1
|
D'Amato A, Iacopetta D, Ceramella J, Troiano R, Mariconda A, Catalano A, Marra M, Saturnino C, Rosano C, Sinicropi MS, Longo P. Design, synthesis and biological evaluation of multitarget hybrid molecules containing NHC-Au(I) complexes and carbazole moieties. Eur J Med Chem 2024; 277:116757. [PMID: 39142149 DOI: 10.1016/j.ejmech.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
N-heterocyclic carbenes (NHCs) represent suitable ligands for rapid and efficient drug design, because they offer the advantage of being easily chemically modified and can bind several substituents, including transition metals as, for instance, gold derivatives. Gold-NHC complexes possess various biological activities and were demonstrated good candidates as anticancer drugs. Besides, carbazole derivatives are characterized by various pharmacological properties, such as anticancer, antibacterial, anti-inflammatory, and anti-psychotropic. Amongst the latter, N-thioalkyl carbazoles were proved to inhibit cancer cells damaging the nuclear DNA, through the inhibition of human topoisomerases. Herein, we report the design, synthesis and biological evaluation of nine new hybrid molecules in which NHC-Au(I) complexes and N-alkylthiolated carbazoles are linked together, in order to obtain novel biological multitarget agents. We demonstrated that the lead hybrid complexes possess anticancer, anti-inflammatory and antioxidant properties, with a high potential as useful tools for treating distinct aspects of several diseases, amongst them cancer.
Collapse
Affiliation(s)
- A D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - D Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - J Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - R Troiano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - A Mariconda
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - A Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy.
| | - M Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - C Saturnino
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, I-85100, Potenza, Italy
| | - C Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - M S Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - P Longo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| |
Collapse
|
2
|
Jung KM, Yu GR, Kim DH, Lim DW, Park WH. Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:1271. [PMID: 39456523 PMCID: PMC11504248 DOI: 10.3390/antiox13101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Massa Medicata Fermentata (MMF) is a naturally fermented product used to treat indigestion and increase stomach activity in traditional medicine. This study examined the ability of the hydrothermal extract of MMF to scavenge free radicals corresponding to biological oxidative stresses, further protecting essential biomolecules. The anti-inflammatory effects of MMF were evaluated in LPS-induced RAW264.7 macrophages and zebrafish. In addition, the effects of MMF on the body mass index (BMI) and cholesterol accumulation in adult zebrafish fed a high-cholesterol diet (HCD) for three weeks were examined. MMF prevented the DNA and lipid damage caused by oxidative stress, inhibited LDL oxidation, and reduced the expression of cytokines and related proteins (MAPK and NFκB), with prominent anti-oxidative pathway (NRF2-HO-1) activation properties. LPS-induced NO production was reduced, and the increase in BMI and TC caused by the HCD diet was suppressed by MMF in zebrafish embryos or adult zebrafish. The bioactive aglycone of quercetin may be contributing to the mechanisms of systemic effects. MMF has excellent antioxidant properties and is useful for improving inflammation status and metabolic profile, thus highlighting its potential as a healthy, functional food.
Collapse
Affiliation(s)
- Kyung-Mi Jung
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Ga-Ram Yu
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Da-Hoon Kim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| |
Collapse
|
3
|
Zinellu A, Tommasi S, Carru C, Sotgia S, Mangoni AA. A systematic review and meta-analysis of nitric oxide-associated arginine metabolites in schizophrenia. Transl Psychiatry 2024; 14:439. [PMID: 39414767 PMCID: PMC11484908 DOI: 10.1038/s41398-024-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
There is increasing interest in the pathophysiological role of arginine metabolism in schizophrenia, particularly in relation to the modulation of the endogenous messenger nitric oxide (NO). The assessment of specific arginine metabolites that, unlike NO, are stable can provide useful insights into NO regulatory enzymes such as isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) and arginase. We investigated the role of arginine metabolomics in schizophrenia by conducting a systematic review and meta-analysis of the circulating concentrations of arginine metabolites associated with DDAH1, arginase, and NO synthesis [arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), dimethylamine, and ornithine] in this patient group. We searched PubMed, Scopus, and Web of Science from inception to the 31st of May 2023 for studies investigating arginine metabolites in patients with schizophrenia and healthy controls. The JBI Critical Appraisal Checklist for analytical studies and GRADE were used to assess the risk of bias and the certainty of evidence, respectively (PROSPERO registration number: CRD42023433000). Twenty-one studies were identified for analysis. There were no significant between-group differences in arginine, citrulline, and SDMA. By contrast, patients with schizophrenia had significantly higher ADMA (DDAH1 substrate, standard mean difference, SMD = 1.23, 95% CI 0.86-1.61, p < 0.001; moderate certainty of evidence), dimethylamine (DDAH1 product, SMD = 0.47, 95% CI 0.24-0.70, p < 0.001; very low certainty of evidence), and ornithine concentrations (arginase product, SMD = 0.32, 95% CI 0.16-0.49, p < 0.001; low certainty of evidence). In subgroup analysis, the pooled SMD for ornithine was significantly different in studies of untreated, but not treated, patients. Our study suggests that DDAH1 and arginase are dysregulated in schizophrenia. Further studies are warranted to investigate the expression/activity of these enzymes in the brain of patients with schizophrenia and the effects of targeted treatments.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia.
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, El-Shetry ES, Albaqami A, Mawkili W, Alosaimi ME, Alotaibi BS, ElAshmouny N, Dahran N, Alsharif G, Samak MA. Alleviative effects of green-fabricated zinc oxide nanoparticles on acrylamide-induced oxidative and inflammatory reactions in the rat stomach via modulating gastric neuroactive substances and the MiR-27a-5p/ROS/NF-κB axis. Tissue Cell 2024; 91:102574. [PMID: 39353228 DOI: 10.1016/j.tice.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Little is known about the effects of acrylamide (AMD) on the stomach. So, this study evaluated the effect of oral AMD exposure (20 mg/kg b.wt) on oxidative status, apoptotic, and inflammatory reactions in rat's stomach for 60 days. To explore novel targets of AMD toxicity, a more detailed molecular and immune-expression study was performed. Besides, the possible protective effect of green synthesized zinc oxide nanoparticles (G-ZNP) (10 mg/kg b.wt) was explored. The results revealed that AMD significantly provoked oxidative and lipid peroxidative damage of the stomach in terms of increased ROS and MDA but reduced SOD, CAT, GSH, and GSH/GSSG. Additionally, the stomachs of AMD-exposed rats showed a significant increment of PGE2 but reduced NO. Histopathologically, AMD induced a significant increase in PAS stain and the immunoexpression of iNOS and NF-κB in the glandular stomach. A significant upregulation of CART, VACHT, EGFR, caspase-3, NOS-1, and miR-27a-5p was evident in the stomach of the AMD group. Yet, G-ZNP oral dosing significantly rescued the AMD-induced oxidative damage, apoptotic reaction, inflammatory effect, and altered miR-27a-5p and gene expressions in the stomach. Conclusively, these findings demonstrated the efficacy of G-ZNP in protecting against the harmful impacts of acrylamide on stomach tissues.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman S El-Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Naira ElAshmouny
- Department of Histology and cell biology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O.Box 9515, Jeddah 21423, Saudi Arabia; Department of Biomedical Research, King Abdullah International Medical Research Center, P.O.Box 9515, Jeddah 21423, Saudi Arabia
| | - Mai A Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; College of medicine, University of Ha'il, Ha'il 2240, Saudi Arabia
| |
Collapse
|
5
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
6
|
Singh SB, Braun CA, Carroll-Portillo A, Coffman CN, Lin HC. Sulfate-Reducing Bacteria Induce Pro-Inflammatory TNF-α and iNOS via PI3K/Akt Pathway in a TLR 2-Dependent Manner. Microorganisms 2024; 12:1833. [PMID: 39338507 PMCID: PMC11434237 DOI: 10.3390/microorganisms12091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Desulfovibrio, resident gut sulfate-reducing bacteria (SRB), are found to overgrow in diseases such as inflammatory bowel disease and Parkinson's disease. They activate a pro-inflammatory response, suggesting that Desulfovibrio may play a causal role in inflammation. Class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway regulates key events in the inflammatory response to infection. Dysfunctional PI3K/Akt signaling is linked to numerous diseases. Bacterial-induced PI3K/Akt pathway may be activated downstream of toll-like receptor (TLR) signaling. Here, we tested the hypothesis that Desulfovibrio vulgaris (DSV) may induce tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) expression via PI3K/Akt in a TLR 2-dependent manner. RAW 264.7 macrophages were infected with DSV, and protein expression of p-Akt, p-p70S6K, p-NF-κB, p-IkB, TNF-α, and iNOS was measured. We found that DSV induced these proteins in a time-dependent manner. Heat-killed and live DSV, but not bacterial culture supernatant or a probiotic Lactobacillus plantarum, significantly caused PI3K/AKT/TNF/iNOS activation. LY294002, a PI3K/Akt signaling inhibitor, and TL2-C29, a TLR 2 antagonist, inhibited DSV-induced PI3K/AKT pathway. Thus, DSV induces pro-inflammatory TNF-α and iNOS via PI3K/Akt pathway in a TLR 2-dependent manner. Taken together, our study identifies a novel mechanism by which SRB such as Desulfovibrio may trigger inflammation in diseases associated with SRB overgrowth.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, 1501 San Pedro Dr. SE, Albuquerque, NM 87108, USA
| | - Cody A Braun
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, 1501 San Pedro Dr. SE, Albuquerque, NM 87108, USA
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Cristina N Coffman
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, 1501 San Pedro Dr. SE, Albuquerque, NM 87108, USA
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico Veterans Affairs (VA) Health Care System, 1501 San Pedro Dr. SE, Albuquerque, NM 87108, USA
| |
Collapse
|
7
|
Lim SJ, Gan SC, Ong HT, Ngeow YF. In vitro analysis of VEGF-mediated endothelial permeability and the potential therapeutic role of Anti-VEGF in severe dengue. Biochem Biophys Rep 2024; 39:101814. [PMID: 39263317 PMCID: PMC11387214 DOI: 10.1016/j.bbrep.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is one of the proteins involved in dengue immunopathogenesis. It is overexpressed in severe dengue and contributes to vascular permeability and plasma leakage. In this study, we investigated the effects of VEGF and anti-VEGF treatments on endothelial cells in vitro, to assess the potential use of anti-VEGF antibodies in managing severe dengue. Methods Human pulmonary microvascular endothelial cells were treated with VEGF and a VEGF/anti-VEGF combination. The effects of the treatments were studied using an endothelial permeability assay and microarray gene expression profiling. In the permeability assay, the fluorescein isothiocyanate (FITC)-dextran fluorescence signal across the endothelial monolayer was recorded, and the cells were stained with PECAM-1 to detect gap formation. RNA was extracted from treated cells for microarray gene profiling and analysis. The results were analyzed for differentially expressed genes (DEGs) and gene enrichment analysis. The DEGs were subjected to STRING to construct the protein-protein interaction network and then Cytoscape to identify the hub genes. Results VEGF-treated endothelial cells showed greater movement of FITC-dextran across the monolayer than VEGF/anti-VEGF-treated cells. There were 111 DEGs for VEGF-treated cells and 118 DEGs for VEGF/anti-VEGF-treated cells. The genes upregulated in VEGF-treated cells were enriched in inflammatory responses and regulation of the endothelial barrier, nitric oxide synthesis, angiogenesis, and the nucleotide-binding oligomerization domain-like receptor signaling pathway. Top 10 hub genes were identified from the DEGs. Conclusions VEGF treatment increased permeability across endothelial cells, while anti-VEGF reduced this leakage. Analysis of VEGF-treated endothelial cells identified hub genes implicated in severe dengue. The top 10 hub genes were TNF, IL1B, IL6, CCL2, PTGS2, ICAM1, CXCL2, CXCL1, CSF2, and TLR2. The results of this study show that using anti-VEGF antibodies to neutralize VEGF may be a promising therapy to prevent the progression of dengue to severe dengue.
