1
|
O'Leary TJ, Jackson S, Izard RM, Walsh NP, Carswell AT, Oliver SJ, Tang JCY, Fraser WD, Greeves JP. Iron status is associated with tibial structure and vitamin D metabolites in healthy young men. Bone 2024; 186:117145. [PMID: 38838798 DOI: 10.1016/j.bone.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The influence of iron on collagen synthesis and vitamin D metabolism has implications for bone health. This cross-sectional observational study investigated associations between markers of iron status and tibial structure, vitamin D metabolites, and circulating biochemical markers of bone metabolism in young healthy men. A total of 343 male British Army recruits participated (age 22 ± 3 y, height 1.77 ± 0.06 m, body mass 75.5 ± 10.1 kg). Circulating biochemical markers of iron status, vitamin D metabolites, and bone metabolism, and tibial structure and density by high-resolution peripheral quantitative computed tomography scans (HRpQCT) were measured in participants during week 1 of basic military training. Associations between markers of iron status and HRpQCT outcomes, bone metabolism, and vitamin D metabolites were tested, controlling for age, height, lean body mass, and childhood exercise volume. Higher ferritin was associated with higher total, trabecular, and cortical volumetric bone mineral density, trabecular volume, cortical area and thickness, stiffness, and failure load (all p ≤ 0.037). Higher soluble transferrin receptor (sTfR) was associated with lower trabecular number, and higher trabecular thickness and separation, cortical thickness, and cortical pore diameter (all p ≤ 0.033). Higher haemoglobin was associated with higher cortical thickness (p = 0.043). Higher ferritin was associated with lower βCTX, PINP, total 25(OH)D, and total 24,25(OH)2D, and higher 1,25(OH)2D:24,25(OH)2D ratio (all p ≤ 0.029). Higher sTfR was associated with higher PINP, total 25(OH)D, and total 24,25(OH)2D (all p ≤ 0.025). The greater density, size, and strength of the tibia, and lower circulating concentrations of markers of bone resorption and formation with better iron stores (higher ferritin) are likely as a result of the direct role of iron in collagen synthesis.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Sarah Jackson
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Rachel M Izard
- Defence Science and Technology, Ministry of Defence, Porton Down, United Kingdom
| | - Neil P Walsh
- Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alexander T Carswell
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; School of Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Samuel J Oliver
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| | - Jonathan C Y Tang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, London, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
2
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
3
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Rodriguez R, Harris M, Kennedy LM. Deleting the ribosomal prolyl hydroxylase OGFOD1 protects mice against diet-induced obesity and insulin resistance. PLoS One 2024; 19:e0304761. [PMID: 38843265 PMCID: PMC11156292 DOI: 10.1371/journal.pone.0304761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024] Open
Abstract
Type 2 diabetes predisposes patients to heart disease, which is the primary cause of death across the globe. Type 2 diabetes often accompanies obesity and is defined by insulin resistance and abnormal glucose handling. Insulin resistance impairs glucose uptake and results in hyperglycemia, which damages tissues such as kidneys, liver, and heart. 2-oxoglutarate (2-OG)- and iron-dependent oxygenases (2-OGDOs), a family of enzymes regulating various aspects of cellular physiology, have been studied for their role in obesity and diet-induced insulin resistance. However, nothing is known of the 2-OGDO family member 2-oxoglutarate and iron-dependent prolyl hydroxylase domain containing protein 1 (OGFOD1) in this setting. OGFOD1 deletion leads to protection in cardiac ischemia-reperfusion injury and cardiac hypertrophy, which are two cardiac events that can lead to heart failure. Considering the remarkable correlation between heart disease and diabetes, the cardioprotection observed in OGFOD1-knockout mice led us to challenge these knockouts with high-fat diet. Wildtype mice fed a high-fat diet developed diet-induced obesity, insulin resistance, and glucose intolerance, but OGFOD1 knockout mice fed this same diet were resistant to diet-induced obesity and insulin resistance. These results support OGFOD1 down-regulation as a strategy for preventing obesity and insulin handling defects.
Collapse
Affiliation(s)
- Rebeca Rodriguez
- National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Harris
- National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Leslie M. Kennedy
- National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
5
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
6
|
Marsan CB, Lee SG, Nguyen A, Gordillo Sierra AR, Coleman SM, Brooks SM, Alper HS. Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside. Metab Eng 2024; 83:1-11. [PMID: 38447910 DOI: 10.1016/j.ymben.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host Yarrowia lipolytica has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of E. coli bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.
