1
|
Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019; 10:genes10050350. [PMID: 31072002 PMCID: PMC6562925 DOI: 10.3390/genes10050350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic β-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Jose M Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Alejandro Martín-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Irene Diaz Contreras
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Abdelkrim Hmadcha
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Bernat Soria
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Francisco Martin Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jose C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Nikmahzar E, Jahanshahi M, Ghaemi A, Naseri GR, Moharreri AR, Lotfinia AA. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice. Anat Cell Biol 2016; 49:259-272. [PMID: 28127501 PMCID: PMC5266105 DOI: 10.5115/acb.2016.49.4.259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022] Open
Abstract
The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors.
Collapse
Affiliation(s)
- Emsehgol Nikmahzar
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Ghaemi
- Shefa Neuroscience Research Center, Tehran, Iran
| | - Gholam Reza Naseri
- Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Reza Moharreri
- Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
3
|
Gender differences in locomotor and stereotypic behavior associated with l-carnitine treatment in mice. ACTA ACUST UNITED AC 2011; 8:1-13. [PMID: 21497767 DOI: 10.1016/j.genm.2011.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND The carnitines exert neuroprotective and neuromodulatory actions, and carnitine supplementation increases locomotor activity (LMA) in experimental animals. METHODS We measured 13 indexes of LMA and 3 indexes of stereotypic activity (STA) in adult male and female caged mice. In a randomized 4-week trial, 10 males and 10 females received 50 mg/kg body weight PO l-carnitine, and another 10 males and 10 females received placebo. RESULTS Compared with placebo-treated females, placebo-treated males had a greater number of stereotypies (NSTs), stereotypy counts (STCs), stereotypy time (STT), and right front time (RFT), but smaller total distance traveled (TDT), margin distance (MD), number of vertical movements (NVMs), and left rear time (LRT). Compared with placebo-treated males, carnitine-treated males had greater horizontal activity (HA), movement time (MT), NVM, STT, TDT, STC, MD, LRT, and clockwise revolutions (CRs), but smaller left front time (LFT) and RFT. Compared with placebo-treated females, carnitine-treated females had greater NST, STC, STT, LFT, and RFT, but smaller NM, HA, NVM, VA, MT, anticlockwise revolutions (ACRs), CR, TDT, and MD; right rear time (RRT) remained statistically insignificant across all comparisons. CONCLUSIONS In summary, l-carnitine caused gender differences to persist for STC, diminish for NST and STT, disappear for LRT and NVM, change in the opposite direction for TDT and MD, appear de novo for HA, VA, NM, MT, and LFT, and remain absent for RRT and ACR. Some indexes of LMA and STA are sexually dimorphic in adult mice, and l-carnitine differentially maintains, diminishes/cancels, inverts, or creates the sexual dimorphism of particular indexes.
Collapse
|
4
|
Haley GE, Kohama SG, Urbanski HF, Raber J. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus. AGE (DORDRECHT, NETHERLANDS) 2010; 32:283-296. [PMID: 20640549 PMCID: PMC2926858 DOI: 10.1007/s11357-010-9137-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/16/2010] [Indexed: 05/29/2023]
Abstract
Loss of synaptic integrity in the hippocampus and prefrontal cortex (PFC) may play an integral role in age-related cognitive decline. Previously, we showed age-related increases in the dendritic marker microtubule associated protein 2 (MAP-2) and the synaptic marker synaptophysin (SYN) in mice. Similarly, apolipoprotein E (apoE), involved in lipid transport and metabolism, and glial fibrillary acidic protein (GFAP), a glia specific marker, increase with age in rodents. In this study, we assessed whether these four proteins show similar age-related changes in a nonhuman primate, the rhesus macaque. Free-floating sections from the PFC and hippocampus from adult, middle-aged, and aged rhesus macaques were immunohistochemically labeled for MAP-2, SYN, apoE, and GFAP. Protein levels were measured as area occupied by fluorescence using confocal microscopy as well as by Western blot. In the PFC and hippocampus of adult and middle-aged animals, the levels of SYN, apoE, and GFAP immunoreactivity were comparable but there was a trend towards higher MAP-2 levels in middle-aged than adult animals. There was significantly less SYN and more MAP-2, apoE, and GFAP immunoreactivity in the PFC and hippocampus of aged animals compared to adult or middle-aged animals. Thus, the age-related changes in MAP-2, apoE, and GFAP levels were similar to those previously observed in rodents. On the other hand, the age-related changes in SYN levels were not, but were similar to those previously observed in the aging human brain. Taken together, these data emphasize the value of the rhesus macaque as a pragmatic translational model for human brain aging.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Henryk F. Urbanski
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239 USA
- 3181 SW Sam Jackson Pkwy, Mail Code L-470, Portland, OR 97239 USA
| |
Collapse
|
5
|
Arias C, Zepeda A, Hernández-Ortega K, Leal-Galicia P, Lojero C, Camacho-Arroyo I. Sex and estrous cycle-dependent differences in glial fibrillary acidic protein immunoreactivity in the adult rat hippocampus. Horm Behav 2009; 55:257-63. [PMID: 19056393 DOI: 10.1016/j.yhbeh.2008.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 11/21/2022]
Abstract
Sex differences in the morphology and function of the hippocampus have been reported in several species, but it is unknown whether a sexual dimorphism exists in glial fibrillary acidic protein (GFAP) expression in the rat hippocampus. We analyzed GFAP immunoreactivity in the hippocampus of intact adult male rats as well as in females during diestrus and proestrus phases of the estrous cycle. We found that in CA1, CA3, and dentate gyrus, GFAP immunoreactivity was higher in proestrus females as compared with males and diestrus females. In CA1, a similar GFAP immunoreactivity was found in males and in diestrus females, but in dentate gyrus, males presented the lowest GFAP content. Interestingly, differences in astrocyte morphology were also found. Rounded cells with numerous and short processes were mainly observed in the hippocampus during proestrus whereas cells with stellate shape with few and long processes were present in the hippocampus of males and diestrus females. The marked sex and estrous cycle-dependent differences in GFAP immunoreactivity density and in astrocyte number and morphology found in the rat hippocampus, suggest the involvement of sex steroid hormones in the sexually dimorphic functions of the hippocampus, and in the change in its activity during the estrous cycle.
