1
|
Lopes CDA, Leal-Silva T, Vieira-Santos F, Nascimento Souza JL, Oliveira CCA, Oliveira FMS, Kraemer L, Magalhaes L, Bara-Garcia P, Kang B, Zamboni D, Russo RC, Fujiwara RT, Nutman TB, Gazzinelli-Guimaraes P, Bueno LL. NOD1 signaling regulates early tissue inflammation during helminth infection. Mucosal Immunol 2024:S1933-0219(24)00127-2. [PMID: 39662675 DOI: 10.1016/j.mucimm.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
The role of innate receptors in initiating the early inflammatory response to helminth larval stages in affected tissues during their life cycle within the host remains poorly understood. Given its pivotal role in detecting microbial elements and eliciting immune responses, exploring the NOD1 receptor could offer crucial insights into immune responses to parasitic infections. By using the larval ascariasis model, the acute model for early Ascaris sp. infection in humans, we report that NOD1 signaling markedly regulates pulmonary tissue inflammation during Ascaris larval migration. Here we show that Ascaris-infected NOD1-deficient mice exhibited a pronounced decrease in macrophage and eosinophil recruitment to the lungs. This diminished cellular recruitment to the lung correlated with impaired production of a mixed cytokine profile including IFN-γ, IL-1β, IL-5, IL-10, IL-17 and IL-33. The attenuated inflammatory response observed in the absence of NOD1 signaling during infection was associated with a notable amelioration in lung dysfunction compared to WT-infected mice. Systemically, NOD1 signaling was also associated with Ascaris-specific IgG2b antibody responses. In summary, our findings highlight a pathogenic role for NOD1 signaling in Ascaris-induced tissue inflammation, underlying hematopoietic cell recruitment and regulating downstream inflammatory cascades associated with the host's innate immune responses in the tissue triggered by helminth larval migration.
Collapse
Affiliation(s)
- Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thais Leal-Silva
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Chiara Cassia Amorim Oliveira
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabricio Marcus Silva Oliveira
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Kraemer
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luisa Magalhaes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pablo Bara-Garcia
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dario Zamboni
- Laboratory of Innate Immunity and Microbial Pathogenesis, Department of Cellular and Molecular Biology, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pedro Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology, Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington DC, USA.
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil..
| |
Collapse
|
2
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2024. [PMID: 39425547 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa, USA
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
- Center for Immunology and Immune Based Disease, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Oboge H, Riitho V, Nyamai M, Omondi GP, Lacasta A, Githaka N, Nene V, Aboge G, Thumbi SM. Safety and efficacy of toll-like receptor agonists as therapeutic agents and vaccine adjuvants for infectious diseases in animals: a systematic review. Front Vet Sci 2024; 11:1428713. [PMID: 39355141 PMCID: PMC11442433 DOI: 10.3389/fvets.2024.1428713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Strengthening global health security relies on adequate protection against infectious diseases through vaccination and treatment. Toll-like receptor (TLR) agonists exhibit properties that can enhance immune responses, making them potential therapeutic agents or vaccine adjuvants. Methods We conducted an extensive systematic review to assess the efficacy of TLR agonists as therapeutic agents or vaccine adjuvants for infectious diseases and their safety profile in animals, excluding rodents and cold-blooded animals. We collected qualitative and available quantitative data on the efficacy and safety outcomes of TLR agonists and employed descriptive analysis to summarize the outcomes. Results Among 653 screened studies, 51 met the inclusion criteria. In this review, 82% (42/51) of the studies used TLR agonists as adjuvants, while 18% (9/51) applied TLR agonist as therapeutic agents. The predominant TLR agonists utilized in animals against infectious diseases was CpG ODN, acting as a TLR9 agonist in mammals, and TLR21 agonists in chickens. In 90% (46/51) of the studies, TLR agonists were found effective in stimulating specific and robust humoral and cellular immune responses, thereby enhancing the efficacy of vaccines or therapeutics against infectious diseases in animals. Safety outcomes were assessed in 8% (4/51) of the studies, with one reporting adverse effects. Discussion Although TLR agonists are efficacious in enhancing immune responses and the protective efficacy of vaccines or therapeutic agents against infectious diseases in animals, a thorough evaluation of their safety is imperative to in-form future clinical applications in animal studies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323122.
