1
|
Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N, He L. Dietary amino acids promote glucagon-like hormone release to generate global calcium waves in adipose tissues in Drosophila. Nat Commun 2025; 16:247. [PMID: 39747032 PMCID: PMC11696257 DOI: 10.1038/s41467-024-55371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Propagation of intercellular calcium waves through tissues has been found to coordinate different multicellular responses. Nevertheless, our understanding of how calcium waves operate remains limited. In this study, we explore the real-time dynamics of intercellular calcium waves in Drosophila adipose tissues. We identify Adipokinetic Hormone (AKH), the fly functional homolog of glucagon, as the key factor driving Ca2+ activities in adipose tissue. We find that AKH, which is released into the hemolymph from the AKH-producing neurosecretory cells, stimulates calcium waves in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent intercellular calcium waves are triggered by a presumably uniformly diffused AKH. Additionally, we discover that amino acids activate the AKH-producing neurosecretory cells, leading to increased intracellular Ca2+ and AKH secretion. Altogether, we show that dietary amino acids regulate the AKH release from the AKH-producing neurosecretory cells in the brain, which subsequently stimulates gap-junction-independent intercellular calcium waves in adipose tissue, enhancing lipid metabolism.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shang Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengyao Luo
- Yuanpei College, Peking University, Beijing, China
| | - Wenjia Shi
- Department of Applied Physics, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuansheng Cao
- Department of Physics, Tsinghua University, Beijing, China.
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Zhao J, Yin J, Wang Z, Shen J, Dong M, Yan S. Complicated gene network for regulating feeding behavior: novel efficient target for pest management. PEST MANAGEMENT SCIENCE 2025; 81:10-21. [PMID: 39390706 DOI: 10.1002/ps.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Feeding behavior is a fundamental activity for insects, which is essential for their growth, development and reproduction. The regulation of their feeding behavior is a complicated process influenced by a variety of factors, including external stimuli and internal physiological signals. The current review introduces the signaling pathways in brain, gut and fat body involved in insect feeding behavior, and provides a series of target genes for developing RNA pesticides. Additionally, this review summaries the current challenges for the identification and application of functional genes involved in feeding behavior, and finally proposes the future research direction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Zhao
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiaming Yin
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Dong
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Force E, Alvarez C, Fuentes A, Maria A, Bozzolan F, Debernard S. Diet influence on male sexual maturation through interplay between insulin signaling and juvenile hormone in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104252. [PMID: 39701395 DOI: 10.1016/j.ibmb.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals. We turned to the male moth Agrotis ipsilon for which sexual maturation, including accessory sex glands (ASGs) development concomitantly with antennal lobes (ALs) maturation for female sex pheromone processing and display of sexual behavior, is known to be JH- and diet-dependent. Indeed, a diet rich in sugars with sodium was previously shown to accelerate sexual maturation, which was achieved from the third day of adult life. In this study, we demonstrated that such a diet raised i) the expression of JH signaling actors (Methoprene-tolerant, Taiman, and Krüppel homolog 1) in ALs and ASGs, ii) the biosynthesis and circulating levels of JH, and iii) the expression of both insulin receptor (InR) and insulin-like peptides (ILPs) in corpora allata (CAs) and brain respectively. Insulin injection raised JH biosynthesis following increased HMG-CoA reductase expression in CAs; opposite effects were induced in InR-deficient males. Thus, we highlighted that promoting effects of a diet composed of sugars with sodium on male sexual maturation results from an early induction of ISP causing an increase in JH biosynthesis followed by a potentiation of JH actions on the development of ASGs and ALs in A. ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| | | | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| |
Collapse
|
4
|
Zhao W, Liu P, Saunders TR, Zhu J. Juvenile hormone induces phosphorylation of insulin/insulin-like growth factor signaling proteins in previtellogenic Aedes aegypti mosquitoes. INSECT SCIENCE 2024. [PMID: 39663731 DOI: 10.1111/1744-7917.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Juvenile hormone (JH) plays a pivotal role in regulating post-emergence development and metabolism in previtellogenic female Aedes aegypti mosquitoes. In contrast, yolk protein precursor production and egg maturation after a blood meal are regulated by the steroid hormone 20-hydroxyecdysone, the insulin-like growth factor (IGF)/insulin signaling (IIS) pathway, and the mammalian target of rapamycin (mTOR) pathway. The role of IIS/mTOR signaling in female adults prior to blood feeding has not been thoroughly investigated. In this study, we identified a significant increase in the phosphorylation of key effector proteins in the IIS/mTOR signaling pathway, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K) and forkhead box protein O1 (FoxO1), in previtellogenic females. In vitro fat body culture experiments suggest that JH induces these phosphorylations through rapid nongenomic signaling mediated by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mTOR network. RNA interference experiments demonstrated that activation of IIS/mTOR signaling in previtellogenic females modulate metabolic gene expression, promoting the accumulation of energy reserves (glycogen and triglycerides), which influence mosquito fecundity. Additionally, depletion of either the insulin receptor (InR) or the JH receptor Methoprene-tolerant (Met) in adult mosquitoes abolished the phosphorylation of these proteins, indicating that both receptors are involved in JH-induced membrane-initiated signal transduction. Although the precise mechanisms remain unclear, this study uncovers a novel function of the IIS/mTOR pathway in adult mosquitoes before blood feeding, as well as a new mode of JH action through its crosstalk with the IIS pathway.
Collapse
Affiliation(s)
- Wenhao Zhao
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
- Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Thomas R Saunders
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Feng S, Wang D, Qin Q, Chen K, Zhang W, He Y. Functions of Insulin-like Peptide Genes ( CsILP1 and CsILP2) in Female Reproduction of the Predatory Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae). INSECTS 2024; 15:981. [PMID: 39769583 PMCID: PMC11677109 DOI: 10.3390/insects15120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Insulin-like peptides (ILPs) are important peptide hormones in insects, particularly involved in regulating physiological processes such as growth, development, and reproduction. However, the specific roles of ILPs in the reproduction of natural enemy insects remain unknown. In this study, two ILP genes, CsILP1 and CsILP2, were cloned and their functions were analyzed in female Coccinella septempunctata L. (Coleoptera: Coccinellidae). The open reading frames (ORFs) of CsILP1 and CsILP2 were 384 bp and 357 bp, respectively. The expression of CsILP1 increased on the 6th day after eclosion, reaching its peak on the 12th day, while CsILP2 levels showed a significant increase on the 6th day and then stabilized. In different tissues, CsILP1 was highly expressed in ovaries, while CsILP2 predominated in elytra. Injection of dsRNA targeting CsILP1 and CsILP2 resulted in the down-regulation of insulin pathway genes. The relative expression of ovarian development-related genes Vasa, G2/M, and Vg was reduced by 82.50%, 89.55%. and 96.98% in dsCsILP1-treated females, and by 42.55%, 91.36%, and 55.63% in dsCsILP2-treated females. Furthermore, substantial decreases in 14-day fecundity were observed, with reductions of 89.99% for dsCsILP1 and 83.45% for dsCsILP2. These results confirm the regulatory functions of CsILP1 and CsILP2 in female C. septempunctata reproduction.
