1
|
Wong KR, Wright DK, Sgro M, Salberg S, Bain J, Li C, Sun M, McDonald SJ, Mychasiuk R, Brady RD, Shultz SR. Persistent Changes in Mechanical Nociception in Rats With Traumatic Brain Injury Involving Polytrauma. THE JOURNAL OF PAIN 2023; 24:1383-1395. [PMID: 36958460 DOI: 10.1016/j.jpain.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Traumatic brain injury (TBI) survivors often experience debilitating consequences. Due to the high impact nature of TBI, patients often experience concomitant peripheral injuries (ie, polytrauma). A common, yet often overlooked, comorbidity of TBI is chronic pain. Therefore, this study investigated how common concomitant peripheral injuries (ie, femoral fracture and muscle crush) can affect long-term behavioral and structural TBI outcomes with a particular focus on nociception. Rats were randomly assigned to 1 of 4 groups: polytrauma (POLY; ie, fracture + muscle crush + TBI), peripheral injury (PERI; ie, fracture + muscle crush + sham TBI), TBI (ie, sham fracture + sham muscle crush + TBI), and sham-injured (SHAM; ie, sham fracture + sham muscle crush + sham TBI). Rats underwent behavioral testing at 3-, 6-, and 11-weeks postinjury, and were then euthanized for postmortem magnetic resonance imaging (MRI). POLY rats had a persisting increase in pain sensitivity compared to all groups on the von Frey test. MRI revealed that POLY rats also had abnormalities in the cortical and subcortical brain structures involved in nociceptive processing. These findings have important implications and provide a foundation for future studies to determine the underlying mechanisms and potential treatment strategies for chronic pain in TBI survivors. PERSPECTIVE: Rats with TBI and concomitant peripheral trauma displayed chronic nociceptive pain and MRI images also revealed damaged brain structures/pathways that are involved in chronic pain development. This study highlights the importance of polytrauma and the affected brain regions for developing chronic pain.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Nursing, Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
2
|
Kuru Bektaşoğlu P, Demir D, Koyuncuoğlu T, Yüksel M, Peker Eyüboğlu İ, Karagöz Köroğlu A, Akakın D, Yıldırım A, Çelikoğlu E, Gürer B. Possible anti-inflammatory, antioxidant and neuroprotective effects of apigenin in the setting of mild traumatic brain injury: an investigation. Immunopharmacol Immunotoxicol 2022; 45:185-196. [PMID: 36168996 DOI: 10.1080/08923973.2022.2130076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Apigenin is a plant flavone proven with biological properties such as anti-inflammatory, antioxidant, and antimicrobial effects. This study, it was aimed to examine the possible anti-inflammatory, antioxidant and neuroprotective effects of apigenin in the setting of mild traumatic brain injury (TBI) model. METHODS Wistar albino male rats were randomly assigned to groups: control (n = 9), TBI (n = 9), TBI + vehicle (n = 8), and TBI + Apigenin (20 and 40 mg/kg, immediately after trauma; n = 6 and n = 7). TBI was performed by dropping a 300 g weight from a height of 1 meter onto the skull under anesthesia. Neurological examination and tail suspension test applied before and 24 hours after trauma, as well as Y-maze and object recognition tests, after that rats were decapitated. In brain tissue, luminol- and lucigenin-enhanced chemiluminescence levels and cytokine ELISA levels were measured. Histological damage was scored. Data was analyzed with one-way ANOVA. RESULTS After TBI, luminol (p < 0.001) and lucigenin (p < 0.001) levels increased, and luminol and lucigenin levels decreased with apigenin treatments (p < 0.01-0.001). The tail suspension test score increased with trauma (p < 0.01). According to the pre-traumatic values, the number of entrances to the arms (p < 0.01) in the Y-maze decreased after trauma (p < 0.01). In the object recognition test, discrimination (p < 0.05) and recognition indexes (p < 0.05) decreased with trauma. There was no significant difference among trauma apigenin groups in behavioral tests. Interleukin (IL)-10 levels, one of the anti-inflammatory cytokines, decreased with trauma (p < 0.05), and increased with 20 and 40 mg apigenin treatment (p < 0.001 and p < 0.01, respectively). The histological damage score in cortex were decreased in apigenin 20 mg treatment group significantly (p < 0.05), the decrease observed in apigenin 40 mg group was not significant. CONCLUSION The results of this study revelead that apigenin 20 and 40 mg treatment may have neuroprotective effects in mild TBI via decreasing the the level of luminol and lucigenin and increasing the IL-10 levels. Additionally, apigenin 20 mg treatment ameliorated the trauma-induced cortical tissue damage.