Collapse
Affiliation(s)
- Harriet Oboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Victor Riitho
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Mutono Nyamai
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - George P Omondi
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Anna Lacasta
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Naftaly Githaka
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Vishvanath Nene
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Gabriel Aboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - S M Thumbi
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Macamo ED, Mkhize-Kwitshana ZL, Mthombeni J, Naidoo P. The Impact of HIV and Parasite Single Infection and Coinfection on Telomere Length: A Systematic Review. Curr Issues Mol Biol 2024; 46:7258-7290. [PMID: 39057072 PMCID: PMC11275449 DOI: 10.3390/cimb46070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
HIV and parasite infections accelerate biological aging, resulting in immune senescence, apoptosis and cellular damage. Telomere length is considered to be one of the most effective biomarkers of biological aging. HIV and parasite infection have been reported to shorten telomere length in the host. This systematic review aimed to highlight work that explored the influence of HIV and parasite single infections and coinfection on telomere length. Using specific keywords related to the topic of interest, an electronic search of several online databases (Google Scholar, Web of Science, Scopus, Science Direct and PubMed) was conducted to extract eligible articles. The association between HIV infection or parasite infection and telomere length and the association between HIV and parasite coinfection and telomere length were assessed independently. The studies reported were mostly conducted in the European countries. Of the 42 eligible research articles reviewed, HIV and parasite single infections were independently associated with telomere length shortening. Some studies found no association between antiretroviral therapy (ART) and telomere length shortening, while others found an association between ART and telomere length shortening. No studies reported on the association between HIV and parasite coinfection and telomere length. HIV and parasite infections independently accelerate telomere length shortening and biological aging. It is possible that coinfection with HIV and parasites may further accelerate telomere length shortening; however, this is a neglected field of research with no reported studies to date.
Collapse
Affiliation(s)
- Engelinah D. Macamo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| | - Julian Mthombeni
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
5
|
Shukla R, Soni J, Kumar A, Pandey R. Uncovering the diversity of pathogenic invaders: insights into protozoa, fungi, and worm infections. Front Microbiol 2024; 15:1374438. [PMID: 38596382 PMCID: PMC11003270 DOI: 10.3389/fmicb.2024.1374438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Post COVID-19, there has been renewed interest in understanding the pathogens challenging the human health and evaluate our preparedness towards dealing with health challenges in future. In this endeavour, it is not only the bacteria and the viruses, but a greater community of pathogens. Such pathogenic microorganisms, include protozoa, fungi and worms, which establish a distinct variety of disease-causing agents with the capability to impact the host's well-being as well as the equity of ecosystem. This review summarises the peculiar characteristics and pathogenic mechanisms utilized by these disease-causing organisms. It features their role in causing infection in the concerned host and emphasizes the need for further research. Understanding the layers of pathogenesis encompassing the concerned infectious microbes will help expand targeted inferences with relation to the cause of the infection. This would strengthen and augment benefit to the host's health along with the maintenance of ecosystem network, exhibiting host-pathogen interaction cycle. This would be key to discover the layers underlying differential disease severities in response to similar/same pathogen infection.
Collapse
Affiliation(s)
- Richa Shukla
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Han M, Li J, Wu Y, Liao J. Correlation of caecal microbiome endotoxins genes and intestinal immune cells in Eimeria tenella infection based on bioinformatics. Front Cell Infect Microbiol 2024; 14:1382160. [PMID: 38572323 PMCID: PMC10987811 DOI: 10.3389/fcimb.2024.1382160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The infection with Eimeria tenella (ET) can elicit expression of various intestinal immune cells, incite inflammation, disrupt intestinal homeostasis, and facilitate co-infection with diverse bacteria. However, the reciprocal interaction between intestinal immune cells and intestinal flora in the progression of ET-infection remains unclear. Objective The aim of this study was to investigate the correlation between cecal microbial endotoxin (CME)-related genes and intestinal immunity in ET-infection, with subsequent identification of hub potential biomarker and immunotherapy target. Methods Differential expression genes (DEGs) within ET-infection and hub genes related to CME were identified through GSE39602 dataset based on bioinformatic methods and Protein-protein interaction (PPI) network analysis. Moreover, immune infiltration was analyzed by CIBERSORT method. Subsequently, comprehensive functional enrichment analyses employing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis along with Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were performed. Results A total of 1089 DEGs and 25 hub genes were identified and CXCR4 was ultimately identified as a essential CME related potential biomarker and immunotherapy target in the ET-infection. Furthermore, activated natural killer cells, M0 macrophages, M2 macrophages, and T regulatory cells were identified as expressed intestinal immune cells. The functional enrichment analysis revealed that both DEGs and hub genes were significantly enriched in immune-related signaling pathways. Conclusion CXCR4 was identified as a pivotal CME-related potential biomarker and immunotherapy target for expression of intestinal immune cells during ET-infection. These findings have significant implications in elucidating the intricate interplay among ET-infection, CME, and intestinal immunity.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiale Li
- Department of Blood Transfusion, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University (Xinyi People’s Hospital), Xinyi, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
8
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Cunningham KT, Mills KHG. Modulation of haematopoiesis by protozoal and helminth parasites. Parasite Immunol 2023; 45:e12975. [PMID: 36797216 PMCID: PMC10909493 DOI: 10.1111/pim.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
During inflammation, haematopoietic stem cells (HSCs) in the bone marrow (BM) and periphery rapidly expand and preferentially differentiate into myeloid cells that mediate innate immune responses. HSCs can be directed into quiescence or differentiation by sensing alterations to the haematopoietic niche, including cytokines, chemokines, and pathogen-derived products. Most studies attempting to identify the mechanisms of haematopoiesis have focused on bacterial and viral infections. From intracellular protozoan infections to large multicellular worms, parasites are a global health burden and represent major immunological challenges that remain poorly defined in the context of haematopoiesis. Immune responses to parasites vary drastically, and parasites have developed sophisticated immunomodulatory mechanisms that allow development of chronic infections. Recent advances in imaging, genomic sequencing, and mouse models have shed new light on how parasites induce unique forms of emergency haematopoiesis. In addition, parasites can modify the haematopoiesis in the BM and periphery to improve their survival in the host. Parasites can also induce long-lasting modifications to HSCs, altering future immune responses to infection, inflammation or transplantation, a term sometimes referred to as central trained immunity. In this review, we highlight the current understanding of parasite-induced haematopoiesis and how parasites target this process to promote chronic infections.
