirement on growth performance, intestinal health, and mobilization of His-containing proteins, including hemoglobin, carnosine, and trypsinogen, in nursery pigs from 7 to 11 kg body weight (BW). Forty pigs (26 d of age; initial BW of 7.1 ± 0.5 kg) were allotted to 5 dietary treatments based on a randomized complete block design with sex and initial BW as blocks. Dietary treatments were supplemented with varying SID His to Lys ratios of 26%, 32%, 38%, 43%, and 49% and fed to pigs for 14 d (SID Lys = 1.22%). Feed intake and BW were recorded at d 0, 7, and 14 to measure growth performance. Blood samples were collected on d 12. Pigs were euthanized on d 14 to collect pancreas, longissimus dorsi muscles, mid-jejunum, and jejunal mucosa. Data were analyzed using the Proc Mixed of SAS. Growth performance was not affected, whereas varying SID His to Lys ratio affected hemoglobin (P < 0.05, max: 12 g/dL at 36%), immunoglobulin A (IgA, P < 0.05, min: 1.25 μg/mg at 35%) in jejunal mucosa, villus height (P = 0.065, max: 536 μm at 40%) in jejunum, trypsinogen (P = 0.083, max: 242 pg/mg at 41%) in pancreas, and carnosine (P = 0.051, max: 4.7 ng/mg at 38%) in muscles. Varying SID His to Lys ratios linearly increased (P < 0.05, from 1.95 to 2.80 nmol/mg) protein carbonyl in muscles and decreased (P < 0.05, from 29.1% to 26.9%) enterocyte proliferation. In conclusion, SID His to Lys ratio between 35% and 41% in diets fed to nursery pigs at 7 to 11 kg enhanced intestinal health and maximized concentrations of His-containing proteins, indicating that His-containing proteins are effective response criteria when determining His requirement.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Sharula, Kai S, Okada T, Shimamoto S, Fujimura S. The short-term feeding of low- and high-histidine diets prior to market affects the muscle carnosine and anserine contents and meat quality of broilers. Anim Sci J 2023; 94:e13856. [PMID: 37528620 DOI: 10.1111/asj.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 08/03/2023]
Abstract
Functional dipeptides carnosine and anserine are abundant in muscle. We determined the effect of short-term dietary histidine (His) content on muscle carnosine and anserine contents and meat quality of broilers. Three groups of 28-day-old female broilers were fed diets with His contents of 67%, 100%, or 150% of requirement for 10 days before market (His contents 0.21%, 0.32%, and 0.48%, respectively). The carnosine and anserine contents of 0-h aged muscle significantly increased with dietary His content; in particular, the carnosine content was 162% higher in the His 0.48% group than in the His 0.32% group. The contents of both peptides also increased with dietary His content in 48-h aged muscle, but carnosine was not detected in 0- and 48-h aged muscle of the His 0.21% group. The drip loss, cooking loss, shear force, and pH of meat were not affected by the dietary His content. The 2-thiobarbituric acid-reactive substances contents of 24- and 48-h aged muscles were lower in the His 0.48% group than in the other groups, and the a* and b* values were lower in the His 0.21% group. These results suggest that short-term dietary His content affects imidazole dipeptide contents, antioxidative capacity, and color of broiler meat.
