1
|
Aqueous outflow channels and its lymphatic association: A review. Surv Ophthalmol 2021; 67:659-674. [PMID: 34656556 PMCID: PMC9008077 DOI: 10.1016/j.survophthal.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
The human eye has a unique immune architecture and behavior. While the conjunctiva is known to have a well-defined lymphatic drainage system, the cornea, sclera, and uveal tissues were historically considered "alymphatic" and thought to be immune privileged. The very fact that the aqueous outflow channels carry a clear fluid (aqueous humor) along the outflow pathway makes it hard to ignore its lymphatic-like characteristics. The development of novel lymphatic lineage markers and expression of these markers in aqueous outflow channels and improved imaging capabilities has sparked a renewed interest in the study of ocular lymphatics. Ophthalmic lymphatic research has had a directional shift over the last decade, offering an exciting new physiological platform that needs further in-depth understanding. The evidence of a presence of distinct lymphatic channels in the human ciliary body is gaining significant traction. The uveolymphatic pathway is an alternative new route for aqueous outflow and adds a new dimension to pathophysiology and management of glaucoma. Developing novel animal models, markers, and non-invasive imaging tools to delineate the core anatomical structure and physiological functions may help pave some crucial pathways to understand disease pathophysiology and help develop novel targeted therapeutic approaches for glaucoma.
Collapse
|
2
|
Wang S, Yamakawa M, Santosa SM, Chawla N, Guo K, Montana M, Hallak JA, Han KY, Ema M, Rosenblatt MI, Chang JH, Azar DT. Quantification of Angiogenesis and Lymphangiogenesis in the Dual ex vivo Aortic and Thoracic Duct Assay. Protein Pept Lett 2020; 27:30-40. [PMID: 31553284 PMCID: PMC6978644 DOI: 10.2174/0929866526666190925145842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
Abstract: Background Lymphatic vessel formation (lymphangiogenesis) plays important roles in cancer metastasis, organ rejection, and lymphedema, but the underlying molecular events remain unclear. Furthermore, despite significant overlap in the molecular families involved in angiogenesis and lymphangiogenesis, little is known about the crosstalk between these processes. The ex vivo aortic ring assay and lymphatic ring assay have enabled detailed studies of vessel sprouting, but harvesting and imaging clear thoracic duct samples remain challenging. Here we present a modified ex vivo dual aortic ring and thoracic duct assay using tissues from dual fluorescence reporter Prox1-GFP/Flt1-DsRed (PGFD) mice, which permit simultaneous visualization of blood and lymphatic endothelial cells. Objective To characterize the concurrent sprouting of intrinsically fluorescent blood and lymphatic vessels from harvested aorta and thoracic duct samples. Methods Dual aorta and thoracic duct specimens were harvested from PGFD mice, grown in six types of endothelial cell growth media (one control, five that each lack a specific growth factor), and visualized by confocal fluorescence microscopy. Linear mixed models were used to compare the extent of vessel growth and sprouting over a 28-day period. Results Angiogenesis occurred prior to lymphangiogenesis in our assay. The control medium generally induced superior growth of both vessel types compared with the different modified media formulations. The greatest decrease in lymphangiogenesis was observed in vascular endothelial growth factor-C (VEGF-C)-devoid medium, suggesting the importance of VEGF-C in lymphangiogenesis. Conclusion The modified ex vivo dual aortic ring and thoracic duct assay represents a powerful tool for studying angiogenesis and lymphangiogenesis in concert.
