1
|
Ortjohann M, Schönheit P. Sugar alcohol degradation in Archaea: uptake and degradation of mannitol and sorbitol in Haloarcula hispanica. Extremophiles 2024; 28:48. [PMID: 39466404 PMCID: PMC11519228 DOI: 10.1007/s00792-024-01365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The halophilic archaeon Haloarcula hispanica utilizes the sugar alcohols mannitol and sorbitol as carbon and energy sources. Genes, enzymes, and transcriptional regulators involved in uptake and degradation of these sugar alcohols were identified by growth experiments with deletion mutants and enzyme characterization. It is shown that both mannitol and sorbitol are taken up via a single ABC transporter of the CUT1 transporter family. Then, mannitol and sorbitol are oxidized to fructose by two distinct dehydrogenases. Fructose is further phosphorylated to fructose-1-phosphate by a haloarchaeal ketohexokinase, providing the first evidence for a physiological function of ketohexokinase in prokaryotes. Finally, fructose-1-phosphate is phosphorylated via fructose-1-phosphate kinase to fructose-1,6-bisphosphate, which is cleaved to triosephosphates by a Class I fructose-1,6-bisphosphate aldolase. Two distinct transcriptional regulators, acting as activators, have been identified: an IclR-like regulator involved in activating genes for sugar alcohol uptake and oxidation to fructose, and a GfcR-like regulator that likely activates genes involved in the degradation of fructose to pyruvate. This is the first comprehensive analysis of a sugar alcohol degradation pathway in Archaea.
Collapse
Affiliation(s)
- Marius Ortjohann
- Institut Für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Peter Schönheit
- Institut Für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Bowland AC, Melin AD, Hosken DJ, Hockings KJ, Carrigan MA. The evolutionary ecology of ethanol. Trends Ecol Evol 2024:S0169-5347(24)00240-4. [PMID: 39482197 DOI: 10.1016/j.tree.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024]
Abstract
The consumption of ethanol has frequently been seen as largely restricted to humans. Here, we take a broad eco-evolutionary approach to understanding ethanol's potential impact on the natural world. There is growing evidence that ethanol is present in many wild fruits, saps, and nectars and that ethanol ingestion offers benefits that favour adaptations for its use in multiple taxa. Explanations for ethanol consumption span both the nutritional and non-nutritional, with potential medicinal value or cognitive effects (with social-behavioural benefits) explored. We conclude that ethanol is ecologically relevant and that it has shaped the evolution of many species and structured symbiotic relationships among organisms, including plants, yeast, bacteria, insects, and mammals.
Collapse
Affiliation(s)
- Anna C Bowland
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - David J Hosken
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - Kimberley J Hockings
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
| | | |
Collapse
|
3
|
Liang F, Sun S, Zhou Y, Peng T, Xu X, Li B, Tan G. Escherichia coli alcohol dehydrogenase YahK is a protein that binds both iron and zinc. PeerJ 2024; 12:e18040. [PMID: 39282118 PMCID: PMC11397123 DOI: 10.7717/peerj.18040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Previous studies have highlighted the catalytic activity of Escherichia coli alcohol dehydrogenase YahK in the presence of coenzyme nicotinamide adenine dinucleotide (NAD) and metal zinc. Notably, competitive interaction between iron and zinc ligands has been shown to influence the catalytic efficiency of several key proteases. This study aims to unravel the intricate mechanisms underlying YahK's catalytic action, with a particular focus on the pivotal roles played by metal ions zinc and iron. Methods The purified YahK protein from E. coli cells cultivated in LB medium was utilized to investigate its metal-binding properties through UV-visible absorption measurements and determination of metal content. Subsequently, the effects of excess zinc and iron on the metal-binding ability and alcohol dehydrogenase activity of the YahK protein were explored using M9 minimal medium. Furthermore, site-directed mutagenesis technology was employed to determine the iron-binding site location within the YahK protein. Polyacrylamide gel electrophoresis was conducted to examine the relationship between iron and zinc with respect to the YahK protein. Results The study confirmed the presence of iron and zinc in the YahK protein, with the zinc-bound form exhibiting enhanced catalytic activity in alcohol dehydrogenation reactions. Conversely, the presence of iron appears to play a pivotal role in maintaining overall stability of the YahK protein. Furthermore, experimental findings indicate that excessive zinc within M9 minimal medium can competitively bind to iron-binding sites on YahK, thereby augmenting its alcohol dehydrogenase activity. Conclusion The dynamic binding of YahK to iron and zinc unveils its intricate regulatory mechanism as an alcohol dehydrogenase, thereby highlighting the possible physiological role of YahK in E. coli and its significance in governing cellular metabolic processes. This discovery provides a novel perspective for further investigating the specific impact of metal ion binding on YahK and E. coli cell metabolism.
Collapse
Affiliation(s)
- Feng Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, Shandong, China
| | - YongGuang Zhou
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiantian Peng
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianxian Xu
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Li
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Wang Z, Zhang Q, Zhang H, Lu Y. Roles of alcohol dehydrogenase 1 in the biological activities of Candida albicans. Crit Rev Microbiol 2024:1-15. [PMID: 38916139 DOI: 10.1080/1040841x.2024.2371510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Candida albicans stands as the foremost prevalent human commensal pathogen and a significant contributor to nosocomial fungal infections. In the metabolism of C. albicans, alcohol dehydrogenase 1 (Adh1) is one of the important enzymes that converts acetaldehyde produced by pyruvate decarboxylation into ethanol at the end of glycolysis. Leveraging the foundational processes of alcoholic fermentation, Adh1 plays an active role in multiple biological phenomena, including biofilm formation, interactions between different species, the development of drug resistance, and the potential initiation of gastrointestinal cancer. Additionally, Adh1 within C. albicans has demonstrated associations with regulating the cell cycle, stress responses, and various intracellular states. Furthermore, Adh1 is extracellularly localized on the cell wall surface, where it plays roles in processes such as tissue invasion and host immune responses. Drawing from an analysis of ADH1 gene structure, expression patterns, and fundamental functions, this review elucidates the intricate connections between Adh1 and various biological processes within C. albicans, underscoring its potential implications for the prevention, diagnosis, and treatment of candidiasis.
Collapse
Affiliation(s)
- Ziqi Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Dong X, Zhang T, Gui C, Fei S, Xu H, Chang J, Lian C, Tang W. The critical role of residues Phe120 and Val161 of (2 R,3 R)‑2,3‑butanediol dehydrogenase from Neisseria gonorrhoeae as probed by molecular docking and site-directed mutagenesis. J Basic Microbiol 2024; 64:e2300751. [PMID: 38644586 DOI: 10.1002/jobm.202300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
NAD+-dependent (2 R,3 R)‑2,3‑butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)‑2,3‑butanediol (RR-BD) and meso-2,3‑butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent KM values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent KM values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in KM (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in kcat. These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.
Collapse
Affiliation(s)
- Xue Dong
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Tingting Zhang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Chuanyue Gui
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Shuping Fei
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Haonan Xu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Jianrong Chang
- Scientific Research Center, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Wanggang Tang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
6
|
Shanbhag AP, Bhowmik P. Cancer to Cataracts: The Mechanistic Impact of Aldo-Keto Reductases in Chronic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:179-204. [PMID: 38947111 PMCID: PMC11202113 DOI: 10.59249/vtbv6559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.
Collapse
Affiliation(s)
- Anirudh P. Shanbhag
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana,
India
| | - Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP),
National Centre for Biological Sciences (NCBS), Bengaluru, Karnataka,
India
| |
Collapse
|
7
|
Meloni M, Rossi J, Fanti S, Carloni G, Tedesco D, Treffon P, Piccinini L, Falini G, Trost P, Vierling E, Licausi F, Giuntoli B, Musiani F, Fermani S, Zaffagnini M. Structural and biochemical characterization of Arabidopsis alcohol dehydrogenases reveals distinct functional properties but similar redox sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1054-1070. [PMID: 38308388 DOI: 10.1111/tpj.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.