Collapse
Affiliation(s)
| | - Dilan Demir
- University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Department of Neurosurgery, Istanbul, Türkiye
| | - Türkan Koyuncuoğlu
- Biruni University Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Meral Yüksel
- Marmara University Vocational School of Health-Related Services, Department of Medical Laboratory, Istanbul, Türkiye
| | - İrem Peker Eyüboğlu
- Marmara University School of Medicine, Department of Medical Biology, Istanbul, Türkiye
| | - Ayça Karagöz Köroğlu
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Türkiye
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Türkiye
| | - Alper Yıldırım
- Marmara University School of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Erhan Çelikoğlu
- University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Istanbul, Türkiye
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Türkiye
| |
Collapse
|
3
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
4
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
5
|
Bao W, Lin Y, Chen Z. The Peripheral Immune System and Traumatic Brain Injury: Insight into the role of T-helper cells. Int J Med Sci 2021; 18:3644-3651. [PMID: 34790036 PMCID: PMC8579286 DOI: 10.7150/ijms.46834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests that immune-inflammatory processes are key elements in the physiopathological events associated with traumatic brain injury (TBI). TBI is followed by T-cell-specific immunological changes involving several subsets of T-helper cells and the cytokines they produce; these processes can have opposite effects depending on the disease course and cytokine concentrations. Efforts are underway to identify the T-helper cells and cytokine profiles associated with prognosis. These predictors may eventually serve as effective treatment targets to decrease morbidity and mortality and to improve the management of TBI patients. Here, we review the immunological response to TBI, the possible molecular mechanisms of this response, and therapeutic strategies to address it.
Collapse
Affiliation(s)
| | | | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Demir D, Sucu G, Akakın D, Peker Eyüboğlu İ, Yüksel M, Çelikoğlu E, Yeğen BÇ, Gürer B. Neuroprotective Effect of Cinnamaldehyde on Secondary Brain Injury After Traumatic Brain Injury in a Rat Model. World Neurosurg 2021; 153:e392-e402. [PMID: 34224887 DOI: 10.1016/j.wneu.2021.06.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the possible neuroprotective effects of cinnamaldehyde (CA) on secondary brain injury after traumatic brain injury (TBI) in a rat model. METHODS Rats were randomly divided into 4 groups: control (n = 9), TBI (n = 9), vehicle (0.1% Tween 80; n = 8), and CA (100 mg/kg) (n = 9). TBI was induced by the weight-drop model. In brain tissues, myeloperoxidase activity and the levels of luminol-enhanced and lucigenin-enhanced chemiluminescence were measured. Interleukin 1β, interleukin 6, tumor necrosis factor α, tumor growth factor β, caspase-3, and cleaved caspase-3 were evaluated with an enzyme-linked immunosorbent assay method. Brain injury was histopathologically graded after hematoxylin-eosin staining. Y-maze and novel object recognition tests were performed before TBI and within 24 hours of TBI. RESULTS Higher myeloperoxidase activity levels in the TBI group (P < 0.001) were suppressed in the CA group (P < 0.05). Luminol-enhanced and lucigenin-enhanced chemiluminescence, which were increased in the TBI group (P < 0.001, for both), were decreased in the group that received CA treatment (P < 0.001 for both). Compared with the increased histologic damage scores in the cerebral cortex and dentate gyrus of the TBI group (P < 0.001), scores of the CA group were lower (P < 0.001). Decreased number of entries and spontaneous alternation percentage in the Y-maze test of the TBI group (P < 0.05 and P < 0.01, respectively) were not evident in the CA group. CONCLUSIONS CA has shown neuroprotective effects by limiting neutrophil recruitment, suppressing reactive oxygen species and reducing histologic damage and acute hippocampal dysfunction.
Collapse
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Türkan Koyuncuoğlu
- Department of Physiology, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Dilan Demir
- Department of Neurosurgery, University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Istanbul, Turkey
| | - Gizem Sucu
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health-Related Services, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Thome JG, Reeder EL, Collins SM, Gopalan P, Robson MJ. Contributions of Interleukin-1 Receptor Signaling in Traumatic Brain Injury. Front Behav Neurosci 2020; 13:287. [PMID: 32038189 PMCID: PMC6985078 DOI: 10.3389/fnbeh.2019.00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) in various forms affects millions in the United States annually. There are currently no FDA-approved therapies for acute injury or the chronic comorbidities associated with TBI. Acute phases of TBI are characterized by profound neuroinflammation, a process that stimulates the generation and release of proinflammatory cytokines including interleukin-1α (IL-1α) and IL-1β. Both forms of IL-1 initiate signaling by binding with IL-1 receptor type 1 (IL-1R1), a receptor with a natural, endogenous antagonist dubbed IL-1 receptor antagonist (IL-1Ra). The recombinant form of IL-1Ra has gained FDA approval for inflammatory conditions such as rheumatoid arthritis, prompting interest in repurposing these pharmacotherapies for other inflammatory diseases/injury states including TBI. This review summarizes the currently available preclinical and clinical literature regarding the therapeutic potential of inhibiting IL-1-mediated signaling in the context of TBI. Additionally, we propose specific research areas that would provide a greater understanding of the role of IL-1 signaling in TBI and how these data may be beneficial for the development of IL-1-targeted therapies, ushering in the first FDA-approved pharmacotherapy for acute TBI.