Collapse
Affiliation(s)
| | - Da Wang
- Correspondence: (D.W.); (Y.H.)
| | | | | | | | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (S.F.); (Q.Q.); (K.C.); (W.Z.)
| |
Collapse
|
6
|
Reinhard N, Fukuda A, Manoli G, Derksen E, Saito A, Möller G, Sekiguchi M, Rieger D, Helfrich-Förster C, Yoshii T, Zandawala M. Synaptic connectome of the Drosophila circadian clock. Nat Commun 2024; 15:10392. [PMID: 39638801 PMCID: PMC11621569 DOI: 10.1038/s41467-024-54694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The circadian clock and its output pathways play a pivotal role in optimizing daily processes. To obtain insights into how diverse rhythmic physiology and behaviors are orchestrated, we have generated a comprehensive connectivity map of an animal circadian clock using the Drosophila FlyWire brain connectome. Intriguingly, we identified additional dorsal clock neurons, thus showing that the Drosophila circadian network contains ~240 instead of 150 neurons. We revealed extensive contralateral synaptic connectivity within the network and discovered novel indirect light input pathways to the clock neurons. We also elucidated pathways via which the clock modulates descending neurons that are known to regulate feeding and reproductive behaviors. Interestingly, we observed sparse monosynaptic connectivity between clock neurons and downstream higher-order brain centers and neurosecretory cells known to regulate behavior and physiology. Therefore, we integrated single-cell transcriptomics and receptor mapping to decipher putative paracrine peptidergic signaling by clock neurons. Our analyses identified additional novel neuropeptides expressed in clock neurons and suggest that peptidergic signaling significantly enriches interconnectivity within the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Emilia Derksen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Gabriel Möller
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of Biochemistry and Molecular Biology and Integrative Neuroscience Program, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
7
|
Yusuf AO, Danborno B, Bauchi ZM, Sani D, Ndams IS. Aging impaired locomotor and biochemical activities in Drosophila melanogaster Oregon R (fruit fly) model. Exp Gerontol 2024; 197:112593. [PMID: 39326807 DOI: 10.1016/j.exger.2024.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Despite advancements in healthcare and increased lifespan, aging populations face numerous challenges, including declining cognitive function, increased susceptibility to chronic diseases, and reduced quality of life. This study investigated Aging impaired Locomotors and Biochemical Activities in Drosophila melanogaster Oregon R (Fruit Fly) Model with the aim to elucidate the mechanism involved. Adult wild-type Drosophila melanogaster Oregon R was used for this study. Survival assay, antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA)) and total protein (TP) concentration were investigated. Data obtained were analyzed using R studio and GraphPad Prism. The result indicated low survival in male flies compared to female flies and the highest survival rate was observed with both flies reared together in the same vial. There was impaired locomotor activity in the flies with age. There was a significant decrease in the level of SOD, CAT, GSH and TP with age with a corresponding significant increase in the level of MDA. This finding demonstrated that locomotor activity decreased with aging with decrease performance index and also established the involvement of oxidation through the activities of antioxidant enzymes in aging; decreased (p < 0.05) concentration of antioxidant enzymes and increased (p < 0.05) lipid peroxidation. Also, it demonstrated that female species had longer lifespan compared to males while co-habiting of male and female species extended lifespan.
Collapse
Affiliation(s)
- Abdullateef Onoruoiza Yusuf
- Department of Anatomy, Faculty of Basic Medical Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria.
| | - Barnabas Danborno
- Department of Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab M Bauchi
- Department of Human Anatomy, Faculty of Basic Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Dahiru Sani
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Iliya Shehu Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
8
|
Liu Z, Liu J, Liu Z, Song X, Liu S, Liu F, Song L, Gao Y. Identification and Characterization of a Novel Insulin-like Receptor ( LvRTK2) Involved in Regulating Growth and Glucose Metabolism of the Pacific White Shrimp Litopenaeus vannamei. Biomolecules 2024; 14:1300. [PMID: 39456233 PMCID: PMC11506343 DOI: 10.3390/biom14101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The insulin receptor (IR) plays a crucial role in the growth and metabolism of animals. However, there are still many questions regarding the IR in crustaceans, particularly their role in shrimp growth and glucose metabolism. In this study, we identified a novel insulin-like receptor gene in Litopenaeus vannamei and cloned its full length of 6439 bp. This gene exhibited a highly conserved sequence and structural characteristics. Phylogenetic analysis confirmed it as an unreported RTK2-type IR, namely, LvRTK2. Expression pattern analysis showed that LvRTK2 is primarily expressed in female reproductive and digestive organs. Through a series of in vivo and in vitro experiments, including glucose treatment, exogenous insulin treatment, and starvation treatment, LvRTK2 was confirmed to be involved in the endogenous glucose metabolic pathway of shrimp under different glucose variations. Moreover, long-term and short-term interference experiments with LvRTK2 revealed that the interference significantly reduced the shrimp growth rate and serum glucose clearance rate. Further studies indicated that LvRTK2 may regulate shrimp growth by modulating the downstream PI3K/AKT signaling pathway and a series of glucose metabolism events, such as glycolysis, gluconeogenesis, glycogen synthesis, and glycogenolysis. This report on the characteristics and functions of LvRTK2 confirms the important role of RTK2-type IRs in regulating shrimp growth and glucose metabolism.
Collapse
Affiliation(s)
- Zijian Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jiawei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Zijie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Xiaowei Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Su Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Fei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| | - Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Yi Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (J.L.); (Z.L.); (X.S.); (F.L.)
| |
Collapse
|
9
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
10
|
Zhang X, Xie N, Ding G, Ning D, Dai W, Xiong Z, Zhong W, Zuo D, Zhao J, Zhang P, Liu C, Li Q, Ran H, Liu W, Zhang G. An evolutionarily conserved pathway mediated by neuroparsin-A regulates reproductive plasticity in ants. PLoS Biol 2024; 22:e3002763. [PMID: 39133741 PMCID: PMC11398701 DOI: 10.1371/journal.pbio.3002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Phenotypic plasticity displayed by an animal in response to different environmental conditions is supposedly crucial for its survival and reproduction. The female adults of some ant lineages display phenotypic plasticity related to reproductive role. In pharaoh ant queens, insemination induces substantial physiological/behavioral changes and implicates remarkable gene regulatory network (GRN) shift in the brain. Here, we report a neuropeptide neuroparsin A (NPA) showing a conserved expression pattern associated with reproductive activity across ant species. Knock-down of NPA in unmated queen enhances ovary activity, whereas injection of NPA peptide in fertilized queen suppresses ovary activity. We found that NPA mainly affected the downstream gene JHBP in the ovary, which is positively regulated by NPA and suppression of which induces elevated ovary activity, and shadow which is negatively regulated by NPA. Furthermore, we show that NPA was also employed into the brain-ovary axis in regulating the worker reproductive changes in other distantly related species, such as Harpegnathos venator ants.
