1
|
Uliana DL, Martinez A, Grace AA. THPP-1 PDE10A inhibitor reverses the cognitive deficits and hyperdopaminergic state in a neurodevelopment model of schizophrenia. Schizophr Res 2024; 274:315-326. [PMID: 39437478 DOI: 10.1016/j.schres.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized by positive, negative, and cognitive symptoms. The neurodevelopmental methylazoxy-methanol acetate (MAM) rodent model replicates key neurobiological features of SCZ which includes hyperdopaminergic states in the ventral tegmental area (VTA) and cognitive deficits. Typical and atypical antipsychotics are primarily effective in treating the positive symptoms of SCZ but often fall short of addressing cognitive deficits. A promising therapeutic approach for treating all symptoms of SCZ has emerged through the inhibition of phosphodiesterase 10 A (PDE10A). Our study aim was to investigate the impact of acute and chronic THPP-1 (PDE10A inhibitor) treatment, in MAM rats, focusing on cognitive deficits and VTA dopamine (DA) activity. Adult offspring of pregnant rats treated with Saline or MAM (20 mg/kg) on gestational day 17 were treated with THPP-1 acutely (male/female rats; 3 mg/kg) at postnatal day (PD) 70-80 or chronically (males; 3 weeks; 2-3 mg/kg) from PD 70-91 and tested in the novel object recognition test and electrophysiological recording of DA neurons in the VTA. Acute THPP-1 treatment reversed cognitive impairments and normalized the increased number of active DA neurons in the VTA of male and female MAM rats, without affecting control rats. Also, chronic THPP-1 treatment reversed cognitive deficits and normalized DA hyperactivity in the VTA of male MAM rats. The efficacy of THPP-1 in reversing MAM-induced impairments underscores its ability to target disease-specific circuitry without affecting normal regulated systems in control rats. Our findings highlight the therapeutic potential of THPP-1 for addressing cognitive deficits and DA dysregulation in SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Angela Martinez
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Livingston NR, Kiemes A, Devenyi GA, Knight S, Lukow PB, Jelen LA, Reilly T, Dima A, Nettis MA, Casetta C, Agyekum T, Zelaya F, Spencer T, De Micheli A, Fusar-Poli P, Grace AA, Williams SCR, McGuire P, Egerton A, Chakravarty MM, Modinos G. Effects of diazepam on hippocampal blood flow in people at clinical high risk for psychosis. Neuropsychopharmacology 2024; 49:1448-1458. [PMID: 38658738 PMCID: PMC11250854 DOI: 10.1038/s41386-024-01864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.
Collapse
Affiliation(s)
- Nicholas R Livingston
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Amanda Kiemes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Samuel Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Luke A Jelen
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Reilly
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Aikaterini Dima
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Maria Antonietta Nettis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cecilia Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Tyler Agyekum
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Andrea De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
4
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
6
|
Elam HB, Perez SM, Donegan JJ, Eassa NE, Lodge DJ. Knockdown of Lhx6 during embryonic development results in neurophysiological alterations and behavioral deficits analogous to schizophrenia in adult rats. Schizophr Res 2024; 267:113-121. [PMID: 38531158 DOI: 10.1016/j.schres.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
A decreased expression of specific interneuron subtypes, containing either the calcium binding protein parvalbumin (PV) or the neurotransmitter somatostatin (SST), are observed in the cortex and hippocampus of both patients with schizophrenia and rodent models used to study the disorder. Moreover, preclinical studies suggest that this loss of inhibitory function is a key pathological mechanism underlying the symptoms of schizophrenia. Interestingly, decreased expression of Lhx6, a key transcriptional regulator specific to the development and migration of PV and SST interneurons, is seen in human postmortem studies and following multiple developmental disruptions used to model schizophrenia preclinically. These results suggest that disruptions in interneuron development in utero may contribute to the pathology of the disorder. To recapitulate decreased Lhx6 expression during development, we used in utero electroporation to introduce an Lhx6 shRNA plasmid and knockdown Lhx6 expression in the brains of rats on gestational day 17. We then examined schizophrenia-like neurophysiological and behavioral alterations in the offspring once they reached adulthood. In utero Lhx6 knockdown resulted in increased ventral tegmental area (VTA) dopamine neuron population activity and a sex-specific increase in locomotor response to a psychotomimetic, consistent with positive symptomology of schizophrenia. However, Lhx6 knockdown had no effect on social interaction or spatial working memory, suggesting behaviors associated with negative and cognitive symptom domains were unaffected. These results suggest that knockdown of Lhx6 during development results in neurophysiological and behavioral alterations consistent with the positive symptom domain of schizophrenia in adult rats.
Collapse
Affiliation(s)
- Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School at UT Austin, Austin, TX, USA
| | - Nicole E Eassa
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, USA
| |
Collapse
|
7
|
McCoy AM, Prevot TD, Mian MY, Sharmin D, Ahmad AN, Cook JM, Sibille EL, Lodge DJ. Extrasynaptic localization is essential for α5GABA A receptor modulation of dopamine system function. eNeuro 2024; 11:ENEURO.0344-23.2023. [PMID: 38413199 PMCID: PMC10972738 DOI: 10.1523/eneuro.0344-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 02/29/2024] Open
Abstract
Dopamine system dysfunction, observed in animal models with psychosis-like symptomatology, can be restored by targeting Gamma-Aminobutyric Acid type A receptors (GABAAR) containing the α5, but not α1, subunit in the ventral hippocampus (vHipp). The reason for this discrepancy in efficacy remains elusive; however, one key difference is that α1GABAARs are primarily located in the synapse, whereas α5GABAARs are mostly extrasynaptic. To test whether receptor location is responsible for this difference in efficacy, we injected a small interfering ribonucleic acid (siRNA) into the vHipp to knock down radixin, a scaffolding protein that holds α5GABAARs in the extrasynaptic space. We then administered GL-II-73, a positive allosteric modulator of α5GABAARs (α5-PAM) known to reverse shock-induced deficits in dopamine system function, to determine if shifting α5GABAARs from the extrasynaptic space to the synapse would prevent the effects of α5-PAM on dopamine system function. As expected, knockdown of radixin significantly decreased radixin-associated α5GABAARs and increased the proportion of synaptic α5GABAARs, without changing the overall expression of α5GABAARs. Importantly, GL-II-73 was no longer able to modulate dopamine neuron activity in radixin-knockdown rats, indicating that the extrasynaptic localization of α5GABAARs is critical for hippocampal modulation of the dopamine system. These results may have important implications for clinical use of GL-II-73, as periods of high hippocampal activity appear to favor synaptic α5GABAARs, thus efficacy may be diminished in conditions where aberrant hippocampal activity is present.Significance Statement Currently available treatments for psychosis, a debilitating symptom linked with several brain disorders, are inadequate. While they can help manage symptoms in some patients, they do so imperfectly. They are also associated with severe side effects that can cause discontinuation of medication. This study provides preclinical evidence that the drug, GL-II-73, possesses the ability to modulate dopamine activity, a key player in psychosis symptoms, and further provides some mechanistic details regarding these effects. Overall, this work contributes to the growing body of literature suggesting that GL-II-73 and similar compounds may possess antipsychotic efficacy.
Collapse
Affiliation(s)
- Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas 78229
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas 78229
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Ontario M5G 2C1, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Adeeba N. Ahmad
- University of Texas, Rio Grande Valley, Edinburg, Texas 78539
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Etienne L. Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Ontario M5G 2C1, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas 78229
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas 78229
| |
Collapse
|
8
|
Anhøj S, Ebdrup B, Nielsen MØ, Antonsen P, Glenthøj B, Rostrup E. Functional Connectivity Between Auditory and Medial Temporal Lobe Networks in Antipsychotic-Naïve Patients With First-Episode Schizophrenia Predicts the Effects of Dopamine Antagonism on Auditory Verbal Hallucinations. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:308-316. [PMID: 38298804 PMCID: PMC10829637 DOI: 10.1016/j.bpsgos.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 02/02/2024] Open
Abstract
Background Understanding how antipsychotic medication ameliorates auditory verbal hallucinations (AVHs) through modulation of brain circuitry is pivotal for understanding the pathophysiology of psychosis and for predicting treatment response. Methods This case-control study included examinations at baseline and at follow-up after 6 weeks. Initially, antipsychotic-naïve patients with first-episode schizophrenia who were experiencing AVHs were recruited together with healthy control participants. Antipsychotic treatment with the relatively selective D2 receptor antagonist amisulpride was administered as monotherapy. Functional connectivity measured by resting-state functional magnetic resonance imaging between networks of interest was used to study the effects of D2 blockade on brain circuitry and predict clinical treatment response. Hallucinations were rated with the Positive and Negative Syndrome Scale. Results Thirty-two patients experiencing AVHs and 34 healthy control participants were scanned at baseline. Twenty-two patients and 34 healthy control participants were rescanned at follow-up. Connectivity between the auditory network and the medial temporal lobe network was increased in patients at baseline (p = .002) and normalized within 6 weeks of D2 blockade (p = .018). At baseline, the connectivity between these networks was positively correlated with ratings of hallucinations (t = 2.67, p = .013). Moreover, baseline connectivity between the auditory network and the medial temporal lobe network predicted reduction in hallucinations (t = 2.34, p = .032). Conclusions Functional connectivity between the auditory network and the medial temporal lobe predicted response to initial antipsychotic treatment. These findings demonstrate that connectivity between networks involved in auditory processing, internal monitoring, and memory is associated with the clinical effect of dopamine antagonism.
