1
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024:1-15. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
2
|
Park S, Kim MA, Sohn YC. Characterization of myoinhibitory peptide signaling system and its implication in larval metamorphosis and spawning behavior in Pacific abalone. Gen Comp Endocrinol 2024; 353:114521. [PMID: 38621462 DOI: 10.1016/j.ygcen.2024.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Myoinhibitory peptides (MIPs) affect various physiological functions, including juvenile hormone signaling, muscle contraction, larval development, and reproduction in invertebrates. Although MIPs are ligands for MIP and/or sex peptide receptors (MIP/SPRs) in diverse arthropods and model organisms belonging to Lophotrochozoa, the MIP signaling system has not yet been fully investigated in mollusks. In this study, we identified the MIP signaling system in the Pacific abalone Haliotis discus hannai (Hdh). Similar to the invertebrate MIPs, a total of eight paracopies of MIPs (named Hdh-MIP1 to Hdh-MIP8), harboring a WX5-7Wamide motif, except for Hdh-MIP2, were found in the Hdh-MIP precursor. Furthermore, we characterized a functional Hdh-MIPR, which responded to the Hdh-MIPs, except for Hdh-MIP2, possibly linked with the PKC/Ca2+ and PKA/cAMP signaling pathways. Hdh-MIPs delayed larval metamorphosis but increased the spawning behavior. These results suggest that the Hdh-MIP signaling system provides insights into the unique function of MIP in invertebrates.
Collapse
Affiliation(s)
- Sungwoo Park
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Mi Ae Kim
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
3
|
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski MEH, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 2024; 227:iyae034. [PMID: 38551457 PMCID: PMC11075561 DOI: 10.1093/genetics/iyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 05/08/2024] Open
Abstract
Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.
Collapse
Affiliation(s)
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. Mol Biol Evol 2024; 41:msae065. [PMID: 38518286 PMCID: PMC11017328 DOI: 10.1093/molbev/msae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide binds to the sex peptide receptor, triggering a series of post-mating responses. However, the origin of sex peptide receptor predates the emergence of sex peptide. The evolutionary origins of the interactions between sex peptide and sex peptide receptor and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study sex peptide-sex peptide receptor interactions and their origination. Using AlphaFold2 and long-time molecular dynamics simulations, we predicted the structure and dynamics of sex peptide-sex peptide receptor interactions. We show that sex peptide potentially binds to the ancestral states of Diptera sex peptide receptor. Notably, we found that only a few amino acid changes in sex peptide receptor are sufficient for the formation of sex peptide-sex peptide receptor interactions. Ancestral sequence reconstruction and molecular dynamics simulations further reveal that sex peptide receptor interacts with sex peptide through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides. We propose a potential mechanism whereby sex peptide-sex peptide receptor interactions arise from the preexisting myoinhibitory peptides-sex peptide receptor interface as well as early chance events both inside and outside the preexisting interface that created novel sex peptide-specific sex peptide-sex peptide receptor interactions. Our findings provide new insights into the origin and evolution of sex peptide-sex peptide receptor interactions and their relationship with myoinhibitory peptides-sex peptide receptor interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567744. [PMID: 38013995 PMCID: PMC10680801 DOI: 10.1101/2023.11.19.567744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide (SP) binds to the sex peptide receptor (SPR), triggering a series of post-mating responses. However, the origin of SPR predates the emergence of SP. The evolutionary origins of the interactions between SP and SPR and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study SP-SPR interactions and their origination. Using AlphaFold2 and long-time molecular dynamics (MD) simulations, we predicted the structure and dynamics of SP-SPR interactions. We show that SP potentially binds to the ancestral states of Diptera SPR. Notably, we found that only a few amino acid changes in SPR are sufficient for the formation of SP-SPR interactions. Ancestral sequence reconstruction and MD simulations further reveal that SPR interacts with SP through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides (MIPs). We propose a potential mechanism whereby SP-SPR interactions arise from the pre-existing MIP-SPR interface as well as early chance events both inside and outside the pre-existing interface that created novel SP-specific SP-SPR interactions. Our findings provide new insights into the origin and evolution of SP-SPR interactions and their relationship with MIP-SPR interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
6
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. Proc Natl Acad Sci U S A 2024; 121:e2312380120. [PMID: 38215185 PMCID: PMC10801855 DOI: 10.1073/pnas.2312380120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
7
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547128. [PMID: 37425821 PMCID: PMC10327216 DOI: 10.1101/2023.06.29.547128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appear to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, SPR, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| | | | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis, CA, USA
| |
Collapse
|
8
|
Zhou Y, Zhou L, Li Q, Zhu X, Yu Z, Ke H, Chen Q, Ren B. Transcriptome analysis and identification of genes related to environmental adaptation of Grylloprimevala jilina Zhou & Ren 2023. Ecol Evol 2023; 13:e10717. [PMID: 38020696 PMCID: PMC10659822 DOI: 10.1002/ece3.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Grylloprimevala jilina is a true cave insect living in the dark areas of caves. It has the characteristics of sparse skin pigmentation, degeneration of the compound eyes and monocular eyes, and obvious preference for high-humidity and low-temperature environments. Given the highly specialized, rare, and limited distribution, G. jilina is considered an endangered species and also a first-level national protected insect in China. Cave creatures often undergo dramatic morphological changes in their sensory systems to adapt to the cave environment. Most previous studies mainly focused on morphological adaptive changes in cave insects, and only a few studied the changes at the gene level. In this study, we performed transcriptome analysis of G. jilina and constructed phylogenetic trees of genes that are related to environmental adaptation, including chemosensory, visual-related, reproduction-related, temperature adaptation-related, and winged morph differentiation-related genes. Besides, the expression levels of environmental adaption-related genes in different tissues, including antennae, heads, thoraxes, abdomens, legs, and tails, were analyzed. The results showed the loss of chemosensory genes and vision-related genes, the conservation of reproduction-related genes and temperature adaptation-related genes, and the conservation of wing-related genes despite the loss of wings, and the results were consistent with other cave insects. The identification and expression study of genes possibly related to the environmental adaptability in G. jilina provided basic data for the protection of this endangered species and increased knowledge about insect evolution in general.