Collapse
Affiliation(s)
- Sharula
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | - Toru Okada
- Aska Animal Health Co. Ltd, Tokyo, Japan
| | - Saki Shimamoto
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Shinobu Fujimura
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Zhuang W, Lai X, Mai Q, Ye S, Chen J, Liu Y, Wang J, Li S, Huang Y, Qin T, Hu H, Wu J, Yao H. Biomarkers of PEGylated Liposomal Doxorubicin-Induced Hypersensitivity Reaction in Breast Cancer Patients Based on Metabolomics. Front Pharmacol 2022; 13:827446. [PMID: 35529437 PMCID: PMC9068896 DOI: 10.3389/fphar.2022.827446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to analyze and discuss the biomarkers of PEGylated liposomal doxorubicin (PLD) injection-induced hypersensitivity reactions (HSRs) in advanced breast cancer patients. Fourteen patients from Sun Yat-sen Memorial Hospital were included in the study between April 15th, 2020 and April 14th, 2021. Patient plasma was collected 30 min before PLD injection. HSRs were found to occur in a total of 9 patients (64.3%). No association was found between HSRs and various patient characteristics such as age, body surface area, anthracycline treatment history, IgE, and complement 3 and 4 (p > 0.05). Non-targeted metabolomics analysis of patient plasma was performed, and several metabolites showed significant association with HSRs. In particular, l-histidine (fold change = 91.5, p = 0.01) showed significantly higher levels in the immediate HSR group, while myristicin (fold change = 0.218, p = 0.003), urocanic acid (fold change = 0.193, p = 0.007), and d-aldose (fold change = 0.343, p = 0.003) showed significantly lower levels in the same group. In vivo experiments showed that exogenous histidine aggravated HSRs and increased IgE plasma levels in rats following the injection of PLD. Histidine can be decarboxylated to histamine by histidine decarboxylase. Histidine decarboxylase inhibitor 4-bromo-3-hydroxybenzoic acid improved symptoms and IgE levels in vivo. These findings suggested that l-histidine can be a potential biomarker for PLD-induced HSR. Moreover, an antihistamine drug, histidine decarboxylase inhibitor, or dietary histidine management could be used as potential preventive measures. Furthermore, metabolomics research could serve as a powerful method to explore biomarkers or uncover mechanisms of drug side effects.
Collapse
Affiliation(s)
- Wei Zhuang
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuping Lai
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxiu Mai
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suiwen Ye
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqiong Liu
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingshu Wang
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siming Li
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Huang
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyan Wu
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Herui Yao, ; Junyan Wu,
| | - Herui Yao
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Herui Yao, ; Junyan Wu,
| |
Collapse
|
5
|
Petrova B, Kanarek N. Potential Benefits and Pitfalls of Histidine Supplementation for Cancer Therapy Enhancement. J Nutr 2020; 150:2580S-2587S. [PMID: 33000153 DOI: 10.1093/jn/nxaa132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary supplementation of the amino acid histidine has demonstrable benefits in various clinical conditions. Recent work in a pediatric leukemia mouse model exposed a surprising potential application of histidine supplementation for cancer therapy enhancement. These findings demand a deeper reassessment of the physiological effects and potential drawbacks of histidine supplementation. As pertinent to this question, we discuss the safety of high doses of histidine and its relevant metabolic fates in the human body. We refrain from recommendations or final conclusions because comprehensive preclinical evidence for safety and efficacy of histidine supplementation is still lacking. However, we emphasize the incentive to study the safety of histidine supplementation and its potential to improve the clinical outcome of pediatric blood cancers through a simple dietary supplementation. The need for comprehensive preclinical testing of histidine supplementation in healthy and tumor-bearing mice is fundamental, and we hope that this review will facilitate such studies.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
6
|
Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020; 12:nu12030848. [PMID: 32235743 PMCID: PMC7146355 DOI: 10.3390/nu12030848] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 38 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Glandorf B, Herman L, Maradona Prieto M, Saarela M, Tosti L, Anguita M, Galobart J, Holczknecht O, Manini P, Tarres-Call J, Pettenati E, Pizzo F. Safety and efficacy of l-histidine monohydrochloride monohydrate produced by fermentation with Escherichia coli (NITE BP-02526) for all animal species. EFSA J 2019; 17:e05785. [PMID: 32626407 PMCID: PMC7009181 DOI: 10.2903/j.efsa.2019.5785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on l-histidine monohydrochloride monohydrate produced by fermentation with Escherichia coli (NITE BP-02526) when used as a nutritional additive or as a feed flavouring compound in feed and water for drinking for all animal species. The product under assessment is l-histidine HCl H2O produced by fermentation with a genetically modified strain of E. coli (NITE BP-02526). The production strain and its recombinant DNA were not detected in the final products. l-Histidine HCl H2O does not give rise to any safety concern to the production strain. The use of l-histidine HCl H2O is safe for the target species when used to supplement the diet in appropriate amounts. It is safe at the proposed use level of 25 mg/kg when used as a flavouring compound for all animal species. The use of l-histidine HCl H2O in animal nutrition raises no safety concerns for consumers of animal products. The additive is not irritating to the skin or eyes and is not a skin sensitiser. There is a risk for persons handling the additive from the exposure to endotoxins by inhalation. The use of l-histidine as a feed additive does not represent a risk to the environment. The additive l-histidine HCl H2O is regarded as an effective source of the amino acid l-histidine when used as a nutritional additive. For the supplemental l-histidine to be as efficacious in ruminants as in non-ruminant species, it requires protection against degradation in the rumen. It is also considered efficacious as a feed flavouring compound under the proposed conditions of use.