Collapse
Affiliation(s)
- Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | |
Collapse
|
6
|
Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. REGULATORY PEPTIDES 2008; 149:3-10. [PMID: 18514925 PMCID: PMC2605273 DOI: 10.1016/j.regpep.2007.10.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 10/30/2007] [Indexed: 11/21/2022]
Abstract
Recent years have seen an impetus in the study for central mechanisms regulating energy balance, and caloric intake possibly as a response to the obesity pandemic. This renewed interest as well as drastic improvements in the tools that are now currently available to neuroscientists, has yielded a great deal of insight into the mechanisms by which the brain regulates metabolic function, and volitional aspects of feeding in response to metabolic signals like leptin, insulin and ghrelin. Among these mechanisms are the complex intracellular signals elicited by these hormones in neurons. Moreover, these signals produce and modulate the metabolism of the cell at the level of the mitochondria. Finally, these signals promote plastic changes that alter the synaptic circuitry in a number of circuits and ultimately affect cellular, physiological and behavioral responses in defense of energy homeostasis. These mechanisms are surveyed in this review.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, USA.
| | | |
Collapse
|
7
|
Salmaso N, Woodside B. Fluctuations in astrocytic basic fibroblast growth factor in the cingulate cortex of cycling, ovariectomized and postpartum animals. Neuroscience 2008; 154:932-9. [DOI: 10.1016/j.neuroscience.2008.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
|
8
|
Guennoun R, Meffre D, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Stein DG, De Nicola AF, Schumacher M. The membrane-associated progesterone-binding protein 25-Dx: Expression, cellular localization and up-regulation after brain and spinal cord injuries. ACTA ACUST UNITED AC 2008; 57:493-505. [PMID: 17618691 DOI: 10.1016/j.brainresrev.2007.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 01/06/2023]
Abstract
Progesterone has neuroprotective effects in the injured and diseased spinal cord and after traumatic brain injury (TBI). In addition to intracellular progesterone receptors (PR), membrane-binding sites of progesterone may be involved in neuroprotection. A first putative membrane receptor of progesterone, distinct from the classical intracellular PR isoforms, with a single membrane-spanning domain, has been cloned from porcine liver. Homologous proteins were cloned in rats (25-Dx), mice (PGRMC1) and humans (Hpr.6). We will refer to this progesterone-binding protein as 25-Dx. The distribution and regulation of 25-Dx in the nervous system may provide some clues to its functions. In spinal cord, 25-Dx is localized in cell membranes of dorsal horn neurons and ependymal cells lining the central canal. A role of 25-Dx in mediating the protective effects of progesterone in the spinal cord is supported by the observation that its mRNA and protein are up-regulated by progesterone in dorsal horn of the injured spinal cord. In contrast, the classical intracellular PRs were down-regulated under these conditions. In brain, 25-Dx is particularly abundant in the hypothalamic area, circumventricular organs, ependymal cells of the ventricular walls, and the meninges. Interestingly, it is co-expressed with vasopressin in neurons of the paraventricular, supraoptic and retrochiasmatic nuclei. In response to TBI, 25-Dx expression is up-regulated in neurons and induced in astrocytes. The expression of 25-Dx in structures involved in cerebrospinal fluid production and osmoregulation, and its up-regulation after brain damage, point to a potentially important role of this progesterone-binding protein in the maintenance of water homeostasis after TBI. Our observations suggest that progesterone's actions may involve different signaling mechanisms depending on the pathophysiological context, and that 25-Dx may be involved in the neuroprotective effect of progesterone in the injured brain and spinal cord.
Collapse
Affiliation(s)
- R Guennoun
- Inserm UMR788 and University Paris 11, Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Struble RG, Nathan BP, Cady C, Cheng X, McAsey M. Estradiol regulation of astroglia and apolipoprotein E: an important role in neuronal regeneration. Exp Gerontol 2006; 42:54-63. [PMID: 16837159 DOI: 10.1016/j.exger.2006.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 11/17/2022]
Abstract
The effects of ovarian hormone on neuronal growth and function are well known. However, equally important, but often neglected, are ovarian hormone effects on glia. Our in vivo and in vitro studies show that estradiol modifies both neuronal growth and glial activity and these effects are tightly linked. Estradiol stimulates neurite growth and the release of the glial apolipoprotein E (apoE) in culture studies. Estradiol-stimulated neurite growth in these cultures requires apoE. Estradiol replacement in ovariectomized mice transiently increases the expression of apoE, the low density lipoprotein receptor related protein (LRP) and synaptophysin throughout the brain. Continuous estradiol replacement over two months loses effect on apoE, LRP, and synaptophysin and suppresses reactive gliosis. Estrous cycle variation of glial activation (GFAP) and apoE are not identical. We propose that estradiol (and other ovarian hormones) functions as a zeitgeber to co-ordinate neuronal-glial interactions. Co-ordination assures temporally appropriate excitatory and inhibitory interactions between glia and neurons. With aging and the loss of ovarian cyclicity, some of this co-ordination must be diminished. These observations present significant clinical implications. Approaches to hormone therapy (HT), for diminishing the risk of chronic neurological diseases, need to consider the temporal nature of ovarian hormones in brain repair and plasticity. Moreover, approaches must consider apoE genotype. The neuroprotective effects of HT in numerous chronic age-related diseases may represent effective co-ordination of repair processes rather than direct disease-specific actions. Moreover, the role of glial-derived proteins in neuroprotection should not be ignored.