Collapse
Affiliation(s)
- Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Nianxia Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Wuhan, China
| | - Guo Ding
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Ning
- College of Agriculture and Biotechnology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | | | | | - Wenjiang Zhong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dashuang Zuo
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pei Zhang
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chengyuan Liu
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Qiye Li
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hao Ran
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guojie Zhang
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
11
|
Qiu X, Huang W, Yue W, Li D, Zhi J. Response of the serine/threonine kinase AKT and phosphoinositide-dependent kinase PDK in Frankliniella occidentalis (Thysanoptera: Thripidae) to three kinds of foods and their regulation of reproductive function. INSECT MOLECULAR BIOLOGY 2024; 33:372-386. [PMID: 38450915 DOI: 10.1111/imb.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Frankliniella occidentalis (Pergande) is a typical omnivorous insect that feeds on host plants, pollens and mite eggs, and poses a threat to crops worldwide. The insulin signalling pathway (ISP) is a typical nutrient-sensitive pathway that participates in the regulation of various functions in insects. Serine/threonine kinases (AKTs) and phosphoinositide-dependent kinases (PDKs) are key components of the ISP. In this study, the FoAKT and FoPDK genes in F. occidentalis were cloned, and the effects of three foods on their expression were determined. The expression of FoAKT and FoPDK in the thrips fed on kidney bean leaves supplemented with pine pollen or mite eggs was higher than in those primarily fed on leaves alone. Meanwhile, the fecundity of thrips fed on leaves supplemented with pine pollen was highest. In addition, RNA interference-mediated knockdown of FoAKT and FoPDK decreased vitellogenin (Vg) content and Vg expression in females, shortened ovariole length, delayed egg development and reduced fecundity and offspring hatching rates. Furthermore, the synthesis of juvenile hormone (JH) was reduced, and the contents of glucose, trehalose, glycogen and trehalase were affected. These results suggest that FoAKT and FoPDK regulate the reproduction of F. occidentalis by regulating Vg and JH production as well as carbohydrate metabolism.
Collapse
Affiliation(s)
- Xinyue Qiu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Wanqing Huang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Tobacco Company, Tongren Branch, Tongren, China
| | - Wenbo Yue
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Dingyin Li
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Junrui Zhi
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Shi W, Zhang L, Zhao Y, Li X. Exendin-4 Caused Growth Arrest by Regulating Sugar Metabolism in Hyphantria cunea (Lepidoptera: Erebidae) Larvae. INSECTS 2024; 15:503. [PMID: 39057236 PMCID: PMC11276936 DOI: 10.3390/insects15070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Insects' growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, and energy metabolism of fourth-instar larvae of the fall webworm, Hyphantria cunea. We determined the impact of exendin-4 on larval growth and nutritional indices, analyzed the responses of glycolytic and metabolic pathways, and revealed the underlying regulatory mechanisms. Exendin-4 treatment significantly decreased growth and nutritional indices, influenced the activity of digestive enzymes, and induced changes in metabolite profiles, particularly affecting energy substance metabolism. We observed an increase in the glycogen content and a decrease in glucose and trehalose levels in the hemolymph, suggesting a regulatory effect on blood sugar homeostasis. Furthermore, exendin-4 promoted glycolysis by enhancing the activities and expressions of key glycolytic enzymes, leading to an increase in pyruvate production. This was accompanied by a reduction in ATP levels and the activation of AMP-activated protein kinase (AMPK), which may underlie the growth arrest in larvae. Our findings provide novel insights into the effects of exendin-4 on insect responses from an energy metabolism perspective and may contribute to the development of GLP-1R agonists for pest management.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Lu Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Yuecheng Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xingpeng Li
- College of Forestry, Beihua University, Jilin 132013, China
| |
Collapse
|
13
|
Kalita E, Panda M, Rao A, Pandey RK, Prajapati VK. Viral mimicry and endocrine system: Divulging the importance in host-microbial crosstalk. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:421-436. [PMID: 39059993 DOI: 10.1016/bs.apcsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Host-pathogen interactions are complex associations which evolve over long co-evolutionary histories. Pathogens exhibit different mechanisms to gain advantage over their host. Mimicry of host factors is an influential tool in subverting host mechanisms to ensure pathogenesis. This chapter discusses such molecular mimicry exhibited during viral infections. Understanding the evolutionary relationships, shared identity and functional impact of the virus encoded mimics is critical. With a particular emphasis on viral mimics and their association with cancer and autoimmune diseases, this chapter highlights the importance of molecular mimicry in virus biology.
Collapse
Affiliation(s)
- Elora Kalita
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Mamta Panda
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf Martinistraße, Hamburg, Germany
| | - Abhishek Rao
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
14
|
Montaser O, El-Aasr M, Tawfik HO, Meshrif WS, Elbrense H. Drosophila melanogaster as a model organism for diabetes II treatment by the ethyl acetate fraction of Atriplex halimus L. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:702-716. [PMID: 38623920 DOI: 10.1002/jez.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Type 2 diabetes (T2D) is the most common metabolic disorder. The undesirable effects of synthetic drugs demand a search for safe antidiabetic agents. This study aimed to assess the antidiabetic activity of different fractions of Atriplex halimus (petroleum ether 60-80, methylene chloride, ethyl acetate, and n-butanol) using Drosophila melanogaster larvae. Titers of total glucose and trehalose, as well as larval weight, were measured and compared with those of control and diabetic larvae. The expression of Drosophila insulin-like peptides (DILP2 and DILP3) and adipokinetic hormone (AKH) was evaluated. The results revealed a significant increase in total glucose, trehalose, and a decrease in body weight in the larvae fed a high-sugar diet compared with those in the control. When larvae fed diets containing the tested fractions, the total glucose and trehalose decreased to the control level, and the body weight increased. DILP2, DILP3, and AKH exhibited significant decreases upon treatment with A. halimus ethyl acetate. Metabolomic profiling of the ethyl acetate fraction of A. halimus revealed the presence of flavonoids and flavonoid glycosides. After docking screening to predict the most powerful moiety, we discovered that flavonoid glycosides (especially eriodictyol-7-O-neohesperidoside) have a greater affinity for the pocket than the other moieties. The results indicated the therapeutic activity of the A. halimus ethyl acetate fraction against induced T2D in Drosophila larvae. The antidiabetic activity may be attributed to flavonoids, which are the main components of the A. halimus ethyl acetate fraction.
Collapse
Affiliation(s)
- Omnia Montaser
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Wesam S Meshrif
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Leyria J, Fruttero LL, Canavoso LE. Lipids in Insect Reproduction: Where, How, and Why. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874891 DOI: 10.1007/5584_2024_809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
16
|
Mead EB, Lee M, Trammell CE, Goodman AG. Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. INSECTS 2024; 15:446. [PMID: 38921161 PMCID: PMC11203814 DOI: 10.3390/insects15060446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The arbovirus West Nile virus (WNV) is a danger to global health. Spread primarily by mosquitoes, WNV causes about 2000 cases per year in the United States. The natural mosquito immune response controls viral replication so that the host survives but can still transmit the virus. Using the genetically malleable Drosophila melanogaster model, we previously dissected innate immune pathways used to control WNV infection. Specifically, we showed that insulin/IGF-1 signaling (IIS) activates a JAK/STAT-mediated immune response that reduces WNV. However, how factors that regulate IIS in insects control infection has not been identified. D. melanogaster Limostatin (Lst) encodes a peptide hormone that suppresses insulin secretion. Its mammalian ortholog, Neuromedin U (NMU), is a peptide that regulates the production and secretion of insulin from pancreatic beta cells. In this study, we used D. melanogaster and human cell culture models to investigate the roles of these insulin regulators in immune signaling. We found that D. melanogaster Lst mutants, which have elevated insulin-like peptide expression, are less susceptible to WNV infection. Increased levels of insulin-like peptides in these flies result in upregulated JAK/STAT activity, leading to protection from infection. Treatment of human cells with the insulin regulator NMU results in increased WNV replication. Further investigation of methods to target Lst in mosquitoes or NMU in mammals can improve vector control methods and may lead to improved therapeutics for human and animal infection.
Collapse
Affiliation(s)
- Ezra B. Mead
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
17
|
Singh K, Das S, Sutradhar S, Howard J, Ray K. Insulin signaling accelerates the anterograde movement of Rab4 vesicles in axons through Klp98A/KIF16B recruitment via Vps34-PI3Kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590898. [PMID: 38895253 PMCID: PMC11185528 DOI: 10.1101/2024.04.24.590898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.