Collapse
Affiliation(s)
- Sheng Jye Lim
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| | - Seng Chiew Gan
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| | - Hooi Tin Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
- Center for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
- Centre for Research on Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
8
|
Jouyban K, Mohammad Jafari R, Charkhpour M, Rezaei H, Seyfinejad B, Manavi MA, Tavangar SM, Dehpour AR. Spermidine Exerts Protective Effects in Random-Pattern Skin Flap Survival in Rats: Possible Involvement of Inflammatory Cytokines, Nitric Oxide, and VEGF. Aesthetic Plast Surg 2024; 48:3500-3509. [PMID: 38755497 DOI: 10.1007/s00266-024-04119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Distal necrosis and inflammation are two of the most common health consequences of random-pattern skin flaps survival (SFS). Anti-inflammatory effects of spermidine have been identified in various studies. On the other hand, considering the involvement of the nitric oxide molecule in the spermidine mode of action and also its role in skin tissue function, we analyzed the possible effects of spermidine on the SFS and also, potential involvement of nitrergic pathway and inflammatory cytokine in these phenomena. METHODS Each rat was pretreated with either a vehicle (control) or various doses of spermidine (0.5, 1, 3, 5, 10 and 30 mg/kg) and then was executed a random-pattern skin flap paradigm. Also, spermidine at the dose of 5 mg/kg was selected and one group rats received spermidine 20 min prior to surgery and one additional dose 1 day after operation. Then, 7 days after operations, interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon-gamma (IFN-γ), and nitrite levels were inquired in the tissue samples by ELIZA kit. Vascular endothelial growth factor expression was assessed by DAPI staining and fluorescent microscopes. The concentrations of three polyamines, including spermidine, spermine, and cadaverine, were analyzed using HPLC. RESULTS Pretreatment with spermidine 5 mg/kg improved SFS considerably in microscopic skin H&E staining analysis and decreased the percentage of necrotic area. Moreover, spermidine exerted promising anti-inflammatory effects via the modulation of nitric oxide and reducing inflammatory cytokines. CONCLUSIONS Spermidine could improve skin flaps survival, probably through the nitrergic system and inflammation pathways. This preclinical study provides level III evidence for the potential therapeutic effects of spermidine on SFS in rats, based on the analysis of animal models. Further studies are needed to confirm these findings in clinical settings. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Kimiya Jouyban
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Charkhpour
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadis Rezaei
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Dimopoulou C, Guerra PR, Mortensen MS, Kristensen KA, Pedersen M, Bahl MI, Sommer MAO, Licht TR, Laursen MF. Potential of using an engineered indole lactic acid producing Escherichia coli Nissle 1917 in a murine model of colitis. Sci Rep 2024; 14:17542. [PMID: 39080343 PMCID: PMC11289411 DOI: 10.1038/s41598-024-68412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The gut microbiome is a significant factor in the pathophysiology of ulcerative colitis (UC), prompting investigations into the use of probiotic therapies to counter gastrointestinal inflammation. However, while much attention has been given to the therapeutic potential of microbes at the species and strain level, the discovery and application of their metabolic products may offer more precise and controlled solutions in battling disease. In this work, we examined the therapeutic potential of indole lactic acid (ILA) to alleviate inflammation in a murine model of colitis. A previously constructed ILA-producing Escherichia coli Nissle 1917 strain (EcN aldh) and its isogenic non-ILA producing counterpart (EcN) were studied in a murine model of Dextran Sodium Sulfate (DSS) induced colitis. The colitic animals suffered from severe colitic symptoms, with no differentiation between the groups in body weight loss and disease activity index. However, three days after cessation of DSS treatment the EcN aldh-treated mice showed signs of reduced intestinal inflammation, as manifested by lower concentrations of fecal lipocalin-2. Additionally, expression analysis of the inflamed tissue revealed distinct effects of the EcN aldh strain on proteins associated with intestinal health, such as TFF3, occludin and IL-1β expression. These results show no impact of EcN or EcN aldh on acute DSS-induced colitis, but suggest that in particular EcN aldh may assist recovery from intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
10
|
Shariati S, Khodayar MJ, Azadnasab R, Nooshabadi MR, Nikravesh M, Khorsandi L, Shirani K, Shirani M. Epicatechin as a promising agent against arsenic-induced neurobehavioral toxicity in NMRI mice: behavioral and biochemical alterations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03274-6. [PMID: 38985313 DOI: 10.1007/s00210-024-03274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Epicatechin (Epi) is one of the most abundant flavonoids present in different fruits and tea leaves. Emerging research illuminates the promising potential of catechins to serve as a shield against the damaging effects of arsenic (As) exposure in diverse organs.This study sought to discern whether Epi exhibits a therapeutic efficacy against arsenic-induced neurotoxicity in a murine model.The Naval Medical Research Institute (NMRI) mice were randomly partitioned into six distinct groups, which included a control group receiving normal saline, a group receiving a daily oral dose of arsenic (10 mg/kg) for 5 weeks, groups receiving As (10 mg/kg/day) orally for 5 weeks along with different doses of Epi (25-100 mg/kg) orally for the last 2 weeks, and a group receiving Epi (100 mg/kg) orally for 2 weeks. To assess the potential effects of Epi, neurobehavioral tests, various parameters of oxidative stress, and inflammation were evaluated.The findings of this investigation revealed that As-induced neurobehavioral toxicity was associated with a notable surge in lipid peroxidation and nitric oxide (NO) concentration, accompanied by a reduction in the levels of antioxidant markers. As heightened pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) levels were observed alongside amplified nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. However, treatment with Epi reversed these effects.On the whole, these findings indicate that Epi may hold promise therapeutic efficacy on As-induced neurotoxicity by improving antioxidant status and mitigating oxidative stress and inflammation. Nevertheless, further research is imperative to comprehensively grasp the potential protective effects of Epi in this particular context.
Collapse
Affiliation(s)
- Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehrad Nikravesh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kobra Shirani
- Department of Anatomical Science, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box 141556153, Tehran, Iran.