Collapse
Affiliation(s)
- Simon Anhøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Bjørn Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Antonsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| |
Collapse
|
9
|
McCoy AM, Prevot TD, Mian MY, Sharmin D, Ahmad AN, Cook JM, Sibille EL, Lodge DJ. Extrasynaptic localization is essential for α5GABA A receptor modulation of dopamine system function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548744. [PMID: 37502875 PMCID: PMC10370028 DOI: 10.1101/2023.07.12.548744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dopamine system dysfunction, observed in animal models with psychosis-like symptomatology, can be restored by targeting Gamma-Aminobutyric Acid type A receptors (GABA A R) containing the α5, but not α1, subunit in the ventral hippocampus (vHipp). The reason for this discrepancy in efficacy remains elusive; however, one key difference is that α1GABA A Rs are primarily located in the synapse, whereas α5GABA A Rs are mostly extrasynaptic. To test whether receptor location is responsible for this difference in efficacy, we injected a small interfering ribonucleic acid (siRNA) into the vHipp to knock down radixin, a scaffolding protein that holds α5GABA A Rs in the extrasynaptic space. We then administered GL-II-73, a positive allosteric modulator of α5GABA A Rs (α5-PAM) known to reverse shock-induced deficits in dopamine system function, to determine if shifting α5GABA A Rs from the extrasynaptic space to the synapse would prevent the effects of α5-PAM on dopamine system function. As expected, knockdown of radixin significantly decreased radixin-associated α5GABA A Rs and increased the proportion of synaptic α5GABA A Rs, without changing the overall expression of α5GABA A Rs. Importantly, GL-II-73 was no longer able to modulate dopamine neuron activity in radixin-knockdown rats, indicating that the extrasynaptic localization of α5GABA A Rs is critical for hippocampal modulation of the dopamine system. These results may have important implications for clinical use of GL-II-73, as periods of high hippocampal activity appear to favor synaptic α5GABA A Rs, thus efficacy may be diminished in conditions where aberrant hippocampal activity is present. Significance Statement Dopamine activity is known to be altered in both psychosis patients and in animal models, with promising new antipsychotics restoring normal dopamine system function. One such drug is GL-II-73, a positive allosteric modulator of α5GABA A Rs (α5-PAM). Interestingly, previous research has shown that a positive allosteric modulator of α1GABA A Rs (α1-PAM) does not share this ability, even when directly given to the ventral hippocampus, a region known to modulate dopamine activity. One potential explanation for this difference we examined in this study is that α1GABA A Rs are primarily located in the synapse, whereas α5GABA A Rs are mostly extrasynaptic. Determining the mechanism of this differential efficacy could lead to the refinement of antipsychotic treatment and improve patient outcomes overall.
Collapse
|
10
|
Sharmin D, Mian MY, Marcotte M, Prevot TD, Sibille E, Witkin JM, Cook JM. Synthesis and Receptor Binding Studies of α5 GABA AR Selective Novel Imidazodiazepines Targeted for Psychiatric and Cognitive Disorders. Molecules 2023; 28:4771. [PMID: 37375326 DOI: 10.3390/molecules28124771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
GABA mediates inhibitory actions through various GABAA receptor subtypes, including 19 subunits in human GABAAR. Dysregulation of GABAergic neurotransmission is associated with several psychiatric disorders, including depression, anxiety, and schizophrenia. Selective targeting of α2/3 GABAARs can treat mood and anxiety, while α5 GABAA-Rs can treat anxiety, depression, and cognitive performance. GL-II-73 and MP-III-022, α5-positive allosteric modulators have shown promising results in animal models of chronic stress, aging, and cognitive disorders, including MDD, schizophrenia, autism, and Alzheimer's disease. Described in this article is how small changes in the structure of imidazodiazepine substituents can greatly impact the subtype selectivity of benzodiazepine GABAAR. To investigate alternate and potentially more effective therapeutic compounds, modifications were made to the structure of imidazodiazepine 1 to synthesize different amide analogs. The novel ligands were screened at the NIMH PDSP against a panel of 47 receptors, ion channels, including hERG, and transporters to identify on- and off-target interactions. Any ligands with significant inhibition in primary binding were subjected to secondary binding assays to determine their Ki values. The newly synthesized imidazodiazepines were found to have variable affinities for the benzodiazepine site and negligible or no binding to any off-target profile receptors that could cause other physiological problems.
Collapse
Affiliation(s)
- Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| | - Michael Marcotte
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Jeffrey M Witkin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
- Laboratory of Antiepileptic Drug Discovery, Ascension, St. Vincent, Indianapolis, IN 46260, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
11
|
Perez SM, Boley AM, McCoy AM, Lodge DJ. Aberrant Dopamine System Function in the Ferrous Amyloid Buthionine (FAB) Rat Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:7196. [PMID: 37108357 PMCID: PMC10138591 DOI: 10.3390/ijms24087196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Antipsychotics increase the risk of death in elderly patients with Alzheimer's disease (AD). Thus, there is an immediate need for novel therapies to treat comorbid psychosis in AD. Psychosis has been attributed to a dysregulation of the dopamine system and is associated with aberrant regulation by the hippocampus. Given that the hippocampus is a key site of pathology in AD, we posit that aberrant regulation of the dopamine system may contribute to comorbid psychosis in AD. A ferrous amyloid buthionine (FAB) rodent model was used to model a sporadic form of AD. FAB rats displayed functional hippocampal alterations, which were accompanied by decreases in spontaneous, low-frequency oscillations and increases in the firing rates of putative pyramidal neurons. Additionally, FAB rats exhibited increases in dopamine neuron population activity and augmented responses to the locomotor-inducing effects of MK-801, as is consistent with rodent models of psychosis-like symptomatology. Further, working memory deficits in the Y-maze, consistent with an AD-like phenotype, were observed in FAB rats. These data suggest that the aberrant hippocampal activity observed in AD may contribute to dopamine-dependent psychosis, and that the FAB model may be useful for the investigation of comorbid psychosis related to AD. Understanding the pathophysiology that leads to comorbid psychosis in AD will ultimately lead to the discovery of novel targets for the treatment of this disease.
Collapse
Affiliation(s)
- Stephanie M. Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Angela M. Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Peterson BS, Kaur T, Sawardekar S, Colibazzi T, Hao X, Wexler BE, Bansal R. Aberrant hippocampus and amygdala morphology associated with cognitive deficits in schizophrenia. Front Cell Neurosci 2023; 17:1126577. [PMID: 36909281 PMCID: PMC9996667 DOI: 10.3389/fncel.2023.1126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Working memory deficits are thought to be a primary disturbance in schizophrenia. We aimed to identify differences in morphology of the hippocampus and amygdala in patients with schizophrenia compared with healthy controls (HCs), and in patients who were either neuropsychologically near normal (NPNN) or neuropsychologically impaired (NPI). Morphological disturbances in the same subfields of the hippocampus and amygdala, but of greater magnitude in those with NPI, would strengthen evidence for the centrality of these limbic regions and working memory deficits in the pathogenesis of schizophrenia. Methods We acquired anatomical MRIs in 69 patients with schizophrenia (18 NPNN, 46 NPI) and 63 age-matched HC participants. We compared groups in hippocampus and amygdala surface morphologies and correlated morphological measures with clinical symptoms and working memory scores. Results Schizophrenia was associated with inward deformations of the head and tail of the hippocampus, protrusion of the hippocampal body, and widespread inward deformations of the amygdala. In the same regions where we detected the effects of schizophrenia, morphological measures correlated positively with the severity of symptoms and inversely with working memory performance. Patients with NPI displayed a similar pattern of anatomical abnormality compared to patients with NPNN. Conclusion Our findings indicate that anatomical abnormalities of the hippocampus relate to working memory performance and clinical symptoms in persons with schizophrenia. Moreover, NPNN and NPI patients may lie on a continuum of severity, both in terms of working memory abilities and altered brain structure, with NPI patients being more severe than NPNN patients in both domains.