Collapse
Affiliation(s)
- Kamaldeep Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Semanti Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
| | - Sabyasachi Sutradhar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- National Brain Research Centre, Manesar, Haryana – 122051, India
| |
Collapse
|
18
|
Helfrich-Förster C. Neuropeptidergic regulation of insect diapause by the circadian clock. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101198. [PMID: 38588944 DOI: 10.1016/j.cois.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Diapause is an endocrine-mediated strategy used by insects to survive seasons of adverse environmental conditions. Insects living in temperate zones are regularly exposed to such conditions in the form of winter. To survive winter, they must prepare for it long before it arrives. A reliable indicator of impending winter is the shortening of day length. To measure day length, insects need their circadian clock as internal time reference. In this article, I provide an overview of the current state of knowledge on the neuropeptides that link the clock to the diapause inducing hormonal brain centers.
Collapse
|
19
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
20
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
21
|
Singh A, Abhilasha KV, Acharya KR, Liu H, Nirala NK, Parthibane V, Kunduri G, Abimannan T, Tantalla J, Zhu LJ, Acharya JK, Acharya UR. A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila. Nat Commun 2024; 15:4410. [PMID: 38782979 PMCID: PMC11116528 DOI: 10.1038/s41467-024-48851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic β cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.
Collapse
Affiliation(s)
- Alka Singh
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Kathya R Acharya
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
- University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thiruvaimozhi Abimannan
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jacob Tantalla
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Usha R Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
22
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
23
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
24
|
Li L, Duo H, Zhang X, Gong H, Li B, Hao Y. Comparative Transcriptomic Analysis Revealing the Potential Mechanisms of Erythritol-Caused Mortality and Oviposition Inhibition in Drosophila melanogaster. Int J Mol Sci 2024; 25:3738. [PMID: 38612549 PMCID: PMC11011834 DOI: 10.3390/ijms25073738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing. Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene (Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5) were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly down-regulated or even showed no expression. However, there were no significant differences in the expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05). We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical basis for the application of erythritol as an environmentally friendly pesticide.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (L.L.)
| | - Youjin Hao
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (L.L.)
| |
Collapse
|
25
|
Li X, Li W, Zhang S, Sang W, Peng Y, Zhao Y. RNA interference against the putative insulin receptor substrate gene IRS1 affects growth and development in the pest natural enemy Pardosa pseudoannulata. PEST MANAGEMENT SCIENCE 2024; 80:648-660. [PMID: 37756442 DOI: 10.1002/ps.7792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Insulin signalling pathways play crucial roles in regulating growth and development in insects, but their effects on the growth and development of Arachnids, such as spiders, have rarely been studied. As a valuable pest natural enemy in agricultural fields, the molecular mechanisms of insulin signalling pathway-mediated growth and development of the wolf spider, Pardosa pseudoannulata, are of particular interest. RESULTS In this study, we identified and characterized six insulin signalling pathway genes - InR, InR2, IRS1, PI3K1, PI3K2, and PDK - in Pardosa pseudoannulata. Real-time quantitative polymerase chain reaction results were used to analyse the relative expression levels of the six genes in different developmental instars and tissues, and in response to starvation treatment. In addition, the function of the insulin receptor substrate (IRS1) gene was investigated using RNA interference technology, which found that IRS1 significantly influenced nutrient content, developmental duration, body weight, and gonad development. CONCLUSION This study revealed the roles of six key insulin signalling pathway genes in Pardosa pseudoannulata, and in particular the importance of the IRS1 gene in regulating growth and development in the spider. The results lay the foundation for further research on the internal regulation mechanisms of growth and development in Araneae species, and also provide a reference for the artificial breeding of spiders. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelai Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wen Sang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
26
|
Orchard I, Lange AB. The neuroendocrine and endocrine systems in insect - Historical perspective and overview. Mol Cell Endocrinol 2024; 580:112108. [PMID: 37956790 DOI: 10.1016/j.mce.2023.112108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
A complex cascade of events leads to the initiation and maintenance of a behavioral act in response to both internally and externally derived stimuli. These events are part of a transition of the animal into a new behavioral state, coordinated by chemicals that bias tissues and organs towards a new functional state of the animal. This form of integration is defined by the neuroendocrine (or neurosecretory) system and the endocrine system that release neurohormones or hormones, respectively. Here we describe the classical neuroendocrine and endocrine systems in insects to provide an historic perspective and overview of how neurohormones and hormones support plasticity in behavioral expression. Additionally, we describe peripheral tissues such as the midgut, epitracheal glands, and ovaries, which, whilst not necessarily being endocrine glands in the pure sense of the term, do produce and release hormones, thereby providing even more flexibility for inter-organ communication and regulation.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
27
|
Chen K, Dou X, Eum JH, Harrison RE, Brown MR, Strand MR. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104028. [PMID: 37913852 PMCID: PMC10842226 DOI: 10.1016/j.ibmb.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Mosquitoes including Aedes aegypti are human disease vectors because females must blood feed to produce and lay eggs. Blood feeding triggers insulin-insulin growth factor signaling (IIS) which regulates several physiological processes required for egg development. A. aegypti encodes 8 insulin-like peptides (ILPs) and one insulin-like receptor (IR) plus ovary ecdysteroidogenic hormone (OEH) that also activates IIS through the OEH receptor (OEHR). In this study, we assessed the expression of A. aegypti ILPs and OEH during a gonadotrophic cycle and produced each that were functionally characterized to further understand their roles in regulating egg formation. All A. aegypti ILPs and OEH were expressed during a gonadotrophic cycle. Five ILPs (1, 3, 4, 7, 8) and OEH were specifically expressed in the head, while antibodies to ILP3 and OEH indicated each was released after blood feeding from ventricular axons that terminate on the anterior midgut. A subset of ILP family members and OEH stimulated nutrient storage in previtellogenic females before blood feeding, whereas most IIS-dependent processes after blood feeding were activated by one or more of the brain-specific ILPs and/or OEH. ILPs and OEH with different biological activities also exhibited differences in IIS as measured by phosphorylation of the IR, phosphoinositide 3-kinase/Akt kinase (AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK). Altogether, our results provide the first results that compare the functional activities of all ILP family members and OEH produced by an insect.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jai Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ruby E Harrison
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
28
|
Rodrigues NR, Macedo GE, Martins IK, Vieira PDB, Kich KG, Posser T, Franco JL. Sleep disturbance induces a modulation of clock gene expression and alters metabolism regulation in drosophila. Physiol Behav 2023; 271:114334. [PMID: 37595818 DOI: 10.1016/j.physbeh.2023.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Sleep disorders are catching attention worldwide as they can induce dyshomeostasis and health issues in all animals, including humans. Circadian rhythms are biological 24-hour cycles that influence physiology and behavior in all living organisms. Sleep is a crucial resting state for survival and is under the control of circadian rhythms. Studies have shown the influence of sleep on various pathological conditions, including metabolic diseases; however, the biological mechanisms involving the circadian clock, sleep, and metabolism regulation are not well understood. In previous work, we standardized a sleep disturbance protocol and, observed that short-time sleep deprivation and sleep-pattern alteration induce homeostatic sleep regulation, locomotor deficits, and increase oxidative stress. Now, we investigated the relationship between these alterations with the circadian clock and energetic metabolism. In this study, we evaluated the expression of the circadian clock and drosophila insulin-like peptides (DILPs) genes and metabolic markers glucose, triglycerides, and glycogen in fruit flies subjected to short-term sleep disruption protocols. The sleep disturbance altered the expression of clock genes and DILPs genes expression, and modulated glucose, triglycerides, and glycogen levels. Moreover, we demonstrated changes in mTor/dFoxo genes, AKT phosphorylation, and dopamine levels in nocturnal light-exposed flies. Thus, our results suggest a connection between clock genes and metabolism disruption as a consequence of sleep disruption, demonstrating the importance of sleep quality in health maintenance.