Collapse
Affiliation(s)
- Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Lin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
- Istitude of Plant Protection Jilim Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast ChinaMinistry of Agriculture and Rural AreasGongzhlingChina
| | - Qiuyao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Zhongbo Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Haoqin Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| |
Collapse
|
9
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
10
|
Wang HY, Yu K, Liu WJ, Jiang HM, Guo SQ, Xu JP, Li YD, Chen P, Ding XY, Fu P, Zhang YCF, Mei YS, Zhang G, Zhou HB, Jing J. Molecular Characterization of Two Wamide Neuropeptide Signaling Systems in Mollusk Aplysia. ACS Chem Neurosci 2023. [PMID: 37339428 DOI: 10.1021/acschemneuro.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Neuropeptides with the C-terminal Wamide (Trp-NH2) are one of the last common ancestors of peptide families of eumetazoans and play various physiological roles. In this study, we sought to characterize the ancient Wamide peptides signaling systems in the marine mollusk Aplysia californica, i.e., APGWamide (APGWa) and myoinhibitory peptide (MIP)/Allatostatin B (AST-B) signaling systems. A common feature of protostome APGWa and MIP/AST-B peptides is the presence of a conserved Wamide motif in the C-terminus. Although orthologs of the APGWa and MIP signaling systems have been studied to various extents in annelids or other protostomes, no complete signaling systems have yet been characterized in mollusks. Here, through bioinformatics, molecular and cellular biology, we identified three receptors for APGWa, namely, APGWa-R1, APGWa-R2, and APGWa-R3. The EC50 values for APGWa-R1, APGWa-R2, and APGWa-R3 are 45, 2100, and 2600 nM, respectively. For the MIP signaling system, we predicted 13 forms of peptides, i.e., MIP1-13 that could be generated from the precursor identified in our study, with MIP5 (WKQMAVWa) having the largest number of copies (4 copies). Then, a complete MIP receptor (MIPR) was identified and the MIP1-13 peptides activated the MIPR in a dose-dependent manner, with EC50 values ranging from 40 to 3000 nM. Peptide analogs with alanine substitution experiments demonstrated that the Wamide motif at the C-terminus is necessary for receptor activity in both the APGWa and MIP systems. Moreover, cross-activity between the two signaling systems showed that MIP1, 4, 7, and 8 ligands could activate APGWa-R1 with a low potency (EC50 values: 2800-22,000 nM), which further supported that the APGWa and MIP signaling systems are somewhat related. In summary, our successful characterization of Aplysia APGWa and MIP signaling systems represents the first example in mollusks and provides an important basis for further functional studies in this and other protostome species. Moreover, this study may be useful for elucidating and clarifying the evolutionary relationship between the two Wamide signaling systems (i.e., APGWa and MIP systems) and their other extended neuropeptide signaling systems.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui-Min Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ya-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Chu-Fei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Shuo Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hai-Bo Zhou
- Peng Cheng Laboratory, Shenzhen 518000, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
11
|
Riva S, Ispizua JI, Breide MT, Polcowñuk S, Lobera JR, Ceriani MF, Risau-Gusman S, Franco DL. Mating disrupts morning anticipation in Drosophila melanogaster females. PLoS Genet 2022; 18:e1010258. [PMID: 36548223 PMCID: PMC9779042 DOI: 10.1371/journal.pgen.1010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
After mating, the physiology of Drosophila females undergo several important changes, some of which are reflected in their rest-activity cycles. To explore the hypothesis that mating modifies the temporal organization of locomotor activity patterns, we recorded fly activity by a video tracking method. Monitoring rest-activity patterns under light/dark (LD) cycles indicated that mated females lose their ability to anticipate the night-day transition, in stark contrast to males and virgins. This postmating response is mediated by the activation of the sex peptide receptor (SPR) mainly on pickpocket (ppk) expressing neurons, since reducing expression of this receptor in these neurons restores the ability to anticipate the LD transition in mated females. Furthermore, we provide evidence of connectivity between ppk+ neurons and the pigment-dispersing factor (PDF)-positive ventral lateral neurons (sLNv), which play a central role in the temporal organization of daily activity. Since PDF has been associated to the generation of the morning activity peak, we hypothesized that the mating signal could modulate PDF levels. Indeed, we confirm that mated females have reduced PDF levels at the dorsal protocerebrum; moreover, SPR downregulation in ppk+ neurons mimics PDF levels observed in males. In sum, our results are consistent with a model whereby mating-triggered signals reach clock neurons in the fly central nervous system to modulate the temporal organization of circadian behavior according to the needs of the new status.
Collapse
Affiliation(s)
- Sabrina Riva
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Juan Ignacio Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - María Trinidad Breide
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Sofía Polcowñuk
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - José Ricardo Lobera
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - María Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - Sebastian Risau-Gusman
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
- * E-mail: (SRG); (DLF)
| | - Diana Lorena Franco
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
- * E-mail: (SRG); (DLF)
| |
Collapse
|
12
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Li J, Lv H, Li X, Yao Y, Li J, Ma K. Identification and expression analysis of G protein-coupled receptors in the cotton aphid, Aphis gossypii Glover. Int J Biol Macromol 2022; 224:115-124. [DOI: 10.1016/j.ijbiomac.2022.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
14
|
Hensgen R, Dippel S, Hümmert S, Jahn S, Seyfarth J, Homberg U. Myoinhibitory peptides in the central complex of the locust Schistocerca gregaria and colocalization with locustatachykinin-related peptides. J Comp Neurol 2022; 530:2782-2801. [PMID: 35700405 DOI: 10.1002/cne.25374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
The central complex in the brain of insects provides a neural network for sensorimotor processing that is essential for spatial navigation and locomotion and plays a role in sleep control. Studies on the neurochemical architecture of the central complex have been performed especially in the fruit fly Drosophila melangoaster and the desert locust, Schistocerca gregaria. In several insect species, myoinhibitory peptides (MIPs) are involved in circadian control and sleep-wake regulation. To identify neurons that might underlie these functions, we investigated the distribution of MIPs in the central complex of the locust. In silico transcript analysis suggests the presence of eight different MIPs in the desert locust. Through immunolabeling, we identified five systems of central-complex neurons that express MIP-like peptides. Two systems constitute columnar neurons of the protocerebral bridge and the lower division of the central body, while the other three systems are columnar neurons (two systems) and tangential neurons (one system) of the upper division of the central body. The innervation pattern and cell count of two systems of columnar neurons revealed the existence of 18 instead of 16 columns of the protocerebral bridge. Immunostaining of preparations containing intracellularly stained single cells allowed us to further specify subtypes of labeled columnar neurons. Double-label experiments showed that three systems of MIP-immunostained columnar neurons are also locustatachykinin-immunoreactive. No colocalization was found with serotonin immunostaining. The data provide novel insights into the architecture of the locust central complex and suggest that MIPs play a prominent role within the central-complex network.