Collapse
Affiliation(s)
- Bradley S. Peterson
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bradley S. Peterson,
| | - Tejal Kaur
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Siddhant Sawardekar
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Xuejun Hao
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Bruce E. Wexler
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ravi Bansal
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Elam HB, Donegan JJ, Hsieh J, Lodge DJ. Gestational buprenorphine exposure disrupts dopamine neuron activity and related behaviors in adulthood. eNeuro 2022; 9:ENEURO.0499-21.2022. [PMID: 35851301 PMCID: PMC9337603 DOI: 10.1523/eneuro.0499-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid misuse among pregnant women is rapidly increasing in the United States. The number of maternal opioid-related diagnoses increased by 131% in the last ten years, resulting in an increased number of infants exposed to opioids in utero and a subsequent increase in infants developing neonatal abstinence syndrome (NAS). The most prescribed treatment to combat maternal opioid use disorder is buprenorphine, a partial μ-opioid receptor agonist and κ-opioid receptor antagonist. Buprenorphine treatment effectively reduces NAS but has been associated with disrupted cortical development and neurodevelopmental consequences in childhood. Less is known about the long-term neurodevelopmental consequences following buprenorphine exposure in utero Previous research has shown that gestational buprenorphine exposure can induce anxiety- and depressive-like phenotypes in adult rats, suggesting that exposure to buprenorphine in utero may render individuals more susceptible to psychiatric illness in adulthood. A common pathology observed across multiple psychiatric illnesses is dopamine system dysfunction. Here, we administered the highly-abused opioid, oxycodone (10 mg/kg, i.p.) or a therapeutic used to treat opioid use disorder, buprenorphine (1 mg/kg, i.p) to pregnant Sprague Dawley rats from gestational day 11 through 21, then examined neurophysiological alterations in the mesolimbic dopamine system and dopamine-dependent behaviors in adult offspring. We found that gestational exposure to buprenorphine or oxycodone increases dopamine neuron activity in adulthood. Moreover, prenatal buprenorphine exposure disrupts the afferent regulation of dopamine neuron activity in the ventral tegmental area (VTA). Taken together, we posit that gestational buprenorphine or oxycodone exposure can have profound effects on the mesolimbic dopamine system in adulthood.Significance StatementThe opioid epidemic in the United States is a growing problem that affects people from all demographics, including pregnant women. In 2017, nearly 21,000 pregnant women reported misusing opioids during pregnancy, which can lead to many physiological and neurodevelopmental complications in infants. To combat illicit opioid use during pregnancy, buprenorphine is the priority treatment option, as it reduces illicit opioid use and alleviates symptoms of neonatal abstinence syndrome in infants. However, less is known about the long-term neurophysiological consequences of in utero opioid or buprenorphine exposure. Here, we demonstrate that both oxycodone and buprenorphine exposure, in utero, can result in aberrant dopamine system function in adult rats. These results provide evidence of potential long-lasting effects of opioid exposure during development.
Collapse
Affiliation(s)
- Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School at UT Austin, Austin, TX, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, USA
| |
Collapse
|
14
|
Lopes-Rocha A, Bezerra TO, Zanotto R, Lages Nascimento I, Rodrigues A, Salum C. The Antioxidant N-Acetyl-L-Cysteine Restores the Behavioral Deficits in a Neurodevelopmental Model of Schizophrenia Through a Mechanism That Involves Nitric Oxide. Front Pharmacol 2022; 13:924955. [PMID: 35903343 PMCID: PMC9315304 DOI: 10.3389/fphar.2022.924955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
The disruption of neurodevelopment is a hypothesis for the emergence of schizophrenia. Some evidence supports the hypothesis that a redox imbalance could account for the developmental impairments associated with schizophrenia. Additionally, there is a deficit in glutathione (GSH), a main antioxidant, in this disorder. The injection of metilazoximetanol acetate (MAM) on the 17th day of gestation in Wistar rats recapitulates the neurodevelopmental and oxidative stress hypothesis of schizophrenia. The offspring of rats exposed to MAM treatment present in early adulthood behavioral and neurochemical deficits consistent with those seen in schizophrenia. The present study investigated if the acute and chronic (250 mg/kg) treatment during adulthood with N-acetyl-L-cysteine (NAC), a GSH precursor, can revert the behavioral deficits [hyperlocomotion, prepulse inhibition (PPI), and social interaction (SI)] in MAM rats and if the NAC-chronic-effects could be canceled by L-arginine (250 mg/kg, i.p, for 5 days), nitric oxide precursor. Analyses of markers involved in the inflammatory response, such as astrocytes (glial fibrillary acid protein, GFAP) and microglia (binding adapter molecule 1, Iba1), and parvalbumin (PV) positive GABAergic, were conducted in the prefrontal cortex [PFC, medial orbital cortex (MO) and prelimbic cortex (PrL)] and dorsal and ventral hippocampus [CA1, CA2, CA3, and dentate gyrus (DG)] in rats under chronic treatment with NAC. MAM rats showed decreased time of SI and increased locomotion, and both acute and chronic NAC treatments were able to recover these behavioral deficits. L-arginine blocked NAC behavioral effects. MAM rats presented increases in GFAP density at PFC and Iba1 at PFC and CA1. NAC increased the density of Iba1 cells at PFC and of PV cells at MO and CA1 of the ventral hippocampus. The results indicate that NAC recovered the behavioral deficits observed in MAM rats through a mechanism involving nitric oxide. Our data suggest an ongoing inflammatory process in MAM rats and support a potential antipsychotic effect of NAC.
Collapse
|
15
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
16
|
Zhang J, Navarrete M, Wu Y, Zhou Y. 14-3-3 Dysfunction in Dorsal Hippocampus CA1 (dCA1) Induces Psychomotor Behavior via a dCA1-Lateral Septum-Ventral Tegmental Area Pathway. Front Mol Neurosci 2022; 15:817227. [PMID: 35237127 PMCID: PMC8882652 DOI: 10.3389/fnmol.2022.817227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
While hippocampal hyperactivity is implicated in psychosis by both human and animal studies, whether it induces a hyperdopaminergic state and the underlying neural circuitry remains elusive. Previous studies established that region-specific inhibition of 14-3-3 proteins in the dorsal hippocampus CA1 (dCA1) induces schizophrenia-like behaviors in mice, including a novelty-induced locomotor hyperactivity. In this study, we showed that 14-3-3 dysfunction in the dCA1 over-activates ventral tegmental area (VTA) dopaminergic neurons, and such over-activation is necessary for eliciting psychomotor behavior in mice. We demonstrated that such hippocampal dysregulation of the VTA during psychomotor behavior is dependent on an over-activation of the lateral septum (LS), given that inhibition of the LS attenuates over-activation of dopaminergic neurons and psychomotor behavior induced by 14-3-3 inhibition in the dCA1. Moreover, 14-3-3 inhibition-induced neuronal activations within the dCA1-LS-VTA pathway and psychomotor behavior can be reproduced by direct chemogenetic activation of LS-projecting dCA1 neurons. Collectively, these results suggest that 14-3-3 dysfunction in the dCA1 results in hippocampal hyperactivation which leads to psychomotor behavior via a dCA1-LS-VTA pathway.
Collapse
Affiliation(s)
| | | | | | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
17
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
18
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
Gomes FV, Grace AA. Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention. Int J Mol Sci 2021; 22:4467. [PMID: 33922888 PMCID: PMC8123139 DOI: 10.3390/ijms22094467] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 01000-000, Brazil;
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Winterer JM, Ofosu K, Borchers F, Hadzidiakos D, Lammers-Lietz F, Spies C, Winterer G, Zacharias N. Neurocognitive disorders in the elderly: altered functional resting-state hyperconnectivities in postoperative delirium patients. Transl Psychiatry 2021; 11:213. [PMID: 33846284 PMCID: PMC8041755 DOI: 10.1038/s41398-021-01304-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Postoperative delirium (POD) represents a confusional state during days/weeks after surgery and is particularly frequent in elderly patients. Hardly any fMRI studies were conducted to understand the underlying pathophysiology of POD patients. This prospective observational cohort study aims to examine changes of specific resting-state functional connectivity networks across different time points (pre- and 3-5 months postoperatively) in delirious patients compared to no-POD patients. Two-hundred eighty-three elderly surgical patients underwent preoperative resting-state fMRI (46 POD). One-hundred seventy-eight patients completed postoperative scans (19 POD). For functional connectivity analyses, three functional connectivity networks with seeds located in the orbitofrontal cortex (OFC), nucleus accumbens (NAcc), and hippocampus were investigated. The relationship of POD and connectivity changes between both time points (course connectivity) were examined (ANOVA). Preoperatively, delirious patients displayed hyperconnectivities across the examined functional connectivity networks. In POD patients, connectivities within NAcc and OFC networks demonstrated a decrease in course connectivity [max. F = 9.03, p = 0.003; F = 4.47, p = 0.036, resp.]. The preoperative hyperconnectivity in the three networks in the patients at risk for developing POD could possibly indicate existing compensation mechanisms for subtle brain dysfunction. The observed pathophysiology of network function in POD patients at least partially involves dopaminergic pathways.