Collapse
Affiliation(s)
- Nathane Rosa Rodrigues
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria Santa Maria, RS, 97105-900, Brazil.
| | - Giulianna Echeverria Macedo
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Patrícia de Brum Vieira
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Karen Gomes Kich
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Grupo de Pesquisa Estresse Oxidativo e Sinalização Celular, Centro Interdisciplinar de Pesquisas em Biotecnologia, Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, 97307-020, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
29
|
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 2023; 21:e3002359. [PMID: 37934726 PMCID: PMC10629620 DOI: 10.1371/journal.pbio.3002359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Choi TJ, Han SM, Malik A, Kim CB. Comparative transcriptome analysis of two Daphnia galeata genotypes displaying contrasting phenotypic variation induced by fish kairomones in the same environment of the Han River, Korea. BMC Genomics 2023; 24:580. [PMID: 37784038 PMCID: PMC10544471 DOI: 10.1186/s12864-023-09701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Phenotypic plasticity is a crucial adaptive mechanism that enables organisms to modify their traits in response to changes in their environment. Predator-induced defenses are an example of phenotypic plasticity observed across a wide range of organisms, from single-celled organisms to vertebrates. In addition to morphology and behavior, these responses also affect life-history traits. The crustacean Daphnia galeata is a suitable model organism for studying predator-induced defenses, as it exhibits life-history traits changes under predation risk. To get a better overview of their phenotypic plasticity under predation stress, we conducted RNA sequencing on the transcriptomes of two Korean Daphnia galeata genotypes, KE1, and KB11, collected in the same environment. RESULTS When exposed to fish kairomones, the two genotypes exhibited phenotypic variations related to reproduction and growth, with opposite patterns in growth-related phenotypic variation. From both genotypes, a total of 135,611 unigenes were analyzed, of which 194 differentially expressed transcripts (DETs) were shared among the two genotypes under predation stress, which showed consistent, or inconsistent expression patterns in both genotypes. Prominent DETs were related to digestion and reproduction and consistently up-regulated in both genotypes, thus associated with changes in life-history traits. Among the inconsistent DETs, transcripts encode vinculin (VINC) and protein obstructor-E (OBST-E), which are associated with growth; these may explain the differences in life-history traits between the two genotypes. In addition, genotype-specific DETs could explain the variation in growth-related life-history traits between genotypes, and could be associated with the increased body length of genotype KE1. CONCLUSIONS The current study allows for a better understanding of the adaptation mechanisms related to reproduction and growth of two Korean D. galeata genotypes induced by predation stress. However, further research is necessary to better understand the specific mechanisms by which the uncovered DETs are related with the observed phenotypic variation in each genotype. In the future, we aim to unravel the precise adaptive mechanisms underlying predator-induced responses.
Collapse
Affiliation(s)
- Tae-June Choi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Seung-Min Han
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
31
|
Wang Z, Wang M, Tu S, Tuo P, Xie X, Zhu D. Identification of Two Insulin Receptors from the Swimming Crab Portunus trituberculatus: Molecular Characterization, Expression Analysis, and Interactions with Insulin-Like Androgenic Gland Hormone. THE BIOLOGICAL BULLETIN 2023; 245:68-76. [PMID: 38976851 DOI: 10.1086/731055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractThe insulin-like androgenic gland hormone is a crucial sexual regulator that is involved in the masculine sexual differentiation of crustaceans. As an insulin-like peptide, the insulin-like androgenic gland hormone has been proposed to act through the insulin receptor-mediated pathway. The present study cloned and characterized two insulin receptors (PtIR1 and PtIR2) from the swimming crab Portunus trituberculatus hallmarked with a conserved intracellular tyrosine kinase catalytic domain and several other typical insulin receptor domains in their deduced amino acid sequences. Both insulin receptors were predominately expressed in the testis and the insulin-like androgenic gland hormone-producing organ androgenic gland. Their testicular expression during the annual cycle suggested that they may play critical roles in spermatogenesis. By using the protein colocalization analysis in HEK293 cells, interactions of PtIAG with the two PtIRs were further confirmed. In addition, the insulin receptor antagonist was found to attenuate the stimulatory effects of androgenic gland homogenate on the phosphorylated MAPK levels in testis explants, suggesting that the insulin receptor-dependent MAPK pathway may be essential for insulin-like androgenic gland hormone functions.
Collapse
|
32
|
González Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. eLife 2023; 12:RP88143. [PMID: 37732734 PMCID: PMC10513480 DOI: 10.7554/elife.88143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, BerkeleyBerkeleyUnited States
| | | | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
33
|
Zheng J, Xu J, Zhang R, Du J, Wang H, Li J, Zhou D, Sun Y, Shen B. MicroRNA-989 targets 5-hydroxytryptamine receptor1 to regulate ovarian development and eggs production in Culex pipiens pallens. Parasit Vectors 2023; 16:326. [PMID: 37705064 PMCID: PMC10498645 DOI: 10.1186/s13071-023-05957-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Female mosquitoes need a blood meal after mating for their eggs to develop, and this behavior leads to the spread of pathogens. Therefore, understanding the molecular regulation of reproduction in female mosquitoes is essential to control mosquito vector populations. In this study, we reported that microRNA-989 (miR-989), which targets 5-HTR1 (encoding secreted 5-hydroxytryptamine receptor1), is essential for mosquito reproduction. METHODS The spatiotemporal expression profile of miR-989 was detected using quantitative real-time reverse transcription PCR (RT-qPCR). miR-989 antagomirs and antagomir-negative control (NC) were designed and synthesized to knock down the expression of endogenous miR-989 in female mosquitoes. RNA sequencing was used to analyze the ovarian response to miR-989 deletion. The targets of miR-989 were predicted and confirmed using RNAhybrid and dual-luciferase assays. RESULTS miR-989 is exclusively expressed in female mosquito ovaries and responds to blood feeding. Injection of the miR-989 antagomir resulted in smaller ovaries and reduced egg production. 5-HTR1 was demonstrated as a target of miR-989. The deletion of miR-989 contributed to the upregulation of 5-HTR1 expression. Knockdown of 5-HTR1 rescued the adverse egg production caused by miR-989 silencing. Thus, miR-989 might play an essential role in female reproduction by targeting 5-HTR1. CONCLUSIONS We found that miR-989 targets 5-HTR1 and participates in the regulation of reproduction in female mosquitoes. These findings expand our understanding of reproduction-related miRNAs and promote new control strategies for mosquitoes.