Collapse
|
8
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Sanz Y, Villa RE, Woutersen R, Costa L, Cubadda F, Dierick N, Flachowsky G, Glandorf B, Herman L, Mantovani A, Saarela M, Svensson K, Tosti L, Wallace RJ, Anguita M, Tarrés-Call J, Ramos F. Safety and efficacy of l-histidine monohydrochloride monohydrate produced using Corynebacterium glutamicum KCCM 80172 for all animal species. EFSA J 2019; 17:e05783. [PMID: 32626390 PMCID: PMC7009053 DOI: 10.2903/j.efsa.2019.5783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on l-histidine monohydrochloride (HCl) monohydrate produced by fermentation using Corynebacterium glutamicum KCCM 80172 when used as a nutritional additive in feed and water for drinking for all animal species. The production strain is genetically modified. The production strain and its recombinant DNA were not detected in the final product. l-Histidine HCl monohydrate manufactured by fermentation using C. glutamicum KCCM 80172 does not give rise to any safety concern regarding the genetic modification. The use of l-histidine HCl monohydrate produced by fermentation using C. glutamicum KCCM 80172 is safe for the target species when used as a nutritional additive to supplement the diet in appropriate amounts to cover the requirements, depending on the species, the physiological state of the animal, the performance level, the environmental conditions, the background amino acid composition of the unsupplemented diet and the status of some essential trace elements such as copper and zinc. l-Histidine HCl monohydrate produced using C. glutamicum KCCM 80172 supplemented at levels appropriate for the requirements of the target species is considered safe for the consumer. l-Histidine HCl monohydrate produced using C. glutamicum KCCM 80172 is not irritant to skin, is a mildly irritant to eyes, and it is not a skin sensitiser. The additive does not pose a risk to users by inhalation. The use of l-histidine HCl monohydrate produced by C. glutamicum KCCM 80172 in animal nutrition is not expected to represent a risk to the environment. l-Histidine HCl monohydrate is considered an efficacious source of the essential amino acid l-histidine for non-ruminant animal species. For the supplemental l-histidine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen.
Collapse
|
9
|
Davies S, Ballesteros-Merino C, Allen NA, Porch MW, Pruitt ME, Christensen KH, Rosenberg MJ, Savage DD. Impact of moderate prenatal alcohol exposure on histaminergic neurons, histidine decarboxylase levels and histamine H 2 receptors in adult rat offspring. Alcohol 2019; 76:47-57. [PMID: 30557779 DOI: 10.1016/j.alcohol.2018.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
We have reported that moderate prenatal alcohol exposure (PAE) elevates histamine H3 receptor-mediated inhibition of glutamatergic neurotransmission in dentate gyrus (DG), and that the H3 receptor antagonist ABT-239 ameliorates PAE-induced deficits in DG long-term potentiation. Here, we investigated whether PAE alters other markers of histaminergic neurotransmission. Long-Evans rat dams voluntarily consumed either a 0% or a 5% ethanol solution 4 h each day throughout gestation. Young adult female offspring from each prenatal treatment group were used in histidine decarboxylase (HDC) immunohistochemical studies of histamine neuron number in ventral hypothalamus, quantitative Western blotting studies of HDC expression in multiple brain regions, radiohistochemical studies of H2 receptor density in multiple brain regions, and in biochemical studies of H2 receptor-effector coupling in dentate gyrus. Rat dams consumed a mean of 1.90 g of ethanol/kg/day during pregnancy. This level of consumption did not affect maternal weight gain, offspring birth weight, or litter size. PAE did not affect the number of HDC-positive neurons in ventral hypothalamus. However, HDC expression was reduced in frontal cortex, dentate gyrus, and cerebellum of PAE rats compared to controls. Specific [125I]-iodoaminopotentidine binding to H2 receptors was not altered in any of the brain regions measured, nor was basal or H2 receptor agonist-stimulated cAMP accumulation in DG altered in PAE rats compared to controls. These results suggest that not all markers of histaminergic neurotransmission are altered by PAE. However, the observation that HDC levels were reduced in the same brain regions where elevated H3 receptor-effector coupling was observed previously raises the question of whether a cause-effect relationship exists between HDC expression and H3 receptor function in affected brain regions of PAE rats. This relationship, along with the question of why these effects occur in some, but not all brain regions, requires more-detailed investigation.