Collapse
Affiliation(s)
- Jeanne M. Winterer
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany ,grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany ,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Kwaku Ofosu
- grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Friedrich Borchers
- grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Daniel Hadzidiakos
- grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Florian Lammers-Lietz
- grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Claudia Spies
- grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology, Charité (CVK, CCM)-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany. .,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany.
| | - Norman Zacharias
- grid.484013.aDepartment of Anesthesiology, Charité (CVK, CCM)–Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany ,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
21
|
Increased Functional Coupling between VTA and Hippocampus during Rest in First-Episode Psychosis. eNeuro 2021; 8:ENEURO.0375-20.2021. [PMID: 33658310 PMCID: PMC7986546 DOI: 10.1523/eneuro.0375-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Animal models suggest that interactions between the hippocampus and ventral tegmental area (VTA) underlie the onset and etiology of psychosis. While a large body of research has separately characterized alterations in hippocampal and VTA function in psychosis, alterations across the VTA and hippocampus have not been characterized in first-episode psychosis (FEP). As the phase of psychosis most proximal to conversion, studies specifically focused on FEP are valuable to psychosis research. Here, we characterize alterations in VTA-hippocampal interactions across male and female human participants experiencing their first episode of psychosis using resting state functional magnetic resonance imaging (rsfMRI). In comparison to age and sex matched healthy controls (HCs), FEP individuals had significantly greater VTA-hippocampal functional coupling but significantly less VTA-striatal functional coupling. Further, increased VTA-hippocampal functional coupling in FEP correlated with individual differences in psychosis-related symptoms. Together, these findings demonstrate alterations in mesolimbic-hippocampal circuits in FEP and extend prominent animal models of psychosis.
Collapse
|
22
|
Kozhuharova P, Diaconescu AO, Allen P. Reduced cortical GABA and glutamate in high schizotypy. Psychopharmacology (Berl) 2021; 238:2459-2470. [PMID: 34146134 PMCID: PMC8373725 DOI: 10.1007/s00213-021-05867-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/02/2021] [Indexed: 12/04/2022]
Abstract
RATIONALE Abnormal functioning of the inhibitory gamma-aminobutyric acid (GABA) and excitatory (glutamate) systems is proposed to play a role in the development of schizophrenia spectrum disorder. Although results are mixed, previous 1H-magnetic resonance spectroscopy (MRS) studies in schizophrenia and clinical high-risk samples report these metabolites are altered in comparison to healthy controls. Currently, however, there are few studies of these metabolites in schizotypy samples, a personality dimension associated with the experience of schizophrenia and psychosis-like symptoms. OBJECTIVES We investigated if GABA and glutamate metabolite concentrations are altered in people with high schizotypy. We also explored the relationship between resilience to stress, GABA metabolite concentrations and schizotypy. METHODS We used MRS to examine GABA and glutamate levels in the medial prefrontal cortex in people with low and high schizotypy traits as assessed with the Schizotypal Personality Questionnaire. Resilience to stress was assessed using the Connor-Davidson Resilience Scale. RESULTS Compared to individuals with low schizotypy traits, high schizotypy individuals showed lower cortical prefrontal GABA (F (1,38) = 5.18, p = 0.03, η2 = 0.09) and glutamate metabolite levels (F (1, 49) = 6.25, p = 0.02, η2 = 0.02). Furthermore, participants with high GABA and high resilience levels were significantly more likely to be in the low schizotypy group than participants with low GABA and high resilience or high GABA and low resilience (95% CI 1.07-1.34, p < .001). CONCLUSIONS These findings demonstrate that subclinical schizotypal traits are associated with abnormal functioning of both inhibitory and excitatory systems and suggest that these transmitters are implicated in a personality trait believed to be on a continuum with psychosis.
Collapse
Affiliation(s)
- Petya Kozhuharova
- Centre for Cognition, Neuroscience and Neuroimaging, Department of Psychology, University of Roehampton, Holybourne Ave, Roehampton, London, SW15 4JD, UK.
| | - Andreea O Diaconescu
- Department of Psychiatry, Brain and Therapeutics, Krembil Centre for Neuroinformatics, CAMH, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Paul Allen
- Centre for Cognition, Neuroscience and Neuroimaging, Department of Psychology, University of Roehampton, Holybourne Ave, Roehampton, London, SW15 4JD, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus 2020; 31:56-78. [PMID: 32986281 DOI: 10.1002/hipo.23262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
In rodents, gene-expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3 , GABAergic GABAA (including benzodiazepine binding sites), GABAB , dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal-ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB . For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3 , GABAA , D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal-ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jana Deitersen
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Rosuvastatin improves olanzapine's effects on behavioral impairment and hippocampal, hepatic and metabolic damages in isolated reared male rats. Behav Brain Res 2019; 378:112305. [PMID: 31634496 DOI: 10.1016/j.bbr.2019.112305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Schizophrenia is a chronic, disabling neurological illness. This study investigated the effect of rosuvastatin (RSU) addition to the antipsychotic drug: olanzapine (OLZ) in treatment of post-weaning isolation rearing (IR) damaging effect and assessed behavioral impairment, metabolic and hepatic abnormalities, oxidative stress, and inflammatory markers. METHODS Treatment with OLZ (6 mg/kg, P.O.) and/or RSU (10 mg/kg, I.P.) have been started 6 weeks after isolation. We assessed behavioral tests, serum cortisol level, and hippocampal content of neurotransmitters. In addition, we assessed histopathology, inflammatory and oxidative stress markers of hippocampus, liver and adipose tissue RESULTS: Treatment of IR animals with OLZ, and/or RSU significantly counteracted the changes in hippocampus, liver and adipose tissue induced by post-weaning IR. Co-treatment of IR rats with both OLZ and RSU showed additive effects in some areas like improving both tumor necrosis factor alpha (TNFα) in both hippocampus and liver, histopathology of liver, oxidative stress markers of adipose tissue, β3 adrenergic receptors (ADRβ3), serum cortisol and total cholesterol. In addition, RSU alone alleviated the damage of IR rats by the same efficacy as OLZ with more benefit in cognition and exploration. CONCLUSION post-weaning IR as a model has behavioral, hippocampal, hepatic and marked metabolic changes more relevant to schizophrenia than drug-induced models. These effects were ameliorated by RSU and/or OLZ that are explained by their antioxidant, anti-inflammatory, anti-stress and anti-hyperlipidemic properties. Interestingly, co-treatment with both drugs showed a better effect.
Collapse
|
26
|
Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm (Vienna) 2019; 126:1637-1651. [PMID: 31529297 PMCID: PMC6856257 DOI: 10.1007/s00702-019-02080-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/08/2019] [Indexed: 02/05/2023]
Abstract
Parvalbumin interneurons are fast-spiking GABAergic neurons that provide inhibitory control of cortical and subcortical circuits and are thought to be a key locus of the pathophysiology underlying schizophrenia. In view of the contradictory results regarding the nature of parvalbumin post-mortem findings in schizophrenia, we conducted a quantitative meta-analysis of the data on parvalbumin cell density and parvalbumin mRNA levels in pre-frontal regions in the brains of patients with schizophrenia (n = 274) compared with healthy controls (n = 275). The results suggest that parvalbumin interneurons are reduced in density in the frontal cortex of patients with schizophrenia (Hedges’ g = − 0.27; p = 0.03) and there is a non-significant reduction in parvalbumin mRNA levels (g = − 0.44; p = 0.12). However, certain methodological issues need to be considered in interpreting such results and are discussed in more detail. A meta-regression was conducted for post-mortem interval and year of publication as covariates which were both non-significant, except in the mRNA meta-analysis where post-mortem interval was found to be significant. Overall our findings provide tentative support for the hypothesis that the GABAergic system is deficient in schizophrenia and that parvalbumin-containing interneurons offer a potential target for treatment. However, further well-controlled studies that examine multiple regions and layers are warranted to determine whether parvalbumin alterations are region or layer specific and to test the robustness of the findings further.