Collapse
Affiliation(s)
- Maria Meloni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Silvia Fanti
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Giacomo Carloni
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129, Bologna, Italy
| | - Patrick Treffon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Luca Piccinini
- Department of Biology, University of Pisa, Pisa, 56127, Italy
- Center for Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56124, Italy
| | - Giuseppe Falini
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Beatrice Giuntoli
- Department of Biology, University of Pisa, Pisa, 56127, Italy
- Center for Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56124, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
- Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
8
|
Kabasakal BV, Cotton CAR, Murray JW. Dynamic lid domain of Chloroflexus aurantiacus Malonyl-CoA reductase controls the reaction. Biochimie 2024; 219:12-20. [PMID: 37952891 DOI: 10.1016/j.biochi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Malonyl-Coenzyme A Reductase (MCR) in Chloroflexus aurantiacus, a characteristic enzyme of the 3-hydroxypropionate (3-HP) cycle, catalyses the reduction of malonyl-CoA to 3-HP. MCR is a bi-functional enzyme; in the first step, malonyl-CoA is reduced to the free intermediate malonate semialdehyde by the C-terminal region of MCR, and this is further reduced to 3-HP by the N-terminal region of MCR. Here we present the crystal structures of both N-terminal and C-terminal regions of the MCR from C. aurantiacus. A catalytic mechanism is suggested by ligand and substrate bound structures, and structural and kinetic studies of MCR variants. Both MCR structures reveal one catalytic, and one non-catalytic SDR (short chain dehydrogenase/reductase) domain. C-terminal MCR has a lid domain which undergoes a conformational change and controls the reaction. In the proposed mechanism of the C-terminal MCR, the conversion of malonyl-CoA to malonate semialdehyde is based on the reduction of malonyl-CoA by NADPH, followed by the decomposition of the hemithioacetal to produce malonate semialdehyde and coenzyme A. Conserved arginines, Arg734 and Arg773 are proposed to play key roles in the mechanism and conserved Ser719, and Tyr737 are other essential residues forming an oxyanion hole for the substrate intermediates.
Collapse
Affiliation(s)
- Burak V Kabasakal
- Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK; Turkish Accelerator and Radiation Laboratory, Gölbaşı, 06830, Ankara, Turkiye
| | - Charles A R Cotton
- Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK; Cambrium GmbH, Max-Urich-Strasse 3, 13355, Berlin, Germany
| | - James W Murray
- Department of Life Sciences, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems. WATER RESEARCH 2024; 253:121331. [PMID: 38377929 DOI: 10.1016/j.watres.2024.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In practical drinking water treatment, chlorine and chloramine disinfection exhibit different mechanisms that affect biofilm growth. This study focused on the influence of biofilm composition changes, especially extracellular polymeric substance (EPS) fractions, on the potential formation and toxicity of nitrogenous disinfection by-products (N-DBP). Significant differences in microbial diversity and community structure were observed between the chlorine and chloramine treatments. Notably, the biofilms from the chloramine-treated group had higher microbial dominance and greater accumulation of organic precursors, as evidenced by the semi-quantitative confocal laser-scanning microscopy assay of more concentrated microbial aggregates and polysaccharide proteins in the samples. Additionally, the chloramine-treated group compared with chlorine had a higher EPS matrix content, with a 13.5 % increase in protein. Furthermore, the protein distribution within the biofilm differed; in the chlorine group, proteins were concentrated in the central region, whereas in the chloramine group, proteins were primarily located at the water-biofilm interface. Notably, functional prediction analyses of protein fractions in biofilms revealed specific functional regulation patterns and increased metabolism-related abundance of proteins in the chlorine-treated group. This increase was particularly pronounced for proteins such as dehydrogenases, reductases, transcription factors, and acyl-CoA dehydrogenases. By combining the Fukui function and density functional calculations to further analyse the effect of biofilm component changes on N-DBP production under chlorine/chloramine and by assessing the toxicity risk potential of N-DBP, it was determined that chloramine disinfection is detrimental to biofilm control and the accumulation of protein precursors has a higher formation potential of N-DBPs and toxicity risk, increasing the health risk of drinking water.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|
10
|
Kato R, Takenaka Y, Ohno Y, Kihara A. Catalytic mechanism of trans-2-enoyl-CoA reductases in the fatty acid elongation cycle and its cooperative action with fatty acid elongases. J Biol Chem 2024; 300:105656. [PMID: 38224948 PMCID: PMC10864336 DOI: 10.1016/j.jbc.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.
Collapse
Affiliation(s)
- Ryoya Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Takenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Ma X, Liu Z, Zeng X, Li Z, Luo R, Liu R, Wang C, Gu Y. Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance. J Fungi (Basel) 2024; 10:123. [PMID: 38392795 PMCID: PMC10889790 DOI: 10.3390/jof10020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The medium-chain dehydrogenase/reductase (MDR) superfamily contains many members that are widely present in organisms and play important roles in growth, metabolism, and stress resistance but have not been studied in Trichosporon asahii. In this study, bioinformatics and RNA sequencing methods were used to analyze the MDR superfamily of T. asahii and its regulatory effect on fluconazole resistance. A phylogenetic tree was constructed using Saccharomyces cerevisiae, Candida albicans, Cryptococcus neoformans, and T. asahii, and 73 MDRs were identified, all of which contained NADPH-binding motifs. T. asahii contained 20 MDRs that were unevenly distributed across six chromosomes. T. asahii MDRs (TaMDRs) had similar 3D structures but varied greatly in their genetic evolution at different phylum levels. RNA-seq and gene expression analyses revealed that the fluconazole-resistant T. asahii strain upregulates xylitol dehydrogenase, and downregulated alcohol dehydrogenase and sorbitol dehydrogenase concluded that the fluconazole-resistant T. asahii strain was less selective toward carbon sources and had higher adaptability to the environment. Overall, our study contributes to our understanding of TaMDRs, providing a basis for further analysis of the genes associated with drug resistance in T. asahii.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangwen Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rongyan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruiguo Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
13
|
Stark F, Hoffmann A, Ihle N, Loderer C, Ansorge-Schumacher MB. Extended Scope and Understanding of Zinc-Dependent Alcohol Dehydrogenases for Reduction of Cyclic α-Diketones. Chembiochem 2023; 24:e202300290. [PMID: 37167138 DOI: 10.1002/cbic.202300290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Alcohol dehydrogenases (ADH) are important tools for generating chiral α-hydroxyketones. Previously, only the ADH of Thauera aromatica was known to convert cyclic α-diketones with appropriate preference. Here, we extend the spectrum of suitable enzymes by three alcohol dehydrogenases from Citrifermentans bemidjiense (CibADH), Deferrisoma camini (DecADH), and Thauera phenylacetica (ThpADH). Of these, DecADH is characterized by very high thermostability; CibADH and ThpADH convert α-halogenated cyclohexanones with increased activity. Otherwise, however, the substrate spectrum of all four ADHs is highly conserved. Structural considerations led to the conclusion that conversion of diketones requires not only the expansion of the active site into a large binding pocket, but also the circumferential modification of almost all amino acid residues that form the first shell of the binding pocket. The constellation appears to be overall highly specific for the relative positioning of the carbonyl functions and the size of the C-ring.
Collapse
Affiliation(s)
- Frances Stark
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Aaron Hoffmann
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nadine Ihle
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Christoph Loderer
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | | |
Collapse
|
14
|
Bown L, Hirota R, Goettge MN, Cui J, Krist DT, Zhu L, Giurgiu C, van der Donk WA, Ju KS, Metcalf WW. A Novel Pathway for Biosynthesis of the Herbicidal Phosphonate Natural Product Phosphonothrixin Is Widespread in Actinobacteria. J Bacteriol 2023; 205:e0048522. [PMID: 37074199 PMCID: PMC10210982 DOI: 10.1128/jb.00485-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Phosphonothrixin is an herbicidal phosphonate natural product with an unusual, branched carbon skeleton. Bioinformatic analyses of the ftx gene cluster, which is responsible for synthesis of the compound, suggest that early steps of the biosynthetic pathway, up to production of the intermediate 2,3-dihydroxypropylphosphonic acid (DHPPA) are identical to those of the unrelated phosphonate natural product valinophos. This conclusion was strongly supported by the observation of biosynthetic intermediates from the shared pathway in spent media from two phosphonothrixin producing strains. Biochemical characterization of ftx-encoded proteins confirmed these early steps, as well as subsequent steps involving the oxidation of DHPPA to 3-hydroxy-2-oxopropylphosphonate and its conversion to phosphonothrixin by the combined action of an unusual heterodimeric, thiamine-pyrophosphate (TPP)-dependent ketotransferase and a TPP-dependent acetolactate synthase. The frequent observation of ftx-like gene clusters within actinobacteria suggests that production of compounds related to phosphonothrixin is common within these bacteria. IMPORTANCE Phosphonic acid natural products, such as phosphonothrixin, have great potential for biomedical and agricultural applications; however, discovery and development of these compounds requires detailed knowledge of the metabolism involved in their biosynthesis. The studies reported here reveal the biochemical pathway phosphonothrixin production, which enhances our ability to design strains that overproduce this potentially useful herbicide. This knowledge also improves our ability to predict the products of related biosynthetic gene clusters and the functions of homologous enzymes.