Collapse
Affiliation(s)
- Jason G Thome
- Department of Anesthesia and Critical Care, Division of Biological Sciences, College of Medicine, University of Chicago, Chicago, IL, United States
| | - Evan L Reeder
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Sean M Collins
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Poornima Gopalan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Sun M, Brady RD, van der Poel C, Apted D, Semple BD, Church JE, O'Brien TJ, McDonald SJ, Shultz SR. A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Front Neurol 2018; 9:1089. [PMID: 30619048 PMCID: PMC6297867 DOI: 10.3389/fneur.2018.01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/28/2018] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Chris van der Poel
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Danielle Apted
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jarrod E Church
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Sahbaie P, Tajerian M, Yang P, Irvine KA, Huang TT, Luo J, Wyss-Coray T, Clark JD. Nociceptive and Cognitive Changes in a Murine Model of Polytrauma. THE JOURNAL OF PAIN 2018; 19:1392-1405. [DOI: 10.1016/j.jpain.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
|
10
|
Sun M, McDonald SJ, Brady RD, O'Brien TJ, Shultz SR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 2018; 69:618-628. [PMID: 29355823 DOI: 10.1016/j.bbi.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
11
|
Werhane ML, Evangelista ND, Clark AL, Sorg SF, Bangen KJ, Tran M, Schiehser DM, Delano-Wood L. Pathological vascular and inflammatory biomarkers of acute- and chronic-phase traumatic brain injury. Concussion 2017; 2:CNC30. [PMID: 30202571 PMCID: PMC6094091 DOI: 10.2217/cnc-2016-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Given the demand for developing objective methods for characterizing traumatic brain injury (TBI), research dedicated to evaluating putative biomarkers has burgeoned over the past decade. Since it is critical to elucidate the underlying pathological processes that underlie the higher diverse outcomes that follow neurotrauma, considerable efforts have been aimed at identifying biomarkers of both the acute- and chronic-phase TBI. Such information is not only critical for helping to elucidate the pathological changes that lead to poor long-term outcomes following TBI but it may also assist in the identification of possible prevention and interventions for individuals who sustain head trauma. In the current review, we discuss the potential role of vascular dysfunction and chronic inflammation in both acute- and chronic-phase TBI, and we also highlight existing studies that have investigated inflammation biomarkers associated with poorer injury outcome.
Collapse
Affiliation(s)
- Madeleine L Werhane
- San Diego State University/University of California, San Diego (SDSU/UC San Diego) Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Alexandra L Clark
- San Diego State University/University of California, San Diego (SDSU/UC San Diego) Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Scott F Sorg
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - My Tran
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- San Diego State University (SDSU), San Diego, CA 92182, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Center of Excellence for Stress & Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj 2016; 30:1293-1301. [PMID: 27712117 DOI: 10.1080/02699052.2016.1193628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After 30 years of characterisation and implementation, fluid percussion injury (FPI) is firmly recognised as one of the best-characterised reproducible and clinically relevant models of TBI, encompassing concussion through diffuse axonal injury (DAI). Depending on the specific injury parameters (e.g. injury site, mechanical force), FPI can model diffuse TBI with or without a focal component and may be designated as mild-to-severe according to the chosen mechanical forces and resulting acute neurological responses. Among FPI models, midline FPI may best represent clinical diffuse TBI, because of the acute behavioural deficits, the transition to late-onset behavioural morbidities and the absence of gross histopathology. REVIEW The goal here was to review acute and chronic physiological and behavioural deficits and morbidities associated with diffuse TBI induced by midline FPI. In the absence of neurodegenerative sequelae associated with focal injury, there is a need for biomarkers in the diagnostic, prognostic, predictive and therapeutic approaches to evaluate outcomes from TBI. CONCLUSIONS The current literature suggests that midline FPI offers a clinically-relevant, validated model of diffuse TBI to investigators wishing to evaluate novel therapeutic strategies in the treatment of TBI and the utility of biomarkers in the delivery of healthcare to patients with brain injury.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - Rachel K Rowe
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Daniel R Griffiths
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Megan N Evilsizor
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Theresa C Thomas
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - P David Adelson
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | | |
Collapse
|
13
|
Sordillo PP, Sordillo LA, Helson L. Bifunctional role of pro-inflammatory cytokines after traumatic brain injury. Brain Inj 2016; 30:1043-53. [DOI: 10.3109/02699052.2016.1163618] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
McDonald SJ, Sun M, Agoston DV, Shultz SR. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflammation 2016; 13:90. [PMID: 27117191 PMCID: PMC4847339 DOI: 10.1186/s12974-016-0555-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. Main body Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. Conclusions The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury interactions following multitrauma and polytrauma, concomitant injuries should be recognized and accounted for in future pre-clinical and clinical traumatic brain injury studies.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.
| | - Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma. J Cereb Blood Flow Metab 2015; 35:1339-47. [PMID: 25853909 PMCID: PMC4528010 DOI: 10.1038/jcbfm.2015.56] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 11/08/2022]
Abstract
Multitrauma is a common medical problem worldwide, and often involves concurrent traumatic brain injury (TBI) and bone fracture. Despite the high incidence of combined TBI and fracture, preclinical TBI research commonly employs independent injury models that fail to incorporate the pathophysiologic interactions occurring in multitrauma. Here, we developed a novel mouse model of multitrauma, and investigated whether bone fracture worsened TBI outcomes. Male mice were assigned into four groups: sham-TBI+sham-fracture (SHAM); sham-TBI+fracture (FX); TBI+sham-fracture (TBI); and TBI+fracture (MULTI). The injury methods included a closed-skull weight-drop TBI model and a closed tibial fracture. After a 35-day recovery, mice underwent behavioral testing and magnetic resonance imaging (MRI). MULTI mice displayed abnormal behaviors in the open-field compared with all other groups. On MRI, MULTI mice had enlarged ventricles and diffusion abnormalities compared with all other groups. These changes occurred in the presence of heightened neuroinflammation in MULTI mice at 24 hours and 35 days after injury, and elevated edema and blood-brain barrier disruption at 24 hours after injury. Together, these findings indicate that tibial fracture worsens TBI outcomes, and that exacerbated neuroinflammation may be an important factor that contributes to these effects, which warrants further investigation.
Collapse
|
16
|
Anderson GD, Peterson TC, Vonder Haar C, Farin FM, Bammler TK, MacDonald JW, Kantor ED, Hoane MR. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model. AAPS JOURNAL 2015; 17:1255-67. [PMID: 26068867 DOI: 10.1208/s12248-015-9792-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022]
Abstract
In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195, USA,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Diamond ML, Ritter AC, Jackson EK, Conley YP, Kochanek PM, Boison D, Wagner AK. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia 2015; 56:1198-206. [PMID: 26040919 DOI: 10.1111/epi.13044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Determine if genetic variation in enzymes/transporters influencing extracellular adenosine homeostasis, including adenosine kinase (ADK), [ecto-5'-nucleotidase (NT5E), cluster of differentiation 73 (CD73)], and equilibrative nucleoside transporter type-1 (ENT-1), is significantly associated with epileptogenesis and posttraumatic epilepsy (PTE) risk, as indicated by time to first seizure analyses. METHODS Nine ADK, three CD73, and two ENT-1 tagging single nucleotide polymorphisms (SNPs) were genotyped in 162 white adults with moderate/severe traumatic brain injury (TBI) and no history of premorbid seizures. Kaplan-Meier models were used to screen for genetic differences in time to first seizure occurring >1 week post-TBI. SNPs remaining significant after correction for multiple comparisons were examined using Cox proportional hazards analyses, adjusting for subdural hematoma, injury severity score, and isolated TBI status. SNPs significant in multivariate models were then entered simultaneously into an adjusted Cox model. RESULTS Comparing Kaplan-Meier curves, rs11001109 (ADK) rare allele homozygosity and rs9444348 (NT5E) heterozygosity were significantly associated with shorter time to first seizure and an increased seizure rate 3 years post-TBI. Multivariate Cox proportional hazard models showed that these genotypes remained significantly associated with increased PTE hazard up to 3 years post-TBI after controlling for variables of interest (rs11001109: hazard ratio (HR) 4.47, 95% confidence interval (CI) 1.27-15.77, p = 0.020; rs9444348: HR 2.95, 95% CI 1.19-7.31, p = 0.019) . SIGNIFICANCE Genetic variation in ADK and NT5E may help explain variability in time to first seizure and PTE risk, independent of previously identified risk factors, after TBI. Once validated, identifying genetic variation in adenosine regulatory pathways relating to epileptogenesis and PTE may facilitate exploration of therapeutic targets and pharmacotherapy development.
Collapse
Affiliation(s)
- Matthew L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Anne C Ritter
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Yvette P Conley
- Department of Health Promotion and Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Patrick M Kochanek
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Detlev Boison
- RS Dow Neurobiology Labs, Legacy Research Institute, Portland, Oregon, U.S.A
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
18
|
Addington CP, Roussas A, Dutta D, Stabenfeldt SE. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights 2015; 10:43-60. [PMID: 25983552 PMCID: PMC4429653 DOI: 10.4137/bmi.s20062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) affects 5.3 million Americans annually. Despite the many long-term deficits associated with TBI, there currently are no clinically available therapies that directly address the underlying pathologies contributing to these deficits. Preclinical studies have investigated various therapeutic approaches for TBI: two such approaches are stem cell transplantation and delivery of bioactive factors to mitigate the biochemical insult affiliated with TBI. However, success with either of these approaches has been limited largely due to the complexity of the injury microenvironment. As such, this review outlines the many factors of the injury microenvironment that mediate endogenous neural regeneration after TBI and the corresponding bioengineering approaches that harness these inherent signaling mechanisms to further amplify regenerative efforts.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Adam Roussas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dipankar Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Shein SL, Shellington DK, Exo JL, Jackson TC, Wisniewski SR, Jackson EK, Vagni VA, Bayır H, Clark RSB, Dixon CE, Janesko-Feldman KL, Kochanek PM. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice. J Neurotrauma 2015; 31:1386-95. [PMID: 24773520 DOI: 10.1089/neu.2013.2985] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.