Collapse
Affiliation(s)
- Kyle T. Cunningham
- Wellcome Centre for Integrative ParasitologyInstitute of Infection and Immunity, University of GlasgowGlasgowUK
| | - Kingston H. G. Mills
- Immune Regulation Research GroupTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
| |
Collapse
|
10
|
Mohammed LO, Amin AMS, Mohammed RM, Mohammed SA, Ahmed LI, Ahmed VR, Majid SBD, Mohammed BO. Seroprevalence of Anti- Toxoplasma gondii Antibodies among Patients with Cancer at Hiwa Cancer Hospital in Sulaimani City, Kurdistan Region, Iraq. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:526-534. [PMID: 38169672 PMCID: PMC10758079 DOI: 10.18502/ijpa.v18i4.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Background Toxoplasma gondii is an opportunistic protozoan parasite that causes a life-threatening disease - toxoplasmosis - in immunocompromised individuals, including patients with cancer. This prospective cross-sectional study set out to determine the prevalence of toxoplasmosis in patients with cancer compared with that of healthy individuals. Methods A prospective cross-sectional study was conducted in Sulaimani City of Iraq from November 2019 to May 2020. Anti-T. gondii IgG and IgM antibodies were measured in the blood samples of 113 patients with cancer (80 with solid organ tumors and 33 with haematological malignancies) entered to Hiwa Cancer Hospital and 82 healthy controls, who were referred to the Directorate of Blood Transfusion for blood donation, using chemiluminescence microparticle immunoassay (CMIA). Results The prevalence of anti-T. gondii IgG was 39.8% in the patient group and 24.4% in the control group, which amounted to a significant difference (P = 0.024). Only one case of anti-T. gondii IgM positivity was observed in the patient group, and no IgM seropositivity was reported in the control group. Moreover, the seroprevalence of anti-T. gondii IgG was non-significantly higher (P = 0.102) in the patients with haematological malignancies (51.5%) than in those with solid organ tumors (35%). Occupation was the only risk factor which had a significant association with T gondii infection (odds ratio [OR]: 1.3, 95% confidence interval [CI]: 0.6746163 - 2.4282788, P = 0.029). Conclusion The prevalence of T. gondii infection is higher in patients with cancer than in healthy individuals. Therefore, T. gondii screening in patients with cancer is recommended.
Collapse
Affiliation(s)
- Latif O. Mohammed
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Ahmed MS Amin
- Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Rezan M. Mohammed
- Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Shad A. Mohammed
- Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Lava I Ahmed
- Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Vanya R. Ahmed
- Wise Private Preparatory School for Girls, Sulaimani, Iraq
| | | | | |
Collapse
|
11
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
12
|
Mrimi EC, Palmeirim MS, Minja EG, Long KZ, Keiser J. Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study. Nutrients 2023; 15:nu15081916. [PMID: 37111135 PMCID: PMC10145041 DOI: 10.3390/nu15081916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Malnutrition and parasitic infections are often interconnected in a vicious cycle. Malnutrition can lead to changes in immune response, which may affect cytokine concentrations and potentially increase susceptibility to infections. In turn, parasitic infections can exacerbate malnutrition by impairing nutrient absorption. This cross-sectional study aimed to explore this interplay. Schoolchildren aged 6-12 years living in rural Tanzania (n = 120) provided blood, stool and urine samples to determine the relationship between cytokine concentrations (interleukin 4 (IL-4), interferon gamma (IFNγ) and interleukin 17A (IL-17A)), parasitic infections, undernutrition and micronutrient deficiency adjusting for sex, age, inflammatory markers, socioeconomic status and school categories. All schoolchildren had a normal blood cell count. The concentration of IL-4 was significantly higher in schoolchildren diagnosed with stunting, Schistosoma mansoni infection, a high C-reactive protein concentration, nausea, poor housing and increasing age. The concentration of IFNγ was associated with Plasmodium falciparum and Entamoeba histolytica/Entamoeba dispar/Entamoeba moshkovskii infections, vitamin A deficiency, attending the most remote schools and low socioeconomic status. Our study confirms a potential relationship between cytokine concentrations and parasitic infections, malnutrition and low socioeconomic status. A better understanding of long-term effects of parasitic infections and malnutrition on the immune function could help in designing tailored and effective interventions.