Collapse
|
10
|
DiNicolantonio JJ, McCarty MF, OKeefe JH. Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart 2018; 5:e000676. [PMID: 30018771 PMCID: PMC6045700 DOI: 10.1136/openhrt-2017-000676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - James H OKeefe
- Department of Preventive Cardiology, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
11
|
Best J, Nijhout HF, Samaranayake S, Hashemi P, Reed M. A mathematical model for histamine synthesis, release, and control in varicosities. Theor Biol Med Model 2017; 14:24. [PMID: 29228949 PMCID: PMC5725884 DOI: 10.1186/s12976-017-0070-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Background Histamine (HA), a small molecule that is synthesized from the amino acid histidine, plays an important role in the immune system where it is associated with allergies, inflammation, and T-cell regulation. In the brain, histamine is stored in mast cells and other non-neuronal cells and also acts as a neurotransmitter. The histamine neuron cell bodies are in the tuberomammillary (TM) nucleus of the hypothalamus and these neurons send projections throughout the central nervous system (CNS), in particular to the cerebral cortex, amygdala, basal ganglia, hippocampus, thalamus, retina, and spinal cord. HA neurons make few synapses, but release HA from the cell bodies and from varicosities when the neurons fire. Thus the HA neural system seems to modulate and control the HA concentration in projection regions. It is known that high HA levels in the extracellular space inhibit serotonin release, so HA may play a role in the etiology of depression. Results We compare model predictions to classical physiological experiments on HA half-life, the concentration of brain HA after histidine loading, and brain HA after histidine is dramatically increased or decreased in the diet. The model predictions are also consistent with in vivo experiments in which extracellular HA is measured, using Fast Scan Cyclic Voltammetry, in the premammillary nucleus (PM) after a 2 s antidromic stimulation of the TM, both without and in the presence of the H3 autoreceptor antagonist thioperamide. We show that the model predicts well the temporal behavior of HA in the extracellular space over 30 s in both experiments. Conclusions Our ability to measure in vivo histamine dynamics in the extracellular space after stimulation presents a real opportunity to understand brain function and control. The observed extracellular dynamics depends on synthesis, storage, neuronal firing, release, reuptake, glial cells, and control by autoreceptors, as well as the behavioral state of the animal (for example, depression) or the presence of neuroinflammation. In this complicated situation, the mathematical model will be useful for interpreting data and conducting in silico experiments to understand causal mechanisms. And, better understanding can suggest new therapeutic drug targets.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, Ohio State University, 231 W 18th Ave, MW 614, Columbus, 43210, OH, USA.
| | - H F Nijhout
- Department of Biology, Duke University, Durham, 27708, NC, USA
| | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, SC, USA
| | - Michael Reed
- Department of Mathematics, Duke University, Durham, 27708, NC, USA
| |
Collapse
|
12
|
Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T, Miura Y, Mohsen A, Harada R, Yanai K. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr 2014; 144:1637-41. [PMID: 25056690 DOI: 10.3945/jn.114.196105] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | | | - Mayu Sugita
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Yamato Miura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Attayeb Mohsen
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| |
Collapse
|
13
|
Kiba N, Koga A, Tachibana M, Tani K, Koizumi H, Koyama T, Yamamura A, Matsumoto K, Okuda T, Yokotsuka K. Flow-Injection Determination of L-Histidine with an Immobilized Histidine Oxidase from Brevibacillus borstelensis KAIT-B-022 and Chemiluminescence Detection. ANAL SCI 2006; 22:95-8. [PMID: 16429781 DOI: 10.2116/analsci.22.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A chemiluminometric flow injection analytical system for the quantitation of L-histidine is described. Histidine oxidase (EC 1.4.3.-) from Brevibacillus borstelensis KAIT-B-022 was immobilized on tresylated poly(vinyl alcohol) beads and packed into a stainless-steel column. The hydrogen peroxide produced was detected chemiluminometrically by a flowthrough sensor containing immobilized peroxidase (EC 1.1 1.1.7). The maximum sample throughput was 10 h(-1). The calibration graph was linear from 0.05 to 5 mM; the detection limit (signal to noise ratio = 3) was 0.01 mM. The activity of immobilized histidine oxidase reduced to 65% of the initial value after 350 injections. The system was applied to the determination of L-histidine in fish meat, such as salmon, tunny, bonito, and mackerel.