Collapse
Affiliation(s)
- Robert G Struble
- Department of Neurology and Center for Alzheimer Disease, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | | | |
Collapse
|
10
|
DonCarlos LL, Sarkey S, Lorenz B, Azcoitia I, Garcia-Ovejero D, Huppenbauer C, Garcia-Segura LM. Novel cellular phenotypes and subcellular sites for androgen action in the forebrain. Neuroscience 2006; 138:801-7. [PMID: 16310968 DOI: 10.1016/j.neuroscience.2005.06.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Historically, morphological studies of the distribution of androgen receptors in the brain led to conclusions that the major regional targets of androgen action are involved in reproduction, that the primary cellular targets are neurons, and that functional androgen receptors are exclusively nuclear, consistent with the classical view of steroid receptors as ligand-dependent transcription factors. In this review, we discuss three separate but interrelated recent studies highlighting observations made with newer methodologies while assessing the regional, cellular or subcellular distribution of androgen receptors containing cells in the forebrain. Regional studies demonstrated that the largest forebrain target for androgen action in terms of the number of androgen receptor expressing cells is the cerebral cortex, rather than the main hypothalamic and limbic centers for reproductive function. Cellular studies to determine the phenotype of androgen receptor expressing cells confirmed that most of these cells are neurons but also revealed that small subpopulations are astrocytes. The expression of androgen receptors in astrocytes is both region and age dependent. In contrast, reactive astrocytes in the lesioned adult rat brain do not express androgen receptors whereas reactive microglia do. Finally, androgen receptor immunoreactive axons were identified in the cerebral cortex of the rat and human. These observations do not overturn classical views of the cellular and subcellular locus of steroid action in the nervous system, but rather broaden our view of the potential direct impact of gonadal steroid hormones on cellular function and emphasize the regional and developmental specificity of these effects on the nervous system.
Collapse
Affiliation(s)
- L L DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hypothalamic astrocytes secrete TGF-beta and 3 alpha,5 alpha-tetrahydro progesterone (3 alpha,5 alpha-THP) in culture. When the astrocyte-conditioned medium (ACM) was incubated with the hypothalamic cell line GT1-7, it resulted in the secretion of GnRH. Immunoneutralization with TGF-beta antibody or ultra-filteration with a 10 kDa cut off filter resulted in attenuation of the GnRH releasing ability of ACM, indicating that TGF-beta was a major factor involved with GnRH release. Treatment with estrogens increases TGF-beta secretion. These observations indicate a significant role of astrocytes in GnRH secretion. Serum-deprivation results in the death of GT1-7 neurons in culture and addition of ACM or TGF-beta to the culture, attenuates cell death. The mechanism of protection from cell death appears to involve phosphorylation of MKK4, JNK, c-Jun(Ser63), and enhancement of AP-1 binding. Co-administration of JNK inhibitors, but not MEK inhibitors attenuated ACM or TGF-beta-induced c-Jun(Ser63) phosphorylation and their neuroprotective effects. These studies suggest that astrocytes can protect neurons, at least in part, by the release of TGF-beta and activation of a c-Jun/AP-1 protective pathway.
Collapse
Affiliation(s)
- Virendra B Mahesh
- Institute of Molecular Medicine and Genetics, Program in Neurobiology, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
12
|
Struble RG, Afridi S, Beckman-Randall S, Li M, Cady C, Nathan B, McAsey ME. Neocortical and hippocampal glial fibrillary acidic protein immunoreactivity shows region-specific variation during the mouse estrous cycle. Neuroendocrinology 2006; 83:325-35. [PMID: 16926532 DOI: 10.1159/000095340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/27/2006] [Indexed: 11/19/2022]
Abstract
Ovarian hormones modulate both neuronal and glial activation during the estrous cycle. These effects are particularly well characterized in the hypothalamus. Ovarian hormones also affect brain regions not directly related to reproductive function. In this study we used glial fibrillary acidic protein (GFAP) immunocytochemistry to quantify astroglial cells and process density in both the neocortex and hippocampus during the estrous cycle. Our data show that the density of GFAP immunoreactive processes in the hippocampus peaks on proestrus although cell density does not change. In contrast, both GFAP immunoreactive cell and process densities are elevated on diestrus and proestrus in the supragranular layer of the somatosensory cortex and reach a nadir on estrus and metestrus. This activation pattern is not apparent in the motor or cingulate cortex. Neocortical GFAP immunoreactivity appears to follow the distribution of estrogen receptor-alpha-like immunoreactivity. Our data show that ovarian hormones have regionally specific effects on glial activation within the neocortex. Characterizing glial activation by ovarian hormones is important since astroglia are the source of numerous trophic factors and play an important, although often unrecognized, role in neuronal metabolism and function.
Collapse
Affiliation(s)
- Robert G Struble
- Department of Neurology, Center for Alzheimer Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Conejo NM, González-Pardo H, Cimadevilla JM, Argüelles JA, Díaz F, Vallejo-Seco G, Arias JL. Influence of gonadal steroids on the glial fibrillary acidic protein-immunoreactive astrocyte population in young rat hippocampus. J Neurosci Res 2004; 79:488-94. [PMID: 15619230 DOI: 10.1002/jnr.20372] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is known that expression of glial fibrillary acidic protein (GFAP) as an astrocyte-specific marker can be regulated by levels of circulating gonadal steroids during postnatal development. In addition, astrocytes play an important role in the physiology of the hippocampus, a brain region considered sexually dimorphic at the neuronal level in rodents. To evaluate the contribution of glial cells to gender-related differences in the hippocampus, we estimated the number of GFAP-immunoreactive (GFAP-IR) astrocytes in the hippocampus (CA1 and CA3 areas, dorsal and ventral regions) of male and female rats aged 30 days. Groups of 30-day-old masculinized females (TP-females; injected with testosterone propionate at birth) and feminized males (FLU-males, castrated and treated with flutamide, an androgen receptor antagonist) were included to assess the effects of gonadal hormones on these hippocampal astrocytes. Using the optical fractionator method, the total number of GFAP-IR cells found in CA1 and CA3 areas was significantly higher in males compared to that in age-matched females. This numerical pattern was reversed in TP-females and FLU-males in both hippocampal areas. In addition, more GFAP-IR cells were found in dorsal hippocampus than in the ventral region in the CA1 area from all experimental groups, whereas this result was found in the CA3 area from males and TP-females. Our results suggest an essential contribution of gonadal hormones to gender differences found in the astrocyte population of the rat hippocampus during development.