Collapse
Affiliation(s)
- Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Zoology, and Developmental Biology, Justus Liebig University of Giessen, Gießen, Germany
| | - Sophie Hümmert
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
15
|
Bai S, Fan S, Liu D, Zhang Z, Zhang Z. Identification and expression analysis of receptors that mediate MIP regulating larval settlement in Urechis unicinctus. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110732. [PMID: 35278715 DOI: 10.1016/j.cbpb.2022.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Larval attachment and metamorphosis are important processes during the development of some marine invertebrates. Myoinhibitory peptides (MIPs), a class of small molecular neuropeptides, have been revealed to be involved in regulating the larval settlement. In this paper, we identified two types of MIP membrane receptors, G-protein coupled receptor SPR and MIP-gated ion channel receptors MGIC1 and MGIC2 based on sequence homology with other species in the transcriptome database of Echiuroidea Urechis unicinctus (Xenopneusta, Urechidae). The results of in situ hybridization showed that positive signals of these receptors were obviously located in the apex of the segmentation larvae, a critical stage of U. unicinctus larval settlement. Further, these receptors were determined on the membrane of HEK293 cells by immunohistochemistry. Also, we verified that U. unicinctus MIP can activate its SPR receptor based on the results of the significantly decreased cAMP concentration in HEK293 cells. Our data will provide scientific reference for elucidating mechanism of neuropeptide regulating the larval attachment and metamorphosis in marine invertebrates.
Collapse
Affiliation(s)
- Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shutong Fan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breesing Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
16
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
17
|
Majane AC, Cridland JM, Begun DJ. Single-nucleus transcriptomes reveal evolutionary and functional properties of cell types in the Drosophila accessory gland. Genetics 2022; 220:iyab213. [PMID: 34849871 PMCID: PMC9097260 DOI: 10.1093/genetics/iyab213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
Many traits responsible for male reproduction evolve quickly, including gene expression phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in polyandrous species is thought to be driven by competition among males for fertilizations and conflicts between male and female fitness interests that manifest in postcopulatory phenotypes. In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory gland and ejaculatory duct are required for female sperm storage and use, and influence female postcopulatory traits. Recent work has shown that these cell types have overlapping but distinct effects on female postcopulatory biology, yet relatively little is known about their evolutionary properties. Here, we use single-nucleus RNA-Seq of the accessory gland and ejaculatory duct from Drosophila melanogaster and two closely related species to comprehensively describe the cell diversity of these tissues and their transcriptome evolution for the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell types, and expression of many other genes additionally defines each cell type. We also report previously undocumented diversity in main cells. Transcriptome divergence was found to be heterogeneous across cell types and lineages, revealing a complex evolutionary process. Furthermore, protein adaptation varied across cell types, with potential consequences for our understanding of selection on male postcopulatory traits.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| |
Collapse
|
18
|
Liu S, Li B, Liu W, Liu Y, Ren B, Wang G. Sex peptide receptor mediates the post-mating switch in Helicoverpa armigera (Lepidoptera: Noctuidae) female reproductive behavior. PEST MANAGEMENT SCIENCE 2021; 77:3427-3435. [PMID: 33798270 DOI: 10.1002/ps.6391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In Drosophila, the sex peptide receptor (SPR) in females to detect male sex peptide (SP) and trigger changes in female behavior including mating rejection and oviposition. In moths, the SPR had been identified and investigated the limited function by using RNA interference (RNAi). However, the detailed function of SPR after a normal mating in moths, especially the role in female sexual receptivity, remains to be elucidated. RESULTS In this study, we use Helicoverpa armigera, an economically important pest worldwide, as a case study to verify the function of SPR in vivo by CRISPR/Cas9 gene editing system. Analyzing the post-mating behaviors in mutant females, we investigated that HarmSPR could mediate the long-term sexual receptivity (remating, sex pheromone production and calling behavior) switch in female, but not affect the short-term sexual receptivity and the duration time of remating. The oviposition of mated HarmSPR-/- females was significantly decreased by ~70% comparing to wild-type (WT) mated females and there were more eggs staying in the ovary of mutant females. SPR also showed effect on female longevity, which is that the mated HarmSPR-/- females showed longer longevity than mated WT females. CONCLUSION The results detailedly demonstrated the functional role of SPR in female post-mating behaviors and we could propose a pest control strategy in which developing an antagonist of SPR to reduce the oviposition of female. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Identification of Sex-Related Genes from the Three-Spot Swimming Crab Portunus sanguinolentus and Comparative Analysis with the Crucifix Crab Charybdis feriatus. Animals (Basel) 2021; 11:ani11071946. [PMID: 34209957 PMCID: PMC8300171 DOI: 10.3390/ani11071946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Crabs within the family Portunidae are important marine species in both aquaculture and fishery sectors. The current aquaculture status of most portunids still relies on wild-caught fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying governing mechanism. In the present study, we compared the differentially expressed genes (DEGs) between the different sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of the family Portunidae. In total, 40,964 DEGs between the ovaries and testes of P. sanguinolentus were uncovered, with 27,578 up-regulated and 13,386 down-regulated in females. After comparison, C. feriatus has approximately 63.5% of genes in common with P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus, while its homologous gene—doublesex (DSX)—was specifically expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references for better understanding the sex determination and differentiation mechanisms among portunids. Abstract Crabs within the family Portunidae are important marine species in both aquaculture and fishery sectors. The current aquaculture status of most portunids, however, still relies on wild-caught fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying governing mechanism. With the advancement of sequencing technology, transcriptome sequencing has been progressively used to understand various physiological processes, especially on non-model organisms. In the present study, we compared the differentially expressed genes (DEGs) between sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of Family Portunidae. In total, 40,964 DEGs between ovaries and testes were uncovered, with 27,578 up- and 13,386 down-regulated in females. Among those, some sex-related DEGs were identified, including a dmrt-like (DMRT) gene which was specifically expressed in males. C. feriatus has approximately 63.5% of genes common with P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus while its homologous gene—doublesex (DSX)—was specifically expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references for better understanding the sex determination and differentiation mechanisms among portunids.