Collapse
Affiliation(s)
- Shuangyong Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Joelle A Hallak
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shia University of Medical Science, Otsu, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Ribatti D, Tamma R, Ruggieri S, Annese T, Crivellato E. Surface markers: An identity card of endothelial cells. Microcirculation 2019; 27:e12587. [PMID: 31461797 DOI: 10.1111/micc.12587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
All endothelial cells have the common characteristic that they line the vessels of the blood circulatory system. However, endothelial cells display a large degree of heterogeneity in the function of their location in the vascular tree. In this article, we have summarized the expression patterns of a number of well-accepted endothelial surface markers present in normal microvascular endothelial cells, arterial and venous endothelial cells, lymphatic endothelial cells, tumor endothelial cells, and endothelial precursor cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Udine, Italy
| |
Collapse
|
4
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
5
|
|
6
|
Kazenwadel J, Secker GA, Betterman KL, Harvey NL. In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis. PLoS One 2012; 7:e40497. [PMID: 22792354 PMCID: PMC3391274 DOI: 10.1371/journal.pone.0040497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/08/2012] [Indexed: 01/17/2023] Open
Abstract
Despite the importance of blood vessels and lymphatic vessels during development and disease, the signalling pathways underpinning vessel construction remain poorly characterised. Primary mouse endothelial cells have traditionally proven difficult to culture and as a consequence, few assays have been developed to dissect gene function and signal transduction pathways in these cells ex vivo. Having established methodology for the purification, short-term culture and transfection of primary blood (BEC) and lymphatic (LEC) vascular endothelial cells isolated from embryonic mouse skin, we sought to optimise robust assays able to measure embryonic LEC proliferation, migration and three-dimensional tube forming ability in vitro. In the course of developing these assays using the pro-lymphangiogenic growth factors FGF2 and VEGF-C, we identified previously unrecognised roles for FGFR1 signalling in lymphangiogenesis. The small molecule FGF receptor tyrosine kinase inhibitor SU5402, but not inhibitors of VEGFR-2 (SU5416) or VEGFR-3 (MAZ51), inhibited FGF2 mediated LEC proliferation, demonstrating that FGF2 promotes proliferation directly via FGF receptors and independently of VEGF receptors in primary embryonic LEC. Further investigation revealed that FGFR1 was by far the predominant FGF receptor expressed by primary embryonic LEC and correspondingly, siRNA-mediated FGFR1 knockdown abrogated FGF2 mediated LEC proliferation. While FGF2 potently promoted LEC proliferation and migration, three dimensional tube formation assays revealed that VEGF-C primarily promoted LEC sprouting and elongation, illustrating that FGF2 and VEGF-C play distinct, cooperative roles in lymphatic vascular morphogenesis. These assays therefore provide useful tools able to dissect gene function in cellular events important for lymphangiogenesis and implicate FGFR1 as a key player in developmental lymphangiogenesis in vivo.
Collapse
Affiliation(s)
- Jan Kazenwadel
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Genevieve A. Secker
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Kelly L. Betterman
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Natasha L. Harvey
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
7
|
Ribatti D, Nico B, Cimpean AM, Raica M. Podoplanin and LYVE-1 expression in lymphatic vessels of human neuroblastoma. J Neurooncol 2010; 100:151-2. [DOI: 10.1007/s11060-010-0148-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/15/2010] [Indexed: 11/28/2022]
|
8
|
Abstract
Work on the lymphatic system began in the 17th century, and by the beginning of the 19th century the anatomy of most of the lymphatic system had been described. One of the most important questions in this field has been the determination of the embryological origin of the lymphatic endothelium. Two theories were proposed. The first suggested that lymphatic endothelium derived by sprouting from venous endothelium, the so-called centrifugal theory. The second, the so-called centripetal theory, suggested that lymphatic endothelium differentiates in situ from primitive mesenchyme, and secondarily acquires connection with the vascular system. More recent evidence has provided support for both hypotheses.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Italy.