Collapse
Affiliation(s)
- Steven L Shein
- 1 Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bruce ED, Konda S, Dean DD, Wang EW, Huang JH, Little DM. Neuroimaging and traumatic brain injury: State of the field and voids in translational knowledge. Mol Cell Neurosci 2015; 66:103-13. [DOI: 10.1016/j.mcn.2015.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/07/2023] Open
|
21
|
Kumar RG, Diamond ML, Boles JA, Berger RP, Tisherman SA, Kochanek PM, Wagner AK. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 2015; 45:253-62. [PMID: 25555531 DOI: 10.1016/j.bbi.2014.12.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in a significant inflammatory burden that perpetuates the production of inflammatory mediators and biomarkers. Interleukin-6 (IL-6) is a pro-inflammatory cytokine known to be elevated after trauma, and a major contributor to the inflammatory response following TBI. Previous studies have investigated associations between IL-6 and outcome following TBI, but to date, studies have been inconsistent in their conclusions. We hypothesized that cohort heterogeneity, temporal inflammatory profiles, and concurrent inflammatory marker associations are critical to characterize when targeting subpopulations for anti-inflammatory therapies. Toward this objective, we used serial cerebrospinal fluid (CSF) samples to generate temporal acute IL-6 trajectory (TRAJ) profiles in a prospective cohort of adults with severe TBI (n=114). We examined the impact of injury type on IL-6 profiles, and how IL-6 profiles impact sub-acute (2weeks-3months) serum inflammatory marker load and long-term global outcome 6-12months post-injury. There were two distinct acute CSF IL-6 profiles, a high and low TRAJ group. Individuals in the high TRAJ had increased odds of unfavorable Glasgow Outcome Scale (GOS) scores at 6months (adjusted OR=3.436, 95% CI: 1.259, 9.380). Individuals in the high TRAJ also had higher mean acute CSF inflammatory load compared to individuals in the low TRAJ (p⩽0.05). The two groups did not differ with respect acute serum profiles; however, individuals in the high CSF IL-6 TRAJ also had higher mean sub-acute serum IL-1β and IL-6 levels compared with the low TRAJ group (p⩽0.05). Lastly, injury type (isolated TBI vs. TBI+polytrauma) was associated with IL-6 TRAJ group (χ(2)=5.31, p=0.02). Specifically, there was 70% concordance between those with TBI+polytrauma and the low TRAJ; in contrast, isolated TBI was similarly distributed between TRAJ groups. These data provide evidence that sustained, elevated levels of CSF IL-6 are associated with an increased inflammatory load, and these increases are associated with increased odds for unfavorable global outcomes in the first year following TBI. Future studies should explore additional factors contributing to IL-6 elevations, and therapies to mitigate its detrimental effects on outcome.
Collapse
Affiliation(s)
- R G Kumar
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - M L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - J A Boles
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - R P Berger
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - S A Tisherman
- Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - P M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - A K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
MAEGELE M, BRAUN M, WAFAISADE A, SCHÄFER N, LIPPERT-GRUENER M, KREIPKE C, RAFOLS J, SCHÄFER U, ANGELOV DN, STUERMER E. Long-Term Effects of Enriched Environment on Neurofunctional Outcome and CNS Lesion Volume After Traumatic Brain Injury in Rats. Physiol Res 2015; 64:129-45. [DOI: 10.33549/physiolres.932664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine whether the exposure to long term enriched environment (EE) would result in a continuous improvement of neurological recovery and ameliorate the loss of brain tissue after traumatic brain injury (TBI) vs. standard housing (SH). Male Sprague-Dawley rats (300-350 g, n=28) underwent lateral fluid percussion brain injury or SHAM operation. One TBI group was held under complex EE for 90 days, the other under SH. Neuromotor and sensorimotor dysfunction and recovery were assessed after injury and at days 7, 15, and 90 via Composite Neuroscore (NS), RotaRod test, and Barnes Circular Maze (BCM). Cortical tissue loss was assessed using serial brain sections. After day 7 EE animals showed similar latencies and errors as SHAM in the BCM. SH animals performed notably worse with differences still significant on day 90 (p<0.001). RotaRod test and NS revealed superior results for EE animals after day 7. The mean cortical volume was significantly higher in EE vs. SH animals (p=0.003). In summary, EE animals after lateral fluid percussion (LFP) brain injury performed significantly better than SH animals after 90 days of recovery. The window of opportunity may be wide and also lends further credibility to the importance of long term interventions in patients suffering from TBI.