Collapse
Affiliation(s)
- Junnan Zheng
- Department of Clinical Laboratory, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ruiming Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Keyes-Scott NI, Swade KR, Allen LR, Vogel KJ. RNAi-mediated knockdown of two orphan G protein-coupled receptors reduces fecundity in the yellow fever mosquito Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2023; 3:1197945. [PMID: 38469499 PMCID: PMC10926455 DOI: 10.3389/finsc.2023.1197945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptors (GPCRs) control numerous physiological processes in insects, including reproduction. While many GPCRs have known ligands, orphan GPCRs do not have identified ligands in which they bind. Advances in genomic sequencing and phylogenetics provide the ability to compare orphan receptor protein sequences to sequences of characterized GPCRs, and thus gain a better understanding of the potential functions of orphan GPCRs. Our study sought to investigate the functions of two orphan GPCRs, AAEL003647 and AAEL019988, in the yellow fever mosquito, Aedes aegypti. From our phylogenetic investigation, we found that AAEL003647 is orthologous to the SIFamide-2/SMYamide receptor. We also found that AAEL019988 is orthologous to the Trapped in endoderm (Tre1) receptor of Drosophila melanogaster. Next, we conducted a tissue-specific expression analysis and found that both receptors had highest expression in the ovaries, suggesting they may be important for reproduction. We then used RNA interference (RNAi) to knock down both genes and found a significant reduction in the number of eggs laid per individual female mosquito, suggesting both receptors are important for Ae. aegypti reproduction.
Collapse
Affiliation(s)
| | | | | | - Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
35
|
Jiang W, Nasir M, Zhao C. Variation of insulin-related peptides accompanying the differentiation of Aphis gossypii biotypes and their expression profiles. Ecol Evol 2023; 13:e10306. [PMID: 37456079 PMCID: PMC10349280 DOI: 10.1002/ece3.10306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Insulin signaling plays a critical role in regulating various aspects of insect biology, including development, reproduction, and the formation of wing polyphenism. This leads to differentiation among insect populations at different levels. The insulin family exhibits functional variation, resulting in diverse functional pathways. Aphis gossypii Glover, commonly known as the cotton-melon aphid, is a highly adaptable aphid species that has evolved into multiple biotypes. To understand the genetic structure of the insulin family and its evolutionary diversification and expression patterns in A. gossypii, we conducted studies using genome annotation files and RNA-sequencing data. Consequently, we identified 11 insulin receptor protein (IRP) genes in the genomes of the examined biotypes. Among these, eight AgosIRPs were dispersed across the X chromosome, while two were found in tandem on the A1 chromosome. Notably, AgosIRP2 exhibited alternative splicing, resulting in the formation of two isoforms. The AgosIRP genes displayed a high degree of conservation between Hap1 and Hap3, although some variations were observed between their genomes. For instance, a transposon was present in the coding regions of AgosIRP3 and AgosIRP9 in the Hap3 genome but not in the Hap1 genome. RNA-sequencing data revealed that four AgosIRPs were expressed ubiquitously across different morphs of A. gossypii, while others showed specific expression patterns in adult gynopara and adult males. Furthermore, the expression levels of most AgosIRPs decreased upon treatment with the pesticide acetamiprid. These findings demonstrate the evolutionary diversification of AgosIRPs between the genomes of the two biotypes and provide insights into their expression profiles across different morphs, developmental stages, and biotypes. Overall, this study contributes valuable information for investigating aphid genome evolution and the functions of insulin receptor proteins.
Collapse
Affiliation(s)
- Weili Jiang
- Basic Experimental Teaching Center of Life SciencesYangzhou UniversityYangzhouChina
| | - Muhammad Nasir
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute (AARI)FaisalabadPakistan
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control/College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
36
|
González-Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535891. [PMID: 37066363 PMCID: PMC10104137 DOI: 10.1101/2023.04.06.535891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila , four neurons called the Interoceptive Subesophageal zone Neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell type Bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPC), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, Berkeley, United States
- present address: IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Nicholas Jourjine
- University of California, Berkeley, United States
- present address: Harvard University, Cambridge, United States
| | - Alexander Del Toro
- University of California, Berkeley, United States
- present address: Brown University, Rhode Island, United States
| | | |
Collapse
|
37
|
Yuan Y, Wang Y, Ye W, Yuan E, Di J, Chen X, Xing Y, Sun Y, Ge F. Functional evaluation of the insulin/insulin-like growth factor signaling pathway in determination of wing polyphenism in pea aphid. INSECT SCIENCE 2023; 30:816-828. [PMID: 36178731 DOI: 10.1111/1744-7917.13121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Wing polyphenism is a common phenomenon that plays key roles in environmental adaptation of insects. Insulin/insulin-like growth factor signaling (IIS) pathway is a highly conserved pathway in regulation of metabolism, development, and growth in metazoans. It has been reported that IIS is required for switching of wing morph in brown planthopper via regulating the development of the wing pad. However, it remains elusive whether and how IIS pathway regulates transgenerational wing dimorphism in aphid. In this study, we found that pairing and solitary treatments can induce pea aphids to produce high and low percentage winged offspring, respectively. The expression level of ILP5 (insulin-like peptide 5) in maternal head was significantly higher upon solitary treatment in comparison with pairing, while silencing of ILP5 caused no obvious change in the winged offspring ratio. RNA interference-mediated knockdown of FoxO (Forkhead transcription factor subgroup O) in stage 20 embryos significantly increased the winged offspring ratio. The results of pharmacological and quantitative polymerase chain reaction experiments showed that the embryonic insulin receptors may not be involved in wing polyphenism. Additionally, ILP4 and ILP11 exhibited higher expression levels in 1st wingless offspring than in winged offspring. We demonstrate that FoxO negatively regulates the wing morph development in embryos. ILPs may regulate aphid wing polyphenism in a developmental stage-specific manner. However, the regulation may be not mediated by the canonical IIS pathway. The findings advance our understanding of IIS pathway in insect transgenerational wing polyphenism.
Collapse
Affiliation(s)
- Yiyang Yuan
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Plant Virology, Jinan, China
| | - Yanyan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Wanwan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Di
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Cangzhou Normal University, Cangzhou, Hebei Province, China
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou, Hebei Province, China
| | - Yanling Xing
- College of Life Sciences, Cangzhou Normal University, Cangzhou, Hebei Province, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Plant Virology, Jinan, China
| |
Collapse
|
38
|
Kang XL, Li YX, Dong DJ, Wang JX, Zhao XF. 20-Hydroxyecdysone counteracts insulin to promote programmed cell death by modifying phosphoglycerate kinase 1. BMC Biol 2023; 21:119. [PMID: 37226192 DOI: 10.1186/s12915-023-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.
Collapse
Affiliation(s)
- Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
39
|
Veenstra JA. Different neuroendocrine cell types in the pars intercerebralis of Periplaneta americana produce their own specific IGF-related peptides. Gen Comp Endocrinol 2023; 335:114233. [PMID: 36791825 DOI: 10.1016/j.ygcen.2023.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Of the nine genes of the American cockroach, Periplaneta americana, coding for peptides related to insulin and insulin-like growth factor, seven show significant expression in the central nervous system as demonstrated by the polymerase chain reaction on reverse transcribed RNA. In situ hybridisation shows that five of those are expressed by cells in the pars intercerebralis. Antisera raised to the predicted peptides show that these cells are neuroendocrine in nature and project to the corpora cardiaca. Interestingly, there are at least three cell types that each express different genes. This contrasts with Drosophila where a single cell type expresses a number of genes expressing several such peptides. Whereas in Drosophila the neuroendocrine cells producing insulin-like peptides also express sulfakinins, the arthropod orthologs of gastrin and cholecystokinin, in Periplaneta the sulfakinins are produced by different cells. Other neuropeptides known to be produced by the pars intercerebralis in Periplaneta and other insect species, such as the CRF-like diuretic hormone, neuroparsin, leucokinin or myosuppressin, neither colocalize with an insulin-related peptide. The separate cellular localization of these peptides and the existence of multiple insulin receptors in this species implies a more complex regulation by insulin and IGF-related peptides in cockroaches than in the fruit fly.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 Pessac Cedex, France.