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Tian M, Xie D, Hong Y, Ding F, Wu X, Tang D. Anti-inflammatory effects and related mechanisms in vitro and in vivo of Hedychium coccineum rhizome essential oil. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118103. [PMID: 38527573 DOI: 10.1016/j.jep.2024.118103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedychium coccineum rhizome is an anti-inflammatory ethnomedicine used to remedy inflammation-related swelling and bronchial asthma. AIM OF THE STUDY The study aimed to analyze the phytochemical constituents of H. coccineum rhizome essential oil (EO) and evaluate its in vitro and in vivo anti-inflammatory effects and underlying mechanisms. MATERIALS AND METHODS Phytochemical constituents of H. coccineum rhizome EO were analyzed using GC-FID/MS. In RAW264.7 macrophages induced by LPS, blockade of PGE2, NO, IL-1β, IL-6, and TNF-α secretion by H. coccineum rhizome EO was measured, and then Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate its underlying mechanisms. Moreover, we used the xylene-induced ear edema model for testing anti-inflammatory potential in vivo and examined auricular swelling as well as tissue and serum contents of IL-1β, IL-6, and TNF-α. RESULTS EO's main components were E-nerolidol (40.5%), borneol acetate (24.8%), spathulenol (4.5%), linalool (3.8%), elemol (3.5%), and borneol (3.4%). In RAW264.7 cells stimulated by LPS, EO downregulated the expression of pro-inflammatory enzyme (iNOS and COX-2) genes and proteins, thereby suppressing pro-inflammatory mediators (NO and PGE2) secretion. Simultaneously, it reduced TNF-α, IL-1β, and IL-6 release by downregulating their mRNA expression. Besides, H. coccineum EO attenuated LPS-stimulated activation of NF-κB (by reducing IκBα phosphorylation and degradation to inhibit NF-κB nuclear translocation) and MAPK (by downregulating JNK, p38, and ERK phosphorylation). In xylene-induced mouse ear edema, EO relieved auricular swelling and lowered serum and tissue levels of TNF-α, IL-1β, and IL-6. CONCLUSIONS H. coccineum EO had powerful in vivo and in vitro anti-inflammatory effects by inhibiting MAPK and NF-κB activation. Hence, H. coccineum EO should have great potential for application in the pharmaceutical field as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Minyi Tian
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China; National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Dan Xie
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Furong Ding
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Xia Wu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China.
| |
Collapse
|
12
|
Wang Z, Zhang J, Gai C, Wang J, Zhuo X, Song Y, Zou Y, Zhang P, Hou G, Meng Q, Zhao Q, Chai X. Discovery of dibenzylbutane lignan LCA derivatives as potent anti-inflammatory agents. RSC Med Chem 2024; 15:2114-2126. [PMID: 38911165 PMCID: PMC11187555 DOI: 10.1039/d4md00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/17/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
Inflammation is the body's response to defence against infection or injury, and is associated with the progression of many diseases, such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). LCA, a dibenzylbutane lignan extracted from the roots of traditional medicinal plant Litsea cubeba (Lour.) Pers., has demonstrated promising anti-inflammatory activity. In this study, a series of novel LCA derivatives were designed, synthesized, and evaluated for anti-inflammatory activity. Lipopolysaccharide (LPS)-induced RAW 264.7 cell model experiments showed that compound 10h (at 20 μM of concentration) had the strongest inhibitory effect on NO release, and inhibited the secretion and gene expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in vitro. In addition, western blot, immunofluorescence, and molecular docking showed that the anti-inflammatory mechanism of compound 10h may be related to the nuclear factor (NF)-κB signalling pathway. In vivo studies based on a carrageenan-induced mouse paw edema model have shown significant anti-inflammatory activity of compound 10h at 20 mg kg-1. Preliminary in vitro and in vivo studies indicate that compound 10h has the potential to be developed as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University Yantai 264005 China
| | - Juan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University Yantai 264005 China
| | - Conghao Gai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Jing Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Xiaobin Zhuo
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Yan Song
- Navy Medical Center, Naval Medical University Shanghai 200433 China
| | - Yan Zou
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Peichao Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University Yantai 264005 China
| | - Qingjie Zhao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| |
Collapse
|
13
|
Frusciante L, Geminiani M, Olmastroni T, Mastroeni P, Trezza A, Salvini L, Lamponi S, Spiga O, Santucci A. Repurposing Castanea sativa Spiny Burr By-Products Extract as a Potentially Effective Anti-Inflammatory Agent for Novel Future Biotechnological Applications. Life (Basel) 2024; 14:763. [PMID: 38929746 PMCID: PMC11205080 DOI: 10.3390/life14060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The concept of a "circular bioeconomy" holds great promise for the health, cosmetic, and nutrition sectors by re-using Castanea sativa (Mill.) by-products. This sustainable resource is rich in bioactive secondary metabolites with antioxidant and anti-inflammatory properties. By transforming these by-products into high-value products for human health, we can promote sustainable economic growth and reduce the environmental impact of traditional waste disposal, adding value to previously underutilized resources. In the present study, we investigated the antioxidant capacity, phytochemical composition, and in vitro antioxidant and anti-inflammatory activity of C. sativa burr (CSB) aqueous extract. The spectrophotometric study revealed high total phenolic content (TPC) values with significant antioxidant and anti-radical properties. Using UPLC-MS/MS techniques, the phytochemical investigation identified 56 metabolites, confirming the presence of phenolic compounds in CSBs. In addition, CSBs significantly downregulated pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophage cells without significant cell toxicity. Lastly, in silico studies pinpointed three kinases from RAW 264.7 cells as binding partners with ellagic acid, the predominant compound found in our extract. These findings strongly advocate for the recycling and valorization of C. sativa by-products, challenging their conventional classification as mere "waste".
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (T.O.); (P.M.); (A.T.); (S.L.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
14
|
Huang Y, Chen Y, Xie H, Feng Y, Chen S, Bao B. Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. BIOLOGY 2024; 13:372. [PMID: 38927252 PMCID: PMC11201229 DOI: 10.3390/biology13060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
The gut microbiota constitutes a complex ecosystem that has an important impact on host health. In this study, genetically engineered zebrafish with inducible nitric oxide synthase (iNOS or NOS2) knockout were used as a model to investigate the effects of nos2a/nos2b gene single knockout and nos2 gene double knockout on intestinal microbiome composition and function. Extensive 16S rRNA sequencing revealed substantial changes in microbial diversity and specific taxonomic abundances, yet it did not affect the functional structure of the intestinal tissues. Notably, iNOS-deficient zebrafish demonstrated a decrease in Vibrio species and an increase in Aeromonas species, with more pronounced effects observed in double knockouts. Further transcriptomic analysis of the gut in double iNOS knockout zebrafish indicated significant alterations in immune-related and metabolic pathways, including the complement and PPAR signaling pathways. These findings underscore the crucial interplay between host genetics and gut microbiota, indicating that iNOS plays a key role in modulating the gut microbial ecology, host immune system, and metabolic responses.
Collapse
Affiliation(s)
- Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Yadong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haisheng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Yidong Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Songlin Chen
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| |
Collapse
|
15
|
Oh JM, Yoon H, Joo JY, Im WT, Chun S. Therapeutic potential of ginseng leaf extract in inhibiting mast cell-mediated allergic inflammation and atopic dermatitis-like skin inflammation in DNCB-treated mice. Front Pharmacol 2024; 15:1403285. [PMID: 38841363 PMCID: PMC11150533 DOI: 10.3389/fphar.2024.1403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines. It also significantly lowered the production of inflammatory response mediators including ROS, leukotriene C4 (LTC4), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). GLE inhibited the phosphorylation of MAPKs (ERK, P38, JNK) and the activation of NF-κB, which are both linked to inflammatory cytokine expression. We demonstrated that GLE's inhibitory effect on mast cell-mediated allergic inflammation is due to the blockade of the NF-κB and inflammasome pathways. Our findings suggest that GLE can be an effective therapeutic agent for mast-cell mediated and allergic inflammatory conditions.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - HyunHo Yoon
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
16
|
Frusciante L, Geminiani M, Trezza A, Olmastroni T, Mastroeni P, Salvini L, Lamponi S, Bernini A, Grasso D, Dreassi E, Spiga O, Santucci A. Phytochemical Composition, Anti-Inflammatory Property, and Anti-Atopic Effect of Chaetomorpha linum Extract. Mar Drugs 2024; 22:226. [PMID: 38786617 PMCID: PMC11123029 DOI: 10.3390/md22050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Utilizing plant-based resources, particularly their by-products, aligns with sustainability principles and circular bioeconomy, contributing to environmental preservation. The therapeutic potential of plant extracts is garnering increasing interest, and this study aimed to demonstrate promising outcomes from an extract obtained from an underutilized plant waste. Chaetomorpha linum, an invasive macroalga found in the Orbetello Lagoon, thrives in eutrophic conditions, forming persistent mats covering approximately 400 hectares since 2005. The biomass of C. linum undergoes mechanical harvesting and is treated as waste, requiring significant human efforts and economic resources-A critical concern for municipalities. Despite posing challenges to local ecosystems, the study identified C. linum as a natural source of bioactive metabolites. Phytochemical characterization revealed lipids, amino acids, and other compounds with potential anti-inflammatory activity in C. linum extract. In vitro assays with LPS-stimulated RAW 264.7 and TNF-α/IFN-γ-stimulated HaCaT cells showed the extract inhibited reactive oxygen species (ROS), nitric oxide (NO), and prostaglandin E2 (PGE2) productions, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions via NF-κB nuclear translocation, in RAW 264.7 cells. It also reduced chemokines (TARC/CCL17, RANTES/CCL5, MCP-1/CCL2, and IL-8) and the cytokine IL-1β production in HaCaT cells, suggesting potential as a therapeutic candidate for chronic diseases like atopic dermatitis. Finally, in silico studies indicated palmitic acid as a significant contributor to the observed effect. This research not only uncovered the untapped potential of C. linum but also laid the foundation for its integration into the circular bioeconomy, promoting sustainable practices, and innovative applications across various industries.