Collapse
Affiliation(s)
- M. MAEGELE
- Department for Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten-Herdecke (Campus Cologne-Merheim), Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lipsky RH, Lin M. Genetic predictors of outcome following traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:23-41. [PMID: 25702208 DOI: 10.1016/b978-0-444-52892-6.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nature of traumatic brain injury (TBI) has acute and chronic outcomes for those who survive. Over time, the chronic process of injury impacts multiple organ systems that may lead to disease. We discuss possible mechanisms and methodological issues in the context of candidate gene association studies using TBI patient populations. Because study population sizes have been generally limited, we discussed results on genes that have been the focus of independent studies. We also present a justification for testing more speculative candidate genes in recovery from TBI, such as those involved in circadian rhythm, to outline the importance of prioritizing functional variants in genes that may modulate recovery or provide neuroprotection from TBI. Finally, we provide a perspective on how future research will integrate population level genetic findings with the biological basis of disease in order to create a resource of predictive outcome measures for individual patients.
Collapse
Affiliation(s)
- Robert H Lipsky
- Department of Neurosciences, Inova Health System, Falls Church, VA, USA.
| | - Mingkuan Lin
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
24
|
Valparaiso AP, Vicente DA, Bograd BA, Elster EA, Davis TA. Modeling acute traumatic injury. J Surg Res 2014; 194:220-32. [PMID: 25481528 DOI: 10.1016/j.jss.2014.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Acute traumatic injury is a complex disease that has remained a leading cause of death, which affects all ages in our society. Direct mechanical insult to tissues may result in physiological and immunologic disturbances brought about by blood loss, coagulopathy, as well as ischemia and reperfusion insults. This inappropriate response leads to an abnormal release of endogenous mediators of inflammation that synergistically contribute to the incidence of morbidity and mortality. This aberrant activation and suppression of the immune system follows a bimodal pattern, wherein activation of the innate immune responses is followed by an anti-inflammatory response with suppression of the adaptive immunity, which can subsequently lead secondary insults and multiple organ dysfunction. Traumatic injury rodent and swine models have been used to describe many of the underlying pathologic mechanisms, which have led to an improved understanding of the morbidity and mortality associated with critically ill trauma patients. The enigmatic immunopathology of the human immunologic response after severe trauma, however, has never more been apparent and there grows a need for a clinically relevant animal model, which mimics this immune physiology to enhance the care of the most severely injured. This has necessitated preclinical studies in a more closely related model system, the nonhuman primate. In this review article, we summarize animal models of trauma that have provided insight into the clinical response and understanding of cellular mechanisms involved in the onset and progression of ischemia-reperfusion injury as well as describe future treatment options using immunomodulation-based strategies.
Collapse
Affiliation(s)
- Apple P Valparaiso
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Diego A Vicente
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin A Bograd
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Eric A Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
25
|
Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, Wang BD. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj 2014; 28:1491-503. [PMID: 25111457 DOI: 10.3109/02699052.2014.943288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Yan-Bin Ma
- Department of Neurosurgery, NO.3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
ShanghaiPR China
| | - Bo-Ding Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| |
Collapse
|
26
|
Chen B, Mutschler M, Yuan Y, Neugebauer E, Huang Q, Maegele M. Superimposed traumatic brain injury modulates vasomotor responses in third-order vessels after hemorrhagic shock. Scand J Trauma Resusc Emerg Med 2013; 21:77. [PMID: 24257108 PMCID: PMC3843561 DOI: 10.1186/1757-7241-21-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of death in trauma. Recent studies suggest that TBI may influence physiological responses to acute blood loss. This study was designed to assess to what extent superimposed TBI may modulate physiologic vasomotor responses in third-order blood vessels in the context of HS. METHODS We have combined two established experimental models of pressure-controlled hemorrhagic shock (HS; MAP 50 mmHg/60 min) and TBI (lateral fluid percussion (LFP)) to assess vasomotor responses and microcirculatory changes in third-order vessels by intravital microscopy in a spinotrapezius muscle preparation. 23 male Sprague-Dawley rats (260-320 g) were randomly assigned to experimental groups: i) Sham, ii) HS, iii) TBI + HS, subjected to impact or sham operation, and assessed. RESULTS HS led to a significant decrease in arteriolar diameters by 20% to baseline (p < 0.01). In TBI + HS this vasoconstriction was less pronounced (5%, non-significant). At completed and at 60 minutes of resuscitation arteriolar diameters had recovered to pre-injury baseline values. Assessment of venular diameters revealed similar results. Arteriolar and venular RBC velocity and blood flow decreased sharply to < 20% of baseline in HS and TBI + HS (p < 0.01). Immediately after and at 60 minutes of resuscitation, an overshoot in arterial RBC velocity (140% of baseline) and blood flow (134.2%) was observed in TBI + HS. CONCLUSION Superimposed TBI modulated arteriolar and venular responses to HS in third-order vessels in a spinotrapezius muscle preparation. Further research is necessary to precisely define the role of TBI on the microcirculation in tissues vulnerable to HS.
Collapse
Affiliation(s)
| | | | | | | | - Qiaobing Huang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research, Southern Medical University (SMU), Tong He, 510515 Guangzhou, People's Republic of China.
| | | |
Collapse
|
27
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 PMCID: PMC3586682 DOI: 10.3389/fneur.2013.00018] [Citation(s) in RCA: 506] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity both in civilian life and on the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs that were identified as being effective in animal TBI models have all failed in Phase II or Phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, E&R Building, Room 3096, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
29
|
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013; 4:18. [PMID: 23459929 DOI: 10.3389/fneur.2013.00018.ecollection2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/10/2013] [Indexed: 05/19/2023] Open
Abstract
Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.