Collapse
Affiliation(s)
- N M Conejo
- Laboratory of Psychobiology, Faculty of Psychology, University of Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Lei DL, Long JM, Hengemihle J, O'Neill J, Manaye KF, Ingram DK, Mouton PR. Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience 2004; 121:659-66. [PMID: 14568026 DOI: 10.1016/s0306-4522(03)00245-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hormone replacement therapy with the gonadal steroid estrogen or synthetic agents such as raloxifene, a selective estrogen receptor modulator, may affect cellular function in brains of postmenopausal women. In vitro studies suggest that 17beta estradiol and raloxifene can alter the microglial and astrocyte expression of immuno-neuronal modulators, such as cytokines, complement factors, chemokines, and other molecules involved in neuroinflammation and neurodegeneration. To directly test whether exogenous 17beta estradiol and raloxifene affect the number of glial cells in brain, C57BL/6NIA female mice aged 20-24 months received bilateral ovariectomy followed by s.c. placement of a 60-day release pellet containing 17beta estradiol (1.7 mg), raloxifene (10 mg), or placebo (cholesterol). After 60 days, numbers of microglia and astrocytes were quantified in dentate gyrus and CA1 regions of the hippocampal formation using immunocytochemistry and design-based stereology. The results show that long-term 17beta estradiol treatment in aged female mice significantly lowered the numbers of astrocytes and microglial cells in dentate gyrus and CA1 regions compared with placebo. After long-term treatment with raloxifene, a similar reduction was observed in numbers of astrocytes and microglial cells in the hippocampal formation. These findings indicate that estrogen and selective estrogen receptor modulators can influence glial-mediated inflammatory pathways and possibly protect against age- and disease-related neuropathology.
Collapse
Affiliation(s)
- D-L Lei
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Storer PD, Jones KJ. Glial fibrillary acidic protein expression in the hamster red nucleus: effects of axotomy and testosterone treatment. Exp Neurol 2003; 184:939-46. [PMID: 14769386 DOI: 10.1016/s0014-4886(03)00339-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 06/23/2003] [Accepted: 06/30/2003] [Indexed: 01/07/2023]
Abstract
Testosterone propionate (TP) administration coincident with facial nerve axotomy in the hamster attenuates glial fibrillary acidic protein (GFAP) expression in the facial nucleus that is normally increased following axotomy alone. This ability of TP to modulate astrocyte activity has been linked to the ability of steroid hormones to enhance the regenerative response of injured motor neurons. In an ongoing study designed to examine the potential influences of steroid hormones on centrally projecting motoneurons, the astrocyte reaction in the red nucleus was examined. In the present study, in situ hybridization was used to assess changes in GFAP mRNA in the hamster red nucleus following spinal cord injury (SCI) and TP treatment. Castrated male hamsters were subjected to right rubrospinal tract (RST) transection at spinal cord level T1, with half the animals implanted subcutaneously with Silastic capsules containing 100% crystalline TP and the remainder sham implanted. The uninjured red nucleus served as an internal control. Postoperative survival times were 1, 2, 7, and 14 days. Qualitative-quantitative analyses of emulsion autoradiograms were accomplished. Axotomy alone resulted in a significant but transient increase in GFAP mRNA levels at 2 days postoperative in the injured red nucleus compared with the contralateral uninjured red nucleus. However, in TP-treated animals, GFAP mRNA levels were no different than control levels at 2 dpo but were significantly increased at 7 dpo relative to contralateral control. Additionally, the increase in GFAP mRNA levels following TP treatment was significantly smaller than following axotomy alone. These data suggest that testosterone both delays and reduces the astrocytic reaction in the red nucleus following rubrospinal tract axotomy, and confirms a difference between peripheral and central glial responses to axotomy and steroid administration.
Collapse
Affiliation(s)
- Paul D Storer
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Chicago, Maywood, IL 60153, USA.
| | | |
Collapse
|
16
|
Dhandapani KM, Mahesh VB, Brann DW. Astrocytes and brain function: implications for reproduction. Exp Biol Med (Maywood) 2003; 228:253-60. [PMID: 12626769 DOI: 10.1177/153537020322800303] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent evidence suggests that astrocytes have important neuroregulatory functions in addition to their classic functions of support and segregation of neurons. These newly revealed functions include regulation of neuron communication, neurosecretion, and synaptic plasticity. Although these actions occur throughout the brain, this review will focus on astrocyte-neuron interactions in the hypothalamus, particularly with respect to their potential contribution to the regulation of gonadotropin-releasing hormone (GnRH) secretion and reproduction. Hypothalamic astrocytes have been documented to release a variety of neuroactive factors, including transforming growth factors-alpha and -beta, insulin-like growth factor-1, prostaglandin E2, and the neurosteroid, 3 alpha-hydroxy-5 alpha-pregnane-20-one. Each of these factors has been shown to stimulate GnRH release, and receptors for each factor have been documented on GnRH neurons. Astrocytes have also been implicated in the regulation of synaptic plasticity in key areas of the hypothalamus that control GnRH release, an effect achieved by extension and retraction of glial processes (i.e., glial ensheathment). Through this mechanism, the number of synapses on GnRH neurons and GnRH regulatory neurons can potentially be modulated, thereby influencing the activation state of GnRH neurons. The steroid hormone 17beta-estradiol, which triggers the GnRH and luteinizing hormone surge, has been shown to induce the astrocyte-regulated changes in hypothalamic synaptic plasticity, as well as enhance formation and release of the astrocyte neuroactive factors, thereby providing another potential mechanistic layer for astrocyte regulation of GnRH release. As a whole, these studies provide new insights into the diversity of astrocytes and their potential role in reproductive neuroendocrine function.