Collapse
|
27
|
Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell 2019; 178:1387-1402.e14. [DOI: 10.1016/j.cell.2019.07.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/01/2019] [Accepted: 07/11/2019] [Indexed: 01/03/2023]
|
28
|
Region-specific inhibition of 14-3-3 proteins induces psychomotor behaviors in mice. NPJ SCHIZOPHRENIA 2019; 5:1. [PMID: 30643138 PMCID: PMC6386769 DOI: 10.1038/s41537-018-0069-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins is genetically linked to several psychiatric disorders, including schizophrenia. Our 14-3-3 functional knockout (FKO) mice, as well as other 14-3-3 knockout models, have been shown to exhibit behavioral endophenotypes related to schizophrenia. While specific forebrain regions, such as the prefrontal cortex (PFC) and hippocampus (HP), have been implicated in schizophrenic pathophysiology, the role of these brain regions in the top-down control of specific schizophrenia-associated behaviors has not been examined. Here, we used an adeno-associated virus (AAV) delivered shRNA to knock down the expression of the 14-3-3-inhibitor transgene, thus selectively restoring the function of 14-3-3 in the forebrain of the 14-3-3 FKO mice, we found that injection of the AAV-shRNA into both the PFC and the HP is necessary to attenuate psychomotor activity of the 14-3-3 FKO mice. Furthermore, we found that acute inhibition of 14-3-3, through the delivery of an AAV expressing the 14-3-3 inhibitor to both the PFC and HP, can trigger psychomotor agitation. Interestingly, when assessing the two brain regions separately, we determined that AAV-mediated expression of the 14-3-3 inhibitor specifically within the HP alone is sufficient to induce several behavioral deficits including hyperactivity, impaired associative learning and memory, and reduced sensorimotor gating. In addition, we show that post-synaptic NMDA receptor levels are regulated by acute 14-3-3 manipulations. Taken together, findings from this study directly link 14-3-3 inhibition in specific forebrain regions to certain schizophrenia-associated endophenotypes.
Collapse
|
29
|
Lander SS, Khan U, Lewandowski N, Chakraborty D, Provenzano FA, Mingote S, Chornyy S, Frigerio F, Maechler P, Kaphzan H, Small SA, Rayport S, Gaisler-Salomon I. Glutamate Dehydrogenase-Deficient Mice Display Schizophrenia-Like Behavioral Abnormalities and CA1-Specific Hippocampal Dysfunction. Schizophr Bull 2019; 45:127-137. [PMID: 29471549 PMCID: PMC6293228 DOI: 10.1093/schbul/sby011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain imaging has revealed that the CA1 subregion of the hippocampus is hyperactive in prodromal and diagnosed patients with schizophrenia (SCZ), and that glutamate is a driver of this hyperactivity. Strikingly, mice deficient in the glutamate synthetic enzyme glutaminase have CA1 hypoactivity and a SCZ-resilience profile, implicating glutamate-metabolizing enzymes. To address this further, we examined mice with a brain-wide deficit in the glutamate-metabolizing enzyme glutamate dehydrogenase (GDH), encoded by Glud1, which should lead to glutamate excess due to reduced glutamate metabolism in astrocytes. We found that Glud1-deficient mice have behavioral abnormalities in the 3 SCZ symptom domains, with increased baseline and amphetamine-induced hyperlocomotion as a positive symptom proxy, nest building and social preference as a negative symptom proxy, and reversal/extradimensional set shifting in the water T-maze and contextual fear conditioning as a cognitive symptom proxy. Neuroimaging of cerebral blood volume revealed hippocampal hyperactivity in CA1, which was associated with volume reduction. Parameters of hippocampal synaptic function revealed excess glutamate release and an elevated excitatory/inhibitory balance in CA1. Finally, in a direct clinical correlation using imaging-guided microarray, we found a significant SCZ-associated postmortem reduction in GLUD1 expression in CA1. These findings advance GLUD1 deficiency as a driver of excess hippocampal excitatory transmission and SCZ symptoms, and identify GDH as a target for glutamate modulation pharmacotherapy for SCZ. More broadly, these findings point to the likely involvement of alterations in glutamate metabolism in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Sharon S Lander
- Department of Psychology or Neurobiology, University of Haifa, Haifa, Israel
| | - Usman Khan
- Department of Neurology or Psychiatry, Columbia University, New York, NY
| | - Nicole Lewandowski
- Department of Neurology or Psychiatry, Columbia University, New York, NY
| | - Darpan Chakraborty
- Department of Psychology or Neurobiology, University of Haifa, Haifa, Israel
| | - Frank A Provenzano
- Department of Neurology or Psychiatry, Columbia University, New York, NY
| | - Susana Mingote
- Department of Neurology or Psychiatry, Columbia University, New York, NY,Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY
| | - Sergiy Chornyy
- Department of Psychology or Neurobiology, University of Haifa, Haifa, Israel
| | - Francesca Frigerio
- Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerl
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerl
| | - Hanoch Kaphzan
- Department of Psychology or Neurobiology, University of Haifa, Haifa, Israel
| | - Scott A Small
- Department of Neurology or Psychiatry, Columbia University, New York, NY
| | - Stephen Rayport
- Department of Neurology or Psychiatry, Columbia University, New York, NY,Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY
| | - Inna Gaisler-Salomon
- Department of Psychology or Neurobiology, University of Haifa, Haifa, Israel,To whom correspondence should be addressed; 199 Abba Khoushi Ave, Haifa, Israel; tel: +972-4-8249674, fax +972-4-8240966, email
| |
Collapse
|
30
|
Grace AA, Gomes FV. The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights Into Treatment and Prevention. Schizophr Bull 2019; 45:148-157. [PMID: 29385549 PMCID: PMC6293217 DOI: 10.1093/schbul/sbx199] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite evidence for a role of the dopamine system in the pathophysiology of schizophrenia, there has not been substantial evidence that this disorder originates from a pathological change within the dopamine system itself. Current data from human imaging studies and preclinical investigations instead point to a disruption in afferent regulation of the dopamine system, with a focus on the hippocampus. We found that the hippocampus in the methylazoxymethanol acetate (MAM) rodent developmental disruption model of schizophrenia is hyperactive and dysrhythmic, possibly due to loss of parvalbumin interneurons, leading to a hyperresponsive dopamine system. Whereas current therapeutic approaches target dopamine receptor blockade, treatment at the site of pathology may be a more effective therapeutic avenue. This model also provided insights into potential means for prevention of schizophrenia. Specifically, given that stress is a risk factor in schizophrenia, and that stress can damage hippocampal parvalbumin interneurons, we tested whether alleviating stress early in life can effectively circumvent transition to schizophrenia-like states. Administering diazepam prepubertally at an antianxiety dose in MAM rats was effective at preventing the emergence of the hyperdopaminergic state in the adult. Moreover, multiple stressors applied to normal rats at the same time point resulted in pathology similar to the MAM rat. These data suggest that a genetic predisposition leading to stress hyper-responsivity, or exposure to substantial stressors, could be a primary factor leading to the emergence of schizophrenia later in life, and furthermore treating stress at a critical period may be effective in circumventing this transition.
Collapse
Affiliation(s)
- Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; Departments of Neuroscience, Psychiatry and Psychology, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, US; tel: 412-624-4609, fax: 412-624-9198, e-mail:
| | - Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
31
|
Neuregulin-2 ablation results in dopamine dysregulation and severe behavioral phenotypes relevant to psychiatric disorders. Mol Psychiatry 2018; 23:1233-1243. [PMID: 28322273 PMCID: PMC5608621 DOI: 10.1038/mp.2017.22] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/16/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Abstract
Numerous genetic and functional studies implicate variants of Neuregulin-1 (NRG1) and its neuronal receptor ErbB4 in schizophrenia and many of its endophenotypes. Although the neurophysiological and behavioral phenotypes of NRG1 mutant mice have been investigated extensively, practically nothing is known about the function of NRG2, the closest NRG1 homolog. We found that NRG2 expression in the adult rodent brain does not overlap with NRG1 and is more extensive than originally reported, including expression in the striatum and medial prefrontal cortex (mPFC), and therefore generated NRG2 knockout mice (KO) to study its function. NRG2 KOs have higher extracellular dopamine levels in the dorsal striatum but lower levels in the mPFC; a pattern with similarities to dopamine dysbalance in schizophrenia. Like ErbB4 KO mice, NRG2 KOs performed abnormally in a battery of behavioral tasks relevant to psychiatric disorders. NRG2 KOs exhibit hyperactivity in a novelty-induced open field, deficits in prepulse inhibition, hypersensitivity to amphetamine, antisocial behaviors, reduced anxiety-like behavior in the elevated plus maze and deficits in the T-maze alteration reward test-a task dependent on hippocampal and mPFC function. Acute administration of clozapine rapidly increased extracellular dopamine levels in the mPFC and improved alternation T-maze performance. Similar to mice treated chronically with N-methyl-d-aspartate receptor (NMDAR) antagonists, we demonstrate that NMDAR synaptic currents in NRG2 KOs are augmented at hippocampal glutamatergic synapses and are more sensitive to ifenprodil, indicating an increased contribution of GluN2B-containing NMDARs. Our findings reveal a novel role for NRG2 in the modulation of behaviors with relevance to psychiatric disorders.