Collapse
Affiliation(s)
- Emmanuel C Mrimi
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
- Ifakara Health Institute, Morogoro P.O. Box 53, Tanzania
| | - Marta S Palmeirim
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Elihaika G Minja
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
- Ifakara Health Institute, Morogoro P.O. Box 53, Tanzania
| | - Kurt Z Long
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
13
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
14
|
Macaluso G, Grippi F, Di Bella S, Blanda V, Gucciardi F, Torina A, Guercio A, Cannella V. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023; 12:282. [PMID: 36839554 PMCID: PMC9964664 DOI: 10.3390/pathogens12020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease.
Collapse
Affiliation(s)
| | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | | | | | | | | |
Collapse
|
15
|
Yoon C, Ham YS, Gil WJ, Yang CS. The strategies of NLRP3 inflammasome to combat Toxoplasma gondii. Front Immunol 2022; 13:1002387. [PMID: 36341349 PMCID: PMC9626524 DOI: 10.3389/fimmu.2022.1002387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii (T. gondii) results in the activation of nucleotide-binding domain leucine-rich repeat containing receptors (NLRs), which in turn leads to inflammasome assembly and the subsequent activation of caspase-1, secretion of proinflammatory cytokines, and pyroptotic cell death. Several recent studies have addressed the role of the NLRP3 inflammasome in T. gondii infection without reaching a consensus on its roles. Moreover, the mechanisms of NLRP3 inflammasome activation in different cell types remain unknown. Here we review current research on the activation and specific role of the NLRP3 inflammasome in T. gondii infection.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, South Korea
| |
Collapse
|
16
|
Ianiro G, Iorio A, Porcari S, Masucci L, Sanguinetti M, Perno CF, Gasbarrini A, Putignani L, Cammarota G. How the gut parasitome affects human health. Therap Adv Gastroenterol 2022; 15:17562848221091524. [PMID: 35509426 PMCID: PMC9058362 DOI: 10.1177/17562848221091524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome (GM) is a complex ecosystem that includes numerous prokaryotic and eukaryotic inhabitants. The composition of GM can influence an array of host physiological functions including immune development. Accumulating evidence suggest that several members of non-bacterial microbiota, including protozoa and helminths, that were earlier considered as pathogens, could have a commensal or beneficial relationship with the host. Here we examine the most recent data from omics studies on prokaryota-meiofauna-host interaction as well as the impact of gut parasitome on gut bacterial ecology and its role as 'immunological driver' in health and disease to glimpse new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serena Porcari
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, and Multimodal Laboratory Medicine Research Area, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Gasbarrini
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| |
Collapse
|
17
|
The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4993452. [PMID: 34976301 PMCID: PMC8718323 DOI: 10.1155/2021/4993452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosoma cruzi that affects several million people mainly in Latin American countries. Chagas disease has two phases, which are acute and chronic, both separated by an indeterminate time period in which the infected individual is relatively asymptomatic. The acute phase extends for 40-60 days with atypical and mild symptoms; however, about 30% of the infected patients will develop a symptomatic chronic phase, which is characterized by either cardiac, digestive, neurological, or endocrine problems. Cardiomyopathy is the most important and severe result of Chagas disease, which leads to left ventricular systolic dysfunction, heart failure, and sudden cardiac death. Most deaths are due to heart failure (70%) and sudden death (30%) resulting from cardiomyopathy. During the chronic phase, T. cruzi-infected macrophages respond with the production of proinflammatory cytokines and production of superoxide and nitric oxide by the NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) enzymes, respectively. During the chronic phase, myocardial changes are produced as a result of chronic inflammation, oxidative stress, fibrosis, and cell death. The cellular inflammatory response is mainly the result of activation of the NF-κB-dependent pathway, which activates gene expression of inflammatory cytokines, leading to progressive tissue damage. The persisting production of reactive oxygen species (ROS) is the result of mitochondrial dysfunction in the cardiomyocytes. In this review, we will discuss inflammation and oxidative damage which is produced in the heart during the chronic phase of Chagas disease and recent evidence on the role of macrophages and the production of proinflammatory cytokines during the acute phase and the origin of macrophages/monocytes during the chronic phase of Chagas disease. We will also discuss the contributing factors and mechanisms leading to the chronic inflammation of the cardiac tissue during the chronic phase of the disease as well as the innate and adaptive host immune response. The contribution of genetic factors to the progression of the chronic inflammatory cardiomyopathy of chronic Chagas disease is also discussed. The secreted extracellular vesicles (exosomes) produced for both T. cruzi and infected host cells can play key roles in the host immune response, and those roles are described. Lastly, we describe potential treatments to attenuate the chronic inflammation of the cardiac tissue, designed to improve heart function in chagasic patients.
Collapse
|
18
|
Cardoso MS, Santos RF, Almeida S, Sá M, Pérez-Cabezas B, Oliveira L, Tavares J, Carmo AM. Physical Interactions With Bacteria and Protozoan Parasites Establish the Scavenger Receptor SSC4D as a Broad-Spectrum Pattern Recognition Receptor. Front Immunol 2021; 12:760770. [PMID: 35003072 PMCID: PMC8739261 DOI: 10.3389/fimmu.2021.760770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.