Collapse
|
20
|
Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules 2021; 26:2993. [PMID: 34069969 PMCID: PMC8157829 DOI: 10.3390/molecules26102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play important roles in cell biology and insects' physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Shikai Liu
- College of Fisheries, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
21
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
22
|
Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc Natl Acad Sci U S A 2021; 118:2018112118. [PMID: 33443193 DOI: 10.1073/pnas.2018112118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster females experience a large shift in energy homeostasis after mating to compensate for nutrient investment in egg production. To cope with this change in metabolism, mated females undergo widespread physiological and behavioral changes, including increased food intake and altered digestive processes. The mechanisms by which the female digestive system responds to mating remain poorly characterized. Here, we demonstrate that the seminal fluid protein Sex Peptide (SP) is a key modulator of female post-mating midgut growth and gene expression. SP is both necessary and sufficient to trigger post-mating midgut growth in females under normal nutrient conditions, and likely acting via its receptor, Sex Peptide Receptor (SPR). Moreover, SP is responsible for almost the totality of midgut transcriptomic changes following mating, including up-regulation of protein and lipid metabolism genes and down-regulation of carbohydrate metabolism genes. These changes in metabolism may help supply the female with the nutrients required to sustain egg production. Thus, we report a role for SP in altering female physiology to enhance reproductive output: Namely, SP triggers the switch from virgin to mated midgut state.
Collapse
|
23
|
Lee JH, Lee NR, Kim DH, Kim YJ. Molecular characterization of ligand selectivity of the sex peptide receptors of Drosophila melanogaster and Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103472. [PMID: 32971207 DOI: 10.1016/j.ibmb.2020.103472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Drosophila melanogaster sex peptide receptor (DrmSPR) is a G protein-coupled receptor (GPCR) with 'dual ligand selectivity' towards sex peptide (SP) and myoinhibitory peptides (MIPs), which are only remotely related to one another. SPR is conserved in almost all the sequenced lophotrochozoan and ecdysozoan genomes. SPRs from non-drosophilid taxa, such as those from the mosquitoes Aedes aegypti (AeaSPR), Anopheles gambiae (AngSPR), and the sea slug Aplysia californica (ApcSPR), are highly sensitive to MIP, but not to SP. To understand how Drosophila SPRs evolved their SP sensitivity while maintaining MIP sensitivity, we examined ligand selectivity in a series of chimeric GPCRs that combine domains from the SP-sensitive DrmSPR and the SP-insensitive AeaSPR. We found replacement of Pro 238 (P238) in DrmSPR with the corresponding residue from AeaSPR (L310) reduced its SP sensitivity 2.7 fold without altering its MIP sensitivity. The P238 residue located in the third extracellular loop (ECL3) is conserved in Drosophila SPRs and in SPR from the moth Bombyx mori (BomSPR), which is considerably more sensitive to SP than AeaSPR, AngSPR, or ApcSPR. We found, however, that rather than improving AeaSPR's sensitivity to SP, replacement of L310 in AeaSPR with Pro significantly reduces its MIP sensitivity. Thus, our identification of a single amino acid residue critical for SP sensitivity, but not for MIP sensitivity is an important step in clarifying how DrmSPR evolved the ability to detect SP.
Collapse
Affiliation(s)
- Jae-Hyuk Lee
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea
| | - Na-Rae Lee
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea.
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea.
| |
Collapse
|
24
|
Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, Ameku T, Studd C, de Mendoza A, Diao F, White BH, Brown AEX, Plaçais PY, Préat T, Miguel-Aliaga I. Enteric neurons increase maternal food intake during reproduction. Nature 2020; 587:455-459. [PMID: 33116314 PMCID: PMC7610780 DOI: 10.1038/s41586-020-2866-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.
Collapse
Affiliation(s)
- Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - George King
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Laura Blackie
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Tomotsune Ameku
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - André E X Brown
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Préat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
25
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
26
|
Sturm S, Dowle A, Audsley N, Isaac RE. The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103414. [PMID: 32589920 DOI: 10.1016/j.ibmb.2020.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.