Collapse
Affiliation(s)
- Nobutoshi Kiba
- Department of Applied Chemistry, Faculty of Engineering, University of Yamanashi, Takeda 4-3-11, Kofu 400-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Histamine: a neurotransmitter that influences food intake? Nutr Rev 1990; 48:439-40. [PMID: 2082224 DOI: 10.1111/j.1753-4887.1990.tb02899.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain histamine levels in rats in various states of water balance were raised by blocking histamine catabolism with metoprine. Acute administration of this drug caused a significant reduction in food intake. This finding suggests a possible role of histamine in the regulation of food intake.
Collapse
|
15
|
Lin GW, Lin TY, Jin L. Gestational ethanol consumption on tissue amino acid levels: decreased free histidine and tryptophan in fetal tissues with concomitant increase in urinary histamine excretion. Alcohol Clin Exp Res 1990; 14:430-7. [PMID: 2378428 DOI: 10.1111/j.1530-0277.1990.tb00500.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of ethanol consumption during pregnancy on maternal, placental, and fetal tissue amino acid levels and metabolism were investigated. Pregnant Sprague-Dawley rats were given 35% ethanol-calorie liquid diet, ad libitum, from gestation day 7 to 21. Control rats were pair-fed with isocaloric sucrose substituted for ethanol. Ethanol consumption decreased fetal body weight and increased placental weight. Twenty-four amino acids were determined in six tissues (maternal plasma and liver, placenta, fetal plasma, liver, and brain) by HPLC with orthophthalaldehyde derivatization. The effects of ethanol on free amino acid levels differed from tissue to tissue. In general, ethanol affected more amino acids in maternal plasma, fetal plasma, and liver. Maternal liver, placenta, and fetal brain amino acids were more resistant to ethanol effect. Two essential amino acids, histidine and tryptophan, were consistently decreased in fetal tissues by maternal ethanol consumption. The values (ethanol vs. control, nmole/ml or g, mean +/- SEM, N = 20) of fetal plasma, liver, and brain for histidine were 51.8 +/- 6.0 vs. 85.3 +/- 4.5 (p = 0.001), 269.0 +/- 26.4 vs. 503.7 +/- 47.3 (p = 0.0004), and 117.9 +/- 7.7 vs. 154.6 +/- 8.7 (p = 0.0055), respectively; and for tryptophan were 105.7 +/- 3.1 vs. 132.2 +/- 4.1 (p = 0.0001), 128.8 +/- 3.7 vs. 144.3 +/- 6.0 (p = 0.0407), and 83.4 +/- 7.2 vs. 103.6 +/- 3.2 (p = 0.0198), respectively. Histidine was also decreased in placenta by ethanol (138.1 +/- 6.6 vs. 189.1 +/- 11.8 nmole/g, p = 0.0014).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G W Lin
- Center of Alcohol Studies, Rutgers University, Piscataway, New Jersey 08855-0969
| | | | | |
Collapse
|
16
|
Lee NS, Muhs G, Wagner GC, Reynolds RD, Fisher H. Dietary pyridoxine interaction with tryptophan or histidine on brain serotonin and histamine metabolism. Pharmacol Biochem Behav 1988; 29:559-64. [PMID: 3362950 DOI: 10.1016/0091-3057(88)90020-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We studied the metabolic effects of high dietary intakes of pyridoxine and of the substrate-cofactor interaction between dietary histidine or tryptophan and pyridoxine in rat brain. In the substrate-cofactor interaction study, histamine and serotonin levels were determined in rats fed elevated or requirement levels of substrate (histidine: 0.3% and 0.8%, tryptophan: 0.15% and 0.6%) and excess or requirement levels of pyridoxine HCl (7 mg vs. 3,000 mg/kg). Excess pyridoxine intake caused a differential effect on brain histamine concentration--inhibitory with the requirement level of histidine (-29%), and stimulatory (+21%) with the elevated level of histidine. When dietary tryptophan was fed at the requirement level, excess pyridoxine caused essentially no changes in hypothalamic serotonin and 5HIAA (-2%, -2%). With elevated tryptophan intake, excess pyridoxine significantly increased serotonin and 5HIAA (+32%, +20%) in the hypothalamus. These results indicate a clear interaction between substrate and coenzyme precursor which influences brain metabolism of histamine and serotonin.