Collapse
Affiliation(s)
- Celeste B Marsan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sung Gyung Lee
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ankim Nguyen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Angela R Gordillo Sierra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA; Interdisciplinary Life Sciences Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Cao Y, Hay S, de Visser SP. An Active Site Tyr Residue Guides the Regioselectivity of Lysine Hydroxylation by Nonheme Iron Lysine-4-hydroxylase Enzymes through Proton-Coupled Electron Transfer. J Am Chem Soc 2024; 146:11726-11739. [PMID: 38636166 PMCID: PMC11066847 DOI: 10.1021/jacs.3c14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
He Z, Sun C, Ma Y, Chen X, Wang Y, Chen K, Xie F, Zhang Y, Yuan Y, Liu C. Rejuvenating Aged Bone Repair through Multihierarchy Reactive Oxygen Species-Regulated Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306552. [PMID: 37848015 DOI: 10.1002/adma.202306552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Aging exacerbates the dysfunction of tissue regeneration at multiple levels and gradually diminishes individual's capacity to withstand stress, damage, and disease. The excessive accumulation of reactive oxygen species (ROS) is considered a hallmark feature of senescent stem cells, which causes oxidative stress, deteriorates the host microenvironment, and eventually becomes a critical obstacle for aged bone defect repair. Till now, the strategies cannot synchronously and thoroughly regulate intracellular and extracellular ROS in senescent cells. Herein, a multihierarchy ROS scavenging system for aged bone regeneration is developed by fabricating an injectable PEGylated poly(glycerol sebacate) (PEGS-NH2 )/poly(γ-glutamic acid) (γ-PGA) hydrogel containing rapamycin-loaded poly(diselenide-carbonate) nanomicelles (PSeR). This PSeR hydrogel exhibits highly sensitive ROS responsiveness to the local aged microenvironment and dynamically releases drug-loaded nanomicelles to scavenge the intracellular ROS accumulated in senescent bone mesenchymal stem cells. The PSeR hydrogel effectively tunes the antioxidant function and delays senescence of bone mesenchymal stem cells by safeguarding DNA replication in an oxidative environment, thereby promoting the self-renewal ability and enhancing the osteogenic capacity for aged bone repair in vitro and in vivo. Thus, this multihierarchy ROS-regulated hydrogel provides a new strategy for treating degenerative diseases.
Collapse
Affiliation(s)
- Zirui He
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chuanhao Sun
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xi Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ying Wang
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Kai Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fangru Xie
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
9
|
Fujisawa K, Matsumoto T, Yamamoto N, Yamasaki T, Takami T. Metabolic Analysis of DFO-Resistant Huh7 Cells and Identification of Targets for Combination Therapy. Metabolites 2023; 13:1073. [PMID: 37887398 PMCID: PMC10609263 DOI: 10.3390/metabo13101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most refractory cancers with a high rate of recurrence. Iron is an essential trace element, and iron chelation has garnered attention as a novel therapeutic strategy for cancer. Since intracellular metabolism is significantly altered by inhibiting various proteins by iron chelation, we investigated combination anticancer therapy targeting metabolic changes that are forcibly modified by iron chelator administration. The deferoxamine (DFO)-resistant cell lines were established by gradually increasing the DFO concentration. Metabolomic analysis was conducted to evaluate the metabolic alterations induced by DFO administration, aiming to elucidate the resistance mechanism in DFO-resistant strains and identify potential novel therapeutic targets. Metabolom analysis of the DFO-resistant Huh7 cells revealed enhanced glycolysis and salvage cycle, alternations in glutamine metabolism, and accumulation of dipeptides. Huh7 cultured in the absence of glutamine showed enhanced sensitivity to DFO, and glutaminase inhibitor (CB839) showed a synergistic effect with DFO. Furthermore, the effect of DFO was enhanced by an autophagy inhibitor (chloroquine) in vitro. DFO-induced metabolic changes are specific targets for the development of efficient anticancer combinatorial therapies using DFO. These findings will be useful for the development of new cancer therapeutics in refractory liver cancer.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
- Amaguchi University Health Administration Center, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan;
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| |
Collapse
|
10
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
11
|
Qi Y, Hu M, Wang Z, Shang W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem Pharmacol 2023; 215:115725. [PMID: 37524207 DOI: 10.1016/j.bcp.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The injury caused by ischemia and subsequent reperfusion (I/R) is inevitable during kidney transplantation and its current management remains unsatisfactory. Iron is considered to play a remarkable pathologic role in the initiation or progression of tissue damage induced by I/R, whereas the effects of iron-related therapy remain controversial owing to the complicated nature of iron's involvement in multiple biological processes. A significant portion of the cellular iron is located in the mitochondria, which exerts a central role in the development and progression of I/R injury. Recent studies of iron regulation associated with mitochondrial function represents a unique opportunity to improve our knowledge on the pathophysiology of I/R injury. However, the molecular mechanisms linking mitochondria to the iron homeostasis remain unclear. In this review, we provide a comprehensive analysis of the alterations to iron metabolism in I/R injury during kidney transplantation, analyze the current understanding of mitochondrial regulation of iron homeostasis and discussed its potential application in I/R injury. The elucidation of regulatory mechanisms regulating mitochondrial iron homeostasis will offer valuable insights into potential therapeutic targets for alleviating I/R injury with the ultimate aim of improving kidney graft outcomes, with potential implications that could also extend to acute kidney injury or other I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
12
|
Kołodziej-Wojnar P, Borkowska J, Domaszewska-Szostek A, Bujanowska O, Noszczyk B, Krześniak N, Stańczyk M, Puzianowska-Kuznicka M. Ten-Eleven Translocation 1 and 2 Enzymes Affect Human Skin Fibroblasts in an Age-Related Manner. Biomedicines 2023; 11:1659. [PMID: 37371754 DOI: 10.3390/biomedicines11061659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ten-eleven translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC), first to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxycytosine (5caC). Evidence suggests that changes in TET expression may impact cell function and the phenotype of aging. Proliferation, apoptosis, markers of autophagy and double-strand DNA break repair, and the expression of Fibulin 5 were assessed by flow cytometry in TET1 and TET2-overexpressing fibroblasts isolated from sun-unexposed skin of young (23-35 years) and age-advanced (75-94 years) individuals. In cells derived from young individuals, TET1 overexpression resulted in the inhibition of proliferation and apoptosis by 37% (p = 0.03) and 24% (p = 0.05), respectively, while the overexpression of TET2 caused a decrease in proliferation by 46% (p = 0.01). Notably, in cells obtained from age-advanced individuals, TETs exhibited different effects. Specifically, TET1 inhibited proliferation and expression of autophagy marker Beclin 1 by 45% (p = 0.05) and 28% (p = 0.048), respectively, while increasing the level of γH2AX, a marker of double-strand DNA breaks necessary for initiating the repair process, by 19% (p = 0.04). TET2 inhibited proliferation by 64% (p = 0.053) and increased the level of γH2AX and Fibulin 5 by 46% (p = 0.007) and 29% (p = 0.04), respectively. These patterns of TET1 and TET2 effects suggest their involvement in regulating various fibroblast functions and that some of their biological actions depend on the donor's age.