Collapse
Affiliation(s)
- Sebastian Sturm
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil Audsley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
27
|
Lismont E, Verbakel L, Vogel E, Corbisier J, Degroot GN, Verdonck R, Verlinden H, Marchal E, Springael JY, Vanden Broeck J. Can BRET-based biosensors be used to characterize G-protein mediated signaling pathways of an insect GPCR, the Schistocerca gregaria CRF-related diuretic hormone receptor? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103392. [PMID: 32387240 DOI: 10.1016/j.ibmb.2020.103392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 05/26/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound receptors that are considered prime candidates for the development of novel insect pest management strategies. However, the molecular signaling properties of insect GPCRs remain poorly understood. In fact, most studies on insect GPCR signaling are limited to analysis of fluctuations in the secondary messenger molecules calcium (Ca2+) and/or cyclic adenosine monophosphate (cAMP). In the current study, we characterized a corticotropin-releasing factor-related diuretic hormone (CRF-DH) receptor of the desert locust, Schistocerca gregaria. This Schgr-CRF-DHR is mainly expressed in the nervous system and in brain-associated endocrine organs. The neuropeptide Schgr-CRF-DH induced Ca2+-dependent aequorin-based bioluminescent responses in CHO cells co-expressing this receptor with the promiscuous Gα16 protein. Furthermore, when co-expressed with the cAMP-dependent bioluminescence resonance energy transfer (BRET)-based CAMYEL biosensor in HEK293T cells, this receptor elicited dose-dependent agonist-induced responses with an EC50 in the nanomolar range (4.02 nM). In addition, we tested if vertebrate BRET-based G protein biosensors, can also be used to detect direct Gα protein subunit activation by an insect GPCR. Therefore, we analyzed ten different human BRET-based G protein biosensors, representing members of all four Gα protein subfamilies; Gαs, Gαi/o, Gαq/11 and Gα12/13. Our data demonstrate that stimulation of Schgr-CRF-DHR by Schgr-CRF-DH can dose-dependently activate Gαi/o and Gαs biosensors, while no significant effects were observed with the Gαq/11 and Gα12/13 biosensors. Our study paves the way for future biosensor-based studies to analyze the signaling properties of insect GPCRs in both fundamental science and applied research contexts.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elise Vogel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | | | | | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium; Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
28
|
Xu Z, Wei Y, Guo S, Lin D, Ye H. Short neuropeptide F enhances the immune response in the hepatopancreas of mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2020; 101:244-251. [PMID: 32272259 DOI: 10.1016/j.fsi.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Short neuropeptide F (sNPF), a highly conserved neuropeptide, displays pleiotropic functions on multiple aspects of physiological processes, such as feeding, metabolic stress, locomotion, circadian clock and reproduction. However, to date there has no any report on the possible immunoregulation of sNPF in crustaceans. In the present study, we found that the Sp-sNPF was mainly expressed in the nervous tissue in the mud crab Scylla paramamosain, while the sNPF receptor gene (Sp-sNPF-R) was expressed in a wide variety of tissues, including the hepatopancreas. In situ hybridization further showed that the Sp-sNPF-R positive signal mainly localized in the F-cells of the hepatopancreas. Moreover, the Sp-sNPF-R transcription could be significantly up-regulated after the challenge of bacteria-analog LPS or virus-analog Poly (I:C). Both in vitro and in vivo experiments showed that the synthetic sNPF peptide significantly increased the gene expressions of sNPF-R, nuclear factor-κB (NF-κB) signaling genes and antimicrobial peptides (AMPs) in the hepatopancreas. Simultaneously, the administration of sNPF peptide in vitro also increased the concentration of nitric oxide (NO) and the bacteriostasis of the culture medium of hepatopancreas. These results indicated that sNPF up-regulated hepatopancreas immune responses, which may bring new insight into the neuroendocrine-immune regulatory system in crustacean species, and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Fleites LA, Johnson R, Kruse AR, Nachman RJ, Hall DG, MacCoss M, Heck ML. Peptidomics Approaches for the Identification of Bioactive Molecules from Diaphorina citri. J Proteome Res 2020; 19:1392-1408. [PMID: 32037832 DOI: 10.1021/acs.jproteome.9b00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease, is primarily associated with Candidatus Liberibacter asiaticus (CLas) and spread by the hemipteran insect Diaphorina citri. Control strategies to combat HLB are urgently needed. In this work, we developed and compared workflows for the extraction of the D. citri peptidome, a dynamic set of polypeptides produced by proteolysis and other cellular processes. High-resolution mass spectrometry revealed bias among methods reflecting the physiochemical properties of the peptides: while TCA/acetone-based methods resulted in enrichment of C-terminally amidated peptides, a modification characteristic of bioactive peptides, larger peptides were overrepresented in the aqueous phase of chloroform/methanol extracts, possibly indicative of reduced co-analytical degradation during sample preparation. Parallel reaction monitoring (PRM) was used to validate the structure and upregulation of peptides derived from hemocyanin, a D. citri immune system protein, in insects reared on healthy and CLas-infected trees. Mining of the data sets also revealed 122 candidate neuropeptides, including PK/PBAN family neuropeptides and kinins, biostable analogs of which have known insecticidal properties. Taken together, this information yields new, in-depth insights into peptidomics methodology. Additionally, the putative neuropeptides identified may lead to psyllid mortality if applied to or expressed in citrus, consequently blocking the spread of HLB disease in citrus groves.
Collapse
Affiliation(s)
- Laura A Fleites
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853-2901, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Angela R Kruse
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| | - Ronald J Nachman
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, Texas 77845, United States
| | - David G Hall
- USDA Agricultural Research Service, US Horticulture Research Laboratory, Fort Pierce, Florida 34945, United States
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle L Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853-2901, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| |
Collapse
|
30
|
McGeary MK, Findlay GD. Molecular evolution of the sex peptide network in Drosophila. J Evol Biol 2020; 33:629-641. [PMID: 31991034 DOI: 10.1111/jeb.13597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Successful reproduction depends on interactions between numerous proteins beyond those involved directly in gamete fusion. Although such reproductive proteins evolve in response to sexual selection pressures, how networks of interacting proteins arise and evolve as reproductive phenotypes change remains an open question. Here, we investigated the molecular evolution of the 'sex peptide network' of Drosophila melanogaster, a functionally well-characterized reproductive protein network. In this species, the peptide hormone sex peptide (SP) and its interacting proteins cause major changes in female physiology and behaviour after mating. In contrast, females of more distantly related Drosophila species do not respond to SP. In spite of these phenotypic differences, we detected orthologs of all network proteins across 22 diverse Drosophila species and found evidence that most orthologs likely function in reproduction throughout the genus. Within SP-responsive species, we detected the recurrent, adaptive evolution of several network proteins, consistent with sexual selection acting to continually refine network function. We also found some evidence for adaptive evolution of several proteins along two specific phylogenetic lineages that correspond with increased expression of the SP receptor in female reproductive tracts or increased sperm length, respectively. Finally, we used gene expression profiling to examine the likely degree of functional conservation of the paralogs of an SP network protein that arose via gene duplication. Our results suggest a dynamic history for the SP network in which network members arose before the onset of robust SP-mediated responses and then were shaped by both purifying and positive selection.