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Andrea Bernini
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Daniela Grasso
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Elena Dreassi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- Advanced Robotics and Enabling Digital TEchnologies & Systems 4.0 (ARTES 4.0), Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (A.T.); (T.O.); (P.M.); (S.L.); (A.B.); (D.G.); (E.D.); (O.S.); (A.S.)
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- Advanced Robotics and Enabling Digital TEchnologies & Systems 4.0 (ARTES 4.0), Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
17
|
Araujo T, Spadella M, Carlos C, Tirapelli C, Chagas E, Pinheiro J, Chies A. Adjuvant-induced arthritis promotes vascular hyporesponsiveness to phenylephrine through a nitric oxide-related mechanism. Braz J Med Biol Res 2024; 57:e13304. [PMID: 38775546 PMCID: PMC11101166 DOI: 10.1590/1414-431x2024e13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.
Collapse
Affiliation(s)
- T.S. Araujo
- Laboratório de Farmacologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| | - M.A. Spadella
- Laboratório de Embriologia Humana, Faculdade de Medicina de
Marília, Marília, SP, Brasil
| | - C.P. Carlos
- Laboratório de Pesquisa Experimental, Faculdade de Medicina
Faceres, São José do Rio Preto, SP, Brasil
- Disciplina de Fisiologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| | - C.R. Tirapelli
- Laboratório de Farmacologia Cardiovascular, Escola de Enfermagem
de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - E.F.B. Chagas
- Centro Interdisciplinar de Diabetes, Universidade de Marília,
Marília, SP, Brasil
- Programa de Mestrado Interdisciplinar em Interações Estruturais
e Funcionais em Reabilitação, Universidade de Marília, Marília, SP, Brasil
- Programa de Mestrado em Saúde e Envelhecimento, Faculdade de
Medicina de Marília, Marília, SP, Brasil
| | - J.C.D. Pinheiro
- Laboratório de Farmacologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| | - A.B. Chies
- Laboratório de Farmacologia, Faculdade de Medicina de Marília,
Marília, SP, Brasil
| |
Collapse
|
18
|
Seoane N, Picos A, Moraña-Fernández S, Schmidt M, Dolga A, Campos-Toimil M, Viña D. Effects of Sodium Nitroprusside on Lipopolysaccharide-Induced Inflammation and Disruption of Blood-Brain Barrier. Cells 2024; 13:843. [PMID: 38786065 PMCID: PMC11119468 DOI: 10.3390/cells13100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
In various neurodegenerative conditions, inflammation plays a significant role in disrupting the blood-brain barrier (BBB), contributing to disease progression. Nitric oxide (NO) emerges as a central regulator of vascular function, with a dual role in inflammation, acting as both a pro- and anti-inflammatory molecule. This study investigates the effects of the NO donor sodium nitroprusside (SNP) in protecting the BBB from lipopolysaccharide (LPS)-induced inflammation, using bEnd.3 endothelial cells as a model system. Additionally, Raw 264.7 macrophages were employed to assess the effects of LPS and SNP on their adhesion to a bEnd.3 cell monolayer. Our results show that LPS treatment induces oxidative stress, activates the JAK2/STAT3 pathway, and increases pro-inflammatory markers. SNP administration effectively mitigates ROS production and IL-6 expression, suggesting a potential anti-inflammatory role. However, SNP did not significantly alter the adhesion of Raw 264.7 cells to bEnd.3 cells induced by LPS, probably because it did not have any effect on ICAM-1 expression, although it reduced VCAM expression. Moreover, SNP did not prevent BBB disruption. This research provides new insights into the role of NO in BBB disruption induced by inflammation.
Collapse
Affiliation(s)
- Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Sandra Moraña-Fernández
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (M.S.); (A.D.)
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (M.S.); (A.D.)
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Raina S, Hübner E, Samuel E, Nagel G, Fuchs H. DT-13 attenuates inflammation by inhibiting NLRP3-inflammasome related genes in RAW264.7 macrophages. Biochem Biophys Res Commun 2024; 708:149763. [PMID: 38503169 DOI: 10.1016/j.bbrc.2024.149763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1β) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.
Collapse
Affiliation(s)
- Shikha Raina
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Emely Hübner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany; Hochschule Bonn-Rhein Sieg, 53359, Rheinbach, Germany; HAN University of Applied Sciences, Groenewoudseweg, 6524, Nijmegen, Netherlands
| | - Esther Samuel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Gregor Nagel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany.
| |
Collapse
|
20
|
Abdelsam SS, Ghanem SK, Zahid MA, Abunada HH, Bader L, Raïq H, Khan A, Parray A, Djouhri L, Agouni A. Human antigen R: Exploring its inflammatory response impact and significance in cardiometabolic disorders. J Cell Physiol 2024; 239:e31229. [PMID: 38426269 DOI: 10.1002/jcp.31229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.
Collapse
Affiliation(s)
- Shahenda Salah Abdelsam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sarah Khalaf Ghanem
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hanan H Abunada
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Loulia Bader
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hicham Raïq
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Laiche Djouhri
- Department of Basic Medical Science, College of Medicine, QU health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Office of Vice President for Medical & Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Schmidt J, Juhasz K, Bona A. Exploring the Chemical Profile, In Vitro Antioxidant and Anti-Inflammatory Activities of Santolina rosmarinifolia Extracts. Molecules 2024; 29:1515. [PMID: 38611794 PMCID: PMC11013006 DOI: 10.3390/molecules29071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the phytochemical composition, in vitro antioxidant, and anti-inflammatory effects of the aqueous and 60% ethanolic (EtOH) extracts of Santolina rosmarinifolia leaf, flower, and root were examined. The antioxidant activity of S. rosmarinifolia extracts was determined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. The total phenolic content (TPC) of the extracts was measured by the Folin-Ciocalteu assay. The anti-inflammatory effect of the extracts was monitored by the Griess assay. The chemical composition of S. rosmarinifolia extracts was analysed using the LC-MS technique. According to our findings, 60% EtOH leaf extracts showed the highest Trolox equivalent antioxidant capacity (TEAC) values in both ABTS (8.39 ± 0.43 µM) and DPPH (6.71 ± 0.03 µM) antioxidant activity assays. The TPC values of the samples were in good correspondence with the antioxidant activity measurements and showed the highest gallic acid equivalent value (130.17 ± 0.01 µg/mL) in 60% EtOH leaf extracts. In addition, the 60% EtOH extracts of the leaves were revealed to possess the highest anti-inflammatory effect. The LC-MS analysis of S. rosmarinifolia extracts proved the presence of ascorbic acid, catalpol, chrysin, epigallocatechin, geraniol, isoquercitrin, and theanine, among others, for the first time. However, additional studies are needed to investigate the direct relationship between the chemical composition and physiological effects of the herb. The 60% EtOH extracts of S. rosmarinifolia leaves are potential new sources of natural antioxidants and anti-inflammatory molecules in the production of novel nutraceutical products.
Collapse
Affiliation(s)
| | | | - Agnes Bona
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (J.S.); (K.J.)
| |
Collapse
|
22
|
do Bomfim FRC, Gomes BS, Lanza SZ, Esquisatto MAM, Lopes-Filho GDJ. Photobiomodulation effects on synovial morphology, iNOS gene, and protein expression in a model of acute inflammation. Acta Cir Bras 2024; 39:e392024. [PMID: 38511763 PMCID: PMC10953614 DOI: 10.1590/acb392024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE To evaluate morphological aspects and inducible nitric oxide synthase (iNOS) gene and protein expression in a model of acute inflammation. METHODS Thirty-six female Wistar rats were assigned into three groups: control (saline, n = 12), sham (arthritis, n = 12), and PBM (arthritis and photobiomodulation, n = 12). Arthritis induction was performed with 200 μg of intra-articular Zymosan in sham and PBM animals. PBM was performed 24 h after induction with a laser device (λ = 808 nm, 25 mW of nominal power, fluence of 20 J/cm2, beam area of 0.02 mm2, time of 33 s, total energy of 0.825 J) with punctual and single dose application. Morphological analysis of joint structure (HE) and immunohistochemistry (anti-iNOS antibody) were performed on knee samples, and synovial tissue was submitted to RNA extraction, cDNA synthesis and gene expression analysis by quantitative polymerase chain reaction. Statistical analyses were performed with p < 0.05. RESULTS It was observed an increase in the thickness of the synovial lining epithelium and inflammatory infiltrate in sham compared to PBM. Gene expression analysis showed higher iNOS expression in PBM, and iNOS protein expression decreased in PBM compared to sham. CONCLUSIONS Photobiomodulation decreased inflammation in PBM animals, upregulated iNOS gene expression, however down egulated protein expression compared to sham.