Collapse
Affiliation(s)
- Luke Bown
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ryuichi Hirota
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Michelle N. Goettge
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jerry Cui
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David T. Krist
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lingyang Zhu
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Constantin Giurgiu
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wilfred A. van der Donk
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
| | - William W. Metcalf
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Brott S, Nam KH, Thomas F, Dutschei T, Reisky L, Behrens M, Grimm HC, Michel G, Schweder T, Bornscheuer UT. Unique alcohol dehydrogenases involved in algal sugar utilization by marine bacteria. Appl Microbiol Biotechnol 2023; 107:2363-2384. [PMID: 36881117 PMCID: PMC10033563 DOI: 10.1007/s00253-023-12447-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Marine algae produce complex polysaccharides, which can be degraded by marine heterotrophic bacteria utilizing carbohydrate-active enzymes. The red algal polysaccharide porphyran contains the methoxy sugar 6-O-methyl-D-galactose (G6Me). In the degradation of porphyran, oxidative demethylation of this monosaccharide towards D-galactose and formaldehyde occurs, which is catalyzed by a cytochrome P450 monooxygenase and its redox partners. In direct proximity to the genes encoding for the key enzymes of this oxidative demethylation, genes encoding for zinc-dependent alcohol dehydrogenases (ADHs) were identified, which seem to be conserved in porphyran utilizing marine Flavobacteriia. Considering the fact that dehydrogenases could play an auxiliary role in carbohydrate degradation, we aimed to elucidate the physiological role of these marine ADHs. Although our results reveal that the ADHs are not involved in formaldehyde detoxification, a knockout of the ADH gene causes a dramatic growth defect of Zobellia galactanivorans with G6Me as a substrate. This indicates that the ADH is required for G6Me utilization. Complete biochemical characterizations of the ADHs from Formosa agariphila KMM 3901T (FoADH) and Z. galactanivorans DsijT (ZoADH) were performed, and the substrate screening revealed that these enzymes preferentially convert aromatic aldehydes. Additionally, we elucidated the crystal structures of FoADH and ZoADH in complex with NAD+ and showed that the strict substrate specificity of these new auxiliary enzymes is based on a narrow active site. KEY POINTS: • Knockout of the ADH-encoding gene revealed its role in 6-O-methyl-D-galactose utilization, suggesting a new auxiliary activity in marine carbohydrate degradation. • Complete enzyme characterization indicated no function in a subsequent reaction of the oxidative demethylation, such as formaldehyde detoxification. • These marine ADHs preferentially convert aromatic compounds, and their strict substrate specificity is based on a narrow active site.
Collapse
Affiliation(s)
- Stefan Brott
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - François Thomas
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS 29688, Roscoff, Bretagne, France
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Maike Behrens
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Hanna C Grimm
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Gurvan Michel
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS 29688, Roscoff, Bretagne, France
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany.
| |
Collapse
|
16
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
17
|
Zhao M, Shin GY, Stice S, Bown JL, Coutinho T, Metcalf WW, Gitaitis R, Kvitko B, Dutta B. A Novel Biosynthetic Gene Cluster Across the Pantoea Species Complex Is Important for Pathogenicity in Onion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:176-188. [PMID: 36534063 PMCID: PMC10433531 DOI: 10.1094/mpmi-08-22-0165-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Onion center rot is caused by at least four species of genus Pantoea (P. ananatis, P. agglomerans, P. allii, and P. stewartii subsp. indologenes). Critical onion pathogenicity determinants for P. ananatis were recently described, but whether those determinants are common among other onion-pathogenic Pantoea species remains unknown. In this work, we report onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. We identified two distinct secondary metabolite biosynthetic gene clusters present separately in different strains of onion-pathogenic P. stewartii subsp. indologenes. One cluster is similar to the previously described HiVir phosphonate biosynthetic cluster identified in P. ananatis and another is a novel putative phosphonate biosynthetic gene cluster, which we named Halophos. The Halophos gene cluster was also identified in P. allii strains. Both clusters are predicted to be phosphonate biosynthetic clusters based on the presence of a characteristic phosphoenolpyruvate phosphomutase (pepM) gene. The deletion of the pepM gene from either HiVir or Halophos clusters in P. stewartii subsp. indologenes caused loss of necrosis on onion leaves and red onion scales and resulted in significantly lower bacterial populations compared with the corresponding wild-type and complemented strains. Seven (halB to halH) of 11 genes (halA to halK) in the Halophos gene cluster are required for onion necrosis phenotypes. The onion nonpathogenic strain PNA15-2 (P. stewartii subsp. indologenes) gained the capacity to cause foliar necrosis on onion via exogenous expression of a minimal seven-gene Halophos cluster (genes halB to halH). Furthermore, cell-free culture filtrates of PNA14-12 expressing the intact Halophos gene cluster caused necrosis on onion leaves consistent with the presence of a secreted toxin. Based on the similarity of proteins to those with experimentally determined functions, we are able to predict most of the steps in Halophos biosynthesis. Together, these observations indicate that production of the toxin phosphonate seems sufficient to account for virulence of a variety of different Pantoea strains, although strains differ in possessing a single but distinct phosphonate biosynthetic cluster. Overall, this is the first report of onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Department of Plant Pathology, University of Georgia, Tifton GA USA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens GA USA
| | - Shaun Stice
- Department of Plant Pathology, University of Georgia, Athens GA USA
| | - Jonathon Luke Bown
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL
| | - Teresa Coutinho
- The Genomics Research Institute, University of Pretoria, Hatfield, South Africa
| | - William W. Metcalf
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL
| | - Ron Gitaitis
- Department of Plant Pathology, University of Georgia, Tifton GA USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens GA USA
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton GA USA
| |
Collapse
|
18
|
Rahman MT, Koski MK, Panecka-Hofman J, Schmitz W, Kastaniotis AJ, Wade RC, Wierenga RK, Hiltunen JK, Autio KJ. An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nat Commun 2023; 14:619. [PMID: 36739436 PMCID: PMC9899272 DOI: 10.1038/s41467-023-36358-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial fatty acid synthesis (mtFAS) is essential for respiratory function. MtFAS generates the octanoic acid precursor for lipoic acid synthesis, but the role of longer fatty acid products has remained unclear. The structurally well-characterized component of mtFAS, human 2E-enoyl-ACP reductase (MECR) rescues respiratory growth and lipoylation defects of a Saccharomyces cerevisiae Δetr1 strain lacking native mtFAS enoyl reductase. To address the role of longer products of mtFAS, we employed in silico molecular simulations to design a MECR variant with a shortened substrate binding cavity. Our in vitro and in vivo analyses indicate that the MECR G165Q variant allows synthesis of octanoyl groups but not long chain fatty acids, confirming the validity of our computational approach to engineer substrate length specificity. Furthermore, our data imply that restoring lipoylation in mtFAS deficient yeast strains is not sufficient to support respiration and that long chain acyl-ACPs generated by mtFAS are required for mitochondrial function.