Collapse
Affiliation(s)
- N S Lee
- Department of Nutrition, State University of New Jersey, New Brunswick 08903
| | | | | | | | | |
Collapse
|
17
|
Enwonwu CO. Differential effect of total food withdrawal and dietary protein restriction on brain content of free histidine in the rat. Neurochem Res 1987; 12:483-7. [PMID: 3587507 DOI: 10.1007/bf00972302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Total withdrawal of food from young rats for 72-120 h produced an increase in brain content of free histidine which was less pronounced than the effect of prolonged dietary protein deficiency. The data suggested that the elevated brain content of histidine in both fasting and protein deficiency was due partly to increased plasma level of the amino acid but mainly to diminished plasma concentrations of the neutral amino acids known to share the same transport system across the blood-brain barrier. The results also support the idea that total starvation, and most likely, prolonged caloric restriction, like protein malnutrition, elicit increased formation of histamine in brain since the key regulatory enzyme, L-histidine carboxylase (EC 4.1.1.22) functions at less than maximal efficiency under normal brain levels of histidine. These findings in the rat are probably relevant to the human in view of evidence that the Km of blood-brain barrier neutral amino acid transport in the latter is low and therefore similar to the situation in the rat.
Collapse
|
18
|
Enwonwu CO. Pathophysiological implications of increased brain burden of histamine in protein malnutrition. Med Hypotheses 1987; 22:1-13. [PMID: 3104736 DOI: 10.1016/0306-9877(87)90002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The complex syndrome of protein-energy malnutrition (PEM) in weanling children, usually complicated by concurrent presence of numerous adverse environmental factors, is a chronic stressful situation which elicits a number of neuroendocrine and metabolic adjustments. Histidine metabolism is severely impaired in PEM in children and in experimental animals, and evidence from the latter indicate markedly increased body burden of histamine. The brain is the organ most prominently affected. Although data are still incomplete, histamine conforms with most criteria required of a neurotransmitter. Histamine interacts with other neuroregulatory substances in modulating many neuroendocrine and vegetative processes. Some of the prominent pathophysiological features associated with PEM in children such as increased circulating cortisol, defective thermoregulation, fluid/electrolyte imbalance, impaired immunity, reduced cardiac output with prolongation of systemic recirculation time, and apathy bordering on a clinical state of depression are consistent with the known effects of histamine as determined by neurochemical and neuropharmacological studies. It is suggested that studies of histamine status in human PEM, and the functional relationships between markedly elevated level of this amine with other neuroregulatory substances, will shed more light on the complex pathogenesis of the nutritional syndrome.
Collapse
|
19
|
Imura K, Kamata S, Hata S, Okada A, Watanabe T, Wada H. Effects of dietary histidine and methionine loading in rats with a portacaval shunt. Pharmacol Biochem Behav 1986; 24:1323-8. [PMID: 2873587 DOI: 10.1016/0091-3057(86)90191-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To elucidate disturbances of brain amine metabolism in hepatic coma, the effects of dietary histidine and methionine loading on the brain levels of amino acids and transmitter amines and on behavior were examined in rats with a portacaval shunt (PCS rats). Surgical construction of a portacaval shunt exaggerated the increase in brain histamine caused by dietary histidine loading 4 weeks after operation. Although the marked increase in the brain level of methionine itself did not affect on the brain levels of catecholamines, serotonin, and histamine, brain level of 5-HIAA was decreased in PCS rats on methionine-enriched diet. Diminished spontaneous activity was observed in PCS rats on either diet, which could not be related to the disturbance of brain amine metabolism caused by excess histidine and methionine. These results indicated that histamine was involved in the derangement of brain amine metabolism in PCS rats, and that direct effect of dietary methionine loading on the brain levels of transmitter amines was not observed in PCS rats. The etiological relation of these substances to hepatic coma should be further investigated.