Collapse
Affiliation(s)
- Paulina Kołodziej-Wojnar
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Joanna Borkowska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Olga Bujanowska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Natalia Krześniak
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Marek Stańczyk
- Department of General and Oncological Surgery with Traumatic Unit, Wolski Hospital, 01-211 Warsaw, Poland
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | - Monika Puzianowska-Kuznicka
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Salminen A. Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: Impact on the aging process. Cell Signal 2022; 99:110445. [PMID: 35988806 DOI: 10.1016/j.cellsig.2022.110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The ambient oxygen level, many environmental toxins, and the rays of ultraviolet light (UV) provide a significant risk for the maintenance of organismal homeostasis. The aryl hydrocarbon receptors (AhR) represent a complex sensor system not only for environmental toxins and UV radiation but also for many endogenous ligands, e.g., L-tryptophan metabolites. The AhR signaling system is evolutionarily conserved and AhR homologs existed as many as 600 million years ago. The ancient atmosphere demanded the evolution of an oxygen-sensing system, i.e., hypoxia-inducible transcription factors (HIF) and their prolyl hydroxylase regulators (PHD). Given that both signaling systems have important roles in embryogenesis, it seems that they have been involved in the evolution of multicellular organisms. The evolutionary origin of the aging process is unknown although it is most likely associated with the evolution of multicellularity. Intriguingly, there is compelling evidence that while HIF-1α signaling extends the lifespan, that of AhR promotes many age-related degenerative processes, e.g., it increases oxidative stress, inhibits autophagy, promotes cellular senescence, and aggravates extracellular matrix degeneration. In contrast, HIF-1α signaling stimulates autophagy, inhibits cellular senescence, and enhances cell proliferation. Interestingly, there is a clear antagonism between the AhR and HIF-1α signaling pathways. For instance, (i) AhR and HIF-1α factors heterodimerize with the same factor, ARNT/HIF-1β, leading to their competition for DNA-binding, (ii) AhR and HIF-1α signaling exert antagonistic effects on autophagy, and (iii) co-chaperone p23 exhibits specific functions in the signaling of AhR and HIF-1α factors. One might speculate that it is the competition between the AhR and HIF-1α signaling pathways that is a driving force in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
14
|
Study of the Mandibular Bone Microstructure and Blood Minerals Bioavailability in Rainbow Trout ( Oncorhynchus mykiss, Walbaum 1792) from Freshwater. Animals (Basel) 2022; 12:ani12121476. [PMID: 35739813 PMCID: PMC9219474 DOI: 10.3390/ani12121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Farmed salmonids show alterations in bone structure that result in skeletal deformities during formation, repair, and regeneration processes, with loss of mineralization at the level of the axial skeleton, mainly the head and spine, affecting their quality of life and even causing death. Despite improving factors, such as farming conditions, diets, and genetics, bone alterations appear more frequently in farmed fish than in wild fish. Thus, we used SEM-EDX, and TGA-DSC to study bone mineralization in farmed and wild rainbow trouts. As expected, we found significant differences in the nutritional parameters of farmed and wild fish (p < 0.05). Microstructural analyses indicated that farmed fish have a more robust mineral structure (p < 0.05), confirming the differences in mineralization and microstructure between both groups. However, the mechanisms regulating absorption and distribution in the organism and their effect on bone mineralization remain to be known. In our study, the combined use of techniques such as SEM-EDX and TGA-DSC allows a clearer assessment and detailed characterization beneficial to understanding the relationship between diet control and bone microstructure.
Collapse
|
15
|
Fujisawa K, Takami T, Matsumoto T, Yamamoto N, Yamasaki T, Sakaida I. An iron chelation-based combinatorial anticancer therapy comprising deferoxamine and a lactate excretion inhibitor inhibits the proliferation of cancer cells. Cancer Metab 2022; 10:8. [PMID: 35550011 PMCID: PMC9103045 DOI: 10.1186/s40170-022-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although iron chelation has garnered attention as a novel therapeutic strategy for cancer, higher levels of efficacy need to be achieved. In the present study, we examined the combinatorial effect of deferoxamine (DFO), an iron chelator, and α-cyano-4-hydroxy cinnamate (CHC), a suppressor of lactate excretion, on the proliferation of cancer cell lines. METHODS We established a deferoxamine (DFO)-resistant cell line by culturing HeLa cells in media containing increasing concentrations of DFO. Metabolome and gene expression analyses were performed on these cells. Synergistic effect of the drugs on the cells was determined using an in vitro proliferation assay, and the combination index was estimated. RESULTS DFO-resistant HeLa cells exhibited enhanced glycolysis, salvage cycle, and de novo nucleic acid synthesis and reduced mitochondrial metabolism. As DFO triggered a metabolic shift toward glycolysis and increased lactate production in cells, we treated the cancer cell lines with a combination of CHC and DFO. A synergistic effect of DFO and CHC was observed in HeLa cells; however, the same was not observed in the human liver cancer cell line Huh7. We hypothesized that the efficacy of the combination therapy in cancer cells depends on the degree of increase in lactate concentration upon DFO treatment. CONCLUSION Combination therapy involving administration of DFO and CHC is effective in cancer cells wherein DFO treatment results in an elevation in lactate levels. Our findings illustrate that the DFO-induced enhanced glycolysis provides specific targets for developing an efficient anticancer combinatorial therapy involving DFO. These findings will be beneficial for the development of novel cancer chemotherapeutics.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Yamaguchi University Health Administration Center, Yamaguchi, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