Collapse
Affiliation(s)
- M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Joanna Panecka-Hofman
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Werner Schmitz
- Faculty of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | | | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
20
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
21
|
Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase. Appl Environ Microbiol 2022; 88:e0126422. [PMID: 36416567 PMCID: PMC9746291 DOI: 10.1128/aem.01264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alkanes produced by microorganisms are expected to be an alternative to fossil fuels as an energy source. Microbial synthesis of alkanes involves the formation of fatty aldehydes via fatty acyl coenzyme A (acyl-CoA) intermediates derived from fatty acid metabolism, followed by aldehyde decarbonylation to generate alkanes. Advancements in metabolic engineering have enabled the construction of such pathways in various microorganisms, including Escherichia coli. However, endogenous aldehyde reductases in the host microorganisms are highly active in converting fatty aldehydes to fatty alcohols, limiting the substrate pool for alkane production. To reuse the alcohol by-product, a screening of fatty alcohol-assimilating microorganisms was conducted, and a bacterial strain, Pantoea sp. strain 7-4, was found to convert 1-tetradecanol to tetradecanal. From this strain, an alcohol dehydrogenase, PsADH, was purified and found to be involved in 1-tetradecanol-oxidizing reaction. Subsequent heterologous expression of the PsADH gene in E. coli was conducted, and recombinant PsADH was purified for a series of biochemical characterizations, including cofactors, optimal reaction conditions, and kinetic parameters. Furthermore, direct alkane production from alcohol was achieved in E. coli by coexpressing PsADH with a cyanobacterial aldehyde-deformylating oxygenase and a reducing system, including ferredoxin and ferredoxin reductase, from Nostoc punctiforme PCC73102. The alcohol-aldehyde-alkane synthetic route established in this study will provide a new approach to utilizing fatty alcohols for the production of alkane biofuel. IMPORTANCE Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. In this study, we discovered an alcohol dehydrogenase, PsADH, from the bacterium Pantoea sp. 7-4, which can oxidize 1-tetradecanol to tetradecanal. The medium-chain aldehyde products generated by this enzyme can serve as the substrate of aldehyde-deformylating oxygenase to produce alkanes. The enzyme found in this study can be applied to the biosynthetic pathway involving the formation of medium-chain aldehydes to produce alkanes and other valuable compounds.
Collapse
|
22
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Stark F, Loderer C, Petchey M, Grogan G, Ansorge-Schumacher M. Advanced Insights into Catalytic and Structural Features of the Zinc-Dependent Alcohol Dehydrogenase from Thauera aromatica. Chembiochem 2022; 23:e202200149. [PMID: 35557486 PMCID: PMC9400901 DOI: 10.1002/cbic.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/12/2022] [Indexed: 11/10/2022]
Abstract
The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α‐diketone 1,2‐cyclohexanedione to the corresponding α‐hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α‐substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.
Collapse
Affiliation(s)
- Frances Stark
- TU Dresden: Technische Universitat Dresden, Molecular Biotechnology, GERMANY
| | - Christoph Loderer
- TU Dresden: Technische Universitat Dresden, Molecular Biotechnology, GERMANY
| | | | | | | |
Collapse
|
24
|
Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. eLife 2022; 11:73913. [PMID: 35535493 PMCID: PMC9090334 DOI: 10.7554/elife.73913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.
Collapse
Affiliation(s)
- Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Patrick R A Zanon
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Dymytrii Listunov
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Rullière
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
| | - Jean-Baptiste Izquierdo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Karen Pradines
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Romain Hee
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Maria Vieira de Brito
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Yves Génisson
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
25
|
Ge C, Wang L, Yang Y, Liu R, Liu S, Chen J, Shen Q, Ma H, Li Y, Zhang S, Pang C. Genome-wide association study identifies variants of GhSAD1 conferring cold tolerance in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2222-2237. [PMID: 34919655 DOI: 10.1093/jxb/erab555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cold stress is a major environmental factor affecting plant growth and development. Although some plants have developed resistance to cold stress, the molecular mechanisms underlying this process are poorly understood. Using genome-wide association mapping with 200 cotton accessions collected from different regions, we identified variations in the short chain alcohol dehydrogenase gene, GhSAD1, that responds to cold stress. Virus-induced gene silencing and overexpression in Arabidopsis revealed that GhSAD1 fulfils important roles in cold stress responses. Ectopic expression of a haploid genotype of GhSAD1 (GhSAD1HapB) in Arabidopsis increased cold tolerance. Silencing of GhSAD1HapB resulted in a decrease in abscisic acid (ABA) content. Conversely, overexpression of GhSAD1HapB increased ABA content. GhSAD1HapB regulates cold stress responses in cotton through modulation of C-repeat binding factor activity, which regulates ABA signalling. GhSAD1HapB induces the expression of COLD-REGULATED (COR) genes and increases the amount of metabolites associated with cold stress tolerance. Overexpression of GhSAD1HapB partially complements the phenotype of the Arabidopsis ABA2 mutant, aba2-1. Collectively, these findings increase our understanding of the mechanisms underlying GhSAD1-mediated cold stress responses in cotton.
Collapse
Affiliation(s)
- Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yongfei Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Abstract
Carbon dioxide (CO2) has been increasingly regarded not only as a greenhouse gas but also as a valuable feedstock for carbon-based chemicals. In particular, biological approaches have drawn attention as models for the production of value-added products, as CO2 conversion serves many natural processes. Enzymatic CO2 reduction in vitro is a very promising route to produce fossil free and bio-based fuel alternatives, such as methanol. In this chapter, the advances in constructing competitive multi-enzymatic systems for the reduction of CO2 to methanol are discussed. Different integrated methods are presented, aiming to address technological challenges, such as the cost effectiveness, need for material regeneration and reuse and improving product yields of the process.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
27
|
Zhou ZW, Wu QY, Ni ZX, Hu QC, Yang Y, Zheng YC, Bi WJ, Deng HL, Liu ZZ, Ye NX, Lai ZX, Sun Y. Metabolic Flow of C6 Volatile Compounds From LOX-HPL Pathway Based on Airflow During the Post-harvest Process of Oolong Tea. FRONTIERS IN PLANT SCIENCE 2021; 12:738445. [PMID: 34745173 PMCID: PMC8569582 DOI: 10.3389/fpls.2021.738445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 05/27/2023]
Abstract
Aroma is an essential quality indicator of oolong tea, a tea derived from the Camellia sinensis L. plant. Carboxylic 6 (C6) acids and their derivative esters are important components of fatty acid (FA)-derived volatiles in oolong tea. However, the formation and regulation mechanism of C6 acid during postharvest processing of oolong tea remains unclear. To gain better insight into the molecular and biochemical mechanisms of C6 compounds in oolong tea, a combined analysis of alcohol dehydrogenase (ADH) activity, CsADH2 key gene expression, and the FA-derived metabolome during postharvest processing of oolong tea was performed for the first time, complemented by CsHIP (hypoxia-induced protein conserved region) gene expression analysis. Volatile fatty acid derivative (VFAD)-targeted metabolomics analysis using headspace solid-phase microextraction-gas chromatography time-of-flight mass spectrometry (HS-SPEM-GC-TOF-MS) showed that the (Z)-3-hexen-1-ol content increased after each turnover, while the hexanoic acid content showed the opposite trend. The results further showed that both the ADH activity and CsADH gene expression level in oxygen-deficit-turnover tea leaves (ODT) were higher than those of oxygen-turnover tea leaves (OT). The C6-alcohol-derived ester content of OT was significantly higher than that of ODT, while C6-acid-derived ester content showed the opposite trend. Furthermore, the HIP gene family was screened and analyzed, showing that ODT treatment significantly promoted the upregulation of CsHIG4 and CsHIG6 gene expression. These results showed that the formation mechanism of oolong tea aroma quality is mediated by airflow in the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway, which provided a theoretical reference for future quality control in the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Zi-wei Zhou
- College of Life Science, Ningde Normal University, Ningde, China
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing-yang Wu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-xin Ni
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing-cai Hu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Yang
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-cheng Zheng
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wan-jun Bi
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-li Deng
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen-zhang Liu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nai-xin Ye
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Sun
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Lin GH, Hsieh MC, Shu HY. Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence. Int J Mol Sci 2021; 22:ijms22189921. [PMID: 34576087 PMCID: PMC8465190 DOI: 10.3390/ijms22189921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Most bacteria possess alcohol dehydrogenase (ADH) genes (Adh genes) to mitigate alcohol toxicity, but these genes have functions beyond alcohol degradation. Previous research has shown that ADH can modulate quorum sensing in Acinetobacter baumannii, a rising opportunistic pathogen. However, the number and nature of Adh genes in A. baumannii have not yet been fully characterized. We identified seven alcohol dehydrogenases (NAD+-ADHs) from A. baumannii ATCC 19606, and examined the roles of three iron-containing ADHs, ADH3, ADH4, and ADH6. Marker-less mutation was used to generate Adh3, Adh4, and Adh6 single, double, and triple mutants. Disrupted Adh4 mutants failed to grow in ethanol-, 1-butanol-, or 1-propanol-containing mediums, and recombinant ADH4 exhibited strongest activity against ethanol. Stress resistance assays with inorganic and organic hydroperoxides showed that Adh3 and Adh6 were key to oxidative stress resistance. Virulence assays performed on the Galleria mellonella model organism revealed that Adh4 mutants had comparable virulence to wild-type, while Adh3 and Adh6 mutants had reduced virulence. The results suggest that ADH4 is primarily involved in alcohol metabolism, while ADH3 and ADH6 are key to stress resistance and virulence. Further investigation into the roles of other ADHs in A. baumannii is warranted.