Collapse
|
32
|
Wolthusen RPF, Coombs G, Boeke EA, Ehrlich S, DeCross SN, Nasr S, Holt DJ. Correlation Between Levels of Delusional Beliefs and Perfusion of the Hippocampus and an Associated Network in a Non-Help-Seeking Population. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018. [PMID: 29529413 DOI: 10.1016/j.bpsc.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Delusions are a defining and common symptom of psychotic disorders. Recent evidence suggests that subclinical and clinical delusions may represent distinct stages on a phenomenological and biological continuum. However, few studies have tested whether subclinical psychotic experiences are associated with neural changes that are similar to those observed in clinical psychosis. For example, it is unclear if overactivity of the hippocampus, a replicated finding of neuroimaging studies of schizophrenia, is also present in individuals with subclinical psychotic symptoms. METHODS To investigate this question, structural and pulsed arterial spin labeling scans were collected in 77 adult participants with no psychiatric history. An anatomical region of interest approach was used to extract resting perfusion of the hippocampus, and 15 other regions, from each individual. A self-report measure of delusional ideation was collected on the day of scanning. RESULTS The level of delusional thinking (number of beliefs [r = .27, p = .02]), as well as the associated level of distress (r = .29, p = .02), was significantly correlated with hippocampal perfusion (averaged over right and left hemispheres). The correlations remained significant after controlling for age, hippocampal volume, symptoms of depression and anxiety, and image signal-to-noise ratio, and they were confirmed in a voxelwise regression analysis. The same association was observed in the thalamus and parahippocampal, lateral temporal, and cingulate cortices. CONCLUSIONS Similar to patients with schizophrenia, non-help-seeking individuals show elevated perfusion of a network of limbic regions in association with delusional beliefs.
Collapse
Affiliation(s)
- Rick P F Wolthusen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Garth Coombs
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Emily A Boeke
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychology, New York University, New York, New York
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine Carl Gustav Carus of the Technische Universität Dresden, Dresden, Germany
| | - Stephanie N DeCross
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Shahin Nasr
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts.
| |
Collapse
|
33
|
Scott D, Tamminga CA. Effects of genetic and environmental risk for schizophrenia on hippocampal activity and psychosis-like behavior in mice. Behav Brain Res 2018; 339:114-123. [PMID: 29155005 DOI: 10.1016/j.bbr.2017.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a serious mental illness most notably characterized by psychotic symptoms. In humans, psychotic disorders are associated with specific hippocampal pathology. However, animal model systems for psychosis often lack this pathology, and have been weak in providing a representation of psychosis. We utilized a double-risk model system combining genetic risk with environmental stress. We hypothesized these factors will induce hippocampal subfield pathology consistent with human findings, as well as behavioral phenotypes relevant to psychosis. To address this, we exposed wild-type and transgenic Disc1 dominant negative (Disc1-deficient) mice to maternal deprivation. In adulthood, hippocampal subfields were examined for signs of cellular and behavioral pathology associated with psychosis. Mice exposed to maternal deprivation showed a decrease in dentate gyrus activity, and an increase in CA3/CA1 activity. Furthermore, results demonstrated a differential behavioral effect between maternal deprivation and Disc1 deficiency, with maternal deprivation associated with a hyperactive phenotype and impaired prepulse inhibition, and Disc1 deficiency causing an impairment in fear conditioning. These results suggest distinct consequences of environmental and genetic risk factors contributing to psychosis, with maternal deprivation inducing a state more wholly consistent with schizophrenia psychosis. Further research is needed to determine if this pathology is causally related to a specific behavioral phenotype. The development of a strong inference animal model system for psychosis would satisfy a high medical need in schizophrenia research.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX, 75390-9127, United States.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX, 75390-9127, United States
| |
Collapse
|
34
|
Skirzewski M, Karavanova I, Shamir A, Erben L, Garcia-Olivares J, Shin JH, Vullhorst D, Alvarez VA, Amara SG, Buonanno A. ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors. Mol Psychiatry 2018; 23:2227-2237. [PMID: 28727685 PMCID: PMC5775946 DOI: 10.1038/mp.2017.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Genetic variants of Neuregulin 1 (NRG1) and its neuronal tyrosine kinase receptor ErbB4 are associated with risk for schizophrenia, a neurodevelopmental disorder characterized by excitatory/inhibitory imbalance and dopamine (DA) dysfunction. To date, most ErbB4 studies have focused on GABAergic interneurons in the hippocampus and neocortex, particularly fast-spiking parvalbumin-positive (PV+) basket cells. However, NRG has also been shown to modulate DA levels, suggesting a role for ErbB4 signaling in dopaminergic neuron function. Here we report that ErbB4 in midbrain DAergic axonal projections regulates extracellular DA levels and relevant behaviors. Mice lacking ErbB4 in tyrosine hydroxylase-positive (TH+) neurons, but not in PV+ GABAergic interneurons, exhibit different regional imbalances of basal DA levels and fail to increase DA in response to local NRG1 infusion into the dorsal hippocampus, medial prefrontal cortex and dorsal striatum measured by reverse microdialysis. Using Lund Human Mesencephalic (LUHMES) cells, we show that NRG/ErbB signaling increases extracellular DA levels, at least in part, by reducing DA transporter (DAT)-dependent uptake. Interestingly, TH-Cre;ErbB4f/f mice manifest deficits in learning, spatial and working memory-related behaviors, but not in numerous other behaviors altered in PV-Cre;ErbB4f/f mice. Importantly, microinjection of a Cre-inducible ErbB4 virus (AAV-ErbB4.DIO) into the mesencephalon of TH-Cre;ErbB4f/f mice, which selectively restores ErbB4 expression in DAergic neurons, rescues DA dysfunction and ameliorates behavioral deficits. Our results indicate that direct NRG/ErbB4 signaling in DAergic axonal projections modulates DA homeostasis, and that NRG/ErbB4 signaling in both GABAergic interneurons and DA neurons contribute to the modulation of behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- M Skirzewski
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - I Karavanova
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - A Shamir
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - L Erben
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA ,0000 0001 2240 3300grid.10388.32Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - J Garcia-Olivares
- 0000 0001 2297 5165grid.94365.3dLaboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - J H Shin
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - D Vullhorst
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - V A Alvarez
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - S G Amara
- 0000 0001 2297 5165grid.94365.3dLaboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - A Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Nielsen J, Fejgin K, Sotty F, Nielsen V, Mørk A, Christoffersen CT, Yavich L, Lauridsen JB, Clausen D, Larsen PH, Egebjerg J, Werge TM, Kallunki P, Christensen KV, Didriksen M. A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission. Transl Psychiatry 2017; 7:1261. [PMID: 29187755 PMCID: PMC5802512 DOI: 10.1038/s41398-017-0011-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023] Open
Abstract
1q21.1 hemizygous microdeletion is a copy number variant leading to eightfold increased risk of schizophrenia. In order to investigate biological alterations induced by this microdeletion, we generated a novel mouse model (Df(h1q21)/+) and characterized it in a broad test battery focusing on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1 receptor agonist SKF-81297 revealed no differences in induced locomotor activity compared to wild-type mice, but Df(h1q21)/+ mice showed increased sensitivity to the DA D2 receptor agonist quinpirole and the D1/D2 agonist apomorphine. Electrophysiological characterization of DA neuron firing in the ventral tegmental area revealed more spontaneously active DA neurons and increased firing variability in Df(h1q21)/+ mice, and decreased feedback reduction of DA neuron firing in response to amphetamine. In a range of other assays, Df(h1q21)/+ mice showed no difference from wild-type mice: gross brain morphology and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced head-to tail length, which is reminiscent of the short stature reported in humans with 1q21.1 deletion. With aspects of both construct and face validity, the Df(h1q21)/+ model may be used to gain insight into schizophrenia-relevant alterations in dopaminergic transmission.