16
|
Skrajnowska D, Jagielska A, Ruszczyńska A, Idkowiak J, Bobrowska-Korczak B. Effect of Copper and Selenium Supplementation on the Level of Elements in Rats' Femurs under Neoplastic Conditions. Nutrients 2022; 14:1285. [PMID: 35334941 PMCID: PMC8951585 DOI: 10.3390/nu14061285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
A study was conducted to determine the effect of long-term supplementation with selenium and copper, administered at twice the level used in the standard diet of rats, on the content of selected elements in the femoral bones of healthy rats and rats with implanted LNCaP cancer cells. After an adaptation period, the animals were randomly divided into two experimental groups. The rats in the experimental group were implanted with prostate cancer cells. The rats in the control group were kept in the same conditions as those in the experimental group and fed the same diet, but without implanted cancer cells. The cancer cells (LNCaP) were intraperitoneally implanted in the amount of 1 × 106 (in PBS 0.4 mL) at the age of 90 days. The content of elements in the samples was determined by a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). In the femoral bones of rats with implanted LNCaP cells, in the case of the standard diet and the copper-enriched diet, there was a marked decreasing trend in the content of the analysed elements relative to the control rats. This may indicate slow osteolysis taking place in the bone tissue. Contrasting results were obtained for the diet enriched with selenium; there was no significant reduction in the level of these elements, and there was even an increase in the concentrations of Fe and K in the bones of rats with implanted LNCaP cells. Particularly, numerous changes in the mineral composition of the bones were generated by enriching the diet with copper. The elements that most often underwent changes (losses) in the bones were cobalt, iron, manganese and molybdenum. The changes observed, most likely induced by the implantation of LNCaP cells, may indicate a disturbance of mineral homeostasis.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Agata Jagielska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.J.); (A.R.)
| | - Anna Ruszczyńska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; (A.J.); (A.R.)
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic;
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
17
|
Ferrucci L, Wilson DM, Donegà S, Gorospe M. The energy-splicing resilience axis hypothesis of aging. NATURE AGING 2022; 2:182-185. [PMID: 37118371 PMCID: PMC11330567 DOI: 10.1038/s43587-022-00189-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Aging can be conceptualized as the stochastic accumulation of damage and loss of resilience leading to organism demise. Resilience mechanisms that repair, recycle or replace damaged molecules and organelles are energy-demanding, therefore energy availability is essential to healthy aging. We propose that changes in mitochondrial and energy status regulate RNA splicing and that splicing is a resilience strategy that preserves energetic homeostasis with aging.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA.
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefano Donegà
- Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|
18
|
Nayeri Rad A, Shams G, Avelar RA, Morowvat MH, Ghasemi Y. Potential senotherapeutic candidates and their combinations derived from transcriptional connectivity and network measures. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Barks A, Beeson MM, Hallstrom TC, Georgieff MK, Tran PV. Developmental Iron Deficiency Dysregulates TET Activity and DNA Hydroxymethylation in the Rat Hippocampus and Cerebellum. Dev Neurosci 2022; 44:80-90. [PMID: 35016180 PMCID: PMC8983444 DOI: 10.1159/000521704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Iron deficiency (ID) during neurodevelopment is associated with lasting cognitive and socioemotional deficits and increased risk for neuropsychiatric disease throughout the lifespan. These neurophenotypical changes are underlain by gene dysregulation in the brain that outlasts the period of ID; however, the mechanisms by which ID establishes and maintains gene expression changes are incompletely understood. The epigenetic modification of 5-hydroxymethylcytosine (5hmC), or DNA hydroxymethylation, is one candidate mechanism because of its dependence on iron-containing TET enzymes. The aim of the present study was to determine the effect of fetal-neonatal ID on regional brain TET activity, Tet expression, and 5hmC in the developing rat hippocampus and cerebellum and to determine whether changes are reversible with dietary iron treatment. Timed pregnant Sprague Dawley rats were fed iron-deficient diet (ID; 4 mg/kg Fe) from gestational day 2 to generate iron-deficient anemic (IDA) offspring. Control dams were fed iron-sufficient diet (IS; 200 mg/kg Fe). At postnatal day (P)7, a subset of ID-fed litters was randomized to IS diet, generating treated IDA (TIDA) offspring. At P15, the hippocampus and cerebellum were isolated for subsequent analysis. TET activity was quantified by ELISA from nuclear proteins. Expression of Tet1, Tet2, and Tet3 was quantified by qPCR from total RNA. Global %5hmC was quantified by ELISA from genomic DNA. ID increased DNA hydroxymethylation (p = 0.0105), with a corresponding increase in TET activity (p < 0.0001) and Tet3 expression (p < 0.0001) in the P15 hippocampus. In contrast, ID reduced TET activity (p = 0.0016) in the P15 cerebellum, with minimal effect on DNA hydroxymethylation. Neonatal dietary iron treatment resulted in partial normalization of these changes in both brain regions. These results demonstrate that the TET/DNA hydroxymethylation system is disrupted by developmental ID in a brain region-specific manner. Differential regional disruption of this epigenetic system may contribute to the lasting neural circuit dysfunction and neurobehavioral dysfunction associated with developmental ID.