Collapse
|
20
|
Keyzer JJ, Breukelman H, Wolthers BG, van den Heuvel M, Kromme N, Berg WC. Urinary excretion of histamine and some of its metabolites in man: influence of the diet. AGENTS AND ACTIONS 1984; 15:189-94. [PMID: 6524519 DOI: 10.1007/bf01972348] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Urinary excretions of histamine, N tau-methylhistamine and N tau-methylimidazoleacetic acid have been determined in 10 normal subjects on 3 different diets, containing a very low protein, a low protein and a high protein amount. Foodstuffs which could contain histamine were excluded. The mean excretion of N tau-methylhistamine on the second day of each diet amounted to 0.861 mumol/24 h, 1.051 mumol/24 h and 1.378 mumol/24 h, respectively. The excretions of histamine and N tau-methylimidazoleacetic acid were not affected. In 6 normal persons on a protein low diet, the excretions of histamine, N tau-methylhistamine and N tau-methylimidazoleacetic acid have been determined for 10 days. On the fifth day, to 3 persons 200 mumol of histamine was given orally, the other 3 persons received a high protein diet. The persons receiving histamine showed a strongly enhanced excretion of N tau-methylimidazoleacetic acid, corresponding to 36.1% of the administered histamine, whereas the urinary excretions of histamine and N tau-methylhistamine were only slightly elevated. On the high protein diet, only the excretion of N tau-methylhistamine was slightly elevated. The urinary excretions of histamine in the female subjects sometimes showed unexpectedly high values. Most probably, this phenomenon is attributable to bacterial histamine production in the urogenital tract.
Collapse
|
21
|
Abstract
Histamine alters renal hemodynamics including the glomerular microcirculation, and histamine receptors are present in rat glomeruli. We have recently shown that isolated rat glomeruli, but not cortical tubules, incubated with the histamine substrate L-histidine synthesize histamine. This study explores the catabolic pathways of histamine in isolated glomeruli and cortical tubules of the rat kidney. Glomeruli and cortical tubules were incubated with radiolabelled histamine, and the products were separated on thin layer chromatography (TLC). Glomeruli predominantly catabolized histamine to acid metabolites of the diamine oxidase (histaminase) pathway, imidazole acetic acid and ribosylimidazole acetic acid, and to a lesser extent to the inactive methylation product, N tau-methylhistamine (7.5% vs. 2.5%). Tubules on the other hand catabolized histamine to N tau-methylhistamine and to a lesser degree to acid metabolites (7.6% vs. 2.3%). The methyl donor S-Adenosyl-methionine (SAM) (10(-4) M) markedly enhanced the production of N tau-methylhistamine in both glomeruli and tubules (delta + 600%) but had no effect on the production of acid metabolites. In the presence of equimolar concentrations of SAM, tubules continued to methylate histamine to a greater extent than glomeruli (46.0% vs. 18%). In both glomeruli and tubules, the diamine oxidase inhibitor, amino-guanidine, abolished the production of acid metabolites while amodiaquine and pyrilamine, inhibitors of the methylation pathway, markedly reduced the production of N tau-methylhistamine. In addition, in the presence of SAM, tubules catabolized nonlabelled histamine to a greater extent than glomeruli.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
22
|
Fisher DZ, Meier E, Fitzpatrick D. Histamine, free-histidine concentrations and histidine decarboxylase, histamine methyltransferase activities in developing rat tissues. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C: COMPARATIVE PHARMACOLOGY 1981; 68C:231-4. [PMID: 6112109 DOI: 10.1016/0306-4492(81)90021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|