| | | |
Collapse
|
9
|
Nicosia RF. The aortic ring model of angiogenesis: a quarter century of search and discovery. J Cell Mol Med 2009; 13:4113-36. [PMID: 19725916 PMCID: PMC4496118 DOI: 10.1111/j.1582-4934.2009.00891.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/11/2009] [Indexed: 12/14/2022] Open
Abstract
The aortic ring model has become one of the most widely used methods to study angiogenesis and its mechanisms. Many factors have contributed to its popularity including reproducibility, cost effectiveness, ease of use and good correlation with in vivo studies. In this system aortic rings embedded in biomatrix gels and cultured under chemically defined conditions generate arborizing vascular outgrowths which can be stimulated or inhibited with angiogenic regulators. Originally based on the rat aorta, the aortic ring model was later adapted to the mouse for the evaluation of specific molecular alterations in genetically modified animals. Viral transduction of the aortic rings has enabled investigators to overexpress genes of interest in the aortic cultures. Experiments on angiogenic mechanisms have demonstrated that formation of neovessels in aortic cultures is regulated by macrophages, pericytes and fibroblasts through a complex molecular cascade involving growth factors, inflammatory cytokines, axonal guidance cues, extracellular matrix (ECM) molecules and matrix-degrading proteolytic enzymes. These studies have shown that endothelial sprouting can be effectively blocked by depleting the aortic explants of macrophages or by interfering with the angiogenic cascade at multiple levels including growth factor signalling, cell adhesion and proteolytic degradation of the ECM. In this paper, we review the literature in this field and retrace the journey from our first morphological descriptions of the aortic outgrowths to the latest breakthroughs in the cellular and molecular regulation of aortic vessel growth and regression.
Collapse
Affiliation(s)
- R F Nicosia
- Pathology and Laboratory Medicine Services, Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Françoise Bruyère
- Laboratory of Tumor and Development BiologyGroupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer)University of LiegeLiegeBelgium
| | - Agnès Noël
- Laboratory of Tumor and Development BiologyGroupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer)University of LiegeLiegeBelgium
| |
Collapse
|
11
|
Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 2008; 5:431-7. [PMID: 18425139 DOI: 10.1038/nmeth.1205] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/25/2008] [Indexed: 12/12/2022]
Abstract
A lack of appropriate in vitro models of three-dimensional lymph vessel growth hampers the study of lymphangiogenesis. We developed a lymphatic ring assay--a potent, reproducible and quantifiable three-dimensional culture system for lymphatic endothelial cells that reproduces spreading of endothelial cells from a pre-existing vessel, cell proliferation, migration and differentiation into capillaries. In the assay, mouse thoracic duct fragments are embedded in a collagen gel, leading to the formation of lumen-containing lymphatic capillaries, which we assessed by electron microscopy and immunostaining. We developed a computerized method to quantify the lymphatic network. By applying this model to gene-deficient mice, we found evidence for involvement of the matrix metalloproteinase, MMP-2, in lymphangiogenesis. The lymphatic ring assay bridges the gap between two-dimensional in vitro models and in vivo models of lymphangiogenesis, can be used to exploit the potential of existing transgenic mouse models, and rapidly identify regulators of lymphangiogenesis.
Collapse
|
12
|
Whitehurst B, Eversgerd C, Flister M, Bivens CM, Pickett B, Zawieja DC, Ran S. Molecular Profile and Proliferative Responses of Rat Lymphatic Endothelial Cells in Culture. Lymphat Res Biol 2006; 4:119-42. [PMID: 17034293 DOI: 10.1089/lrb.2006.4.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Lymphangiogenesis plays an important role in metastasis of many solid tumors. To study lymphangiogenesis under controlled conditions, an in vitro model is needed. The goal of this work was to establish such an in vitro model by determining a molecular profile of rat mesenteric lymphatic endothelial cells (RMLEC) and characterizing their proliferative responses to angiogenic and lymphangiogenic factors, such as vascular endothelial growth factor A and C (VEGF-A and VEGF-C). METHODS AND RESULTS RMLEC strongly expressed most lymphatic-specific markers, including Prox-1, LYVE-1, and VEGFR-3. Proliferation of RMLEC was serum and heparin dependent. In the presence of low (2%) serum concentration, exogenously added VEGF-A and VEGFC stimulated RMLEC in a linear and dose-dependent manner. This effect was abrogated by anti-VEGF-A and VEGF-C antibodies, as well as by soluble Tie-2 and Flt-4 fusion proteins. Abrogation was reversed by VEGF-A, suggesting that this factor as an important regulator of lymphangiogenesis. CONCLUSIONS Cultured RMLEC preserved a molecular profile consistent with the phenotype of lymphatic endothelium in vivo and respond to either VEGF-A or VEGF-C factors. VEGFA was able to rescue RMLEC proliferation inhibited by a neutralizing VEGF-C antibody or soluble Tie-2 fusion protein. These results support the existence of cross-talk among angiogenic and lymphangiogenic factors. This work established experimental conditions that allow in vitro modeling of lymphatic endothelial responses to lymphangiogenic regulators. Preliminary results using this model suggest that VEGF-A, VEGF-C, and angiopoietins work in concert to promote lymphangiogenesis in vivo.