Collapse
Affiliation(s)
- Thomas Woodcock
- Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Plantman S, Ng KC, Lu J, Davidsson J, Risling M. Characterization of a novel rat model of penetrating traumatic brain injury. J Neurotrauma 2012; 29:1219-32. [PMID: 22181060 DOI: 10.1089/neu.2011.2182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A penetrating traumatic brain injury (pTBI) occurs when an object impacts the head with sufficient force to penetrate the skin, skull, and meninges, and inflict injury directly to the brain parenchyma. This type of injury has been notoriously difficult to model in small laboratory animals such as rats or mice. To this end, we have established a novel non-fatal model for pTBI based on a modified air rifle that accelerates a pellet, which in turn impacts a small probe that then causes the injury to the experimental animal's brain. In the present study, we have focused on the acute phase and characterized the tissue destruction, including increasing cavity formation, white matter degeneration, hemorrhage, edema, and gliosis. We also used a battery of behavioral models to examine the neurological outcome, with the most noteworthy finding being impairment of reference memory function. In conclusion, we have described a number of events taking place after pTBI in our model. We expect this model will prove useful in our efforts to unravel the biological events underlying injury and regeneration after pTBI and possibly serve as a useful animal model in the development of novel therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Stefan Plantman
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Systemic inflammatory effects of traumatic brain injury, femur fracture, and shock: an experimental murine polytrauma model. Mediators Inflamm 2012; 2012:136020. [PMID: 22529516 PMCID: PMC3316998 DOI: 10.1155/2012/136020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/06/2011] [Indexed: 11/18/2022] Open
Abstract
Objective. Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation.
Methods. 45 male C57BL/6J mice (mean weight 27 g) were anesthetized with ketamine/xylazine. Animals were subjected to a weight drop closed traumatic brain injury (WD-TBI), a femoral fracture and hemorrhagic shock (FX-SH). Animals were subdivided into WD-TBI, FX-SH and combined trauma (CO-TX) groups. Subjects were sacrificed at 96 h. Blood was analysed for cytokines and by flow cytometry for lymphocyte populations.
Results. Mortality was 8%, 13% and 47% for FX-SH, WD-TBI and CO-TX groups (P < 0.05). TNFα (11/13/139 for FX-SH/WD-TBI/CO-TX; P < 0.05), CCL2 (78/96/227; P < 0.05) and IL-6 (16/48/281; P = 0.05) showed significant increases in the CO-TX group. Lymphocyte populations results for FX-SH, WD-TBI and CO-TX were: CD-4 (31/21/22; P = n.s.), CD-8 (7/28/34, P < 0.05), CD-4-CD-8 (11/12/18; P = n.s.), CD-56 (36/7/8; P < 0.05).
Conclusion. This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated.
Collapse
|
32
|
Svetlov SI, Prima V, Glushakova O, Svetlov A, Kirk DR, Gutierrez H, Serebruany VL, Curley KC, Wang KKW, Hayes RL. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite" blast. Front Neurol 2012; 3:15. [PMID: 22403567 PMCID: PMC3275793 DOI: 10.3389/fneur.2012.00015] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/24/2012] [Indexed: 01/23/2023] Open
Abstract
A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube. In this study, we further characterized blast producing moderate traumatic brain injury and defined "composite" blast and primary blast exposure set-ups. Schlieren optics visualized interaction between the head and a shock wave generated by external shock tube, revealing strong head acceleration upon positioning the rat on-axis with the shock tube (composite blast), but negligible skull movement upon peak overpressure exposure off-axis (primary blast). Brain injury signatures of a primary blast hitting the frontal head were assessed and compared to damage produced by composite blast. Low to negligible levels of neurodegeneration were found following primary blast compared to composite blast by silver staining. However, persistent gliosis in hippocampus and accumulation of GFAP/CNPase in circulation was detected after both primary and composite blast. Also, markers of vascular/endothelial inflammation integrin alpha/beta, soluble intercellular adhesion molecule-1, and L-selectin along with neurotrophic factor nerve growth factor-beta were increased in serum within 6 h post-blasts and persisted for 7 days thereafter. In contrast, systemic IL-1, IL-10, fractalkine, neuroendocrine peptide Orexin A, and VEGF receptor Neuropilin-2 (NRP-2) were raised predominantly after primary blast exposure. In conclusion, biomarkers of major pathological pathways were elevated at all blast set-ups. The most significant and persistent changes in neuro-glial markers were found after composite blast, while primary blast instigated prominent systemic cytokine/chemokine, Orexin A, and Neuropilin-2 release, particularly when primary blast impacted rats with unprotected body.
Collapse
|
33
|
Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011; 95:352-72. [PMID: 21939729 DOI: 10.1016/j.pneurobio.2011.09.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/31/2023]
Abstract
There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease.