Collapse
Affiliation(s)
- Amanda Barks
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Montana M. Beeson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy C. Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Phu V. Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Corresponding author: Phu V. Tran, Division of Neonatology, Department of Pediatrics, University of Minnesota, AO-401, 2450 Riverside Ave, Minneapolis, MN, 55454, United States, Tel: (612) 626-0644,
| |
Collapse
|
20
|
De Roover A, Núñez AE, Cornelis FM, Cherifi C, Casas-Fraile L, Sermon A, Cailotto F, Lories RJ, Monteagudo S. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. JCI Insight 2021; 6:150451. [PMID: 34727094 PMCID: PMC8783684 DOI: 10.1172/jci.insight.150451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis is the most prevalent joint disease worldwide, and it is a leading source of pain and disability. To date, this disease lacks curative treatment, as underlying molecular mechanisms remain largely unknown. The histone methyltransferase DOT1L protects against osteoarthritis, and DOT1L-mediated H3K79 methylation is reduced in human and mouse osteoarthritic joints. Thus, restoring DOT1L function seems to be critical to preserve joint health. However, DOT1L-regulating molecules and networks remain elusive, in the joint and beyond. Here, we identified transcription factors and networks that regulate DOT1L gene expression using a potentially novel bioinformatics pipeline. Thereby, we unraveled a possibly undiscovered link between the hypoxia pathway and DOT1L. We provide evidence that hypoxia enhanced DOT1L expression and H3K79 methylation via hypoxia-inducible factor-1 α (HIF1A). Importantly, we demonstrate that DOT1L contributed to the protective effects of hypoxia in articular cartilage and osteoarthritis. Intra-articular treatment with a selective hypoxia mimetic in mice after surgical induction of osteoarthritis restored DOT1L function and stalled disease progression. Collectively, our data unravel a molecular mechanism that protects against osteoarthritis with hypoxia inducing DOT1L transcription in cartilage. Local treatment with a selective hypoxia mimetic in the joint restores DOT1L function and could be an attractive therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ana Escribano Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederique Mf Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Chahrazad Cherifi
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Sermon
- Division of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Locomotor and Neurological Disorders Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederic Cailotto
- UMR 7365 CNRS - University of Lorraine, Molecular Engineering and Articular Physiopathology, Biopôle, University of Lorraine, Campus Biologie-Santé, Vandoeuvre-Les-Nancy, France
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
23
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
24
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
25
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
26
|
Moiz B, Garcia J, Basehore S, Sun A, Li A, Padmanabhan S, Albus K, Jang C, Sriram G, Clyne AM. 13C Metabolic Flux Analysis Indicates Endothelial Cells Attenuate Metabolic Perturbations by Modulating TCA Activity. Metabolites 2021; 11:metabo11040226. [PMID: 33917224 PMCID: PMC8068087 DOI: 10.3390/metabo11040226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Disrupted endothelial metabolism is linked to endothelial dysfunction and cardiovascular disease. Targeted metabolic inhibitors are potential therapeutics; however, their systemic impact on endothelial metabolism remains unknown. In this study, we combined stable isotope labeling with 13C metabolic flux analysis (13C MFA) to determine how targeted inhibition of the polyol (fidarestat), pentose phosphate (DHEA), and hexosamine biosynthetic (azaserine) pathways alters endothelial metabolism. Glucose, glutamine, and a four-carbon input to the malate shuttle were important carbon sources in the baseline human umbilical vein endothelial cell (HUVEC) 13C MFA model. We observed two to three times higher glutamine uptake in fidarestat and azaserine-treated cells. Fidarestat and DHEA-treated HUVEC showed decreased 13C enrichment of glycolytic and TCA metabolites and amino acids. Azaserine-treated HUVEC primarily showed 13C enrichment differences in UDP-GlcNAc. 13C MFA estimated decreased pentose phosphate pathway flux and increased TCA activity with reversed malate shuttle direction in fidarestat and DHEA-treated HUVEC. In contrast, 13C MFA estimated increases in both pentose phosphate pathway and TCA activity in azaserine-treated cells. These data show the potential importance of endothelial malate shuttle activity and suggest that inhibiting glycolytic side branch pathways can change the metabolic network, highlighting the need to study systemic metabolic therapeutic effects.
Collapse
Affiliation(s)
- Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Jonathan Garcia
- School of Bioengineering, Science, and Heath Systems, Drexel University, Philadelphia, PA 19104, USA; (J.G.); (S.B.)
| | - Sarah Basehore
- School of Bioengineering, Science, and Heath Systems, Drexel University, Philadelphia, PA 19104, USA; (J.G.); (S.B.)
| | - Angela Sun
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Andrew Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Surya Padmanabhan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Kaitlyn Albus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA;
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA;
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
- Correspondence: ; Tel.: +1-301-405-9806
| |
Collapse
|
27
|
Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res Rev 2021; 66:101237. [PMID: 33340716 DOI: 10.1016/j.arr.2020.101237] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
An intermediate of tricarboxylic acid cycle alpha-ketoglutarate (AKG) is involved in pleiotropic metabolic and regulatory pathways in the cell, including energy production, biosynthesis of certain amino acids, collagen biosynthesis, epigenetic regulation of gene expression, regulation of redox homeostasis, and detoxification of hazardous substances. Recently, AKG supplement was found to extend lifespan and delay the onset of age-associated decline in experimental models such as nematodes, fruit flies, yeasts, and mice. This review summarizes current knowledge on metabolic and regulatory functions of AKG and its potential anti-ageing effects. Impact on epigenetic regulation of ageing via being an obligate substrate of DNA and histone demethylases, direct antioxidant properties, and function as mimetic of caloric restriction and hormesis-induced agent are among proposed mechanisms of AKG geroprotective action. Due to influence on mitochondrial respiration, AKG can stimulate production of reactive oxygen species (ROS) by mitochondria. According to hormesis hypothesis, moderate stimulation of ROS production could have rather beneficial biological effects, than detrimental ones, because of the induction of defensive mechanisms that improve resistance to stressors and age-related diseases and slow down functional senescence. Discrepancies found in different models and limitations of AKG as a geroprotective drug are discussed.