Collapse
Affiliation(s)
- Brandt Whitehurst
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62702-9678, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Agarwal B, Saxena R, Morimiya A, Mehrotra S, Badve S. Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol 2006; 29:1449-55. [PMID: 16224211 DOI: 10.1097/01.pas.0000174269.99459.9d] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer metastasis predominantly occurs via lymphatic vessels. However, the study of lymphatic vessels and lymphangiogenesis has been hampered by lack of specific markers. Recently, antibodies directed against M2A (D2-40), Podoplanin, and Prox-1 that specifically mark lymphatic vessels in paraffin-embedded sections have become available. These were used to study lymphangiogenesis in archival paraffin sections of normal breast (n = 23), fibrocystic disease (n = 7), ductal carcinoma in situ (n = 32), invasive ductal carcinoma (n = 50), and invasive lobular carcinoma (n = 5). In addition, endothelial proliferation in lymphatic vessels was analyzed by dual-color immunohistochemistry with D2-40 and proliferating cell nuclear antigen (PCNA). Expression of D2-40, Prox-1, and Podoplanin was seen in lymphatic vessels but not in blood vessels. Lymphatic vessels were seen in the peritumoral area and as "entrapped" intratumoral vessels adjacent to preexisting normal lobules and ducts. Unlike angiogenesis, there was no increase of lymphatic vessel density in association with neoplastic transformation. On the contrary, a marked reduction in intratumoral lymphatic vessel density was seen in comparison to normal breast tissue, fibrocystic disease, and ductal carcinoma in situ (P = 0.0001). There was an increase in peritumoral lymphatic vessel density as compared with normal breast (P = 0.0001). However, the endothelial cells in the "entrapped" or the peritumoral lymphatic vessels did not show any expression of PCNA indicating minimal or no proliferative activity. This was in contrast to the strong expression seen in adjacent tumor cells and blood vessel endothelial cells. Thus, lymphangiogenesis was not evident when studied by lymphatic vessel density or by lymph vessel endothelial proliferation.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Murine-Derived
- Biomarkers
- Biomarkers, Tumor
- Breast/pathology
- Breast/physiology
- Breast Neoplasms/pathology
- Breast Neoplasms/physiopathology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/physiopathology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/physiopathology
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/physiopathology
- Female
- Homeodomain Proteins/immunology
- Humans
- Lymphangiogenesis/physiology
- Lymphatic Metastasis
- Membrane Glycoproteins/immunology
- Middle Aged
- Proliferating Cell Nuclear Antigen/immunology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Beamon Agarwal
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
14
|
Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D. Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 2005; 1:101-19. [PMID: 15624419 DOI: 10.1089/153968503321642606] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The lymphatic endothelium is important to the functioning of the lymphatic system, including lymphatic remodeling, control of vessel tone, and lymphatic movement of fluids, macromolecules, and cells. Many of these events occur principally at the level of the microlymphatics. To evaluate the role of the microlymphatic endothelium, a suitable cultured cell line would be useful. We have developed a technique to isolate and culture endothelial cells from microscopic lymphatics, approximately 100 microm in diameter. METHODS AND RESULTS To isolate the rat mesenteric lymphatic endothelial cells (RMLEC), the rat was anesthetized and the mesentery carefully exteriorized. A suitable microlymphatic was located and carefully microdissected from the surrounding mesentery. The vessel was carefully cleaned, cannulated, everted, and then incubated on a gelatin-coated plastic culture dish until small patches of cells migrated off of the vessel (3-4 days later.) The explanted vessel was then removed. The remaining cells were cultured and screened for endothelial phenotype. Nonendothelial cells were destroyed. The endothelial nature of the remaining cells was verified by: 1) morphology, 2) uptake of fluorescent acetylated-LDL, 3) staining for von Wille-brand factor, PECAM-1, ecNOS, LYVE-1, VEGFR-3, and 4) essentially negative alpha-vascular smooth muscle actin staining. The defined RMLEC were passed and the profile of adhesion molecules present on the RMLEC was then determined using PCR and immunofluorescence. CONCLUSIONS We developed and partially characterized a line of cultured microlymphatic endothelium. RMLEC express known endothelial- and lymphatic-specific markers as well as the following adhesion molecules: N-cadherin, E-cadherin, PECAM-1, alpha-catenin, beta-catenin, gamma-catenin, p120, and a variety of integrins.