Collapse
Affiliation(s)
- Fernando Russo Costa do Bomfim
- Universidade Federal de São Paulo – Escola Paulista de Medicina – Postgraduate Program in Interdisciplinary Surgical Science – São Paulo (SP), Brazil
- Centro Universitário da Fundação Hermínio Ometto – Araras (SP), Brazil
| | - Bruna Silva Gomes
- Universidade Federal de São Paulo – Escola Paulista de Medicina – Postgraduate Program in Interdisciplinary Surgical Science – São Paulo (SP), Brazil
| | | | | | - Gaspar de Jesus Lopes-Filho
- Universidade Federal de São Paulo – Escola Paulista de Medicina – Postgraduate Program in Interdisciplinary Surgical Science – São Paulo (SP), Brazil
| |
Collapse
|
23
|
Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol 2024; 15:1359600. [PMID: 38515749 PMCID: PMC10954773 DOI: 10.3389/fimmu.2024.1359600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The innate immune response represents the first-line of defense against invading pathogens. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in various aspects of innate immune function, which involves respiratory bursts and inflammasome activation. These reactive species widely distributed within the cellular environment are short-lived intermediates that play a vital role in cellular signaling and proliferation and are likely to depend on their subcellular site of formation. NADPH oxidase complex of phagocytes is known to generate superoxide anion radical (O2 •-) that functions as a precursor for antimicrobial hydrogen peroxide (H2O2) production, and H2O2 is utilized by myeloperoxidase (MPO) to generate hypochlorous acid (HOCl) that mediates pathogen killing. H2O2 modulates the expression of redox-responsive transcriptional factors, namely NF-kB, NRF2, and HIF-1, thereby mediating redox-based epigenetic modification. Survival and function of immune cells are under redox control and depend on intracellular and extracellular levels of ROS/RNS. The current review focuses on redox factors involved in the activation of immune response and the role of ROS in oxidative modification of proteins in macrophage polarization and neutrophil function.
Collapse
Affiliation(s)
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
24
|
Chung YC, Song SJ, Lee A, Jang CH, Kim CS, Hwang YH. Isobavachin, a main bioavailable compound in Psoralea corylifolia, alleviates lipopolysaccharide-induced inflammatory responses in macrophages and zebrafish by suppressing the MAPK and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117501. [PMID: 38012970 DOI: 10.1016/j.jep.2023.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (PC) is widely used in traditional medicines to treat inflammatory and infectious diseases. Isobavachin (IBC) is a bioavailable prenylated flavonoid derived from PC that has various biological properties. However, little information is available on its anti-inflammatory effects and mechanisms of action. AIM OF THE STUDY In this study, we aimed to determine the anti-inflammatory effects of IBC in vitro and in vivo by conducting a mechanistic study using murine macrophages. MATERIALS AND METHODS We evaluated the modulatory effects of IBC on the production of pro-inflammatory cytokines and mediators in murine macrophages. In addition, we examined whether IBC inhibits lipopolysaccharide (LPS)-induced inflammatory responses in a zebrafish model. Alterations in inflammatory response-associated genes and proteins were determined using quantitative reverse transcriptional polymerase chain reaction (RT-qPCR) and Western blotting analysis. RESULTS IBC markedly reduced the overproduction of inflammatory mediators, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear translocation of nuclear factor-kappa B (NF-κB) in macrophages induced by lipopolysaccharides (LPS). In addition, excessive NO, ROS, and neutrophil level induced by LPS, were suppressed by IBC treatment in a zebrafish inflammation model. CONCLUSIONS Collectively, bioavailable IBC inhibited on the inflammatory responses by LPS via MAPK and NF-κB signaling pathways in vitro and in vivo, suggesting that it may be a potential modulatory agent against inflammatory disorders.
Collapse
Affiliation(s)
- You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Su Jeong Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - Chan Ho Jang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Chan-Sik Kim
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
25
|
Chen HW, Liu FC, Kuo HM, Tang SH, Niu GH, Zhang MM, Tsou LK, Sung PJ, Wen ZH. Immunomodulatory and anti-angiogenesis effects of excavatolide B and its derivatives in alleviating atopic dermatitis. Biomed Pharmacother 2024; 172:116279. [PMID: 38368838 DOI: 10.1016/j.biopha.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 μM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1β, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.
Collapse
Affiliation(s)
- Hsiu-Wen Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Hsuan Tang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
26
|
Scordino M, Urone G, Frinchi M, Valenza C, Bonura A, Cipollina C, Ciriminna R, Meneguzzo F, Pagliaro M, Mudò G, Di Liberto V. Anti-Apoptotic and Anti-Inflammatory Properties of Grapefruit IntegroPectin on Human Microglial HMC3 Cell Line. Cells 2024; 13:355. [PMID: 38391968 PMCID: PMC10886616 DOI: 10.3390/cells13040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the beneficial effects of grapefruit IntegroPectin, derived from industrial waste grapefruit peels via hydrodynamic cavitation, on microglia cells exposed to oxidative stress conditions. Grapefruit IntegroPectin fully counteracted cell death and the apoptotic process induced by cell exposure to tert-butyl hydroperoxide (TBH), a powerful hydroperoxide. The protective effects of the grapefruit IntegroPectin were accompanied with a decrease in the amount of ROS, and were strictly dependent on the activation of the phosphoinositide 3-kinase (PI3K)/Akt cascade. Finally, IntegroPectin treatment inhibited the neuroinflammatory response and the basal microglia activation by down-regulating the PI3K- nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)- inducible nitric oxide synthase (iNOS) cascade. These data strongly support further investigations aimed at exploring IntegroPectin's therapeutic role in in vivo models of neurodegenerative disorders, characterized by a combination of chronic neurodegeneration, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Giulia Urone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Monica Frinchi
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Chiara Valenza
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Angela Bonura
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | | | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| |
Collapse
|
27
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
28
|
Koopklang K, Choodej S, Hantanong S, Intayot R, Jungsuttiwong S, Insumran Y, Ngamrojanavanich N, Pudhom K. Anti-Inflammatory Properties of Oxygenated Isocoumarins and Xanthone from Thai Mangrove-Associated Endophytic Fungus Setosphaeria rostrata. Molecules 2024; 29:603. [PMID: 38338348 PMCID: PMC10856793 DOI: 10.3390/molecules29030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic inflammation plays a crucial role in the development and progression of numerous chronic diseases. To search for anti-inflammatory metabolites from endophytic fungi isolated from plants growing in Thai mangrove areas, a chemical investigation of those fungi was performed. Five new oxygenated isocoumarins, setosphamarins A-E (1-5) were isolated from the EtOAc extract of an endophytic fungus Setosphaeria rostrata, along with four known isocoumarins and one xanthone. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of the undescribed compounds were established by comparative analysis between experimental and calculated circular dichroism (ECD) spectroscopy. All the compounds were evaluated for their anti-inflammatory activity by monitoring nitric oxide inhibition in lipopolysaccharide-induced macrophage J774A.1 cells. Only a xanthone, ravenelin (9), showed potent activity, with an IC50 value of 6.27 μM, and detailed mechanistic study showed that it suppressed iNOS and COX-2 expression.
Collapse
Affiliation(s)
- Kedkarn Koopklang
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (S.H.)
| | - Siwattra Choodej
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology, Thonburi 10140, Thailand
| | - Sujitra Hantanong
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (S.H.)
| | - Ratchadaree Intayot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Yuwadee Insumran
- Department of Biology, Faculty of Science and Technology, Rajabath Maha Sarakham University, Maha Sarakham 44000, Thailand
| | | | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
29
|
Majeed M, Nagabhushanam K, Lawrence L, Prakasan P, Mundkur L. The Mechanism of Anti-Viral Activity of a Novel, Hydroponically Selenium-Enriched Garlic Powder (SelenoForce ®) Against SARS-CoV-2 Virus. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241268100. [PMID: 39130207 PMCID: PMC11311149 DOI: 10.1177/27536130241268100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024]
Abstract
Abstract The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is far from over as new strains are emerging all over the world. Selenium as a micronutrient is important for immunity and also has anti-viral activity. Objective The study evaluated the activity of a Selenium enriched garlic powder (SeGP or SelenoForce®) against SARS-CoV-2 viral replication in vitro and explored its possible mechanism of action. Methods The anti-SARS-CoV-2 activity assay was carried out in Vero E6 cells in vitro. Human lung carcinoma A549 cells were used to study the antioxidant activity, expression of angiotensin converting enzyme (ACE), transmembrane protease, serine 2 (TMPRSS2) and the activity of proprotein convertase, and furin. Anti-inflammatory activity was evaluated in lipopolysaccharide-activated RAW 264.7 cells. Results SeGP inhibited the replication of SARS-CoV-2 in Vero E6 cells with an IC50 of 19.59 μg/ml. It exhibited significant antioxidant activity in vitro with IC50 value determined as 43.45 μg/ml. The Selenium enriched product inhibited the expression of ACE and TMPRSS2 and also showed inhibition of furin protease activity. In the presence of SeGP, the secretion of nitric oxide, interleukin -6 and TNF-α were reduced in activated RAW 264.7 macrophages. Conclusion The results of the study suggest that Selenium enriched garlic powder could inhibit SARS-CoV-2 multiplication in vitro, reduce oxidative stress and inflammatory mediators suggesting that it could be developed as an effective supplement or adjunct therapy to combat viral infections.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, India
- Sabinsa Corporation, East Windsor, NJ, USA
| | | | | | | | | |
Collapse
|
30
|
Gutierrez B, Aggarwal T, Erguven H, Stone MRL, Guo C, Bellomo A, Abramova E, Stevenson ER, Laskin DL, Gow AJ, Izgu EC. Direct assessment of nitrative stress in lipid environments: Applications of a designer lipid-based biosensor for peroxynitrite. iScience 2023; 26:108567. [PMID: 38144454 PMCID: PMC10746523 DOI: 10.1016/j.isci.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.