Collapse
|
28
|
Regulatory T Cell Stability and Plasticity in Atherosclerosis. Cells 2020; 9:cells9122665. [PMID: 33322482 PMCID: PMC7764358 DOI: 10.3390/cells9122665] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) express the lineage-defining transcription factor FoxP3 and play crucial roles in self-tolerance and immune homeostasis. Thymic tTregs are selected based on affinity for self-antigens and are stable under most conditions. Peripheral pTregs differentiate from conventional CD4 T cells under the influence of TGF-β and other cytokines and are less stable. Treg plasticity refers to their ability to inducibly express molecules characteristic of helper CD4 T cell lineages like T-helper (Th)1, Th2, Th17 or follicular helper T cells. Plastic Tregs retain FoxP3 and are thought to be specialized regulators for “their” lineage. Unstable Tregs lose FoxP3 and switch to become exTregs, which acquire pro-inflammatory T-helper cell programs. Atherosclerosis with systemic hyperlipidemia, hypercholesterolemia, inflammatory cytokines, and local hypoxia provides an environment that is likely conducive to Tregs switching to exTregs.
Collapse
|
29
|
Kouidou S, Malousi A, Andreou AZ. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: Triggering a Lethal Fight to Keep Control of the Ten-Eleven Translocase (TET)-Associated DNA Demethylation? Pathogens 2020; 9:E1006. [PMID: 33266135 PMCID: PMC7760189 DOI: 10.3390/pathogens9121006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The extended and diverse interference of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in multiple host functions and the diverse associated symptoms implicate its involvement in fundamental cellular regulatory processes. The activity of ten-eleven translocase 2 (TET2) responsible for selective DNA demethylation, has been recently identified as a regulator of endogenous virus inactivation and viral invasion, possibly by proteasomal deregulation of the TET2/TET3 activities. In a recent report, we presented a detailed list of factors that can be affected by TET activity, including recognition of zinc finger protein binding sites and bimodal promoters, by enhancing the flexibility of adjacent sequences. In this review, we summarize the TET-associated processes and factors that could account for SARS-CoV-2 diverse symptoms. Moreover, we provide a correlation for the observed virus-induced symptoms that have been previously associated with TET activities by in vitro and in vitro studies. These include early hypoxia, neuronal regulation, smell and taste development, liver, intestinal, and cardiomyocyte differentiation. Finally, we propose that the high mortality of SARS-CoV-2 among adult patients, the different clinical symptoms of adults compared to children, the higher risk of patients with metabolic deregulation, and the low mortality rates among women can all be accounted for by the complex balance of the three enzymes with TET activity, which is developmentally regulated. This activity is age-dependent, related to telomere homeostasis and integrity, and associated with X chromosome inactivation via (de)regulation of the responsible XIST gene expression.
Collapse
Affiliation(s)
- Sofia Kouidou
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Andigoni Malousi
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | |
Collapse
|
30
|
Fletcher SC, Coleman ML. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators. Biochem Soc Trans 2020; 48:1843-1858. [PMID: 32985654 PMCID: PMC7609023 DOI: 10.1042/bst20190333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases are a conserved enzyme class that catalyse diverse oxidative reactions across nature. In humans, these enzymes hydroxylate a broad range of biological substrates including DNA, RNA, proteins and some metabolic intermediates. Correspondingly, members of the 2OG-dependent oxygenase superfamily have been linked to fundamental biological processes, and found dysregulated in numerous human diseases. Such findings have stimulated efforts to understand both the biochemical activities and cellular functions of these enzymes, as many have been poorly studied. In this review, we focus on human 2OG-dependent oxygenases catalysing the hydroxylation of protein and polynucleotide substrates. We discuss their modulation by changes in the cellular microenvironment, particularly with respect to oxygen, iron, 2OG and the effects of oncometabolites. We also describe emerging evidence that these enzymes are responsive to cellular stresses including hypoxia and DNA damage. Moreover, we examine how dysregulation of 2OG-dependent oxygenases is associated with human disease, and the apparent paradoxical role for some of these enzymes during cancer development. Finally, we discuss some of the challenges associated with assigning biochemical activities and cellular functions to 2OG-dependent oxygenases.
Collapse
Affiliation(s)
- Sally C. Fletcher
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mathew L. Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
31
|
De Tullio MC. Is ascorbic acid a key signaling molecule integrating the activities of 2-oxoglutarate-dependent dioxygenases? Shifting the paradigm. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2020; 178:104173. [DOI: 10.1016/j.envexpbot.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
32
|
Saeb-Parsy K, Martin JL, Summers DM, Watson CJE, Krieg T, Murphy MP. Mitochondria as Therapeutic Targets in Transplantation. Trends Mol Med 2020; 27:185-198. [PMID: 32952044 DOI: 10.1016/j.molmed.2020.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Advances in surgical procedures, technology, and immune suppression have transformed organ transplantation. However, the metabolic changes that occur during organ retrieval, storage, and implantation have been relatively neglected since the developments many decades ago of cold storage organ preservation solutions. In this review we discuss how the metabolic changes that occur within the organ during transplantation, particularly those associated with mitochondria, may contribute to the outcome. We show how a better understanding of these processes can lead to changes in surgical practice and the development of new drug classes to improve the function and longevity of transplanted grafts, while increasing the pool of organs available for transplantation.