Collapse
Affiliation(s)
- Guang-Huey Lin
- Master Program of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (G.-H.L.); (M.-C.H.)
- Department of Microbiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- International College, Tzu Chi University, Hualien 97004, Taiwan
| | - Ming-Chuan Hsieh
- Master Program of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (G.-H.L.); (M.-C.H.)
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
- Correspondence: ; Tel.: +886-6-278-5123 (ext. 3211); Fax: +886-6-278-5010
| |
Collapse
|
29
|
Sirota FL, Maurer-Stroh S, Li Z, Eisenhaber F, Eisenhaber B. Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications. Front Bioeng Biotechnol 2021; 9:701120. [PMID: 34409021 PMCID: PMC8366029 DOI: 10.3389/fbioe.2021.701120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Large enzyme families such as the groups of zinc-dependent alcohol dehydrogenases (ADHs), long chain alcohol oxidases (AOxs) or amine dehydrogenases (AmDHs) with, sometimes, more than one million sequences in the non-redundant protein database and hundreds of experimentally characterized enzymes are excellent cases for protein engineering efforts aimed at refining and modifying substrate specificity. Yet, the backside of this wealth of information is that it becomes technically difficult to rationally select optimal sequence targets as well as sequence positions for mutagenesis studies. In all three cases, we approach the problem by starting with a group of experimentally well studied family members (including those with available 3D structures) and creating a structure-guided multiple sequence alignment and a modified phylogenetic tree (aka binding site tree) based just on a selection of potential substrate binding residue positions derived from experimental information (not from the full-length sequence alignment). Hereupon, the remaining, mostly uncharacterized enzyme sequences can be mapped; as a trend, sequence grouping in the tree branches follows substrate specificity. We show that this information can be used in the target selection for protein engineering work to narrow down to single suitable sequences and just a few relevant candidate positions for directed evolution towards activity for desired organic compound substrates. We also demonstrate how to find the closest thermophile example in the dataset if the engineering is aimed at achieving most robust enzymes.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
30
|
Expression, purification and X-ray crystal diffraction analysis of alcohol dehydrogenase 1 from Artemisia annua L. Protein Expr Purif 2021; 187:105943. [PMID: 34273542 DOI: 10.1016/j.pep.2021.105943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022]
Abstract
Alcohol dehydrogenase 1 identified from Artemisia annua (AaADH1) is a 40 kDa protein that predominately expressed in young leaves and buds, and catalyzes dehydrogenation of artemisinic alcohol to artemisinic aldehyde in artemisinin biosynthetic pathway. In this study, AaADH1 encoding gene was subcloned into vector pET-21a(+) and expressed in Escherichia coli. BL21(DE3), and purified by Co2+ affinity chromatography. Anion exchange chromatography was performed until the protein purity reached more than 90%. Crystallization of AaADH1 was conducted for further investigation of the molecular mechanism of catalysis, and hanging-drop vapour diffusion method was used in experiments. The results showed that the apo AaADH1 crystal diffracted to 2.95 Å resolution, and belongs to space group P1, with unit-cell parameters, a = 77.53 Å, b = 78.49 Å, c = 102.44 Å, α = 71.88°, β = 74.02°, γ = 59.97°. The crystallization condition consists of 0.1 M Bis-Tris pH 6.0, 13% (w/v) PEG 8000 and 5% (v/v) glycerol.
Collapse
|
31
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
32
|
Ly LK, Doden HL, Ridlon JM. Gut feelings about bacterial steroid-17,20-desmolase. Mol Cell Endocrinol 2021; 525:111174. [PMID: 33503463 PMCID: PMC8886824 DOI: 10.1016/j.mce.2021.111174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Advances in technology are only beginning to reveal the complex interactions between hosts and their resident microbiota that have co-evolved over centuries. In this review, we present compelling evidence that implicates the host-associated microbiome in the generation of 11β-hydroxyandrostenedione, leading to the formation of potent 11-oxy-androgens. Microbial steroid-17,20-desmolase cleaves the side-chain of glucocorticoids (GC), including cortisol (and its derivatives of cortisone, 5α-dihydrocortisol, and also (allo)- 3α, 5α-tetrahydrocortisol, but not 3α-5β-tetrahydrocortisol) and drugs (prednisone and dexamethasone). In addition to side-chain cleavage, we discuss the gut microbiome's robust potential to transform a myriad of steroids, mirroring much of the host's metabolism. We also explore the overlooked role of intestinal steroidogenesis and efflux pumps as a potential route for GC transport into the gut. Lastly, we propose several health implications from microbial steroid-17,20-desmolase function, including aberrant mineralocorticoid, GC, and androgen receptor signaling in colonocytes, immune cells, and prostate cells, which may exacerbate disease states.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
33
|
Purification and Characterization of (2R,3R)-2,3-Butanediol Dehydrogenase of the Human Pathogen Neisseria gonorrhoeae FA1090 Produced in Escherichia coli. Mol Biotechnol 2021; 63:491-501. [PMID: 33763825 DOI: 10.1007/s12033-021-00308-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
2,3-Butanediol dehydrogenase (BDH), also known as acetoin/diacetyl reductase, is a pivotal enzyme for the formation of 2,3-butanediol (2,3-BD), a chiral compound with potential roles in the virulence of certain pathogens. Here, a NAD(H)-dependent (2R,3R)-BDH from Neisseria gonorrhoeae FA1090 (NgBDH), the causative agent of gonorrhoea, was functionally characterized. Sequence analysis indicated that it belongs to zinc-containing medium-chain dehydrogenase/reductase family. The recombinant NgBDH migrated as a single band with a size of around 45 kDa on SDS-PAGE and could be confirmed by Western blotting and mass spectrometry. For the oxidation of either (2R,3R)-2,3-BD or meso-2,3-BD, the enzyme exhibited a broad pH optimum between pH 9.5 to 11.5. For the reduction of (3R/3S)-acetoin, the pH optimum was around 6.5. The enzyme could catalyze the stereospecific oxidation of (2R,3R)-2,3-BD (Km = 0.16 mM, kcat/Km = 673 s-1 · mM-1) and meso-BD (Km = 0.72 mM, kcat/Km = 165 s-1 · mM-1). Moreover, it could also reduce (3R/3S)-acetoin with a Km of 0.14 mM and a kcat/Km of 885 s-1 · mM-1. The results presented here contribute to understand the 2,3-BD metabolism in N. gonorrhoeae and pave the way for studying the influence of 2,3-BD metabolism on the virulence of this pathogen in the future.
Collapse
|
34
|
Caliandro R, Polsinelli I, Demitri N, Musiani F, Martens S, Benini S. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates. Int J Biol Macromol 2021; 171:89-99. [PMID: 33412202 DOI: 10.1016/j.ijbiomac.2020.12.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
In this study we describe the crystal structures of the apoform, the binary and the ternary complexes of a double bond reductase from Malus domestica L. (MdDBR) and explore a range of potential substrates. The overall fold of MdDBR is similar to that of the medium chain reductase/dehydrogenase/zinc-dependent alcohol dehydrogenase-like family. Structural comparison of MdDBR with Arabidopsis thaliana DBR (AtDBR), Nicotiana tabacum DBR (NtDBR) and Rubus idaeus DBR (RiDBR) allowed the identification of key amino acids involved in cofactor and ligands binding and shed light on how these residues may guide the orientation of the substrates. The enzyme kinetic for the substrate trans-4-phenylbuten-2-one has been analyzed, and MdDBR activity towards a variety of substrates was tested. This enzyme has been reported to be involved in the phenylpropanoid pathway where it would catalyze the NADPH-dependent reduction of the α, β-unsaturated double bond of carbonyl metabolites. Our study provides new data towards the identification of MdDBR natural substrate and the biosynthetic pathway where it belongs. Furthermore, the originally proposed involvement in dihydrochalcone biosynthesis in apple must be questioned.