Collapse
Affiliation(s)
- Krishnan M Dhandapani
- Institute of Molecular Medicine and Genetics, Program in Neurobiology, and Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
17
|
Carrer HF, Cambiasso MJ. Sexual differentiation of the brain: genes, estrogen, and neurotrophic factors. Cell Mol Neurobiol 2002; 22:479-500. [PMID: 12585676 DOI: 10.1023/a:1021825317546] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on evidence obtained during the past 50 years, the current hypothesis to explain the sexual dimorphism of structure and function in the brain of vertebrates maintains that these differences are produced by the epigenetic action of gonadal hormones. However, evidence has progressively accumulated suggesting that genetic mechanisms controlling sexual-specific neuronal characteristics precede, or occur in parallel with, hormonal effects. 1. In cultures of hypothalamic neurons taken from gestation day 16 (GD16) embryos, treatment of sexually segregated cultures with estradiol (E2) induces axon growth in neurons from male neurons, but not from female neurons. In these cultures treatment with E2 increased the levels of tyrosine kinase type B (TrkB) and insulin-like growth factor I (IGF-I) receptors in male but not in female neurons. This and other sex differences cannot be explained by differences in hormonal environment, because the donor embryos were obtained when gonadal secretion of steroids is just beginning, before the perinatal surge of testosterone that determines development of the male brain beginning at GD17/18. 2. The response to estrogen is contingent upon coculture with heterotopic glia (mostly astrocytes) from a target region (amygdala) harvested from same-sex fetuses at GD16, whereas in the presence of homotopic glia or in cultures without glia, E2 had no effect. It was concluded that the axogenic effect of E2 depends on interaction between neurons and glia from a target region and that neurons from fetal male donors appear to mature earlier than neurons from females, a differentiated response that takes place prior to divergent exposure to gonadal secretions. 3. The effects of target and nontarget glia-conditioned media (CM) on the E2-induced growth of neuronal processes of hypothalamic neurons obtained from sexually segregated fetal donors were also studied. Estrogen added to media conditioned by target glia modified the number of primary neurites and the growth of axons of hypothalamic neurons of males but not of females. 4. Neither the Type III steroidal receptor blocker tamoxifen nor Type I antiestrogen ICI 182,780 prevented the axogenic effects of the hormone. Estradiol made membrane-impermeable by conjugation to a protein of high molecular weight (E2-BSA) preserved its axogenic capacity, suggesting the possibility of a membrane effect responsible for the action of E2. 5. Western blot analysis of the tyrosine kinase type A (TrkA), type B (TrkB), type C (TrkC), and insulin-like growth factor (IGF-I R) receptors in extracts from homogenates of cultured hypothalamic neurons showed that in cultures of male-derived neurons grown with E2 and CM from target glia, the amounts of TrkB and IGF-I R increased notably. Densitometric quantification showed that these cultures had more TrkB than cultures with CM alone or E2 alone. On the contrary, in cultures of female-derived neurons, the presence of CM alone induced maximal levels of TrkB, which were not further increased by E2; female-derived neurons in all conditions did not contain IGF-I R. Levels of TrkC were not modified by any experimental condition in male- or female-derived cultures and Trk A was not found in the homogenates. These results are compared with similar data from other laboratories and integrated in a model for the confluent interaction of estrogen and neurotrophic factors released by glia that may contribute to the sexual differentiation of the brain.
Collapse
Affiliation(s)
- Hugo F Carrer
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Casilla de Correo 389, Córdoba 5000, Argentina.
| | | |
Collapse
|
18
|
Abstract
Most excitatory input in the hippocampus and cerebral cortex impinges on dendritic spines. Alterations in dendritic spine density or shape are suspected to be morphological manifestations of changes in physiology or behavior. The links between spine plasticity and physiological responses have probably been best studied in the hippocampus in the context of changes in the circulating levels of steroid hormones or long-term potentiation. Here we review and present data which indicate that both the age of the preparation and the timing of the analysis can dramatically effect the results obtained. Collectively the data suggest that different cellular and morphological strategies may be utilized at different ages and under different circumstances to effect similar physiological responses or behaviors.
Collapse
Affiliation(s)
- A Gazzaley
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, The Mount Sinai School of Medicine, P.O. Box 1065/Neurobiology, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
19
|
Rasia-Filho AA, Xavier LL, dos Santos P, Gehlen G, Achaval M. Glial fibrillary acidic protein immunodetection and immunoreactivity in the anterior and posterior medial amygdala of male and female rats. Brain Res Bull 2002; 58:67-75. [PMID: 12121815 DOI: 10.1016/s0361-9230(02)00758-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The medial amygdala (MeA) has receptors for gonadal hormones and modulates reproductive behaviors in rats. Adult male and female rats were used for the immunodetection, a less accurate technique, and the immunohistochemistry for the astrocytic marker glial fibrillary acidic protein (GFAP) in the anterior and posterior MeA. Both procedures were done using polyclonal anti-GFAP and were quantified by densitometry. The first technique provided no evidence for a difference between sexes in the immunocontent of GFAP in any region of the MeA (p > 0.1). Nevertheless, the measure of the intensity of GFAP immunoreactivity (GFAP-IR) showed that females had a higher GFAP-IR in the posterodorsal (p < 0.01) and in the posteroventral subregions of the MeA (p < 0.01) than males. No sex difference was found in its anterodorsal part (p > 0.1). The present results point out the differences between these two above-mentioned techniques but add a new finding to the previously described sexual dimorphism in the MeA, i.e., the GFAP-IR. Data also suggest that probably astrocytes can be affected by sex steroids in this brain area. It is likely that this regionally specific difference in the GFAP-IR may contribute to the distinct functional roles that the MeA subregions have in male and female rats.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
20
|
McCarthy JB, Barker-Gibb AL, Alves SE, Milner TA. TrkA immunoreactive astrocytes in dendritic fields of the hippocampal formation across estrous. Glia 2002; 38:36-44. [PMID: 11921202 DOI: 10.1002/glia.10060] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurotrophins are important modulators of structural synaptic plasticity. (Through trophic action (Jordan. J Neurobiol 40:434-445, 1999), astrocytes serve as permissive substrates to support axonal regrowth (Ridet et al. Trends Neurosci 20:570-571, 1997), and are involved in estrogen-induced synaptic structural plasticity (Garcia-Segura et al. Cell Mol Neurobiol 16:225-237, 1996). Previously, we reported that tyrosine kinase A receptor (TrkA) immunoreactivity was present both in presynaptic neuronal processes (axons and terminals) and in select astrocytes of the male rat hippocampal formation (Barker-Gibb et al. J Comp Neurol 430:182-199, 2001). We show that the number of TrkA-immunoreactive astrocytes in female rats fluctuates 16-fold across the estrous cycle in dendritic fields of the hippocampal formation, with the greatest number at estrus after the peak plasma estradiol concentration of proestrus. Few TrkA-labeled astrocytes were found in ovariectomized animals; after estrogen replacement, this number increased by 12-fold in the hippocampal formation, indicating estrogen-mediated induction. Dual-labeling studies showed that TrkA-labeled astrocytes were also immunoreactive for vimentin, a protein expressed by reactive astrocytes. Ultrastructural analysis of the dentate gyrus molecular layer demonstrated that TrkA immunoreactive astrocytes are positioned primarily next to dendrites and unmyelinated axons. Because nerve growth factor (NGF) has been reported to stimulate astrocytes to function as substrates for axon growth (Kawaja and Gage. Neuron 7:1019-1030, 1991), these findings are consistent with the theory that TrkA immunoreactive astrocytes serve a role in structural plasticity, axon guidance, and synaptic regeneration across the estrous cycle in the hippocampal formation.