Collapse
Affiliation(s)
- H Hayes
- Department of Medical Physiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, College Station, Texas, 77843-1114, USA
| | | | | | | | | |
Collapse
|
15
|
Scavelli C, Weber E, Aglianò M, Cirulli T, Nico B, Vacca A, Ribatti D. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat 2004; 204:433-49. [PMID: 15198686 PMCID: PMC1571315 DOI: 10.1111/j.0021-8782.2004.00293.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2004] [Indexed: 01/09/2023] Open
Abstract
The lymphatic system is implicated in interstitial fluid balance regulation, immune cell trafficking, oedema and cancer metastasis. However, the sequence of events that initiate and coordinate lymphatic vessel development (lymphangiogenesis) remains obscure. In effect, the understanding of physiological regulation of lymphatic vasculature has been overshadowed by the greater emphasis focused on angiogenesis, and delayed by a lack of specific markers, thereby limiting this field to no more than a descriptive characterization. Recently, new insights into lymphangiogenesis research have been due to the discovery of lymphatic-specific markers and growth factors of vascular endothelial growth factor (VEGF) family, such as VEGF-C and VEGF-D. Studies using transgenic mice overexpressing VEGF-C and VEGF-D have demonstrated a crucial role for these factors in tumour lymphangiogenesis. Knowledge of lymphatic development has now been redefined at the molecular level, providing an interesting target for innovative therapies. This review highlights the recent insights and advances into the field of lymphatic vascular research, outlining the most important aspects of the embryo development, structure, specific markers and methods applied for studying lymphangiogenesis. Finally, molecular mechanisms involved in the regulation of lymphangiogenesis are described.
Collapse
Affiliation(s)
- Claudio Scavelli
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical SchoolItaly
| | - Elisabetta Weber
- Department of Neurosciences, Section of Molecular Medicine, University of Siena Medical SchoolItaly
| | - Margherita Aglianò
- Department of Neurosciences, Section of Molecular Medicine, University of Siena Medical SchoolItaly
| | - Teresa Cirulli
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical SchoolItaly
| | - Beatrice Nico
- Department of Human Anatomy and Histology, University of Bari Medical SchoolItaly
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical SchoolItaly
| | - Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical SchoolItaly
| |
Collapse
|
16
|
Leak LV, Petricoin EF, Jones M, Paweletz CP, Ardekani AM, Fusaro VA, Ross S, Liotta LA. Proteomic technologies to study diseases of the lymphatic vascular system. Ann N Y Acad Sci 2002; 979:211-28; discussion 229-34. [PMID: 12543730 DOI: 10.1111/j.1749-6632.2002.tb04881.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Now that the human genome has been mapped, a new challenge has emerged: deciphering the various products of individual genes. Consequently, new proteomic technologies are being developed to monitor and identify protein function and interactions responsible for the total activities of the cell. The application of these new proteomic technologies to study cellular activities, will lead to a faster sample throughput and increased sensitivity for the detection of individual proteins, thus providing major opportunities for the discovery of new biomarkers for the early detection of protein alterations associated with the progression of the disease state.