Collapse
Affiliation(s)
- Rosanna Caliandro
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trentino, Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy.
| |
Collapse
|
35
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
36
|
Tästensen JB, Johnsen U, Reinhardt A, Ortjohann M, Schönheit P. D-galactose catabolism in archaea: operation of the DeLey-Doudoroff pathway in Haloferax volcanii. FEMS Microbiol Lett 2021; 367:5736015. [PMID: 32055827 DOI: 10.1093/femsle/fnaa029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/11/2020] [Indexed: 11/12/2022] Open
Abstract
The haloarchaeon Haloferax volcanii was found to grow on D-galactose as carbon and energy source. Here we report a comprehensive analysis of D-galactose catabolism in H. volcanii. Genome analyses indicated a cluster of genes encoding putative enzymes of the DeLey-Doudoroff pathway for D-galactose degradation including galactose dehydrogenase, galactonate dehydratase, 2-keto-3-deoxygalactonate kinase and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase. The recombinant galactose dehydrogenase and galactonate dehydratase showed high specificity for D-galactose and galactonate, respectively, whereas KDPGal aldolase was promiscuous in utilizing KDPGal and also the C4 epimer 2-keto-3-deoxy-6-phosphogluconate as substrates. Growth studies with knock-out mutants indicated the functional involvement of galactose dehydrogenase, galactonate dehydratase and KDPGal aldolase in D-galactose degradation. Further, the transcriptional regulator GacR was identified, which was characterized as an activator of genes of the DeLey-Doudoroff pathway. Finally, genes were identified encoding components of an ABC transporter and a knock-out mutant of the substrate binding protein indicated the functional involvement of this transporter in D-galactose uptake. This is the first report of D-galactose degradation via the DeLey-Doudoroff pathway in the domain of archaea.
Collapse
Affiliation(s)
- Julia-Beate Tästensen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Marius Ortjohann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| |
Collapse
|
37
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
38
|
Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, Chaudhari YB, Zhang M, Himmel ME, Decker SR. Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:186. [PMID: 33292448 PMCID: PMC7656694 DOI: 10.1186/s13068-020-01820-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.
Collapse
Affiliation(s)
- Venkataramanan Subramanian
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Samuel J Farmer
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kyle T Moore
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Angela Ho
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yogesh B Chaudhari
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Biodiversity and Ecosystem Research, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
39
|
Abstract
Methanol is inexpensive, is easy to transport, and can be produced both from renewable and from fossil resources without mobilizing arable lands. As such, it is regarded as a potential carbon source to transition toward a greener industrial chemistry. Metabolic engineering of bacteria and yeast able to efficiently consume methanol is expected to provide cell factories that will transform methanol into higher-value chemicals in the so-called methanol economy. Toward that goal, the study of natural methylotrophs such as Bacillus methanolicus is critical to understand the origin of their efficient methylotrophy. This knowledge will then be leveraged to transform such natural strains into new cell factories or to design methylotrophic capability in other strains already used by the industry. Bacillus methanolicus MGA3 is a thermotolerant and relatively fast-growing methylotroph able to secrete large quantities of glutamate and lysine. These natural characteristics make B. methanolicus a good candidate to become a new industrial chassis organism, especially in a methanol-based economy. Intriguingly, the only substrates known to support B. methanolicus growth as sole sources of carbon and energy are methanol, mannitol, and, to a lesser extent, glucose and arabitol. Because fluxomics provides the most direct readout of the cellular phenotype, we hypothesized that comparing methylotrophic and nonmethylotrophic metabolic states at the flux level would yield new insights into MGA3 metabolism. In this study, we designed and performed a 13C metabolic flux analysis (13C-MFA) of the facultative methylotroph B. methanolicus MGA3 growing on methanol, mannitol, and arabitol to compare the associated metabolic states. On methanol, results showed a greater flux in the ribulose monophosphate (RuMP) pathway than in the tricarboxylic acid (TCA) cycle, thus validating previous findings on the methylotrophy of B. methanolicus. New insights related to the utilization of cyclic RuMP versus linear dissimilation pathways and between the RuMP variants were generated. Importantly, we demonstrated that the linear detoxification pathways and the malic enzyme shared with the pentose phosphate pathway have an important role in cofactor regeneration. Finally, we identified, for the first time, the metabolic pathway used to assimilate arabitol. Overall, those data provide a better understanding of this strain under various environmental conditions. IMPORTANCE Methanol is inexpensive, is easy to transport, and can be produced both from renewable and from fossil resources without mobilizing arable lands. As such, it is regarded as a potential carbon source to transition toward a greener industrial chemistry. Metabolic engineering of bacteria and yeast able to efficiently consume methanol is expected to provide cell factories that will transform methanol into higher-value chemicals in the so-called methanol economy. Toward that goal, the study of natural methylotrophs such as Bacillus methanolicus is critical to understand the origin of their efficient methylotrophy. This knowledge will then be leveraged to transform such natural strains into new cell factories or to design methylotrophic capability in other strains already used by the industry.
Collapse
|
40
|
YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass. J Biosci Bioeng 2020; 131:39-46. [PMID: 32967812 DOI: 10.1016/j.jbiosc.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022]
Abstract
Aldehydes are the main inhibitors generated during the pretreatment of lignocellulosic biomass, which can inhibit cell growth and disturb subsequent fermentation. Saccharomyces cerevisiae has the intrinsic ability to in situ detoxify aldehydes to their less toxic or nontoxic alcohols by numerous aldehyde dehydrogenases/reductases during the lag phase. Herein, we report that an uncharacterized open reading frame YMR152W from S. cerevisiae encodes a novel aldehyde reductase with catalytic functions for reduction of at least six aldehydes, including two furan aldehydes (furfural and 5-hydroxymethylfurfural), three aliphatic aldehydes (acetaldehyde, glycolaldehyde, and 3-methylbutanal), and an aromatic aldehyde (benzaldehyde) with NADH or NADPH as the co-factor. Particularly, Ymr152wp displayed the highest specific activity (190.86 U/mg), and the best catalytic rate constant (Kcat), catalytic efficiency (Kcat/Km), and affinity (Km) when acetaldehyde was used as the substrate with NADH as the co-factor. The optimum pH of Ymr152wp is acidic (pH 5.0-6.0), but this enzyme is more stable in alkaline conditions (pH 8.0). Metal ions, chemical protective additives, salts, and substrates could stimulate or inhibit enzyme activities of Ymr152wp in varying degrees. Ymr152wp was classified into the quinone oxidoreductase (QOR) subfamily of the medium-chain dehydrogenase/reductase (MDR) family based on the results of amino acid sequence analysis and phylogenetic analysis. Although Ymr152wp was grouped into the QOR family, no quinone reductase activity was observed using typical quinones (9,10-phenanthrenequinone, 1,2-naphthoquinone, and p-benzoquinone) as the substrates. This study provides guidelines for exploring more uncharacterized aldehyde reductases in S. cerevisiae for in situ detoxification of aldehyde inhibitors derived from lignocellulosic hydrolysis.