Collapse
Affiliation(s)
- Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - M. Rhia L. Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alyssa Bellomo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily R. Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debra L. Laskin
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew J. Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
31
|
Huang HB, Chen YC, Wen TY, Li SN, Liu ZM, Zhang WM, Gao XX. Anti-Inflammatory Phomalones from the Deep-Sea-Derived Fungus Trichobotrys effuse FS522. Chem Biodivers 2023; 20:e202301512. [PMID: 37921566 DOI: 10.1002/cbdv.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Four new phomalones A-D (1-4), together with five known analogues (5-9) were isolated from the deep-sea-derived fungus Trichobotrys effuse FS522. Their structures of the new compounds established by analysis of their NMR and HR-ESI-MS spectroscopic data, and the absolute configurations of 2 was determined by electronic circular dichroism (ECD) calculations. compounds 4, 6 and 8 substantially inhibited the production of nitric oxide (NO) with IC50 values of 4.64, 13.90, and 34.07 μM.
Collapse
Affiliation(s)
- Hui-Bin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Huandong Road, University City, Panyu District Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| | - Yu-Chan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| | - Ting-Yue Wen
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Huandong Road, University City, Panyu District Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| | - Sai-Ni Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| | - Zhao-Ming Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| | - Wei-Min Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| | - Xiao-Xia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Huandong Road, University City, Panyu District Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology South China State Key Laboratory of Applied Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou, 510070, China
| |
Collapse
|
32
|
Lim JS, Hong JH, Lee DY, Li X, Lee DE, Choi JU, Lee KY, Kim KH, Cho YC. 6-Pentyl-α-Pyrone from Trichoderma gamsii Exert Antioxidant and Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Mouse Macrophages. Antioxidants (Basel) 2023; 12:2028. [PMID: 38136148 PMCID: PMC10741142 DOI: 10.3390/antiox12122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Filamentous fungi produce several beneficial secondary metabolites, including bioactive compounds, food additives, and biofuels. Trichoderma, which is a teleomorphic Hypocrea that falls under the taxonomic groups Ascomycota and Dikarya, is an extensively studied fungal genus. In an ongoing study that seeks to discover bioactive natural products, we investigated potential bioactive metabolites from the methanolic extract of cultured Trichoderma gamsii. Using liquid chromatography-mass spectrometry (LC-MS), one major compound was isolated and structurally identified as 6-pentyl-α-pyrone (6PP) based on nuclear magnetic resonance data and LC-MS analysis. To determine its antioxidant and anti-inflammatory activity, as well as the underlying mechanisms, we treated lipopolysaccharide (LPS)-stimulated Raw264.7 mouse macrophages with 6PP. We found that 6PP suppresses LPS-induced increase in the levels of nitric oxide, a mediator of oxidative stress and inflammation, and restores LPS-mediated depletion of total glutathione by stabilizing nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidative factor, and elevating heme oxygenase-1 levels. Furthermore, 6PP inhibited LPS-induced production of proinflammatory cytokines, which are, at least in part, regulated by heme oxygenase-1 (HO-1). 6PP suppressed proinflammatory responses by inhibiting the nuclear localization of nuclear factor kappa B (NF-κB), as well as by dephosphorylating the mitogen-activated protein kinases (MAPKs). These results indicate that 6PP can protect macrophages against oxidative stress and LPS-induced excessive inflammatory responses by activating the Nrf2/HO-1 pathway while inhibiting the proinflammatory, NF-κB, and MAPK pathways.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.-H.H.); (D.E.L.)
- Research Laboratories, ILDONG Pharmaceutical Co. Ltd., Hwaseong 18449, Republic of Korea
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Xiangying Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.-H.H.); (D.E.L.)
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.-H.H.); (D.E.L.)
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| |
Collapse
|
33
|
Su Y, Han Y, Choi HS, Lee GY, Cho HW, Choi H, Jang YS, Choi JH, Seo JW. Lipid mediators derived from DHA alleviate DNCB-induced atopic dermatitis and improve the gut microbiome in BALB/c mice. Int Immunopharmacol 2023; 124:110900. [PMID: 37708704 DOI: 10.1016/j.intimp.2023.110900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition that primarily results from immune dysregulation. We determined the potential therapeutic benefits of lipid mediators (LM, 17S-monohydroxy DHA, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA. The underlying molecular mechanisms involved in TNF-α/IFN-γ-stimulated HaCaT cells as well as its effect in an AD mouse model induced by DNCB in BALB/c mice were examined. The results indicated that LM effectively attenuates the production of inflammatory cytokines (IL-6 and IL-1β) and chemokines (IL-8 and MCP-1) by inhibiting the NF-κB signaling pathway in TNF-α/IFN-γ-stimulated HaCaT cells. The oral administration of LM at 5 or 10 μg/kg/day significantly reduced skin lesions, epidermal thickness, and mast cell infiltration in AD mice. Furthermore, LM reduced the production of IgE and inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum, modulated gut microbiota diversity, and restored the microbial composition. Overall, our findings suggest that LM represents a potential therapeutic agent for improving AD symptoms through its ability to suppress inflammatory cytokines and alter the composition of gut microbiota.
Collapse
Affiliation(s)
- Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea; Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Yunjon Han
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, South Korea.
| | - Gil-Yong Lee
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea.
| | - Hee Won Cho
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea.
| | - Heonsik Choi
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea.
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| |
Collapse
|
34
|
Chaloshtori FN, Tabarsa M, Gavlighi HA, You S. Structure-activity relationship of fucoidans and alginates obtained from Cystoseira indica in a biorefinery concept. Int J Biol Macromol 2023; 251:126326. [PMID: 37579901 DOI: 10.1016/j.ijbiomac.2023.126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
A sequential extraction process was employed to isolate fucoidan and alginate from brown seaweed Cystoseira indica. Extraction process was designed to evaluate the effects of acid concentrations (0.025, 0.05, 0.1 and 0.2 M HCl) and temperatures (room temperature, 60 °C and 80 °C) on sensory, structural and immunostimulatory properties of fucoidans and following results on Na+-alginates. The amounts of isolated fucoidans (0.193-0.658 g/5 g powder) and Na+-alginates (2.877-3.383 g/ 5 g powder) greatly varied among different extractions. Fucoidans were composed of neutral sugars, mainly fucose (15.74-47.64 %) and galactose (18.66-26.88 %) units, with varying amounts of sulfates (8.76-12.40 %) and uronic acids (0.46-8.90 %). The weight average molecular weights (Mw) of fucoidans (234.6-1990.0 × 103 g/mol) and Na+-alginates (358.4-2318.3 × 103 g/mol) were closely controlled by extraction condition. Both fucoidan and Na+-alginate molecules noticeably induced RAW264.7 murine macrophage cells to exert proinflammatory response, producing considerable levels of NO, IL-1β, TNF-α and IL-6 through NF-κB and MAPKs signaling pathways. Altogether, extraction process of fucoidan not only exerted determining effect on its structure and cell activation capacity, but also influenced the quality of Na+-alginate obtained in the next step.
Collapse
Affiliation(s)
- Fatemeh Noormand Chaloshtori
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran; Bioactive Compounds Group, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran.
| | - Hassan Ahmadi Gavlighi
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| |
Collapse
|
35
|
Chen Y, Zhang G, Cao D, Wang F, Zhang F, Shao H, Jiao W. New Monoterpene Glycoside Paeoniflorin Derivatives as NO and IL-1 β Inhibitors: Synthesis and Biological Evaluation. Molecules 2023; 28:6922. [PMID: 37836765 PMCID: PMC10574144 DOI: 10.3390/molecules28196922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Several monoterpene glycoside compounds were extracted from Paeonia lactiflora Pall. Among them, paeoniflorin, a water-soluble monoterpene glycoside found in the root of Paeonia lactiflora Pall, exhibits excellent antioxidant pharmacological functions. Initially, Sc(CF3SO3)3 was employed as the catalyst for paeoniflorin's dehydration and rearrangement reactions with alcohols. Subsequently, structural modifications were performed on paeoniflorin through a series of responses, including acetylation, deacetylation, and debenzoylation, ultimately yielding 46 monoterpene glycoside derivatives. The potential inhibitory effects on the pro-inflammatory mediators interleukin-1 beta (IL-1β) and nitric oxide (NO) were assessed in vitro. The results revealed that compounds 29 and 31 demonstrated notable inhibition of NO production, while eight derivatives (3, 8, 18, 20, 21, 29, 34, and 40) displayed substantial inhibitory effects on the secretion of IL-1β. Computational research was also undertaken to investigate the binding affinity of the ligands with the target proteins. Interactions between the proteins and substrates were elucidated, and corresponding binding energies were calculated accordingly. The findings of this study could provide valuable insights into the design and development of novel anti-inflammatory agents with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Yongjie Chen
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Nanchong Central Hospital, Nanchong 637000, China
| | - Guoqing Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dongyi Cao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fan Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
36
|
Joshi DM, Pathak SS, Banmare S, Bhaisare SS. Review of Phytochemicals Present in Psidium guajava Plant and Its Mechanism of Action on Medicinal Activities. Cureus 2023; 15:e46364. [PMID: 37920640 PMCID: PMC10619596 DOI: 10.7759/cureus.46364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
For centuries, herbal remedies have been employed to address a variety of human ailments, and Psidium guajava Linn (Myrtaceae), commonly known as guava, stands out as a noteworthy medicinal plant with significant pharmacological potential. In India, particularly in rural areas where access to conventional medicines can be limited, the various parts of the Psidium guajava plant, including its leaves, bark, roots, and fruit, have been harnessed for their therapeutic properties to tackle various health issues. Psidium guajava Linn proves to be a valuable repository of essential nutrients along with bioactive compounds such as α-terpineol, β-caryophyllene (trans-caryophyllene), rutin, α-humulene, oleanolic acid, flavonoids, and quercetin. These components exhibit diverse medicinal activities, encompassing anti-inflammatory, anti-cancer, anti-bronchitis, anti-proliferative, anti-tumor, anti-bacterial, and anti-diabetic effects. Every facet of the guava plant holds economic significance and is cultivated on a large scale. Taxonomically, Psidium guajava can be classified within the Plantae kingdom, Magnoliophyta division, Magnoliopsida class, Rosidae subclass, Myrtales order, Myrtaceae family, Myrtoideae subfamily, Myrteae tribe, Psidium genus, Guajava species. This adaptability of guava to various soils and environmental conditions facilitates relatively easy cultivation, yielding rapid fruit production. Its widespread cultivation across India is attributed to its manifold commercial applications. To comprehensively comprehend how this plant can effectively address the array of health challenges encountered by the Indian populace, this review delves into its multifaceted therapeutic properties, highlighting its significance in healthcare practices. Ongoing research endeavors by investigators continue to uncover novel medicinal attributes associated with Psidium guajava, enriching our understanding of its potential benefits.