Collapse
Affiliation(s)
- J B McCarthy
- Division of Neurobiology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
21
|
Gonzalez-Perez O, Gonzalez-Castañeda RE, Huerta M, Luquin S, Gomez-Pinedo U, Sanchez-Almaraz E, Navarro-Ruiz A, Garcia-Estrada J. Beneficial effects of alpha-lipoic acid plus vitamin E on neurological deficit, reactive gliosis and neuronal remodeling in the penumbra of the ischemic rat brain. Neurosci Lett 2002; 321:100-4. [PMID: 11872266 DOI: 10.1016/s0304-3940(02)00056-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During cerebral ischemia-reperfusion, the enhanced production of oxygen-derived free radicals contributes to neuronal death. The antioxidants alpha-lipoic acid and vitamin E have shown synergistic effects against lipid peroxidation by oxidant radicals in several pathological conditions. A thromboembolic stroke model in rats was used to analyze the effects of this mixture under two oral treatments: intensive and prophylactic. Neurological functions, glial reactivity and neuronal remodeling were assessed after experimental infarction. Neurological recovery was only found in the prophylactic group, and both antioxidant schemes produced down-regulation of astrocytic and microglial reactivity, as well as higher neuronal remodeling in the penumbra area, as compared with controls. The beneficial effects of this antioxidant mixture suggest that it may be valuable for the treatment of cerebral ischemia in humans.
Collapse
Affiliation(s)
- O Gonzalez-Perez
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO) del Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Guadalajara Jalisco 44340, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rao VL, Bowen KK, Rao AM, Dempsey RJ. Up-regulation of the peripheral-type benzodiazepine receptor expression and [(3)H]PK11195 binding in gerbil hippocampus after transient forebrain ischemia. J Neurosci Res 2001; 64:493-500. [PMID: 11391704 DOI: 10.1002/jnr.1101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammalian CNS, the peripheral-type benzodiazepine receptor (PTBR) is localized on the outer mitochondrial membrane within the astrocytes and microglia. The main function of PTBR is to transport cholesterol across the mitochondrial membrane to the site of neurosteroid biosynthesis. The present study evaluated the changes in the PTBR density, gene expression and immunoreactivity in gerbil hippocampus as a function of reperfusion time after transient forebrain ischemia. Between 3 to 7 days of reperfusion, there was a significant increase in the maximal binding site density (B(max)) of the PTBR antagonist [(3)H]PK11195 (by 94-156%; P < 0.01) and PTBR mRNA levels (by 1.8- to 2.9-fold; P < 0.01). At 7 days of reperfusion, in the hippocampal CA1 (the brain region manifesting selective neuronal death), PTBR immunoreactivity increased significantly. Increased PTBR expression after transient forebrain ischemia may lead to increased neurosteroid biosynthesis, and thus may play a role in the ischemic pathophysiology.
Collapse
Affiliation(s)
- V L Rao
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
An increase in pulsatile release of LHRH is essential for the onset of puberty. However, the mechanism controlling the pubertal increase in LHRH release is still unclear. In primates the LHRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state in the juvenile/prepubertal period. Neither gonadal steroid hormones nor the absence of facilitatory neuronal inputs to LHRH neurons is responsible for the low levels of LHRH release before the onset of puberty in primates. Recent studies suggest that during the prepubertal period an inhibitory neuronal system suppresses LHRH release and that during the subsequent maturation of the hypothalamus this prepubertal inhibition is removed, allowing the adult pattern of pulsatile LHRH release. In fact, y-aminobutyric acid (GABA) appears to be an inhibitory neurotransmitter responsible for restricting LHRH release before the onset of puberty in female rhesus monkeys. In addition, it appears that the reduction in tonic GABA inhibition allows an increase in the release of glutamate as well as other neurotransmitters, which contributes to the increase in pubertal LHRH release. In this review, developmental changes in several neurotransmitter systems controlling pulsatile LHRH release are extensively reviewed.
Collapse
Affiliation(s)
- E Terasawa
- Department of Pediatrics, Wisconsin Regional Primate Research Center, and University of Wisconsin-Madison, 53715-1299, USA.
| | | |
Collapse
|
24
|
Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 2000; 24:295-340. [PMID: 10781693 DOI: 10.1016/s0149-7634(99)00080-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both neurons and glia interact dynamically to enable information processing and behaviour. They have had increasingly intimate, numerous and differentiated associations during brain evolution. Radial glia form a scaffold for neuronal developmental migration and astrocytes enable later synapse elimination. Functionally syncytial glial cells are depolarised by elevated potassium to generate slow potential shifts that are quantitatively related to arousal, levels of motivation and accompany learning. Potassium stimulates astrocytic glycogenolysis and neuronal oxidative metabolism, the former of which is necessary for passive avoidance learning in chicks. Neurons oxidatively metabolise lactate/pyruvate derived from astrocytic glycolysis as their major energy source, stimulated by elevated glutamate. In astrocytes, noradrenaline activates both glycogenolysis and oxidative metabolism. Neuronal glutamate depends crucially on the supply of astrocytically derived glutamine. Released glutamate depolarises astrocytes and their handling of potassium and induces waves of elevated intracellular calcium. Serotonin causes astrocytic hyperpolarisation. Astrocytes alter their physical relationships with neurons to regulate neuronal communication in the hypothalamus during lactation, parturition and dehydration and in response to steroid hormones. There is also structural plasticity of astrocytes during learning in cortex and cerebellum.