Collapse
Affiliation(s)
- Marcos S. Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita F. Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sarah Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Mónica Sá
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
- Doutoramento em Ciências Farmacêuticas (especialidade Microbiologia), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Liliana Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
19
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
20
|
Karamati SA, Mirjalali H, Niyyati M, Yadegar A, Asadzadeh Aghdaei H, Haghighi A, Seyyed Tabaei SJ. Association of Blastocystis ST6 with higher protease activity among symptomatic subjects. BMC Microbiol 2021; 21:285. [PMID: 34666703 PMCID: PMC8524833 DOI: 10.1186/s12866-021-02341-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Blastocystis sp. is an anaerobic intestinal protozoan parasite of humans and a wide range of animals worldwide. In the current study the correlation between the cysteine protease activity of clinical samples of Blastocystis sp. ST1-3 and 6 with the levels of pro-inflammatory cytokines was evaluated. METHODS Stool samples were collected from subjects with or without clinical symptoms. All samples were cultivated in DMEM medium. The bacteria were eliminated or reduced in Blastocystis sp. positive samples subtypes 1-3 and 6 by a variety of antibiotics and consecutive sub-cultures. To prepare parasite lysate, 1 × 105 Blastocystis sp. from each isolate were harvested and lysed using freeze-thaw. Protease activity of each isolate was measured and the gene expression of pro-inflammatory biomarkers in HT-29 cell line sensed by isolates was investigated using quantitative Real-time PCR. RESULTS Protease activity assay showed inter- and intra-subtype variations among subtypes regarding the presence of symptoms, while the protease activity of symptomatic isolates was higher than asymptomatic isolates. The highest and lowest levels of protease activity were seen in ST6 and ST2, respectively. However, patterns of the expression of pro-inflammatory biomarkers in HT-29 cell line was different regarding the presence of symptoms and time points. There was no significant correlation between protease activity of different subtypes with the expression levels of pro-inflammatory biomarkers. CONCLUSIONS Our study indicated a higher protease activity among isolates from symptomatic compared to asymptomatic subjects, suggesting functional role for proteases in clinical symptoms due to Blastocystis sp. The lack of correlation between the levels of expression of pro-inflammatory biomarkers with subtypes regarding the presence of clinical symptoms proposes the importance of host-related factors in presentation of clinical symptoms.
Collapse
Affiliation(s)
- Seyed Ahmad Karamati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Haghighi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Talbot A, Gargan L, Moran G, Prudent L, O'Connor I, Mirimin L, Carlsson J, MacCarthy E. Investigation of the transcriptomic response in Atlantic salmon (Salmo salar) gill exposed to Paramoeba perurans during early onset of disease. Sci Rep 2021; 11:20682. [PMID: 34667245 PMCID: PMC8526816 DOI: 10.1038/s41598-021-99996-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq libraries generated at 0, 4, 7, 14 and 16 days post infection (dpi) identified 19,251 differentially expressed genes (DEGs) of which 56.2% were up-regulated. DEGs mapped to 224 Gene Ontology (GO) terms including 140 biological processes (BP), 45 cellular components (CC), and 39 molecular functions (MF). A total of 27 reference pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 15 Reactome gene sets were identified. The RNA-seq data was validated using real-time, quantitative PCR (qPCR). A host immune response though the activation of complement and the acute phase genes was evident at 7 dpi, with a concurrent immune suppression involving cytokine signalling, notably in interleukins, interferon regulatory factors and tumour necrosis factor-alpha (tnf-α) genes. Down-regulated gene expression with involvement in receptor signalling pathways (NOD-like, Toll-like and RIG-1) were also identified. The results of this study support the theory that P. perurans can evade immune surveillance during the initial stages of gill colonisation through interference of signal transduction pathways.
Collapse
Affiliation(s)
- Anita Talbot
- Galway Mayo Institute of Technology, Galway, Ireland.
| | | | - Grainne Moran
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Louis Prudent
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Ian O'Connor
- Galway Mayo Institute of Technology, Galway, Ireland
| | - Luca Mirimin
- Galway Mayo Institute of Technology, Galway, Ireland
| | | | | |
Collapse
|
22
|
NLRC3 Delays the Progression of AD in APP/PS1 Mice via Inhibiting PI3K Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5328031. [PMID: 33425209 PMCID: PMC7775163 DOI: 10.1155/2020/5328031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022]
Abstract
NLRC3 inhibits inflammatory responses. Neuroinflammation induces and accelerates the onset of Alzheimer's disease (AD). This study is aimed at investigating whether NLRC3 plays a role in neuroinflammation, Aβ accumulation, and neuroprotection in AD mice. 12-month-old APP/PS1 transgenic and C57 mice were used for studies in vivo. In vitro, organotypic hippocampal slices were cultured. We found that the expression of NLRC3 was downregulated in the brain tissues of APP/PS1 mice. Mice in the APP/PS1 group had a significant attenuation of learning and memory ability compared to the control group, and the ability was improved in APP/PS1 + LV-NLRC3 mice. The expressions of 6E10, GFAP, Iba1, and PI3K in the hippocampus and brains of APP/PS1 mice were significantly higher than those of the control group, while the expressions of NeuN were lower than that of the control group. With the overexpression of NLRC3 in the APP/PS1 + LV-NLRC3 group, the expressions of 6e10, GFAP, Iba1, and PI3K were significantly lower, while the expression of NeuN was significantly higher compared to the APP/PS1 group. NLRC3 colocalized with NeuN. PI3K activation with 740YP increased the expression of GFAP and Iba-1 in the hippocampus with the exogenous NLRC3 protein. We conclude that NLRC3 may play an important role in the development and progression of AD. Downregulation of NLRC3 can lead to the activation of PI3K, resulting in abnormal plaque deposition, glial cell activation, and neuron loss during AD. NLRC3 delays the progression of AD in APP/PS1 mice via inhibiting PI3K activation.