| |
Collapse
|
40
|
Xing BL, Wang SF, Gulinuer A, Ye GY, Yang L. Transcriptional regulation of host insulin signaling pathway genes controlling larval development by Microplitis manilae parasitization. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22003. [PMID: 36694471 DOI: 10.1002/arch.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Idiobiont parasitoids using other insects as hosts sabotage the host growth and development to ensure their offspring survival. Numerous studies have discovered that insect development is subtly regulated by the conserved insulin signaling pathway. However, little is known about how wasp parasitization disrupts host development controlled by the insulin signaling pathway. Here we address this study to determine the effect of wasp parasitism on host Spodoptera frugiperda development using the idiobiont parasitoid Microplitis manilae as a model. Upon M. manilae parasitization, the body weight, body length, and food consumption of host insect were dramatically reduced compared to the unparasitized S. frugiperda. We next identified the core genes involved in host insulin signaling pathway and further analyzed the domain organizations of these genes. Phylogenetic reconstruction based on the insulin receptors clustered S. frugiperda together with other noctuidae insects. In the latter study, we profiled the expression patterns of host insulin signaling pathway genes in response to M. manilae parasitization at 2, 24, and 48 h, significant decreases in mRNA levels were recorded in S. frugiperda larvae upon 24 and 48 h parasitization. These current findings substantially add to our understanding of the physiological interaction between parasitoid and host insects, thus contributing to revealing the molecular mechanism of parasitic wasps regulating host development.
Collapse
Affiliation(s)
- Bing-Lin Xing
- Hainan Institute, Zhejiang University, Sanya, China
- Sanya Nanfan Research Institute & School of Tropical Crops, Hainan University, Sanya, China
| | - Shao-Feng Wang
- Hainan Institute, Zhejiang University, Sanya, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ahamaijiang Gulinuer
- Sanya Nanfan Research Institute & School of Tropical Crops, Hainan University, Sanya, China
| | - Gong-Yin Ye
- Hainan Institute, Zhejiang University, Sanya, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Yang
- Sanya Nanfan Research Institute & School of Tropical Crops, Hainan University, Sanya, China
| |
Collapse
|
41
|
Dai Y, Li X, Ding J, Liang Z, Guo R, Yi T, Zhu Y, Chen S, Liang S, Liu W. Molecular and expression characterization of insulin-like signaling in development and metabolism of Aedes albopictus. Parasit Vectors 2023; 16:134. [PMID: 37072796 PMCID: PMC10111782 DOI: 10.1186/s13071-023-05747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Insulin-like signaling (IS) in insects is a conserved pathway that regulates development, reproduction and longevity. Insulin-like peptides (ILPs) activate the IS pathway by binding to the insulin receptor (InR) and trigger the ERK and AKT cascades. A varying number of ILPs were identified in Aedes aegypti mosquito and other insects. Aedes albopictus is an invasive mosquito which transmits dengue and Zika viruses worldwide. Until now, the molecular and expression characteristics of IS pathway in Ae. albopictus have not been investigated. METHODS The orthologues of ILP in Ae. albopictus genome assembly was analyzed by using sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of ILPs. Quantitative analysis was performed to determine the expression characteristics of ILPs, InR as well as ERK and AKT in mosquito development and different tissues of female adults after blood-feeding. In addition, the knockdown of InR was achieved by feeding larvae with Escherichia coli-producing dsRNA to investigate the impact of IS pathway on mosquito development. RESULTS We identified seven putative ILP genes in Ae. albopictus genome assembly, based on nucleotide similarity to the ILPs of Ae. aegypti and other insects. Bioinformatics and molecular analyses suggested that the ILPs contain the structural motif which is conserved in the insulin superfamily. Expression levels of ILPs, InR as well as ERK and AKT varied in Ae. albopictus development stages and between male and female adults. Quantitative analyses revealed that expression of ILP6, the putative orthologue of the insulin growth factor peptides, was highest in the midgut of female adults after blood-feeding. Knockdown of Ae. albopictus InR induces a significant decrease in the phosphorylation levels of ERK and AKT proteins and results in developmental delays and smaller body sizes. CONCLUSIONS The IS pathway of Ae. albopictus mosquito contains ILP1-7, InR and ERK/AKT cascades, which exhibited different developmental and tissue expression characteristics. Feeding Ae. albopictus larvae with E. coli-producing InR dsRNA blocks the ERK and AKT cascades and interferes with the development of mosquito. Our data suggest that IS pathway plays an important role in the metabolism and developmental process and could represent a potential target for controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Yi Dai
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Li
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinying Ding
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Renxian Guo
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tangwei Yi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yihan Zhu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Siqi Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shaohui Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Wenquan Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
42
|
Dou X, Chen K, Brown MR, Strand MR. Multiple endocrine factors regulate nutrient mobilization and storage in Aedes aegypti during a gonadotrophic cycle. INSECT SCIENCE 2023; 30:425-442. [PMID: 36056560 DOI: 10.1111/1744-7917.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anautogenous mosquitoes must blood feed on a vertebrate host to produce eggs. Each gonadotrophic cycle is subdivided into a sugar-feeding previtellogenic phase that produces primary follicles and a blood meal-activated vitellogenic phase in which large numbers of eggs synchronously mature and are laid. Multiple endocrine factors including juvenile hormone (JH), insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH), and 20-hydroxyecdysone (20E) coordinate each gonadotrophic cycle. Egg formation also requires nutrients from feeding that are stored in the fat body. Regulation of egg formation is best understood in Aedes aegypti but the role different endocrine factors play in regulating nutrient mobilization and storage remains unclear. In this study, we report that adult female Ae. aegypti maintained triacylglycerol (TAG) stores during the previtellogenic phase of the first gonadotrophic cycle while glycogen stores declined. In contrast, TAG and glycogen stores were rapidly mobilized during the vitellogenic phase and then replenishment. Several genes encoding enzymes with functions in TAG and glycogen metabolism were differentially expressed in the fat body, which suggested regulation was mediated in part at the transcriptional level. Gain of function assays indicated that stored nutrients were primarily mobilized by adipokinetic hormone (AKH) while juvenoids and OEH regulated replenishment. ILP3 further showed evidence of negatively regulating certain lipolytic enzymes. Loss of function assays indicated AKH depends on the AKH receptor (AKHR) for function. Altogether, our results indicate that the opposing activities of different hormones regulate nutrient stores during a gonadotrophic cycle in Ae. aegypti.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Kangkang Chen
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| |
Collapse
|
43
|
Biological Characteristics and Energy Metabolism of Migrating Insects. Metabolites 2023; 13:metabo13030439. [PMID: 36984878 PMCID: PMC10055822 DOI: 10.3390/metabo13030439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Through long-distance migration, insects not only find suitable breeding locations and increase the survival space and opportunities for the population but also facilitate large-scale material, energy, and information flow between regions, which is important in maintaining the stability of agricultural ecosystems and wider natural ecosystems. In this study, we summarize the changes in biological characteristics such as morphology, ovarian development, reproduction, and flight capability during the seasonal migration of the insect. In consideration of global research work, the interaction between flight and reproduction, the influence and regulation of the insulin-like and juvenile hormone on the flight and reproductive activities of migrating insects, and the types of energy substances, metabolic processes, and hormone regulation processes during insect flight are elaborated. This systematic review of the latest advances in the studies on insect migration biology and energy metabolism will help readers to better understand the biological behavior and regulation mechanism of the energy metabolism of insect migration.