Collapse
MESH Headings
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Abnormalities, Multiple/physiopathology
- Amphetamine/pharmacology
- Animals
- Apomorphine/pharmacology
- Behavior, Animal/drug effects
- Benzazepines/pharmacology
- Chromosome Deletion
- Chromosomes, Human, Pair 1/metabolism
- Disease Models, Animal
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/administration & dosage
- Dopamine Uptake Inhibitors/pharmacology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Excitatory Amino Acid Antagonists/administration & dosage
- Excitatory Amino Acid Antagonists/pharmacology
- Megalencephaly/metabolism
- Megalencephaly/pathology
- Megalencephaly/physiopathology
- Mice
- Mice, Inbred C57BL
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Phencyclidine/pharmacology
- Phenotype
- Prepulse Inhibition/drug effects
- Quinpirole/pharmacology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Schizophrenia/metabolism
- Schizophrenia/pathology
- Schizophrenia/physiopathology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark.
| | - Kim Fejgin
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Florence Sotty
- Division of Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - Vibeke Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Arne Mørk
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | | | - Leonid Yavich
- Invilog Research Ltd and School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jes B Lauridsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Dorte Clausen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Peter H Larsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Jan Egebjerg
- Division of Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Services of Copenhagen, University of Copenhagen & The Lundbeck Foundation's IPSYCH Initiative, Copenhagen, Denmark
| | - Pekka Kallunki
- Division of Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | | | | |
Collapse
|
36
|
Buhusi M, Brown CK, Buhusi CV. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress. Front Behav Neurosci 2017; 11:177. [PMID: 29066960 PMCID: PMC5641315 DOI: 10.3389/fnbeh.2017.00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI), a measure of selective attention and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons) in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Colten K Brown
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
37
|
Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, Saksida LM, Bussey TJ, Robbins TW. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl) 2017; 234:2837-2857. [PMID: 28744563 PMCID: PMC5591806 DOI: 10.1007/s00213-017-4679-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/18/2017] [Indexed: 12/02/2022]
Abstract
RATIONALE Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 μg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.
Collapse
Affiliation(s)
- Adam C Mar
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA.
- Department of Psychology, University of Cambridge, Cambridge, UK.
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Simon R O Nilsson
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Begoña Gamallo-Lana
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Ming Lei
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Health Industry Management, Beijing International Studies University, 1 Dingfuzhuang Nanli, Beijing, China
| | - Theda Dourado
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, Uppsala, Sweden
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Buhusi M, Obray D, Guercio B, Bartlett MJ, Buhusi CV. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia. Behav Brain Res 2017. [PMID: 28647594 DOI: 10.1016/j.bbr.2017.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States.
| | - Daniel Obray
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Bret Guercio
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Mitchell J Bartlett
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| |
Collapse
|
39
|
Schoenrock SA, Tarantino LM. Developmental vitamin D deficiency and schizophrenia: the role of animal models. GENES BRAIN AND BEHAVIOR 2016; 15:45-61. [PMID: 26560996 DOI: 10.1111/gbb.12271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a debilitating neuropsychiatric disorder that affects 1% of the US population. Based on twin and genome-wide association studies, it is clear that both genetics and environmental factors increase the risk for developing schizophrenia. Moreover, there is evidence that conditions in utero, either alone or in concert with genetic factors, may alter neurodevelopment and lead to an increased risk for schizophrenia. There has been progress in identifying genetic loci and environmental exposures that increase risk, but there are still considerable gaps in our knowledge. Furthermore, very little is known about the specific neurodevelopmental mechanisms upon which genetics and the environment act to increase disposition to developing schizophrenia in adulthood. Vitamin D deficiency during the perinatal period has been hypothesized to increase risk for schizophrenia in humans. The developmental vitamin D (DVD) deficiency hypothesis of schizophrenia arises from the observation that disease risk is increased in individuals who are born in winter or spring, live further from the equator or live in urban vs. rural settings. These environments result in less exposure to sunlight, thereby reducing the initial steps in the production of vitamin D. Rodent models have been developed to characterize the behavioral and developmental effects of DVD deficiency. This review focuses on these animal models and discusses the current knowledge of the role of DVD deficiency in altering behavior and neurobiology relevant to schizophrenia.
Collapse
Affiliation(s)
- S A Schoenrock
- Department of Psychiatry, School of Medicine, Chapel Hill, NC, USA.,Neurobiology Curriculum, Chapel Hill, NC, USA
| | - L M Tarantino
- Department of Psychiatry, School of Medicine, Chapel Hill, NC, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Namba H, Okubo T, Nawa H. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling. Sci Rep 2016; 6:22606. [PMID: 26935991 PMCID: PMC4776181 DOI: 10.1038/srep22606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| | - Takeshi Okubo
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| |
Collapse
|
41
|
MAM (E17) rodent developmental model of neuropsychiatric disease: disruptions in learning and dysregulation of nucleus accumbens dopamine release, but spared executive function. Psychopharmacology (Berl) 2015; 232:4113-27. [PMID: 25963563 DOI: 10.1007/s00213-015-3955-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/27/2015] [Indexed: 01/12/2023]
Abstract
RATIONALE Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. OBJECTIVE We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. METHODS MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. RESULTS MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. CONCLUSIONS The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.
Collapse
|
42
|
Barnes SA, Pinto-Duarte A, Kappe A, Zembrzycki A, Metzler A, Mukamel EA, Lucero J, Wang X, Sejnowski TJ, Markou A, Behrens MM. Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders. Mol Psychiatry 2015; 20:1161-72. [PMID: 26260494 PMCID: PMC4583365 DOI: 10.1038/mp.2015.113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
Alterations in glutamatergic transmission onto developing GABAergic systems, in particular onto parvalbumin-positive (Pv(+)) fast-spiking interneurons, have been proposed as underlying causes of several neurodevelopmental disorders, including schizophrenia and autism. Excitatory glutamatergic transmission, through ionotropic and metabotropic glutamate receptors, is necessary for the correct postnatal development of the Pv(+) GABAergic network. We generated mutant mice in which the metabotropic glutamate receptor 5 (mGluR5) was specifically ablated from Pv(+) interneurons postnatally, and investigated the consequences of such a manipulation at the cellular, network and systems levels. Deletion of mGluR5 from Pv(+) interneurons resulted in reduced numbers of Pv(+) neurons and decreased inhibitory currents, as well as alterations in event-related potentials and brain oscillatory activity. These cellular and sensory changes translated into domain-specific memory deficits and increased compulsive-like behaviors, abnormal sensorimotor gating and altered responsiveness to stimulant agents. Our findings suggest a fundamental role for mGluR5 in the development of Pv(+) neurons and show that alterations in this system can produce broad-spectrum alterations in brain network activity and behavior that are relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- SA Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - A Pinto-Duarte
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Kappe
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Zembrzycki
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Metzler
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - EA Mukamel
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Lucero
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - X Wang
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - TJ Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - A Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - MM Behrens
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
43
|
Foote M, Qiao H, Graham K, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol Psychiatry 2015; 78:386-95. [PMID: 25863357 PMCID: PMC4544659 DOI: 10.1016/j.biopsych.2015.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. METHODS We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. RESULTS We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin. CONCLUSIONS Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits.
Collapse
Affiliation(s)
- Molly Foote
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Haifa Qiao
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Kourtney Graham
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida..
| |
Collapse
|
44
|
Abstract
Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.
Collapse
|
45
|
Lazcano Z, Solis O, Díaz A, Brambila E, Aguilar-Alonso P, Guevara J, Flores G. Dendritic morphology changes in neurons from the ventral hippocampus, amygdala and nucleus accumbens in rats with neonatal lesions into the prefrontal cortex. Synapse 2015; 69:314-25. [DOI: 10.1002/syn.21815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Zayda Lazcano
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología, Universidad Autónoma de Puebla; Puebla México
| | - Oscar Solis
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología, Universidad Autónoma de Puebla; Puebla México
| | - Alfonso Díaz
- Facultad de Ciencias Químicas; Universidad Autónoma de Puebla; Puebla México
| | - Eduardo Brambila
- Facultad de Ciencias Químicas; Universidad Autónoma de Puebla; Puebla México
| | | | - Jorge Guevara
- Department de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México. D.F.; México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología, Universidad Autónoma de Puebla; Puebla México
| |
Collapse
|
46
|
Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J Neurosci 2015; 34:14948-60. [PMID: 25378161 DOI: 10.1523/jneurosci.2204-14.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperactivity within the ventral hippocampus (vHPC) has been linked to both psychosis in humans and behavioral deficits in animal models of schizophrenia. A local decrease in GABA-mediated inhibition, particularly involving parvalbumin (PV)-expressing GABA neurons, has been proposed as a key mechanism underlying this hyperactive state. However, direct evidence is lacking for a causal role of vHPC GABA neurons in behaviors associated with schizophrenia. Here, we probed the behavioral function of two different but overlapping populations of vHPC GABA neurons that express either PV or GAD65 by selectively inhibiting these neurons with the pharmacogenetic neuromodulator hM4D. We show that acute inhibition of vHPC GABA neurons in adult mice results in behavioral changes relevant to schizophrenia. Inhibiting either PV or GAD65 neurons produced distinct behavioral deficits. Inhibition of PV neurons, affecting ∼80% of the PV neuron population, robustly impaired prepulse inhibition of the acoustic startle reflex (PPI), startle reactivity, and spontaneous alternation, but did not affect locomotor activity. In contrast, inhibiting a heterogeneous population of GAD65 neurons, affecting ∼40% of PV neurons and 65% of cholecystokinin neurons, increased spontaneous and amphetamine-induced locomotor activity and reduced spontaneous alternation, but did not alter PPI. Inhibition of PV or GAD65 neurons also produced distinct changes in network oscillatory activity in the vHPC in vivo. Together, these findings establish a causal role for vHPC GABA neurons in controlling behaviors relevant to schizophrenia and suggest a functional dissociation between the GABAergic mechanisms involved in hippocampal modulation of sensorimotor processes.