Collapse
|
23
|
Interplays between inflammasomes and viruses, bacteria (pathogenic and probiotic), yeasts and parasites. Immunol Lett 2020; 228:1-14. [PMID: 32971149 PMCID: PMC7505743 DOI: 10.1016/j.imlet.2020.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
In recent years, scientists studying the molecular mechanisms of inflammation have discovered an amazing phenomenon - the inflammasome - a component of the innate immune system that can regulate the functional activity of effector cells during inflammation. At present, it is known that inflammasomes are multimolecular complexes (cytosolic multiprotein oligomers of the innate immune system) that contain many copies of receptors recognizing the molecular structures of cell-damaging factors and pathogenic agents. Inflammasomes are mainly formed in myeloid cells, and their main function is participation in the cleavage of the pro-IL-1β and pro-IL-18 cytokines into their biologically active forms (IL-1β, IL-18). Each type of microorganism influences particular inflammasome activation, and long-term exposure of the organism to viruses, bacteria, yeasts or parasites, among others, can induce uncontrolled inflammation and autoinflammatory diseases. Therefore, this review aims to present the most current scientific data on the molecular interplay between inflammasomes and particular microorganisms. Knowledge about the mechanisms responsible for the interaction between the host and certain types of microorganisms could contribute to the individuation of innovative strategies for the treatment of uncontrolled inflammation targeting a specific type of inflammasome activated by a specific type of pathogen.
Collapse
|
24
|
Harrington V, Gurung P. Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunol Rev 2020; 297:53-66. [PMID: 32564424 DOI: 10.1111/imr.12886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
Leishmaniasis is a global health problem that affects more than 2 billion people worldwide. Recent advances in research have demonstrated critical roles for cytoplasmic sensors and inflammasomes during Leishmania spp. infection and pathogenesis. Specifically, several studies have focused on the role of nod-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammasome-associated cytokines IL-1β and IL-18 in leishmaniasis. Despite these studies, our understanding of the priming and activation events that lead to NLRP3 inflammasome activation during Leishmania spp. infection is limited. Furthermore, whether NLRP3 plays a protective or pathogenic role during Leishmania spp. infection is far from resolved, with some studies showing a protective role and others showing a pathogenic role. In this review, we performed a critical review of the literature to provide a current update on priming and activating signals required for NLRP3 inflammasome activation during Leishmania spp. infection. Finally, we provide a thorough review of the literature to reconcile differences in the observed protective vs pathogenic roles of the NLRP3 inflammasome during Leishmania spp. infection.
Collapse
Affiliation(s)
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Mota CM, Lima-Junior DDS, Ferreira França FB, Aguillón Torres JD, Barros PDSC, Santiago FM, Silva JS, Mineo JR, Zamboni DS, Mineo TWP. Interplay Between Reactive Oxygen Species and the Inflammasome Are Crucial for Restriction of Neospora caninum Replication. Front Cell Infect Microbiol 2020; 10:243. [PMID: 32523898 PMCID: PMC7261871 DOI: 10.3389/fcimb.2020.00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Neospora caninum poses as a considerable threat to animal health and generates significant economic impact in livestock production worldwide. Here, we have investigated the mechanism that underlies the participation of the inflammasome complex and Reactive Oxygen Species (ROS) in the regulation of immune responses during N. caninum infection. For that purpose, we used in vitro (bone marrow derived macrophages) and in vivo mouse models of infection. Our results show that NLRP3 and NLRC4 receptors, alongside with ASC and Caspase-1, are required for proper activation of the inflammasome during N. caninum infection. As expected, the engagement of these pathways is crucial for IL-1α, IL-1β, and IL-18 production, as well as the induction of pyroptosis. Our results also show that N. caninum induces ROS production dependent of the inflammasome assembly, which in its turn also depends on MyD88/NF-κB-induced ROS to maintain its activation and, ultimately, lead to restriction of parasite replication.