Collapse
Affiliation(s)
- Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|
34
|
Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 2011; 164:1207-29. [PMID: 21175576 PMCID: PMC3229758 DOI: 10.1111/j.1476-5381.2010.01163.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, 'silver bullet' therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
35
|
Bingham D, John CM, Panter SS, Jarvis GA. Post-injury treatment with lipopolysaccharide or lipooligosaccharide protects rat neuronal and glial cell cultures. Brain Res Bull 2011; 85:403-9. [PMID: 21571046 DOI: 10.1016/j.brainresbull.2011.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of disability in civilians and military personnel worldwide that is caused by the acceleration force of a primary shockwave, blast wind or the force of a direct contact. Following the primary injury, secondary injury is caused by activation of the immune response due to an influx of neuro-inflammatory cells, increased production of inflammatory cytokines, and edema. In ischemia models pre-conditioning with lipopolysaccharide (LPS) has been shown to be neuroprotective, and post-injury conditioning with LPS was found to be protective in a spinal cord and an acute brain injury model. In this study, we utilized an in vitro scratch model of TBI to assess the effect of post-injury treatment with Escherichia coli LPS and Neisseria meningitidis lipooligosaccharide (LOS) on cell death and cytokine induction by assessing the level of lactate dehydrogenase released from cells and rat multiplex cytokine assays. Our results showed that post-injury treatment of C6 glioma cells with either the LPS or the LOS reduced cell death when compared to scratched controls treated with media only. Post-injury treatment of the primary mixed neuronal cultures with LPS reduced cell death and resulted in a significant up-regulation in IL-10 when compared to controls. With LOS post-scratch treatment of the primary cell cultures, we found that IL-1α, IL-1β, IL-6, and TNF-α were significantly upregulated in addition to IL-10 compared to the media-only controls. The results strongly support additional testing of the neuroprotective ability of post-injury treatment with LPS or LOS in models of TBI.
Collapse
Affiliation(s)
- Deborah Bingham
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
36
|
Curia G, Levitt M, Fender JS, Miller JW, Ojemann J, D'Ambrosio R. Impact of injury location and severity on posttraumatic epilepsy in the rat: role of frontal neocortex. Cereb Cortex 2010; 21:1574-92. [PMID: 21112931 DOI: 10.1093/cercor/bhq218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human posttraumatic epilepsy (PTE) is highly heterogeneous, ranging from mild remitting to progressive disabling forms. PTE results in simple partial, complex partial, and secondarily generalized seizures with a wide spectrum of durations and semiologies. PTE variability is thought to depend on the heterogeneity of head injury and patient's age, gender, and genetic background. To better understand the role of these factors, we investigated the seizures resulting from calibrated fluid percussion injury (FPI) to adolescent male Sprague-Dawley rats with video electrocorticography. We show that PTE incidence and the frequency and severity of chronic seizures depend on the location and severity of FPI. The frontal neocortex was more prone to epileptogenesis than the parietal and occipital, generating earlier, longer, and more frequent partial seizures. A prominent limbic focus developed in most animals, regardless of parameters of injury. Remarkably, even with carefully controlled injury parameters, including type, severity, and location, the duration of posttraumatic apnea and the age and gender of outbred rats, there was great subject-to-subject variability in frequency, duration, and rate of progression of seizures, indicating that other factors, likely the subjects' genetic background and physiological states, have critical roles in determining the characteristics of PTE.
Collapse
Affiliation(s)
- Giulia Curia
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In the acute-care setting, it is widely accepted that elderly patients have increased morbidity and mortality compared with young healthy patients. The reasons for this, however, are largely unknown. Although animal modeling has helped improve treatment strategies for young patients, there are a scarce number of studies attempting to understand the mechanisms of systemic insults such as trauma, burn, and sepsis in aged individuals. This review aims to highlight the relevance of using animals to study the pathogenesis of these insults in the aged and, despite the deficiency of information, to summarize what is currently known in this field.
Collapse
|
38
|
Ravizza T, Noé F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis 2008; 31:327-33. [PMID: 18632279 DOI: 10.1016/j.nbd.2008.05.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/08/2008] [Accepted: 05/15/2008] [Indexed: 01/14/2023] Open
Abstract
An enhanced production of IL-1beta in glia is a typical feature of epileptogenic tissue in experimental models and in human drug-refractory epilepsy. We show here that the selective inhibition of Interleukin Converting Enzyme (ICE), which cleaves the biologically active form of IL-1beta using VX-765, blocks kindling development in rats by preventing IL-1beta increase in forebrain astrocytes, without interfering with glia activation. The average afterdischarge duration was not altered significantly by VX-765. Up to 24 h after kindling completion and drug washout, kindled seizures could not be evoked in treated rats. VX-765 did not affect seizures or afterdischarge duration in fully kindled rats. These data indicate an antiepileptogenic effect mediated by ICE inhibition and suggest that specific anti-IL-1beta pharmacological strategies can be envisaged to interfere with epileptogenic mechanisms.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Neuroscience, Laboratory of Experimental Neurology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | | | | | | | |
Collapse
|