Collapse
|
47
|
Chen Z, Deng W, Gong Q, Huang C, Jiang L, Li M, He Z, Wang Q, Ma X, Wang Y, Chua SE, McAlonan GM, Sham PC, Collier DA, McGuire P, Li T. Extensive brain structural network abnormality in first-episode treatment-naive patients with schizophrenia: morphometrical and covariation study. Psychol Med 2014; 44:2489-2501. [PMID: 24443827 DOI: 10.1017/s003329171300319x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alterations in gray matter (GM) are commonly observed in schizophrenia. Accumulating studies suggest that the brain changes associated with schizophrenia are distributed rather than focal, involving interconnected networks of areas as opposed to single regions. In the current study we aimed to explore GM volume (GMV) changes in a relatively large sample of treatment-naive first-episode schizophrenia (FES) patients using optimized voxel-based morphometry (VBM) and covariation analysis. METHOD High-resolution T1-weighted images were obtained using 3.0-T magnetic resonance imaging (MRI) from 86 first-episode drug-naive patients with schizophrenia and 86 age- and gender-matched healthy volunteers. Symptom severity was evaluated using the Positive and Negative Syndrome Scale (PANSS). GMV was assessed using optimized VBM and in 16 regions of interest (ROIs), selected on the basis of a previous meta-analysis. The relationships between GMVs in the ROIs were examined using an analysis of covariance (ANCOVA). RESULTS The VBM analysis revealed that first-episode patients showed reduced GMV in the hippocampus bilaterally. The ROI analysis identified reductions in GMV in the left inferior frontal gyrus, bilateral hippocampus and right thalamus. The ANCOVA revealed different patterns of regional GMV correlations in patients and controls, including of inter- and intra-insula, inter-amygdala and insula-postcentral gyrus connections. CONCLUSIONS Schizophrenia involves regional reductions in GMV and changes in GMV covariance in the insula, amygdala and postcentral gyrus. These findings were evident at the onset of the disorder, before treatment, and therefore cannot be attributable to the effects of chronic illness progression or medication.
Collapse
Affiliation(s)
- Z Chen
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - W Deng
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Q Gong
- Huaxi MR Research Center, Department of Radiology,West China Hospital, Sichuan University,Chengdu,China
| | - C Huang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - L Jiang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - M Li
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Z He
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Q Wang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - X Ma
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - Y Wang
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| | - S E Chua
- Department of Psychiatry,The University of Hong Kong,Pokfulam,S.A.R. China
| | - G M McAlonan
- Department of Psychiatry,The University of Hong Kong,Pokfulam,S.A.R. China
| | - P C Sham
- Department of Psychiatry,The University of Hong Kong,Pokfulam,S.A.R. China
| | - D A Collier
- MRC SGDP Centre, Institute of Psychiatry,King's College London,UK
| | - P McGuire
- Division of Psychological Medicine and Psychiatry, Section of Neuroimaging,Institute of Psychiatry, King's College London,UK
| | - T Li
- The Mental Health Center and Psychiatric Laboratory, West China Hospital,Sichuan University,Chengdu, Sichuan,China
| |
Collapse
|
48
|
Goldman MB. Brain circuit dysfunction in a distinct subset of chronic psychotic patients. Schizophr Res 2014; 157:204-13. [PMID: 24994556 PMCID: PMC6195810 DOI: 10.1016/j.schres.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To identify the mechanism of unexplained hyponatremia and primary polydipsia in schizophrenia and its relationship to the underlying psychiatric illness. METHODS Briefly review previous studies that led to the conclusion the hyponatremia reflects altered hippocampal inhibition of peripheral neuroendocrine secretion. In greater detail, present the evidence supporting the hypothesis that circuit dysfunction associated with the hyponatremia and the polydipsia contributes to the underlying mental disorder. RESULTS Polydipsic patients with and without hyponatremia exhibit enhanced neuroendocrine responses to psychological stress in proportion to structural deformations on their anterior hippocampus, amygdala and anterior hypothalamus. Nonpolydipsic patients exhibit blunted responses and deformations on other hippocampal and amygdala surfaces. The deformations in polydipsic patients are also proportional to diminished peripheral oxytocin levels and impaired facial affect recognition that is reversed by intranasal oxytocin. The anterior hippocampus is at the hub of a circuit that modulates neuroendocrine and other responses to psychological stress and is implicated in schizophrenia. Preliminary data indicate that other measures of stress reactivity are also enhanced in polydipsics and that the functional connectivity of the hippocampus with the other structures in this circuitry differs in schizophrenia patients with and without polydipsia. CONCLUSION Polydipsia may identify a subset of schizophrenia patients whose enhanced stress reactivity contributes to their mental illness. Stress reactivity may be a symptom dimension of chronic psychosis that arises from circuit dysfunction that can be modeled in animals. Hence polydipsia could be a biomarker that helps to clarify the pathophysiology and heterogeneity of psychosis as well as identify novel therapies. Clinical investigators should consider obtaining indices of water balance, as these may help them unravel and more concisely interpret their findings. Basic researchers should assess if the polydipsic subset is a patient group particularly suitable to test hypotheses arising from their translational studies.
Collapse
Affiliation(s)
- Morris B. Goldman
- Northwestern University, Department of Psychiatry, 446 East Ontario, Suite 7-100, Chicago, Illinois 60611, USA, phone:1 312 695 2089, fax: 1 708 383 6344
| |
Collapse
|
49
|
Persson A, Sim SC, Virding S, Onishchenko N, Schulte G, Ingelman-Sundberg M. Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene. Mol Psychiatry 2014; 19:733-41. [PMID: 23877834 PMCID: PMC4031638 DOI: 10.1038/mp.2013.89] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/03/2013] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Abstract
Selective serotonin reuptake inhibitors, tricyclic antidepressants, various psychoactive drugs, as well as endogenous steroids and cannabinoid-like compounds are metabolized by the polymorphic cytochrome P450 2C19 (CYP2C19). Absence of this enzyme has been recently shown to associate with lower levels of depressive symptoms in human subjects. To investigate endogenous functions of CYP2C19 and its potential role in brain function, we have used a transgenic mouse model carrying the human CYP2C19 gene. Here, CYP2C19 was expressed in the developing fetal, but not adult brain and was associated with altered fetal brain morphology, where mice homozygous for the CYP2C19 transgenic insert had severely underdeveloped hippocampus and complete callosal agenesis and high neonatal lethality. CYP2C19 expression was also found in human fetal brain. In adult hemizygous mice we observed besides decreased hippocampal volume, an altered neuronal composition in the hippocampal dentate gyrus. Reduced hippocampal volumes have been reported in several psychiatric disorders, supporting the relevance of this model. Here we found that adult hemizygous CYP2C19 transgenic mice demonstrate behavior indicative of increased stress and anxiety based on four different tests. We hypothesize that expression of the CYP2C19 enzyme prenatally may affect brain development by metabolizing endogenous compounds influencing this development. Furthermore, CYP2C19 polymorphism may have a role in interindividual susceptibility for psychiatric disorders.
Collapse
Affiliation(s)
- A Persson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S C Sim
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S Virding
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - N Onishchenko
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - G Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Neurodegenerative Aspects in Vulnerability to Schizophrenia Spectrum Disorders. Neurotox Res 2014; 26:400-13. [DOI: 10.1007/s12640-014-9473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/20/2023]
|