Collapse
Affiliation(s)
- Caroline M Mota
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Flávia Batista Ferreira França
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Jhoan David Aguillón Torres
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Patrício da Silva Cardoso Barros
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Fernanda Maria Santiago
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Joāo Santana Silva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Dario S Zamboni
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
26
|
Mendonça LSO, Santos JM, Kaneto CM, de Carvalho LD, Lima-Santos J, Augusto DG, Carvalho SMS, Soares-Martins JAP, Silva-Jardim I. Characterization of serum cytokines and circulating microRNAs that are predicted to regulate inflammasome genes in cutaneous leishmaniasis patients. Exp Parasitol 2020; 210:107846. [PMID: 32001303 DOI: 10.1016/j.exppara.2020.107846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/08/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023]
Abstract
Leishmaniasis is a neglected disease caused by an intracellular protozoan parasite of the genus Leishmania. Infection starts when this protozoan replicates in a phagolysosomal compartment in macrophages, after evading host immune responses. The balance of Th1 and Th2 immune responses is crucial in leishmaniasis because it will determine whether the infection will be under control or if clinical complications will occur. The inflammasome, which is activated during Leishmania infection, involves the action of caspase-1 and release of the proinflammatory cytokines interleukin-1β and interleukin-18. Together, they contribute to the maintenance of an inflammatory response and pyroptosis. Here, we evaluated the serum levels of cytokines and the expression of circulating microRNAs related to inflammasome regulation in twenty-seven patients with cutaneous leishmaniasis in comparison to nine healthy individuals, in the context of the inflammasome activation. Evaluation of serum cytokines activation (IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-17) was performed by flow cytometry using CBA kits (cytometric beads array) while the expression of circulating microRNAs (miR-7, miR-133a, miR-146b, miR-155, miR-223, miR-328, and miR-342) in plasma was measured by quantitative polymerase chain reaction. Our results showed an increase of the expression of miR-7-5p (p < 10-5), miR-133a (p = 0.034), miR-146b (p = 0.003), miR-223-3p (p = 10-5), and miR-328-3p (p = 0.002), and cytokine levels for IL-1β (p = 0.0005), IL-6 (p = 0.001), and IL-17 (p = 0.001) in patients with cutaneous leishmaniasis compared to the controls. These results suggest that microRNAs and cytokines can play an important role in regulating the human immune responses to Leishmania infection. Our findings may contribute to the understanding of the mechanisms of the gene regulation during the cutaneous leishmaniasis and to the identification of possible biomarkers of the infection.
Collapse
Affiliation(s)
| | | | - Carla Martins Kaneto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | | | - Jane Lima-Santos
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil
| | - Danillo G Augusto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil; Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Izaltina Silva-Jardim
- Department of Biological Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, Brazil.
| |
Collapse
|
27
|
Campos-Estrada C, González-Herrera F, Greif G, Carillo I, Guzmán-Rivera D, Liempi A, Robello C, Kemmerling U, Castillo C, Maya JD. Notch receptor expression in Trypanosoma cruzi-infected human umbilical vein endothelial cells treated with benznidazole or simvastatin revealed by microarray analysis. Cell Biol Int 2020; 44:1112-1123. [PMID: 31943572 DOI: 10.1002/cbin.11308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso, 2360102, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Gonzalo Greif
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ileana Carillo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Daniela Guzmán-Rivera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Carlos Robello
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| |
Collapse
|
28
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Chard AN, Baker KK, Tsai K, Levy K, Sistrunk JR, Chang HH, Freeman MC. Associations between soil-transmitted helminthiasis and viral, bacterial, and protozoal enteroinfections: a cross-sectional study in rural Laos. Parasit Vectors 2019; 12:216. [PMID: 31064387 PMCID: PMC6505259 DOI: 10.1186/s13071-019-3471-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background Humans are susceptible to over 1400 pathogens. Co-infection by multiple pathogens is common, and can result in a range of neutral, facilitative, or antagonistic interactions within the host. Soil-transmitted helminths (STH) are powerful immunomodulators, but evidence of the effect of STH infection on the direction and magnitude of concurrent enteric microparasite infections is mixed. Methods We collected fecal samples from 891 randomly selected children and adults in rural Laos. Samples were analyzed for 5 STH species, 6 viruses, 9 bacteria, and 5 protozoa using a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. We utilized logistic regression, controlling for demographics and household water, sanitation, and hygiene access, to examine the effect of STH infection on concurrent viral, bacterial, and protozoal infection. Results We found that STH infection was associated with lower odds of concurrent viral infection [odds ratio (OR): 0.48, 95% confidence interval (CI): 0.28–0.83], but higher odds of concurrent bacterial infections (OR: 1.81, 95% CI: 1.06–3.07) and concurrent protozoal infections (OR: 1.50, 95% CI: 0.95–2.37). Trends were consistent across STH species. Conclusions The impact of STH on odds of concurrent microparasite co-infection may differ by microparasite taxa, whereby STH infection was negatively associated with viral infections but positively associated with bacterial and protozoal infections. Results suggest that efforts to reduce STH through preventive chemotherapy could have a spillover effect on microparasite infections, though the extent of this impact requires additional study. The associations between STH and concurrent microparasite infection may reflect a reverse effect due to the cross-sectional study design. Additional research is needed to elucidate the exact mechanism of the immunomodulatory effects of STH on concurrent enteric microparasite infection. Electronic supplementary material The online version of this article (10.1186/s13071-019-3471-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna N Chard