Collapse
Affiliation(s)
- P R Laming
- School of Biology and Biochemistry, Medical Biology Centre, 97 Lisburn Road, Belfast, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
di Michele F, Lekieffre D, Pasini A, Bernardi G, Benavides J, Romeo E. Increased neurosteroids synthesis after brain and spinal cord injury in rats. Neurosci Lett 2000; 284:65-8. [PMID: 10771163 DOI: 10.1016/s0304-3940(00)00965-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the effect of brain and spinal cord injury induced by fluid-percussion on the local synthesis of neurosteroids as measured by a gas-chromatographic/mass-spectrometric method. In the nervous system of sham operated rats i.v. infusion of pregnenolone (PREGN)-sulfate results in a 2-4 fold increase in PREGN, progesterone (PROG), 5alpha-dehydroprogesterone (5alpha-DHP) and 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha5alpha-THP, allopregnanolone) concentrations, as compared to vehicle treated rats. When PREGN-sulfate was infused 1, 3 or 7 days after brain or spinal cord injury it was observed a large time-dependent increase of PROG, 5alpha-DHP and 3alpha5alpha-THP levels in the peri-focal but not in the focal site. This increase in neurosteroids content may be due essentially to the glial cells hyperplasia in the peri-focal area and to an activation of the pathways involved in the metabolism of PREGN-sulfate to PROG, 5alpha-DHP and 3alpha5alpha-THP.
Collapse
|
26
|
Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 2000; 161:102-14. [PMID: 10683277 DOI: 10.1006/exnr.1999.7269] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian CNS, the peripheral-type benzodiazepine receptor (PTBR) is localized on the outer mitochondrial membrane within the astrocytes and microglia. PTBR transports cholesterol to the site of neurosteroid biosynthesis. Several neurodegenerative disorders were reported to be associated with increased densities of PTBR. In the present study, we evaluated the changes in the PTBR density and gene expression in the brains of rats as a function of time (6 h to 14 days) after traumatic brain injury (TBI). Sham-operated rats served as control. Between 3 and 14 days after TBI, there was a significant increased in the binding of PTBR antagonist [(3)H]PK11195 (by 106 to 185%, P < 0.01, as assessed by quantitative autoradiography and in vitro filtration binding) and PTBR mRNA expression (by 2- to 3. 4-fold, P < 0.01, as assessed by RT-PCR) in the ipsilateral thalamus. At 14 days after the injury, the neuronal number decreased significantly (by 85 to 90%, P < 0.01) in the ipsilateral thalamus. At the same time point, the ipsilateral thalamus also showed increased numbers of the glial fibrillary acidic protein positive cells (astrocytes, by approximately 3.5-fold) and the ED-1 positive cells (microglia/macrophages, by approximately 36-fold), the two cell types known to be associated with PTBR. Increased PTBR expression following TBI seems to be associated with microglia/macrophages than astrocytes as PTBR density at different periods after TBI correlated better with the number of ED-1 positive cells (r(2) = 0.95) than the GFAP positive cells (r(2) = 0.56). TBI-induced increased PTBR expression is possibly an adaptive response to cellular injury and may play a role in the pathophysiology of TBI.
Collapse
Affiliation(s)
- V L Raghavendra Rao
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Henderson RG, Brown AE, Tobet SA. Sex differences in cell migration in the preoptic area/anterior hypothalamus of mice. JOURNAL OF NEUROBIOLOGY 1999; 41:252-66. [PMID: 10512982 DOI: 10.1002/(sici)1097-4695(19991105)41:2<252::aid-neu8>3.0.co;2-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex-dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor-alpha were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial-lateral and dorsal-ventral) and uniform orientation more caudally (medial-lateral). Video microscopy studies followed the migration of DiI-labeled cells in coronal 250-microm brain slices from E15 mice maintained in serum-free media for 1-3 days. Analyses showed significant migration along a dorsal-ventral orientation in addition to medial-lateral. The video analyses showed significantly more medial-lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal-ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain.
Collapse
Affiliation(s)
- R G Henderson
- Program in Neuroscience, The Shriver Center and Harvard Medical School, 200 Trapelo Rd., Waltham, Massachusetts 02452, USA
| | | | | |
Collapse
|
29
|
Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB. Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 1999; 89:567-78. [PMID: 10077336 DOI: 10.1016/s0306-4522(98)00340-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent evidence indicates that 17beta-estradiol may have neuroprotective and neuroregenerative properties. Estradiol is formed locally in neural tissue from precursor androgens. The expression of aromatase, the enzyme that catalyses the conversion of androgens to estrogens, is restricted, under normal circumstances, to specific neuronal populations. These neurons are located in brain areas in which local estrogen formation may be involved in neuroendocrine control and in the modulation of reproductive or sex dimorphic behaviours. In this study the distribution of aromatase immunoreactivity has been assessed in the brain of mice and rats after a neurotoxic lesion induced by the systemic administration of kainic acid. This treatment resulted in the induction of aromatase expression by reactive glia in the hippocampus and in other brain areas that are affected by kainic acid. The reactive glia were identified as astrocytes by co-localization of aromatase with glial fibrillary acidic protein and by ultrastructural analysis. No immunoreactive astrocytes were detected in control animals. The same result, the de novo induction of aromatase expression in reactive astrocytes on the hippocampus, was observed after a penetrating brain injury. Furthermore, using a 3H2O assay, aromatase activity was found to increase significantly in the injured hippocampus. These findings indicate that although astrocytes do not normally express aromatase, the enzyme expression is induced in these glial cells by different forms of brain injury. The results suggest a role for local astroglial estrogen formation in brain repair.