Collapse
Affiliation(s)
- Lee V Leak
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Witte MH, Bernas MJ, Martin CP, Witte CL. Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 2001; 55:122-45. [PMID: 11596157 DOI: 10.1002/jemt.1163] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The lymph vascular system parallels the blood vasculature and as one of its key functions returns liquid and solutes to the bloodstream, including macromolecules that have escaped from blood capillaries and entered the interstitium. In conjunction with interspersed lymph nodes and lymphoid organs, the lymphatic vasculature also acts as a conduit for trafficking immune cell populations. Echoing the explosion of knowledge about blood vessel angiogenesis (properly termed "hemangiogenesis"), the past two decades have also witnessed a series of significant, yet less-noticed discoveries bearing on "lymphangiogenesis," along with delineation of the spectrum of lymphedema-angiodysplasia syndromes. Failure of lymph transport promotes a brawny proteinaceous edema of the affected limb, organ, or serous space that is disfiguring, disabling, and on occasion even life-threatening. Key members of the vascular endothelial growth factor (VEGF) and angiopoietin families of vascular growth factors (and their corresponding tyrosine kinase endothelial receptors) have been identified which preferentially influence lymphatic growth and, when manipulated in genetically engineered murine models, produce aberrant "lymphatic phenotypes." Moreover, mutations in VEGF receptor and forkhead family developmental genes have now been linked and implicated in the pathogenesis of two familial lymphedema-angiodysplasia syndromes. Thus, recent advances in "molecular lymphology" are elucidating the poorly understood development, physiology, and pathophysiology of the neglected lymphatic vasculature. In combination with fresh insights and refined tools in "clinical lymphology," these advances should lead not only to earlier detection and more rational classification of lymphatic disease but also to better therapeutic approaches, including designer drugs for lymphangiostimulation and lymphangioinhibition and gene therapy to modulate lymphatic growth.
Collapse
Affiliation(s)
- M H Witte
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona 85724-5063, USA.
| | | | | | | |
Collapse
|
18
|
Mancardi S, Stanta G, Dusetti N, Bestagno M, Jussila L, Zweyer M, Lunazzi G, Dumont D, Alitalo K, Burrone OR. Lymphatic endothelial tumors induced by intraperitoneal injection of incomplete Freund's adjuvant. Exp Cell Res 1999; 246:368-75. [PMID: 9925752 DOI: 10.1006/excr.1998.4270] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells form the inner lining of blood and lymphatic vessels. In mice, only tumors of the blood vessel endothelium (haemangiomas) have been thus far reported. Here we describe a highly reproducible method for the induction of benign tumors of the lymphatic endothelial cells (lymphangiomas) in mice by intraperitoneal injection of incomplete Freund's adjuvant. Morphological and histopathological studies of the lesions revealed the presence of cells at various levels of vascular development. The lymphangiomas developed in the peritoneal cavity and expressed the endothelial markers CD31/PECAM (platelet endothelial cell adhesion molecule), CD54/ICAM-1 (InterCellular Adhesion Molecule-1), and CD102/ICAM-2, as well as the vascular endothelial growth factor (VEGF) receptor Flk-1, the endothelial cell specific receptors Tie-1 and Tie-2 and the lymphatic endothelial cell specific Flt4 receptor as shown by in situ hybridization. The Flk-1 and Flt4 receptors were also identified in immunoblots of the tumors and in cells cultured from them. When induced in beta-galactosidase knock-in Flt4(+/-) mice, the tumor endothelia could be stained blue in a number of tumor cells although the staining was of lower intensity than in normal lymphatic vessels. The tumor-derived cells could be propagated in vitro and they spontaneously differentiated, forming vessel-like structures. Murine lymphangiomas thus represent a highly reproducible and convenient source of lymphatic endothelial cells.