Collapse
|
41
|
Lee SG, Harline K, Abar O, Akadri SO, Bastian AG, Chen HYS, Duan M, Focht CM, Groziak AR, Kao J, Kottapalli JS, Leong MC, Lin JJ, Liu R, Luo JE, Meyer CM, Mo AF, Pahng SH, Penna V, Raciti CD, Srinath A, Sudhakar S, Tang JD, Cox BR, Holland CK, Cascella B, Cruz W, McClerkin SA, Kunkel BN, Jez JM. The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. J Biol Chem 2020; 295:13914-13926. [PMID: 32796031 DOI: 10.1074/jbc.ra120.014747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. Here we investigate the biochemical function of AldC from PtoDC3000. Analysis of the substrate profile of AldC suggests that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. The 2.5 Å resolution X-ray crystal of the AldC C291A mutant in a dead-end complex with octanal and NAD+ reveals an apolar binding site primed for aliphatic aldehyde substrate recognition. Functional characterization of site-directed mutants targeting the substrate- and NAD(H)-binding sites identifies key residues in the active site for ligand interactions, including those in the "aromatic box" that define the aldehyde-binding site. Overall, this study provides molecular insight for understanding the evolution of the prokaryotic aldehyde dehydrogenase superfamily and their diversity of function.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Kate Harline
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Orchid Abar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sakirat O Akadri
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander G Bastian
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hui-Yuan S Chen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Duan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caroline M Focht
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda R Groziak
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jesse Kao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Matthew C Leong
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joy J Lin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regina Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joanna E Luo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christine M Meyer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Albert F Mo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Seong Ho Pahng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vinay Penna
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chris D Raciti
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abhinav Srinath
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shwetha Sudhakar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph D Tang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian R Cox
- Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Barrie Cascella
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wilhelm Cruz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sheri A McClerkin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
42
|
Kuang X, Ouyang Y, Guo Y, Li Q, Wang H, Abrha GT, Ayepa E, Gu Y, Li X, Chen Q, Ma M. New insights into two yeast BDHs from the PDH subfamily as aldehyde reductases in context of detoxification of lignocellulosic aldehyde inhibitors. Appl Microbiol Biotechnol 2020; 104:6679-6692. [PMID: 32556414 DOI: 10.1007/s00253-020-10722-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
At least 24 aldehyde reductases from Saccharomyces cerevisiae have been characterized and most function in in situ detoxification of lignocellulosic aldehyde inhibitors, but none is classified into the polyol dehydrogenase (PDH) subfamily of the medium-chain dehydrogenase/reductase (MDR) superfamily. This study confirmed that two (2R,3R)-2,3-butanediol dehydrogenases (BDHs) from industrial (denoted Y)/laboratory (denoted B) strains of S. cerevisiae, Bdh1p(Y)/Bdh1p(B) and Bdh2p(Y)/Bdh2p(B), were members of the PDH subfamily with an NAD(P)H binding domain and a catalytic zinc binding domain, and exhibited reductive activities towards lignocellulosic aldehyde inhibitors, such as acetaldehyde, glycolaldehyde, and furfural. Especially, the highest enzyme activity towards acetaldehyde by Bdh2p(Y) was 117.95 U/mg with cofactor nicotinamide adenine dinucleotide reduced (NADH). Based on the comparative kinetic property analysis, Bdh2p(Y)/Bdh2p(B) possessed higher specific activity, substrate affinity, and catalytic efficiency towards glycolaldehyde than Bdh1p(Y)/Bdh1p(B). This was speculated to be related to their 49% sequence differences and five nonsynonymous substitutions (Ser41Thr, Glu173Gln, Ile270Leu, Ile316Met, and Gly317Cys) occurred in their conserved NAD(P)H binding domains. Compared with BDHs from a laboratory strain, Bdh1p(Y) and Bdh2p(Y) from an industrial strain displayed five nonsynonymous mutations (Thr12, Asn61, Glu168, Val222, and Ala235) and three nonsynonymous mutations (Ala34, Ile96, and Ala369), respectively. From a first analysis with selected aldehydes, their reductase activities were different from BDHs of laboratory strain, and their catalytic efficiency was higher towards glycolaldehyde and lower towards acetaldehyde. Comparative investigation of kinetic properties of BDHs from S. cerevisiae as aldehyde reductases provides a guideline for their practical applications in in situ detoxification of aldehyde inhibitors during lignocellulose bioconversion.Key Points• Two yeast BDHs have enzyme activities for reduction of aldehydes.• Overexpression of BDHs slightly improves yeast tolerance to acetaldehyde and glycolaldehyde.• Bdh1p and Bdh2p differ in enzyme kinetic properties.• BDHs from strains with different genetic backgrounds differ in enzyme kinetic properties.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yidan Ouyang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yaping Guo
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.,Patent Examination Cooperation Sichuan Center of the Patent Office, SIPO, Chengdu, 610213, Sichuan, People's Republic of China
| | - Qian Li
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hanyu Wang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Getachew Tafere Abrha
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ellen Ayepa
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yunfu Gu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiang Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Menggen Ma
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China. .,Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
43
|
Nguyen GT, Kim YG, Ahn JW, Chang JH. Structural Basis for Broad Substrate Selectivity of Alcohol Dehydrogenase YjgB from Escherichia coli. Molecules 2020; 25:molecules25102404. [PMID: 32455802 PMCID: PMC7287880 DOI: 10.3390/molecules25102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/02/2022] Open
Abstract
In metabolic engineering and synthetic biology fields, there have been efforts to produce variable bioalcohol fuels, such as isobutanol and 2-phenylethanol, in order to meet industrial demands. YjgB is an aldehyde dehydrogenase from Escherichia coli that shows nicotinamide adenine dinucleotide phosphate (NADP)-dependent broad selectivity for aldehyde derivatives with an aromatic ring or small aliphatic chain. This could contribute to the design of industrial synthetic pathways. We determined the crystal structures of YjgB for both its apo-form and NADP-complexed form at resolutions of 1.55 and 2.00 Å, respectively, in order to understand the mechanism of broad substrate selectivity. The hydrophobic pocket of the active site and the nicotinamide ring of NADP(H) are both involved in conferring its broad specificity toward aldehyde substrates. In addition, based on docking-simulation data, we inferred that π–π stacking between substrates and aromatic side chains might play a crucial role in recognizing substrates. Our structural analysis of YjgB might provide insights into establishing frameworks to understand its broad substrate specificity and develop engineered enzymes for industrial biofuel synthesis.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Yeon-Gil Kim
- Beamline Science Division, Pohang Accelerator Laboratory, 127 Jigok-ro, Nam-Gu, Pohang, Gyoungbuk 37673, Korea;
| | - Jae-Woo Ahn
- Postech Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang, Gyoungbuk 37673, Korea
- Correspondence: (J.-W.A.); (J.H.C.); Tel.: +82-54-279-8648 (J.-W.A.); +82-53-950-5913 (J.H.C.); Fax: +82-54-279-8379 (J.-W.A.); +82-53-950-6809 (J.H.C.); M.P.: +82-10-9578-1734 (J.-W.A.); +82-10-4765-1107 (J.H.C.)
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: (J.-W.A.); (J.H.C.); Tel.: +82-54-279-8648 (J.-W.A.); +82-53-950-5913 (J.H.C.); Fax: +82-54-279-8379 (J.-W.A.); +82-53-950-6809 (J.H.C.); M.P.: +82-10-9578-1734 (J.-W.A.); +82-10-4765-1107 (J.H.C.)
| |
Collapse
|
44
|
Zhao TJ, Zhang JJ, Wang HH, Su J, Li XH, Chen JS. Biomimetic Design of a 3 D Transition Metal/Carbon Dyad for the One-Step Hydrodeoxygenation of Vanillin. CHEMSUSCHEM 2020; 13:1900-1905. [PMID: 31944610 DOI: 10.1002/cssc.201902937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Enzyme catalysts always show an excellent catalytic selectivity, which is important in biochemistry, especially in catalytic synthesis and biopharming. This selectivity is achieved by combining the binding effect induced by the electrostatic effect of the enzyme to attract a specific substrate and then the prearrangement of the substrates inside the enzyme pocket. Herein, we report a proof-of-concept application of an interfacial electrostatic field induced by constructing Schottky heterojunctions to mimic the electrostatic catalysis of an enzyme. In combination with the 3 D structure, a transition metal/carbon dyad was designed by nanoconfinement methods to promote the differential binding effect and the space-induced organization of the reaction intermediate (vanillyl alcohol) to develop a new one-step hydrogenolysis of vanillin for the production of 2-methoxy-4-methylphenol with a remarkably high selectivity (>99 %).