Collapse
Affiliation(s)
- L M Garcia-Segura
- MRC Neuroendocrine Development and Behaviour Group, The Barbraham Institute, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
30
|
Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH. Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. JOURNAL OF NEUROBIOLOGY 1998; 36:509-24. [PMID: 9740023 DOI: 10.1002/(sici)1097-4695(19980915)36:4<509::aid-neu5>3.0.co;2-#] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Leukemia inhibitory factor (LIF) can regulate the survival and differentiation of certain neurons and glial cells in culture. To determine the role of this cytokine in the central nervous system in vivo, we examined the brains of young and adult mice in which the LIF gene was disrupted. Immunohistochemical staining of neurons for choline acetyltransferase, tyrosine hydroxylase, serotonin, parvalbumin, calbindin, neuropeptide Y, vasoactive intestinal polypeptide, and calcitonin gene-related peptide revealed no significant differences between null mutant and wild-type (WT) brains. In contrast, analysis of glial phenotypes demonstrated striking deficits in the LIF-knockout brain. Staining with several anti-glial fibrillary acidic protein (GFAP) antibodies showed that the number of GFAP-positive cells in various regions of the hippocampus in the female mutant is much lower than in the WT. The null male hippocampus also displays a significant, though less marked deficit. The number of astrocytes in the mutant hippocampus, as determined by S-100 staining, is not, however, significantly different from WT. In addition, quantification of immunohistochemical staining of female, but not male, mutants reveals a significant deficit in myelin basic protein content in three brain regions, suggesting alterations in oligodendrocytes as well. Thus, while overall brain histology appears normal, the absence of LIF in vivo leads to specific, sexually dimorphic alterations in glial phenotype.
Collapse
Affiliation(s)
- L Bugga
- Biology Division, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
31
|
Pignataro L, Lerner AA, Barañao JL, de Plazas SF. Biosynthesis of progesterone derived neurosteroids by developing avian CNS: in vitro effects on the GABAA receptor complex. Int J Dev Neurosci 1998; 16:433-41. [PMID: 9829179 DOI: 10.1016/s0736-5748(98)00015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It has been demonstrated in different vertebrate species that the GABAA receptor complex is modulated by certain steroids. Theses results prompted work on the synthesis of these neurosteroids in the Central Nervous System. However, there are scarcely any studies analyzing their production or their modulatory effects on this receptor during development. In this work, the biosynthesis of [14C]progesterone metabolites as well as the characterization of their in vitro effects on the GABAA receptor complex in developing chick optic lobe were investigated. Studies on progesterone metabolism indicated that this steroid was converted to 5 beta-pregnanedione, 5 beta-pregan-3 beta-ol-20-one, and a 20-hydroxy derivative. Radioactive progesterone was completely metabolized at early embryonic stages, and a great proportion of 5 beta-pregnanedione was converted to 5 beta-pregnan-3 beta-ol-20-one. Thus, it seems that some of the steroidogenic activities present in chick optic lobe are age-dependent, though greater at embryonic stages. Results from in vitro modulation of [3H]flunitrazepam binding by 5 beta-pregnan-3 beta-ol-20-one indicated that this steroid produces a one-component-concentration dependent enhancement above control binding. 5 beta-pregnan-3 beta-ol-20-one EC50 values were 0.195 +/- 0.049, 0.101 +/- 0.017, 0.147 +/- 0.009, and 0.569 +/- 0.114 microM, and Emax were 22.37 +/- 1.57, 23.67 +/- 4.02, 29.01 +/- 1.08, and 15.11 +/- 2.67% at embryonic days 11, 14, hatching, and postnatal day 21, respectively. In conclusion, the biosynthesis of 5 beta-pregnan-3 beta-ol-20-one from progesterone in developing chick optic lobe, together with its ability to modulate the GABAA receptor present in such tissues, suggests a physiological role of this neurosteroid in developing avian Central Nervous System.
Collapse
Affiliation(s)
- L Pignataro
- Instituto de Biologia Celular y Neurociencias Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Argentina
| | | | | | | |
Collapse
|
32
|
Diano S, Naftolin F, Horvath TL. Kainate glutamate receptors (GluR5-7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. J Neuroendocrinol 1998; 10:239-47. [PMID: 9630393 DOI: 10.1046/j.1365-2826.1998.00195.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamate action, through its ionotropic, kainate receptors, has been implicated in gonadal steroid-dependent mechanisms of the arcuate nucleus. The objective of the present study was to determine the expression of kainate glutamate receptors in neural and glial elements of this area and their potential relationship to gonadal steroid receptors. Single and double label, light and electron microscopic immunocytochemistry for kainate glutamate receptors and estrogen or androgen receptors revealed the existence of glutamate (GluR) 5-7 kainate receptors in tanycytes, astrocytes and neurons of the arcuate nucleus. In the arcuate nucleus, subsets of GluR5-7-containing neurons were also immunopositive for estrogen (20%) and/or androgen receptors (23%). Glial elements, however, lacked labeling for gonadal steroid receptors. The coexistence of gonadal and kainate receptors in the same perikarya of arcuate nucleus cell populations suggests hormone regulation of excitatory neurotransmission through ionotropic glutamate receptors in these regions. It is also indicated that a kainate receptor-mediated glutamate action may participate in neuro-glial interaction in the arcuate nucleus that, in turn, may underlie the morphological synaptic plasticity induced by gonadal steroids.
Collapse
Affiliation(s)
- S Diano
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
33
|
Gangolli EA, Conneely OM, O'Malley BW. Neurotransmitters activate the human estrogen receptor in a neuroblastoma cell line. J Steroid Biochem Mol Biol 1997; 61:1-9. [PMID: 9328204 DOI: 10.1016/s0960-0760(97)00003-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human neuroblastoma cell line SK-N-SH has been used as a model system to study the interactions of the human estrogen receptor (hER) with neurotransmitters. We have successfully transfected these cells using an adenoviral delivery system and have reconstituted ligand-dependent responses to estradiol and ligand-independent responses to a series of dopamine D1 receptor agonists. The full agonist for the D1 receptor, SKF 82958, shows a robust activation of hER, comparable to that induced by estradiol. This activation is blocked by the protein kinase A inhibitor H-89, is mimicked by forskolin, and is therefore thought to be mediated in part through the cAMP/protein kinase A pathway. We have examined deletion mutants of hER for activation by SKF 82958 and find that both its transactivation domains, AF-1 and AF-2, must cooperate to impart the full response to the agonist. Significantly, an agonist of the muscarinic acetylcholine receptor, carbachol, though not active by itself, synergistically activates hER in conjunction with suboptimal doses of SKF 82958. This is the first reported instance of two neurotransmitters synergizing to activate a member of the nuclear receptor superfamily, and might predict a role for multiple neural inputs modulating the effects of these receptors in the central nervous system.
Collapse
Affiliation(s)
- E A Gangolli
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | | | | |
Collapse
|