Collapse
Affiliation(s)
- S Mancardi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, Trieste, 34012, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nicosia RF. What is the role of vascular endothelial growth factor-related molecules in tumor angiogenesis? THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:11-6. [PMID: 9665459 PMCID: PMC1852942 DOI: 10.1016/s0002-9440(10)65539-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- R F Nicosia
- Department of Pathology and Laboratory Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA.
| |
Collapse
|
20
|
Witte MH, Way DL, Witte CL, Bernas M. Lymphangiogenesis: mechanisms, significance and clinical implications. EXS 1997; 79:65-112. [PMID: 9002221 DOI: 10.1007/978-3-0348-9006-9_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M H Witte
- Department of Surgery, University of Arizona College of Medicine, Tucson 85724, USA
| | | | | | | |
Collapse
|
21
|
Lymphangiogenesis in vitro: Formation of lymphatic capillary-like channels from confluent monolayers of lymphatic endothelial cells. In Vitro Cell Dev Biol Anim 1994; 30:512-8. [DOI: 10.1007/bf02631324] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1993] [Accepted: 09/08/1993] [Indexed: 11/26/2022]
|
22
|
Nicosia RF, Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:119-28. [PMID: 1690206 DOI: 10.1007/bf02624102] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rings of rat aorta cultured in Matrigel, a reconstituted gel composed of basement membrane molecules, gave rise to three-dimensional networks composed of solid cellular cords and occasional microvessels with slitlike lumina. Immunohistochemical and ultrastructural studies showed that the solid cords were composed of endothelial sprouts surrounded by nonendothelial mesenchymal cells. The angiogenic response of the aortic rings in Matrigel was compared to that obtained in interstitial collagen, fibrin, or plasma clot. Morphometric analysis demonstrated that the mean luminal area of the microvascular sprouts and channels was significantly smaller in Matrigel than in collagen, fibrin, or plasma clot. The percentage of patent microvessels in Matrigel was also markedly reduced. Autoradiographic studies of 3H-thymidine-labeled cultures showed reduced DNA synthesis by developing microvessels in Matrigel. The overall number of solid endothelial cords and microvessels was lower in Matrigel than in fibrin or plasma clot. A mixed cell population isolated from Matrigel cultures formed a monolayer in collagen or fibrin-coated dishes but rapidly reorganized into a polygonal network when plated on Matrigel. The observation that gels composed of basement membrane molecules modulate the canalization, proliferation, and organization into networks of vasoformative endothelial cells in three-dimensional cultures supports the hypothesis that the basement membrane is a potent regulator of microvascular growth and morphogenesis.
Collapse
Affiliation(s)
- R F Nicosia
- Department of Pathology, Medical College of Pennsylvania, Philadelphia 19129
| | | |
Collapse
|
23
|
Abstract
In recent years, tumor-related angiogenesis has become an important field of research in oncology. It could be stated that growth of solid tumors is completely dependent on neovascularization to provide the tumor with all required nutrients. Special compounds (tumor angiogenesis factor[s]) are released by tumor cells into the environment to stimulate different types of normal cells to become active for the tumor. In particular, endothelial cells of neighboring capillaries are induced to react. They disintegrate their own basal lamina, detach from their neighbors, enter the extracellular matrix, and migrate toward the tumor mass. Cell divisions occur within such sprouts, thereby increasing the number of migrating endothelial cells. Strands of such cells are formed, and inter- and intracellular lumina develop. Loops of these hollow strands anastomose to form a network of new vessels which become connected with the blood circulation. The tumor mass thus becomes vascularized and can continue to grow. The prevention of neoangiogenesis has an enormous impact on cancer treatment by inhibiting the growth of the tumor. In this review, all important aspects of tumor-related angiogenesis are presented.
Collapse
Affiliation(s)
- N Paweletz
- Growth and Division of the Cell Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|