Collapse
Affiliation(s)
- Tian-Jian Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun-Jun Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hong-Hui Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Juan Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
45
|
Hu X, Han X, Wu L, Wang H, Ouyang Y, Li Q, Kuang X, Xiang Q, Yu X, Li X, Gu Y, Zhao K, Chen Q, Ma M. The open reading frame 02797 from Candida tropicalis encodes a novel NADH-dependent aldehyde reductase. Protein Expr Purif 2020; 171:105625. [PMID: 32173567 DOI: 10.1016/j.pep.2020.105625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Owing to its high-temperature tolerance, robustness, and wide use of carbon sources, Candida tropicalis is considered a good candidate microorganism for bioconversion of lignocellulose to ethanol. It also has the intrinsic ability to in situ detoxify aldehydes derived from lignocellulosic hydrolysis. However, the aldehyde reductases that catalyze this bioconversion in C. tropicalis remain unknown. Herein, we found that the uncharacterized open reading frame (ORF), CTRG_02797, from C. tropicalis encodes a novel and broad substrate-specificity aldehyde reductase that reduces at least seven aldehydes. This enzyme strictly depended on NADH rather than NADPH as the co-factor for catalyzing the reduction reaction. Its highest affinity (Km), maximum velocity (Vmax), catalytic rate constant (Kcat), and catalytic efficiency (Kcat/Km) were observed when reducing acetaldehyde (AA) and its enzyme activity was influenced by different concentrations of salts, metal ions, and chemical protective additives. Protein localization assay demonstrated that Ctrg_02797p was localized in the cytoplasm in C. tropicalis cells, which ensures an effective enzymatic reaction. Finally, Ctrg_02797p was grouped into the cinnamyl alcohol dehydrogenase (CADH) subfamily of the medium-chain dehydrogenase/reductase family. This research provides guidelines for exploring more uncharacterized genes with reduction activity for detoxifying aldehydes.
Collapse
Affiliation(s)
- Xiangdong Hu
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xuebing Han
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Lan Wu
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Hanyu Wang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Yidan Ouyang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Qian Li
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xiaolin Kuang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Yunfu Gu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Qiang Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Menggen Ma
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China; Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China.
| |
Collapse
|
46
|
Understanding (R) Specific Carbonyl Reductase from Candida parapsilosis ATCC 7330 [CpCR]: Substrate Scope, Kinetic Studies and the Role of Zinc. Catalysts 2019. [DOI: 10.3390/catal9090702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CpCR, an (R) specific carbonyl reductase, so named because it gave (R)-alcohols on asymmetric reduction of ketones and ketoesters, is a recombinantly expressed enzyme from Candida parapsilosis ATCC 7330. It turns out to be a better aldehyde reductase and catalyses cofactor (NADPH) specific reduction of aliphatic and aromatic aldehydes. Kinetics studies against benzaldehyde and 2,4-dichlorobenzaldehyde show that the enzyme affinity and rate of reaction change significantly upon substitution on the benzene ring of benzaldehyde. CpCR, an MDR (medium chain reductase/dehydrogenase) containing both structural and catalytic Zn atoms, exists as a dimer, unlike the (S) specific reductase (SRED) from the same yeast which can exist in both dimeric and tetrameric forms. Divalent metal salts inhibit the enzyme even at nanomolar concentrations. EDTA chelation decreases CpCR activity. However, chelation done after the enzyme is pre-incubated with the NADPH retains most of the activity implying that Zn removal is largely prevented by the formation of the enzyme-cofactor complex.
Collapse
|
47
|
Chen H, Bian Z, Ravichandran V, Li R, Sun Y, Huo L, Fu J, Bian X, Xia L, Tu Q, Zhang Y. Biosynthesis of polyketides by trans-AT polyketide synthases in Burkholderiales. Crit Rev Microbiol 2019; 45:162-181. [PMID: 31218924 DOI: 10.1080/1040841x.2018.1514365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the β-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.
Collapse
Affiliation(s)
- Hanna Chen
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Zhilong Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Vinothkannan Ravichandran
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Ruijuan Li
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Yi Sun
- c Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing , People's Republic of China
| | - Liujie Huo
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Jun Fu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Xiaoying Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Liqiu Xia
- b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Qiang Tu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Youming Zhang
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| |
Collapse
|
48
|
Wang H, Li Q, Zhang Z, Zhou C, Ayepa E, Abrha GT, Han X, Hu X, Yu X, Xiang Q, Li X, Gu Y, Zhao K, Xie C, Chen Q, Ma M. YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural. Appl Microbiol Biotechnol 2019; 103:5699-5713. [DOI: 10.1007/s00253-019-09885-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
|
49
|
Knuuttila M, Hämäläinen E, Poutanen M. Applying mass spectrometric methods to study androgen biosynthesis and metabolism in prostate cancer. J Mol Endocrinol 2019; 62:R255-R267. [PMID: 30917337 DOI: 10.1530/jme-18-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Recent development of gas chromatography and liquid chromatography-tandem mass spectrometry (GC-MS/MS, LC-MS/MS) has provided novel tools to define sex steroid concentrations. These new methods overcome several of the problems associated with immunoassays for sex steroids. With the novel MS-based applications we are now able to measure small concentrations of the steroid hormones reliably and with high accuracy in both body fluids and tissue homogenates. The sensitivity of the tandem mass spectrometry assays allows us also for the first time to reliably measure picomolar or even femtomolar concentrations of estrogens and androgens. Furthermore, due to a high sensitivity and specificity of MS technology, we are also able to measure low concentrations of steroid hormones of interest in the presence of pharmacological concentration of other steroids and structurally closely related compounds. Both of these features are essential for multiple preclinical models for prostate cancer. The MS assays are also valuable for the simultaneous measurement of multiple steroids and their metabolites in small sample volumes in serum and tissue biopsies of prostate cancer patients before and after drug interventions. As a result, novel information about steroid hormone synthesis and metabolic pathways in prostate cancer has been obtained. In our recent studies, we have extensively applied a GC-MS/MS method to study androgen biosynthesis and metabolism in VCaP prostate cancer xenografts in mice. In the present review, we shortly summarize some of the benefits of the GC-MS/MS and novel LC-MS/MS assays, and provide examples of their use in defining novel mechanisms of androgen action in prostate cancer.
Collapse
Affiliation(s)
- Matias Knuuttila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry and HUSLAB, Helsinki University and Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Larson SB, Jones JA, McPherson A. The structure of an iron-containing alcohol dehydrogenase from a hyperthermophilic archaeon in two chemical states. Acta Crystallogr F Struct Biol Commun 2019; 75:217-226. [PMID: 30950821 PMCID: PMC6450521 DOI: 10.1107/s2053230x19001201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 11/10/2022] Open
Abstract
An iron-containing alcohol dehydrogenase (FeADH) from the hyperthermophilic archaeon Thermococcus thioreducens was crystallized in unit cells belonging to space groups P21, P212121 and P43212, and the crystal structures were solved at 2.4, 2.1 and 1.9 Å resolution, respectively, by molecular replacement using the FeADH from Thermotoga maritima (Schwarzenbacher et al., 2004) as a model. In the monoclinic and orthorhombic crystals the dehydrogenase (molecular mass 41.5 kDa) existed as a dimer containing a twofold noncrystallographic symmetry axis, which was crystallographic in the tetragonal crystals. In the monoclinic and orthorhombic asymmetric units one molecule contained iron and an NADP molecule, while the other did not. The tetragonal crystals lacked both iron and NADP. The structure is very similar to that of the FeADH from T. maritima (average r.m.s. difference for Cα atoms of 1.8 Å for 341 aligned atoms). The iron, which is internally sequestered, is bound entirely by amino acids from one domain: three histidines and one aspartic acid. The coenzyme is in an extended conformation, a feature that is common to the large superfamily of NADH-dependent dehydrogenases that share a classical nucleotide-binding domain. A long broad tunnel passes entirely through the enzyme between the two domains, completely encapsulating the coenzyme.
Collapse
Affiliation(s)
- Steven B. Larson
- Department of Molecular Biology and Biochemistry, University of California, 530A Steinhaus Hall, Irvine, CA 92697-3900, USA
| | - Jesse A. Jones
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Alexander McPherson
- Department of Molecular Biology and Biochemistry, University of California, 530A Steinhaus Hall, Irvine, CA 92697-3900, USA
| |
Collapse
|