Collapse
Affiliation(s)
- Meaghan K McGeary
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts
| |
Collapse
|
31
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Nowland SJ, Silva CNS, Southgate PC, Strugnell JM. Mitochondrial and nuclear genetic analyses of the tropical black-lip rock oyster (Saccostrea echinata) reveals population subdivision and informs sustainable aquaculture development. BMC Genomics 2019; 20:711. [PMID: 31514727 PMCID: PMC6740020 DOI: 10.1186/s12864-019-6052-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background The black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics. Previous attempts to farm S. echinata failed due to an insufficient supply of wild spat; however, the prospect of hatchery-based aquaculture has stimulated renewed interest, and small-scale farming is underway across northern Australia and in New Caledonia. The absence of knowledge surrounding the population genetic structure of this species has raised concerns about the genetic impacts of this emerging aquaculture industry. This study is the first to examine population genetics of S. echinata and employs both mitochondrial cytochrome c oxidase subunit I gene (COI) and single nucleotide polymorphism (SNP) markers. Results The mitochondrial COI data set included 273 sequences of 594 base pair length, which comprised 74 haplotypes. The SNP data set included 27,887 filtered SNPs for 272 oysters and of these 31 SNPs were identified as candidate adaptive loci. Data from the mitochondrial COI analyses, supports a broad tropical Indo-Pacific distribution of S. echinata, and showed high haplotype and nucleotide diversities (0.887–1.000 and 0.005–0.008, respectively). Mitochondrial COI analyses also revealed a ‘star-like’ haplotype network, and significant and negative neutrality tests (Tajima’s D = − 2.030, Fu’s Fs = − 25.638, P < 0.001) support a recent population expansion after a bottleneck. The SNP analyses showed significant levels of population subdivision and four genetic clusters were identified: (1) the Noumea (New Caledonia) sample location; (2) the Bowen (north Queensland, Australia) sample location, and remaining sample locations in the Northern Territory, Australia (n = 8) were differentiated into two genetic clusters. These occurred at either side of the Wessel Islands and were termed (3) ‘west’ and (4) ‘east’ clusters, and two migrant individuals were detected between them. The SNP data showed a significant positive correlation between genetic and geographic distance (Mantel test, P < 0.001, R2 = 0.798) and supported isolation by distance. Three candidate adaptive SNPs were identified as occurring within known genes and gene ontology was well described for the sex peptide receptor gene. Conclusions Data supports the existence of genetically distinct populations of S. echinata, suggesting that management of wild and farmed stocks should be based upon multiple management units. This research has made information on population genetic structure and connectivity available for a new aquaculture species. Electronic supplementary material The online version of this article (10.1186/s12864-019-6052-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha J Nowland
- Aquaculture Unit, Department of Primary Industry and Resources, Northern Territory Government, GPO Box 3000, Darwin, NT, 0801, Australia. .,School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia. .,Australian Centre for Pacific Islands Research and School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4556, Australia.
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Paul C Southgate
- Australian Centre for Pacific Islands Research and School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4556, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
33
|
Calkins TL, Tamborindeguy C, Pietrantonio PV. GPCR annotation, G proteins, and transcriptomics of fire ant (Solenopsis invicta) queen and worker brain: An improved view of signaling in an invasive superorganism. Gen Comp Endocrinol 2019; 278:89-103. [PMID: 30576645 DOI: 10.1016/j.ygcen.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Knowledge of G protein-coupled receptors (GPCRs) and their signaling modalities is crucial to advancing insect endocrinology, specifically in highly successful invasive social insects, such as the red imported fire ant, Solenopsis invicta Buren. In the first published draft genome of S. invicta, emphasis was placed on the annotation of olfactory receptors, and only the number of predicted GPCR genes was reported. Without an organized and curated resource for GPCRs, it will be difficult to test hypotheses on the endocrine role of neuropeptide hormones, or the function of neurotransmitters and neuromodulators. Therefore, we mined the S. invicta genome for GPCRs and found 324 predicted transcripts encoded by 125 predicted loci and improved the annotation of 55 of these loci. Among them are sixteen GPCRs that are currently annotated as "uncharacterized proteins". Further, the phylogenetic analysis of class A neuropeptide receptors presented here and the comparative listing of GPCRs in the hymenopterans S. invicta, Apis mellifera (both eusocial), Nasonia vitripennis (solitary), and the solitary model dipteran Drosophila melanogaster will facilitate comparative endocrinological studies related to social insect evolution and diversity. We compiled the 24 G protein transcripts predicted (15 α, 7 β, and 2 γ) from 12 G protein genes (5 α, 5 β, and 2 γ). Reproductive division of labor is extreme in this ant species, therefore, we compared GPCR and G protein gene expression among worker, mated queen and alate virgin queen ant brain transcriptomes. Transcripts for ten GPCRs and two G proteins were differentially expressed between queen and worker brains. The differentially expressed GPCRs are candidate receptors to explore hypotheses on division of labor in this species.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | | | |
Collapse
|
34
|
Shao L, Chung P, Wong A, Siwanowicz I, Kent CF, Long X, Heberlein U. A Neural Circuit Encoding the Experience of Copulation in Female Drosophila. Neuron 2019; 102:1025-1036.e6. [DOI: 10.1016/j.neuron.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 03/29/2019] [Indexed: 10/26/2022]
|
35
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
36
|
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:262-282. [PMID: 30974344 DOI: 10.1016/j.cbd.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Collapse
|
37
|
Peymen K, Watteyne J, Borghgraef C, Van Sinay E, Beets I, Schoofs L. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007945. [PMID: 30779740 PMCID: PMC6380545 DOI: 10.1371/journal.pgen.1007945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Aversive learning and memories are crucial for animals to avoid previously encountered stressful stimuli and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learned behaviors, but their precise role is not well understood. Here, we show that neuropeptides of the evolutionarily conserved MyoInhibitory Peptide (MIP)-family modify salt chemotaxis behavior in Caenorhabditis elegans according to previous experience. MIP signaling, through activation of the G protein-coupled receptor SPRR-2, is required for short-term gustatory plasticity. In addition, MIP/SPRR-2 neuropeptide-receptor signaling mediates another type of aversive gustatory learning called salt avoidance learning that depends on de novo transcription, translation and the CREB transcription factor, all hallmarks of long-term memory. MIP/SPRR-2 signaling mediates salt avoidance learning in parallel with insulin signaling. These findings lay a foundation to investigate the suggested orphan MIP receptor orthologs in deuterostomians, including human GPR139 and GPR142. All animals rely on learning and memory processes to learn from experience and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learning and memory processes. We found that the C. elegans receptor SPRR-2 and its ligands, the MIP-1 neuropeptides—which are members of the evolutionarily conserved myoinhibitory peptide system—are required for aversive gustatory learning. Our results provide a basis for investigations into the poorly characterized MIP systems in deuterostomians, including humans, and suggest a possible function in learning for human MIP signaling.