Collapse
Affiliation(s)
- Dhanshree M Joshi
- Clinical Research, School of Allied Health Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swanand S Pathak
- Pharmacology, School of Allied Health Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shraddha Banmare
- Clinical Research, School of Allied Health Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sweza S Bhaisare
- Clinical Research, School of Allied Health Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
37
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
38
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
39
|
Shekar Roy H, K M N, Rajput S, Sadhukhan S, Gowri V, Hassan Dar A, Monga M, Salaria N, Guha R, Chattopadhyay N, Jayamurugan G, Ghosh D. Efficient Nitric Oxide Scavenging by Urea-Functionalized Push-Pull Chromophore Modulates NO-Mediated Diseases. Chemistry 2023; 29:e202301748. [PMID: 37431238 DOI: 10.1002/chem.202301748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The excess nitric oxide (NO) produced in the body in response to bacterial/proinflammatory stimuli is responsible for several pathological conditions. The current approaches that target the production of excess NO, either through the inhibition of nitric oxide synthase enzyme or its downstream mediators have been clinically unsuccessful. With an aim to regulate the excess NO, urea-functionalized push-pull chromophores containing 1,1,4,4-tetracyanobuta-1,3-dienes (TCBD) or expanded TCBD (eTCBD) were developed as NO scavengers. The NMR mechanistic studies revealed that upon NO binding, these molecules are converted to uncommon stable NONOates. The unique emissive property of Urea-eTCBD enables its application in vitro, as a NO-sensor. Furthermore, the cytocompatible Urea-eTCBD, rapidly inactivated the NO released from LPS-activated cells. The therapeutic efficacy of the molecule in modulating NO-mediated pathological condition was confirmed using a carrageenan-induced inflammatory paw model and a corneal injury model. While the results confirm the advantages of scavenging the excess NO to address a multitude of NO-mediated diseases, the promising sensing and bioactivity of Urea-eTCBD can motivate further exploration of such molecules in allied areas of research.
Collapse
Affiliation(s)
- Himadri Shekar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Neethu K M
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Vijayendran Gowri
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Arif Hassan Dar
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Malika Monga
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Govindasamy Jayamurugan
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| |
Collapse
|
40
|
Logue MW, Dasgupta S, Farrer LA. Genetics of Alzheimer's Disease in the African American Population. J Clin Med 2023; 12:5189. [PMID: 37629231 PMCID: PMC10455208 DOI: 10.3390/jcm12165189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Black/African American (AA) individuals have a higher risk of Alzheimer's disease (AD) than White non-Hispanic persons of European ancestry (EUR) for reasons that may include economic disparities, cardiovascular health, quality of education, and biases in the methods used to diagnose AD. AD is also heritable, and some of the differences in risk may be due to genetics. Many AD-associated variants have been identified by candidate gene studies, genome-wide association studies (GWAS), and genome-sequencing studies. However, most of these studies have been performed using EUR cohorts. In this paper, we review the genetics of AD and AD-related traits in AA individuals. Importantly, studies of genetic risk factors in AA cohorts can elucidate the molecular mechanisms underlying AD risk in AA and other populations. In fact, such studies are essential to enable reliable precision medicine approaches in persons with considerable African ancestry. Furthermore, genetic studies of AA cohorts allow exploration of the ways the impact of genes can vary by ancestry, culture, and economic and environmental disparities. They have yielded important gains in our knowledge of AD genetics, and increasing AA individual representation within genetic studies should remain a priority for inclusive genetic study design.
Collapse
Affiliation(s)
- Mark W. Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Shoumita Dasgupta
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Medical Sciences and Education, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
41
|
Song Y, Chung J. Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages. Biomedicines 2023; 11:2130. [PMID: 37626627 PMCID: PMC10452316 DOI: 10.3390/biomedicines11082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is caused by the inflammation of tooth-supporting tissue by pathogens such as Aggregatibacter actinomycetemcomitans. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, triggers a series of inflammatory reactions and promotes bone resorption. The aim of this study was to examine the molecular mechanism and anti-inflammatory function of zingerone, a dietary phenolic found in Zingiber officinale, on periodontal inflammation induced by A. actinomycetemcomitans. Zingerone attenuated A. actinomycetemcomitans-induced nitric oxide (NO) production by inhibiting the expression of inducible nitric oxide synthase (iNOS) in THP-1 macrophages. Zingerone also inhibited the expression of tumor necrosis factor (TNF)-α, IL-1β, and their signal pathway molecules including the toll-like receptor (TLR)/mitogen-activated protein kinase (MAPKase). In particular, zingerone suppressed the expression of absent in melanoma 2 (AIM2) inflammasome components on IL-1β production. Moreover, zingerone enhanced autophagosome formation and the expressions of autophagy-associated molecules. Interestingly, zingerone reduced the intracellular survival of A. actinomycetemcomitans. This was blocked by an autophagy inhibitor, which reversed the decrease in IL-1β production by zingerone. Finally, zingerone alleviated alveolar bone absorption in an A. actnomycetemcomitans-induced periodontitis mice model. Our data suggested that zingerone has potential use as a treatment for periodontal inflammation induced by A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea;
- Oral Genomics Research Center, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea;
- Oral Genomics Research Center, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
42
|
Kim JM, Cho SS, Kang S, Moon C, Yang JH, Ki SH. Castanopsis sieboldii Extract Alleviates Acute Liver Injury by Antagonizing Inflammasome-Mediated Pyroptosis. Int J Mol Sci 2023; 24:11982. [PMID: 37569359 PMCID: PMC10419291 DOI: 10.3390/ijms241511982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Castanopsis sieboldii (CS), a subtropical species, was reported to have antioxidant and antibacterial effects. However, the anti-inflammatory effects of CS have not been studied. This study aimed to investigate whether the 70% ethanol extract of the CS leaf (CSL3) inhibited lipopolysaccharide (LPS)-induced inflammatory responses and LPS and ATP-induced pyroptosis in macrophages. CSL3 treatment inhibited NO release and iNOS expression in LPS-stimulated cells. CSL3 antagonized NF-κB and AP-1 activation, which was due to MAPK (p38, ERK, and JNK) inhibition. CSL3 successfully decreased NLRP3 inflammasome activation and increased IL-1β expression. CSL3 treatment diminished LPS and ATP-induced pore formation in GSDMD. The in vivo effect of CSL3 on acute liver injury was evaluated in a CCl4-treated mouse model. CCl4 treatment increased the activity of serum alanine aminotransferase and aspartate aminotransferase, which decreased by CSL3. In addition, CCl4-induced an increase in TNF-α, and IL-6 levels decreased by CSL3 treatment. Furthermore, we verified that the CCl4-induced inflammasome and pyroptosis-related gene expression in liver tissue and release of IL-1β into serum were suppressed by CSL3 treatment. Our results suggest that CSL3 protects against acute liver injury by inhibiting inflammasome formation and pyroptosis.
Collapse
Affiliation(s)
- Jae Min Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea; (J.M.K.); (S.S.C.)
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea; (J.M.K.); (S.S.C.)
| | - Sohi Kang
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (C.M.)
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (C.M.)
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea; (J.M.K.); (S.S.C.)
| |
Collapse
|
43
|
Park J, Lee C, Kim YT. Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation. Pharmaceuticals (Basel) 2023; 16:941. [PMID: 37513853 PMCID: PMC10386117 DOI: 10.3390/ph16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory pain is a type of pain caused by tissue damage associated with inflammation and is characterized by hypersensitivity to pain and neuroinflammation in the spinal cord. Neuroinflammation is significantly increased by various neurotransmitters and cytokines that are expressed in activated primary afferent neurons, and it plays a pivotal role in the development of inflammatory pain. The activation of microglia and elevated levels of pro-inflammatory cytokines are the hallmark features of neuroinflammation. During the development of neuroinflammation, various intracellular signaling pathways are activated or inhibited in microglia, leading to the regulation of inflammatory proteins and cytokines. Numerous attempts have been conducted to alleviate inflammatory pain by inhibiting microglial activation. Natural products and their compounds have gained attention as potential candidates for suppressing inflammatory pain due to verified safety through centuries of use. Many studies have also shown that natural product-derived compounds have the potential to suppress microglial activation and alleviate inflammatory pain. Herein, we review the literature on inflammatory mediators and intracellular signaling involved in microglial activation in inflammatory pain, as well as natural product-derived compounds that have been found to suppress microglial activation. This review suggests that natural product-derived compounds have the potential to alleviate inflammatory pain through the suppression of microglial activation.