Collapse
|
44
|
Alassaf M, Rajan A. Diet-Induced Glial Insulin Resistance Impairs The Clearance Of Neuronal Debris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531940. [PMID: 36945507 PMCID: PMC10028983 DOI: 10.1101/2023.03.09.531940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure downregulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila Insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and draper expression. Significantly, we show that genetically stimulating Phosphoinositide 3-kinase (PI3K), a downstream effector of Insulin receptor signaling, rescues HSD-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
|
45
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
46
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
47
|
Sasao M, Uno T, Kitagawa R, Matsui A, Toryu F, Mizoguchi A, Kanamaru K, Sakamoto K, Uno Y. Localization of SNARE proteins in the brain and corpus allatum of Bombyx mori. Histochem Cell Biol 2023; 159:199-208. [PMID: 36129568 DOI: 10.1007/s00418-022-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.
Collapse
Affiliation(s)
- Mako Sasao
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Risa Kitagawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Asuka Matsui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Fumika Toryu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, 470-0195, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Katsuhiko Sakamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
48
|
Wang Z, Tan D, Wang F, Guo S, Liu J, Cuthbertson AGS, Qiu B, Sang W. Insulin peptides and their receptors regulate ovarian development and oviposition behavior in Diaphorina citri. INSECT SCIENCE 2023; 30:95-108. [PMID: 35510515 PMCID: PMC10084437 DOI: 10.1111/1744-7917.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Diaphorina citri is an important vector of Citrus Huanglongbing (HLB) disease. After feeding on young host plant shoots, the population of D. citri can increase significantly. Females also only lay eggs on young shoots. However, there are few studies on the mechanism of this phenomenon. Exogenous nutrient signals can affect the insulin signaling system of D. citri after feeding on young shoots. In this study, the expression of upstream factors DcILP1, DcILP2, and DcIR in the insulin signaling system of D. citri was upregulated after feeding on young shoots. After being silenced by RNA interference technology, the results showed that the number of oviposited eggs of D. citri was significantly decreased and the ovarian development was inhibited with severe vacuolation. In addition, detection using quantitative reverse transcription-polymerase chain reaction showed that the upstream regulatory gene DcRheb of the target of rapamycin (TOR) pathway and the downstream reproduction-related DcVg gene were also significantly downregulated. These results suggest that feeding upon young shoots may upregulate the expression levels of upstream factors DcILP1, DcILP2, and DcIR in the insulin signaling system. The signal will be through upregulating the expression of DcRheb, an upstream gene of the TOR signaling pathway. This in turn influences yolk metabolism, which eventually causes the ovaries of female D. citri to mature and therefore initiate oviposition behavior.
Collapse
Affiliation(s)
- Ziye Wang
- Key Laboratory of Bio‐Pesticide Innovation and Application of Guangdong ProvinceSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Delong Tan
- Institute of Facility AgricultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Feifeng Wang
- Key Laboratory of Bio‐Pesticide Innovation and Application of Guangdong ProvinceSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Shuhao Guo
- Key Laboratory of Bio‐Pesticide Innovation and Application of Guangdong ProvinceSouth China Agricultural UniversityGuangzhouChina
| | - Jinhua Liu
- Natural Medicine Institute of Zhejiang YangShengTang Co.LTDHangzhouChina
| | | | - Baoli Qiu
- Key Laboratory of Bio‐Pesticide Innovation and Application of Guangdong ProvinceSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Wen Sang
- Key Laboratory of Bio‐Pesticide Innovation and Application of Guangdong ProvinceSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
49
|
Li H, Luo X, Li N, Liu T, Zhang J. Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Front Cell Dev Biol 2023; 11:1103923. [PMID: 36743416 PMCID: PMC9890075 DOI: 10.3389/fcell.2023.1103923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Insulin-like peptides (Ilps) play crucial roles in nearly all life stages of insects. Ilp8 is involved in developmental stability, stress resistance and female fecundity in several insect species, but the underlying mechanisms are not fully understood. Here we report the functional characterization of Ilp8s in three fly species, including Bactrocera dorsalis, Drosophila mercatorum and Drosophila melanogaster. Methods: Phylogenetic analyses were performed to identify and characterize insect Ilp8s. The amino acid sequences of fly Ilp8s were aligned and the three-dimensional structures of fly Ilp8s were constructed and compared. The tissue specific expression pattern of fly Ilp8s were examined by qRT-PCR. In Bactrocera dorsalis and Drosophila mercatorum, dsRNAs were injected into virgin females to inhibit the expression of Ilp8 and the impacts on female fecundity were examined. In Drosophila melanogaster, the female fecundity of Ilp8 loss-of-function mutant was compared with wild type control flies. The mutant fruit fly strain was also used for sexual behavioral analysis and transcriptomic analysis. Results: Orthologs of Ilp8s are found in major groups of insects except for the lepidopterans and coleopterans, and Ilp8s are found to be well separated from other Ilps in three fly species. The key motif and the predicted three-dimensional structure of fly Ilp8s are well conserved. Ilp8 are specifically expressed in the ovary and are essential for female fecundity in three fly species. Behavior analysis demonstrates that Ilp8 mutation impairs female sexual attractiveness in fruit fly, which results in decreased mating success and is likely the cause of fecundity reduction. Further transcriptomic analysis indicates that Ilp8 might influence metabolism, immune activity, oocyte development as well as hormone homeostasis to collectively regulate female fecundity in the fruit fly. Discussion: Our findings support a universal role of insect Ilp8 in female fecundity, and also provide novel clues for understanding the modes of action of Ilp8.
Collapse
Affiliation(s)
- Haomiao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Luo
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Na Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junzheng Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Junzheng Zhang,
| |
Collapse
|
50
|
Huangfu N, Zhu X, Wang L, Zhang K, Li D, Chen L, Gao X, Niu L, Gao M, Ji J, Luo J, Cui J. Insulin Receptor Substrate-1 ( IRS1) Regulates Oogenesis and Vitellogenesis in Propylea japonica by Mediating the FOXO Transcription Factor Expression, Independent of JH and 20E Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:300-310. [PMID: 36538395 DOI: 10.1021/acs.jafc.2c07433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The insulin receptor substrate (IRS), as the core cytoplasmic adapter protein in the insulin/insulin-like signaling (IIS) pathway, is an important mediator of cellular signaling. However, it is still unknown how IRS crosstalk with hormone signaling regulates insect growth, development, and reproduction. In this study, we demonstrated that knockdown of IRS1 significantly inhibited oogenesis, vitellogenesis, and the development of nurse cells and follicular epithelial cells. In addition, qRT-PCR results showed that FOXO transcription factors significantly responded to silencing of the IRS1 gene. However, IRS1 silencing had no significant effect on the expression of juvenile hormone/20-hydroxyecdysone (JH/20E)-signaling genes, JH synthesis, and degradation enzyme-related genes and the JH/20E titers. Our results suggested that the IIS pathway regulated ovarian development and Vg production through FOXO, independent of JH and 20E signaling pathways. This study revealed the reproductive regulation mechanism in Propylea japonica, which provides a theoretical basis for large-scale expansion of P. japonica as an environment-friendly biological control strategy.
Collapse
Affiliation(s)
- Ningbo Huangfu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengxue Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|