Collapse
Affiliation(s)
- Kourosh Saeb-Parsy
- Department of Surgery and Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Jack L Martin
- Department of Surgery and Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Dominic M Summers
- Department of Surgery and Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Christopher J E Watson
- Department of Surgery and Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Medical Research Council (MRC) Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
33
|
Sturm S, Dowle A, Audsley N, Isaac RE. The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103414. [PMID: 32589920 DOI: 10.1016/j.ibmb.2020.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.
Collapse
Affiliation(s)
- Sebastian Sturm
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil Audsley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
34
|
Pan Z, Tan C, Rao L, Zhang H, Zheng Y, Hao L, Ji L, Mao Z. Recoding the Cancer Epigenome by Intervening in Metabolism and Iron Homeostasis with Mitochondria‐Targeted Rhenium(I) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng‐Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lu‐Si Rao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liang‐Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
35
|
Pan ZY, Tan CP, Rao LS, Zhang H, Zheng Y, Hao L, Ji LN, Mao ZW. Recoding the Cancer Epigenome by Intervening in Metabolism and Iron Homeostasis with Mitochondria-Targeted Rhenium(I) Complexes. Angew Chem Int Ed Engl 2020; 59:18755-18762. [PMID: 32634290 DOI: 10.1002/anie.202008624] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/16/2022]
Abstract
The development and malignancy of cancer cells are closely related to the changes of the epigenome. In this work, a mitochondria-targeted rhenium(I) complex (DFX-Re3), integrating the clinical iron chelating agent deferasirox (DFX), has been designed. By relocating iron to the mitochondria and changing the key metabolic species related to epigenetic modifications, DFX-Re3 can elevate the methylation levels of histone, DNA, and RNA. As a consequence, DFX-Re3 affects the events related to apoptosis, RNA polymerases, and T-cell receptor signaling pathways. Finally, it is shown that DFX-Re3 induces immunogenic apoptotic cell death and exhibits potent antitumor activity in vivo. This study provides a new approach for the design of novel epigenetic drugs that can recode the cancer epigenome by intervening in mitochondrial metabolism and iron homeostasis.
Collapse
Affiliation(s)
- Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lu-Si Rao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
36
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
37
|
Patwardhan RS, Singh B, Pal D, Checker R, Bandekar M, Sharma D, Sandur SK. Redox regulation of regulatory T-cell differentiation and functions. Free Radic Res 2020; 54:947-960. [DOI: 10.1080/10715762.2020.1745202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Debojyoti Pal
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
38
|
Borkowska J, Domaszewska-Szostek A, Kołodziej P, Wicik Z, Połosak J, Buyanovskaya O, Charzewski L, Stańczyk M, Noszczyk B, Puzianowska-Kuznicka M. Alterations in 5hmC level and genomic distribution in aging-related epigenetic drift in human adipose stem cells. Epigenomics 2020; 12:423-437. [PMID: 32031421 DOI: 10.2217/epi-2019-0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To clarify mechanisms affecting the level and distribution of 5-hydroxymethylcytosine (5hmC) during aging. Materials & methods: We examined levels and genomic distribution of 5hmC along with the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) in adipose stem cells in young and age-advanced individuals. Results: 5hmC levels were higher in adipose stem cells of age-advanced than young individuals (p = 0.0003), but were not associated with age-related changes in expression of TETs. 5hmC levels correlated with population doubling time (r = 0.62; p = 0.01). We identified 58 differentially hydroxymethylated regions. Hypo-hydroxymethylated differentially hydroxymethylated regions were approximately twofold enriched in CCCTC-binding factor binding sites. Conclusion: Accumulation of 5hmC in aged cells can result from inefficient active demethylation due to altered TETs activity and reduced passive demethylation due to slower proliferation.
Collapse
Affiliation(s)
- Joanna Borkowska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Paulina Kołodziej
- Department of Geriatrics & Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Zofia Wicik
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Jacek Połosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Olga Buyanovskaya
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Lukasz Charzewski
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Marek Stańczyk
- Department of General Surgery, Wolski Hospital, 17 Kasprzaka Street, 01-211 Warsaw, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland.,Department of Geriatrics & Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| |
Collapse
|
39
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur J Cell Biol 2020; 99:151057. [DOI: 10.1016/j.ejcb.2019.151057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
|
40
|
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L, Huang D, Xu Q. Hypoxia‑inducible factors in hepatocellular carcinoma (Review). Oncol Rep 2019; 43:3-15. [PMID: 31746396 PMCID: PMC6908932 DOI: 10.3892/or.2019.7397] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Maintenance of an appropriate oxygen concentration is essential for the function of the liver. However, in many pathological conditions, and particularly in the tumor microenvironment, cells and tissues are frequently in a hypoxic state. In the presence of hypoxia, the cells adapt to the low oxygen levels through the hypoxia-inducible factor (HIF) pathway. Overgrowth of tumor cells restricts the diffusion of oxygen in tumors, leading to insufficient blood supply and the creation of a hypoxic microenvironment, and, as a consequence, activation of the expression of HIFs. HIFs possess a wide range of target genes, which function to control a variety of signaling pathways; thus, HIFs modulate cellular metabolism, immune escape, angiogenesis, metastasis, extracellular matrix remodeling, cancer stem cells and other properties of the tumor. Given their crucial role in the occurrence and development of tumors, HIFs are expected to become new targets of precise treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yang Guo
- Graduate Department, BengBu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Yuling Gao
- Department of Genetics, Shaoxing Women and Children Hospital, Shaoxin, Zhejiang 312030, P.R. China
| | - Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
41
|
Suppressing Mitochondrial Respiration Is Critical for Hypoxia Tolerance in the Fetal Growth Plate. Dev Cell 2019; 49:748-763.e7. [PMID: 31105007 DOI: 10.1016/j.devcel.2019.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Oxygen (O2) is both an indispensable metabolic substrate and a regulatory signal that controls the activity of Hypoxia-Inducible Factor 1α (Hif1a), a mediator of the cellular adaptation to low O2 tension (hypoxia). Hypoxic cells require Hif1a to survive. Additionally, Hif1a is an inhibitor of mitochondrial respiration. Hence, we hypothesized that enhancing mitochondrial respiration is detrimental to the survival of hypoxic cells in vivo. We tested this hypothesis in the fetal growth plate, which is hypoxic. Our findings show that mitochondrial respiration is dispensable for survival of growth plate chondrocytes. Furthermore, its impairment prevents the extreme hypoxia and the massive chondrocyte death observed in growth plates lacking Hif1a. Consequently, augmenting mitochondrial respiration affects the survival of hypoxic chondrocytes by, at least in part, increasing intracellular hypoxia. We thus propose that partial suppression of mitochondrial respiration is crucial during development to protect the tissues that are physiologically hypoxic from lethal intracellular anoxia.