Collapse
Affiliation(s)
- Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
44
|
Zhang Z, Shi C, Wang Z. Therapeutic Effects and Molecular Mechanism of Chlorogenic Acid on Polycystic Ovarian Syndrome: Role of HIF-1alpha. Nutrients 2023; 15:2833. [PMID: 37447160 DOI: 10.3390/nu15132833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Chlorogenic acid (CGA) is a powerful antioxidant polyphenol molecule found in many diets and liquid beverages, playing a preventive and therapeutic role in various diseases caused by oxidative stress and inflammation. Recent research has found that CGA can not only improve clinical symptoms in PCOS patients but also improve follicular development, hormone status, and oxidative stress in PCOS rats, indicating the therapeutic effect of CGA on PCOS. Notably, our previous series of studies has demonstrated the expression changes and regulatory mechanisms of HIF-1alpha signaling in PCOS ovaries. Considering the regulatory effect of CGA on the HIF-1alpha pathway, the present article systematically elucidates the therapeutic role and molecular mechanisms of HIF-1alpha signaling during the treatment of PCOS by CGA, including follicular development, steroid synthesis, inflammatory response, oxidative stress, and insulin resistance, in order to further understand the mechanisms of CGA effects in different types of diseases and to provide a theoretical basis for further promoting CGA-rich diets and beverages simultaneously.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
45
|
Tang B, Tu J, Zhang M, Zhang Z, Yu J, Shen L, Luo Q, Ye J. Diagnostic value and underlying mechanism of nasal nitric oxide in eosinophilic chronic rhinosinusitis with nasal polyps. Mol Immunol 2023; 159:1-14. [PMID: 37224640 DOI: 10.1016/j.molimm.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Nitric oxide (NO) is an important messenger molecule widely present in the human body. However, the role of nasal NO (nNO) in eosinophilic chronic rhinosinusitis with nasal polyps (Eos CRSwNP) remain unclear. This study aimed to investigate the diagnostic value and underlying mechanism of nNO in Eos CRSwNP. METHODS The medical records of 84 non-Eos CRSwNP patients, 55 Eos CRSwNP patients, and 37 control subjects were retrospectively reviewed. The diagnostic value of nNO for Eos CRSwNP was assessed. The expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and tight junctions (TJs) components claudin-1, occludin, and ZO-1 was detected in the nasal polyps. Primary human nasal epithelial cells (HNECs) were co-treated with eNOS inhibitor (L-NAME) or Akt inhibitor (MK-2206), interleukin (IL)-13, and dexamethasone (Dex). The level of NO and the expression of TJs and Akt/eNOS pathways were examined. RESULTS The nNO levels of the CRSwNP group were significantly lower than those of the control group. Compared with the non-Eos CRSwNP group, the Eos CRSwNP group showed higher nNO level. The combination of nNO level, eosinophilic percentage, and posterior ethmoid score had a better predictive value for Eos CRSwNP (AUC = 0.855). The expression of iNOS, eNOS, and p-eNOS was higher in the CRSwNP groups than in the control group, and p-eNOS expression was higher in the Eos CRSwNP group than in the non-Eos CRSwNP group. The expression of TJs was lower in the Eos CRSwNP group than in the non-Eos CRSwNP and control group. IL-13 decreased TJ expression in HNECs, while Dex promoted Akt and eNOS phosphorylation, NO production and TJ expression. Furthermore, these effects of Dex were inhibited by L-NAME and MK-2206 in HNECs. CONCLUSION nNO may have a high diagnostic value in Eos CRSwNP, and Akt/eNOS pathway may promote the generation of NO to protect TJs. NO may have a potentially important role in the diagnosis and treatment of Eos CRSwNP.
Collapse
Affiliation(s)
- Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Suegery, Nanchang, Jiangxi Province, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Suegery, Nanchang, Jiangxi Province, China.
| |
Collapse
|
46
|
Cheng RYS, Ridnour LA, Wink AL, Gonzalez AL, Femino EL, Rittscher H, Somasundaram V, Heinz WF, Coutinho L, Rangel MC, Edmondson EF, Butcher D, Kinders RJ, Li X, Wong STC, McVicar DW, Anderson SK, Pore M, Hewitt SM, Billiar TR, Glynn SA, Chang JC, Lockett SJ, Ambs S, Wink DA. Interferon-gamma is quintessential for NOS2 and COX2 expression in ER - breast tumors that lead to poor outcome. Cell Death Dis 2023; 14:319. [PMID: 37169743 PMCID: PMC10175544 DOI: 10.1038/s41419-023-05834-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1β or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1β/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.
Collapse
Affiliation(s)
- Robert Y S Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Lisa A Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Ana L Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Elise L Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Helene Rittscher
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Veena Somasundaram
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Leandro Coutinho
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo; and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - M Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo; and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Milind Pore
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Jenny C Chang
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
47
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
48
|
Hwang P, Shin CM, Sherwood JA, Kim D, Vijayan VM, Josyula KC, Millican RC, Ho D, Brott BC, Thomas V, Choi CH, Oh SH, Kim DW, Jun HW. A multi-targeting bionanomatrix coating to reduce capsular contracture development on silicone implants. Biomater Res 2023; 27:34. [PMID: 37087537 PMCID: PMC10122329 DOI: 10.1186/s40824-023-00378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Capsular contracture is a critical complication of silicone implantation caused by fibrotic tissue formation from excessive foreign body responses. Various approaches have been applied, but targeting the mechanisms of capsule formation has not been completely solved. Myofibroblast differentiation through the transforming growth factor beta (TGF-β)/p-SMADs signaling is one of the key factors for capsular contracture development. In addition, biofilm formation on implants may result chronic inflammation promoting capsular fibrosis formation with subsequent contraction. To date, there have been no approaches targeting multi-facted mechanisms of capsular contracture development. METHODS In this study, we developed a multi-targeting nitric oxide (NO) releasing bionanomatrix coating to reduce capsular contracture formation by targeting myofibroblast differentiation, inflammatory responses, and infections. First, we characterized the bionanomatrix coating on silicon implants by conducting rheology test, scanning electron microcsopy analysis, nanoindentation analysis, and NO release kinetics evaluation. In addition, differentiated monocyte adhesion and S. epidermidis biofilm formation on bionanomatrix coated silicone implants were evaluated in vitro. Bionanomatrix coated silicone and uncoated silicone groups were subcutaneously implanted into a mouse model for evaluation of capsular contracture development for a month. Fibrosis formation, capsule thickness, TGF-β/SMAD 2/3 signaling cascade, NO production, and inflammatory cytokine production were evaluated using histology, immunofluorescent imaging analysis, and gene and protein expression assays. RESULTS The bionanomatrix coating maintained a uniform and smooth surface on the silicone even after mechanical stress conditions. In addition, the bionanomatrix coating showed sustained NO release for at least one month and reduction of differentiated monocyte adhesion and S. epidermidis biofilm formation on the silicone implants in vitro. In in vivo implantation studies, the bionanomatrix coated groups demonstrated significant reduction of capsule thickness surrounding the implants. This result was due to a decrease of myofibroblast differentiation and fibrous extracellular matrix production through inhibition of the TGF-β/p-SMADs signaling. Also, the bionanomatrix coated groups reduced gene expression of M1 macrophage markers and promoted M2 macrophage markers which indicated the bionanomatrix could reduce inflammation but promote healing process. CONCLUSIONS In conclusion, the bionanomatrix coating significantly reduced capsular contracture formation and promoted healing process on silicone implants by reducing myfibroblast differentiation, fibrotic tissue formation, and inflammation. A multi-targeting nitric oxide releasing bionanomatrix coating for silicone implant can reduce capsular contracture and improve healing process. The bionanomatrix coating reduces capsule thickness, α-smooth muscle actin and collagen synthesis, and myofibroblast differentiation through inhibition of TGF-β/SMADs signaling cascades in the subcutaneous mouse models for a month.
Collapse
Affiliation(s)
- Patrick Hwang
- Endomimetics, LLC, Birmingham, AL, 35242, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL, 35294, USA
| | - Chung Min Shin
- Department of Plastic and Reconstructive Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | | | - DongHo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Vineeth M Vijayan
- Department of Biomedical Engineering, Alabama State University, Montgomery, AL, 36104, USA
| | - Krishna C Josyula
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL, 35294, USA
| | | | - Donald Ho
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Brigitta C Brott
- Endomimetics, LLC, Birmingham, AL, 35242, USA
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Vinoy Thomas
- Department of Material Science and Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chul Hee Choi
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Brain Research Institute, College of Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, AL, 35242, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
49
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
50
|
Cheng RY, Ridnour LA, Wink AL, Gonzalez AL, Femino EL, Rittscher H, Somasundarum V, Heinz WF, Coutinho L, Cristina Rangel M, Edmondson EF, Butcher D, Kinders RJ, Li X, Wong STC, McVicar DW, Anderson SK, Pore M, Hewitt SM, Billiar TR, Glynn S, Chang JC, Lockett SJ, Ambs S, Wink DA. Interferon-gamma is Quintessential for NOS2 and COX2 Expression in ER - Breast Tumors that Lead to Poor Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535916. [PMID: 37066331 PMCID: PMC10104135 DOI: 10.1101/2023.04.06.535916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1β or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1β/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.
Collapse
|