Collapse
Affiliation(s)
- Katleen Peymen
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Watteyne
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | - Elien Van Sinay
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Isabel Beets
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| | - Liliane Schoofs
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| |
Collapse
|
38
|
Preza M, Montagne J, Costábile A, Iriarte A, Castillo E, Koziol U. Analysis of classical neurotransmitter markers in tapeworms: Evidence for extensive loss of neurotransmitter pathways. Int J Parasitol 2018; 48:979-992. [DOI: 10.1016/j.ijpara.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
|
39
|
Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gäde G, Vanden Broeck J, Verlinden H. Analysis of Peptide Ligand Specificity of Different Insect Adipokinetic Hormone Receptors. Int J Mol Sci 2018; 19:ijms19020542. [PMID: 29439466 PMCID: PMC5855764 DOI: 10.3390/ijms19020542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/02/2023] Open
Abstract
Adipokinetic hormone (AKH) is a highly researched insect neuropeptide that induces the mobilization of carbohydrates and lipids from the fat body at times of high physical activity, such as flight and locomotion. As a naturally occurring ligand, AKH has undergone quite a number of amino acid changes throughout evolution, and in some insect species multiple AKHs are present. AKH acts by binding to a rhodopsin-like G protein-coupled receptor, which is related to the vertebrate gonadotropin-releasing hormone receptors. In the current study, we have cloned AKH receptors (AKHRs) from seven different species, covering a wide phylogenetic range of insect orders: the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti (Diptera); the red flour beetle, Tribolium castaneum, and the large pine weevil, Hylobius abietis (Coleoptera); the honeybee, Apis mellifera (Hymenoptera); the pea aphid, Acyrthosiphon pisum (Hemiptera); and the desert locust, Schistocerca gregaria (Orthoptera). The agonistic activity of different insect AKHs, including the respective endogenous AKHs, at these receptors was tested with a bioluminescence-based assay in Chinese hamster ovary cells. All receptors were activated by their endogenous ligand in the nanomolar range. Based on our data, we can refute the previously formulated hypothesis that a functional AKH signaling system is absent in the beneficial species, Apis mellifera. Furthermore, our data also suggest that some of the investigated AKH receptors, such as the mosquito AKHR, are more selective for the endogenous (conspecific) ligand, while others, such as the locust AKHR, are more promiscuous and can be activated by AKHs from many other insects. This information will be of high importance when further analyzing the potential use of AKHRs as targets for developing novel pest control agents.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Sam Schellens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Evert Bruyninckx
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
40
|
Jang YH, Chae HS, Kim YJ. Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat Commun 2017; 8:1630. [PMID: 29158481 PMCID: PMC5696375 DOI: 10.1038/s41467-017-01794-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/13/2017] [Indexed: 11/09/2022] Open
Abstract
Upon mating, fruit fly females become refractory to further mating for several days. An ejaculate protein called sex peptide (SP) acts on uterine neurons to trigger this behavioural change, but it is still unclear how the SP signal modifies the mating decision. Here we describe two groups of female-specific local interneurons that are important for this process—the ventral abdominal lateral (vAL) and ventral abdominal medial (vAM) interneurons. Both vAL and vAM express myoinhibitory peptide (Mip)-GAL4. vAL is positive for Mip neuropeptides and the sex-determining transcriptional factor doublesex. Silencing the Mip neurons in females induces active rejection of male courtship attempts, whereas activation of the Mip neurons makes even mated females receptive to re-mating. vAL and vAM are located in the abdominal ganglion (AG) where they relay the SP signal to other AG neurons that project to the brain. Mip neuropeptides appear to promote mating receptivity both in virgins and mated females, although it is dispensable for normal mating in virgin females. After mating, female flies are not receptive to re-mating with a new male fly, a response triggered by a male seminal protein called sex peptide. Here, the authors work out the downstream circuits and neurons that are important for post-mating receptivity in female flies.
Collapse
Affiliation(s)
- Yong-Hoon Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyo-Seok Chae
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
41
|
Yeoh JGC, Pandit AA, Zandawala M, Nässel DR, Davies SA, Dow JAT. DINeR: Database for Insect Neuropeptide Research. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:9-19. [PMID: 28502574 DOI: 10.1016/j.ibmb.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardised nomenclature to address inconsistent classification of neuropeptides. As part of the H2020 nEUROSTRESSPEP project, the data will be actively maintained and curated, ensuring a comprehensive and standardised resource for the scientific community. DINeR is publicly available at the project website: http://www.neurostresspep.eu/diner/.