Collapse
|
42
|
Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 2019; 98:4-14. [PMID: 31039394 DOI: 10.1016/j.semcdb.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elio Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Brizzolara S, Cukrov D, Mercadini M, Martinelli F, Ruperti B, Tonutti P. Short-Term Responses of Apple Fruit to Partial Reoxygenation during Extreme Hypoxic Storage Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4754-4763. [PMID: 30965000 DOI: 10.1021/acs.jafc.9b00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The short-term (24 h) responses of apple fruit (cv. 'Granny Smith') to a shift in the oxygen concentration from 0.4 to 0.8 kPa, a protocol applied in the dynamic controlled atmosphere (DCA) storage technique, have been studied. Metabolomics and transcriptomics analyses of cortex tissue showed an immediate down-regulation of fermentative metabolism and of the GABA shunt in parallel with the activation of several 2-oxoglutarate-dependent dioxygenase genes. Down-regulation of the free phenylpropanoid pathway genes and the diversion of propanoid synthesis toward the methyl-erythritol phosphate route were also observed. Partial reoxygenation induced increases of glyceric, palmitic, and stearic acids and of several phosphatidylcholines and phosphatidylethanolamines and decreases of specific amino acids (valine, methionine, glycine, phenylalanine, and GABA), organic acids (arachidic and citric acids), and secondary metabolites (catechin and epicatechin). The oxygen shift also resulted in transcriptional rewiring of several components of IAA and ABA regulation and signaling. These results provide novel insights on the complexity of the short-term physiological responses of apple fruit to partial reoxygenation applied during DCA storage.
Collapse
Affiliation(s)
- Stefano Brizzolara
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| | - Dubravka Cukrov
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| | - Massimo Mercadini
- Marvil Engineering , Zona Produttiva SCHWEMM, 8 , 39040 Magrè Sulla Strada del Vino, Bolzano , Italy
| | - Federico Martinelli
- Department of Biology , University of Florence , Sesto Fiorentino, Via Madonna del Piano, 6 , 50019 Sesto Fiorentino, Firenze , Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment , University of Padova , Viale dell'Università, 16 , 35020 Legnaro, Padova , Italy
| | - Pietro Tonutti
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| |
Collapse
|
44
|
Gaffney-Stomberg E. The Impact of Trace Minerals on Bone Metabolism. Biol Trace Elem Res 2019; 188:26-34. [PMID: 30467628 DOI: 10.1007/s12011-018-1583-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active tissue that responds to alterations in dietary intake and nutritional status. It is ~ 35% protein, mostly collagen which provides an organic scaffolding for bone mineral. The mineral is the remaining ~ 65% of bone tissue and composed mostly of calcium and phosphate in a form that is structurally similar to mineral within the apatite group. The skeletal tissue is constantly undergoing turnover through resorption by osteoclasts coupled with formation by osteoblasts. In this regard, the overall bone balance is determined by the relative contribution of each of these processes. In addition to macro minerals such as calcium, phosphorus, and magnesium which have well-known roles in bone health, trace elements such as boron, iron, zinc, copper, and selenium also impact bone metabolism. Effects of trace elements on skeletal metabolism and tissue properties may be indirect through regulation of macro mineral metabolism, or direct by affecting osteoblast or osteoclast proliferation or activity, or finally through incorporation into the bone mineral matrix. This review focuses on the skeletal impact of the following trace elements: boron, iron, zinc, copper, and selenium, and overviews the state of the evidence for each of these minerals.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA, 01760, USA.
| |
Collapse
|
45
|
|
46
|
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O'Neill LA, Mills EL. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 2019; 1:16-33. [PMID: 31032474 PMCID: PMC6485344 DOI: 10.1038/s42255-018-0014-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for "non-metabolic" signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases.
Collapse
Affiliation(s)
- Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Abstract
SIGNIFICANCE Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism. Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis. CRITICAL ISSUES Despite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered. FUTURE DIRECTIONS Further studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Michael John Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
| |
Collapse
|
48
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
49
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
Biamonti G, Maita L, Montecucco A. The Krebs Cycle Connection: Reciprocal Influence Between Alternative Splicing Programs and Cell Metabolism. Front Oncol 2018; 8:408. [PMID: 30319972 PMCID: PMC6168629 DOI: 10.3389/fonc.2018.00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Lucia Maita
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | |
Collapse
|