Collapse
Affiliation(s)
- Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Meet Zandawala
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK.
| |
Collapse
|
42
|
Abstract
Colocalization of small-molecule and neuropeptide transmitters is common throughout the nervous system of all animals. The resulting co-transmission, which provides conjoint ionotropic ('classical') and metabotropic ('modulatory') actions, includes neuropeptide- specific aspects that are qualitatively different from those that result from metabotropic actions of small-molecule transmitter release. Here, we focus on the flexibility afforded to microcircuits by such co-transmission, using examples from various nervous systems. Insights from such studies indicate that co-transmission mediated even by a single neuron can configure microcircuit activity via an array of contributing mechanisms, operating on multiple timescales, to enhance both behavioural flexibility and robustness.
Collapse
|
43
|
Tsukamoto Y, Nagata S. Newly identified allatostatin Bs and their receptor in the two-spotted cricket, Gryllus bimaculatus. Peptides 2016; 80:25-31. [PMID: 27018343 DOI: 10.1016/j.peptides.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/11/2023]
Abstract
A cDNA encoding allatostatin Bs (ASTBs) containing the W(X)6W motif was identified using a database generated by a next generation sequencer (NGS) in the two-spotted cricket, Gryllus bimaculatus. The contig sequence revealed the presence of five novel putative ASTBs (GbASTBs) in addition to GbASTBs previously identified in G. bimaculatus. MALDI-TOF MS analyses revealed the presence of these novel and previously identified GbASTBs with three missing GbASTBs. We also identified a cDNA encoding G. bimaculatus GbASTB receptor (GbASTBR) in the NGS data. Phylogenetic analysis demonstrated that this receptor was highly conserved with other insect ASTBRs, including the sex peptide receptor of Drosophila melanogaster. Calcium imaging analyses indicated that the GbASTBR heterologously expressed in HEK293 cells exhibited responses to all identified GbASTBs at a concentration range of 10(-10)-10(-5)M.
Collapse
Affiliation(s)
- Yusuke Tsukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8567, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8567, Japan.
| |
Collapse
|
44
|
Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila. PLoS Biol 2016; 14:e1002455. [PMID: 27145127 PMCID: PMC4856363 DOI: 10.1371/journal.pbio.1002455] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.
Collapse
|
45
|
Kim JH, Kim SK, Lee JH, Kim YJ, Goddard WA, Kim YC. Homology modeling and molecular docking studies of Drosophila and Aedes sex peptide receptors. J Mol Graph Model 2016; 66:115-22. [DOI: 10.1016/j.jmgm.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
|
46
|
Min S, Chae HS, Jang YH, Choi S, Lee S, Jeong Y, Jones W, Moon S, Kim YJ, Chung J. Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila. Curr Biol 2016; 26:814-20. [DOI: 10.1016/j.cub.2016.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 11/09/2015] [Accepted: 01/13/2016] [Indexed: 11/26/2022]
|
47
|
Audsley N, Down RE. G protein coupled receptors as targets for next generation pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:27-37. [PMID: 26226649 DOI: 10.1016/j.ibmb.2015.07.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion hormone, ecdysis triggering hormone and crustacean cardioacceleratory peptide receptors) as well as the dopamine-2 like, latrophilin-like, starry night, frizzled-like, methuselah-like and the smoothened receptors may be suitable pesticide targets. From in vivo studies using native ligands and peptide analogues, receptors which appear to have a role in the regulation of feeding in the pea aphid, such as the PISCF-allatostatin and the various "kinin" receptors, are also potential targets. In Drosophila melanogaster various neuropeptides and their signalling pathways have been studied extensively. This may provide insights into potential pesticide targets that could be exploited in D. suzukii. Examples include the sex peptide receptor, which is involved in reproduction and host seeking behaviours, and those responsible for osmoregulation such as the diuretic hormone receptors. However the neuropeptides and their receptors in insects are often poorly characterized, especially in pest species. Although data from closely related species may be transferable (e.g. D. melanogaster to D. suzukii), peptides and receptors may have different roles in different insects, and hence a target in one insect may not be appropriate in another. Hence fundamental knowledge of the roles and functions of receptors is vital for development to proceed.
Collapse
|
48
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
49
|
Wilburn DB, Swanson WJ. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J Proteomics 2015; 135:12-25. [PMID: 26074353 DOI: 10.1016/j.jprot.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Genome Sciences, University of Washington, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, United States
| |
Collapse
|
50
|
Visualizing Molecular Functions and Cross-Species Activity of Sex-Peptide in Drosophila. Genetics 2015; 200:1161-9. [PMID: 26022240 DOI: 10.1534/genetics.115.177550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/16/2015] [Indexed: 11/18/2022] Open
Abstract
The Drosophila melanogaster sex-peptide (melSP) is a seminal fluid component that induces postmating responses (PMR) of females via the sex-peptide receptor (SPR) . Although SP orthologs are found in many Drosophila species, their functions remain poorly characterized. It is unknown whether SP functions are conserved across species or rather specific to each species. Here, we developed a GFP-tagged melSP (G-SP) and used it to visualize cross-species binding activity to the female reproductive system of various species. First we demonstrated that ectopically expressed G-SP induced PMR in D. melanogaster females and bound to the female reproductive system, most notably to the common oviduct. No binding occurred in the females lacking SPR, indicating that G-SP binding was dependent on SPR. Next we tested whether G-SP binds to the common oviducts from 11 Drosophila species using dissected reproductive tracts. The binding was observed in six species belonging to the D. melanogaster species group, but not to those outside the group. Injection of melSP reduced the receptivity of females belonging to the D. melanogaster species group, but not of those outside the group, being consistent with the ability to bind G-SP. Thus the SP-mediated PMR appears to be limited to this species group. SPR was expressed in the oviducts at high levels in this group; therefore, we speculate that an enhanced expression of SPR in the oviduct was critical to establish the SP-mediated PMR during evolution.
Collapse
|