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322, USA
| | - Kelly K Baker
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Kevin Tsai
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322, USA
| | - Jeticia R Sistrunk
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322, USA
| | - Matthew C Freeman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
30
|
Guttman-Yassky E, Zhou L, Krueger JG. The skin as an immune organ: Tolerance versus effector responses and applications to food allergy and hypersensitivity reactions. J Allergy Clin Immunol 2019; 144:362-374. [PMID: 30954522 DOI: 10.1016/j.jaci.2019.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Skin is replete with immunocompetent cells that modulate signaling pathways to maintain a salubrious immunogenic/tolerogenic balance. This fertile immune environment plays a significant role in the development of allergic responses and sensitivities, but the mechanisms underlying these pathways have been underappreciated and underused with respect to developing therapeutics. Among the complex repertoire of cells that promote tolerogenic pathways in the periphery, 2 key classes include dendritic cells and regulatory T (Treg) cells. Immature dendritic cells are the first line of defense, patrolling the periphery, sampling antigens, and secreting cytokines that suppress immune cells and promote the survival of Treg cells. Skin-homing Treg cells also play a critical role in mitigating the reactivity of immune cells, secreting high levels of cytokines that promote tolerance. Therapeutic approaches that capitalize on our knowledge of the rich cellular and molecular environment are emerging and show great promise. We will discuss the advantages and challenges of 5 such strategies and how these therapies might mitigate the atopic march by facilitating tolerance. We conclude that skin is a multifaceted structure that provides a fertile ground for therapeutic discovery. Accordingly, ongoing work in this domain will no doubt continue to deliver exciting progress for improved health outcomes.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY.
| | - Lisa Zhou
- Columbia University Medical Center, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| |
Collapse
|
31
|
Leishmania donovani evades Caspase 1 dependent host defense mechanism during infection. Int J Biol Macromol 2019; 126:392-401. [DOI: 10.1016/j.ijbiomac.2018.12.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 01/31/2023]
|
32
|
Wang X, Gong P, Zhang N, Li L, Chen S, Jia L, Liu X, Li J, Zhang X. Inflammasome activation restrains the intracellular Neospora caninum proliferation in bovine macrophages. Vet Parasitol 2019; 268:16-20. [PMID: 30981301 DOI: 10.1016/j.vetpar.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Neospora caninum is an intracellular parasite that causes neosporosis in cattle. Bovine neosporosis is considered a major cause of bovine abortion worldwide. Rapid replication of N. caninum tachyzoites within host cells is responsible for the acute phase of N. caninum infection. Evidence shows that the host immune response plays an essential role in recognizing and regulating the replication of invading pathogens. Nucleotide-binding oligomerization domain receptors (NLRs) are a class of cytoplasmic sensors that can sense pathogens and induce the formation of the inflammasome complex. Activation of the inflammasome promotes restriction of microbial replication. Our previous study revealed NLRP3 inflammasome activation in N. caninum-infected murine macrophages. However, the role of inflammasome activity in N. caninum-infected bovine cells is unknown. To address this question, a bovine peritoneal macrophage cell line was used to investigate the role of inflammasome activation in regulating intracellular N. caninum replication. The results showed that inflammasome mediated activation of caspase-1 occurs in N. caninum-infected bovine macrophages, and caspase-1-dependent cell death was considered to be induced in N. caninum-infected bovine macrophages because N. caninum induced cell death decreased following pretreatment with zVAD-fmk and VX765. Meanwhile, the inhibition of caspase-1 in N. caninum-infected bovine macrophages led to the presence of more parasites in the parasitophorous vacuole. In contrast, inflammasome activation induced by ATP treatment in N. caninum-infected bovine macrophages contributed to the clearance of N. caninum. In addition, pyroptotic cell supernatant collected from ATP-stimulated bovine macrophages also impaired the ability of this parasite to infect new cells. In conclusion, this study is the first report on the role of the bovine inflammasome in restraining intracellular N. caninum replication and suggests that the bovine inflammasome may be a potential target for future development of drugs or vaccines against N. caninum infection in cattle.
Collapse
Affiliation(s)
- Xiaocen Wang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lu Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Sining Chen
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lijun Jia
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Yanbian University, Yanji, 133002, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory, Key Laboratory of Animal Epidemiology of The Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
33
|
Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and Pathogenesis of Chagas Heart Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:421-447. [PMID: 30355152 DOI: 10.1146/annurev-pathol-020117-043711] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of people infected with the protozoan parasite Trypanosoma cruzi. One way T. cruzi is transmitted to people is through contact with infected kissing bugs, which are found in much of the Western Hemisphere, including in vast areas of the United States. The epidemiology of T. cruzi and Chagas heart disease and the varied mechanisms leading to myocyte destruction, mononuclear cell infiltration, fibrosis, and edema in the heart have been extensively studied by hundreds of scientists for more than 100 years. Despite this wealth of knowledge, it is still impossible to predict what will happen in an individual infected with T. cruzi because of the tremendous variability in clonal parasite virulence and human susceptibility to infection and the lack of definitive molecular predictors of outcome from either side of the host-parasite equation. Further, while several distinct mechanisms of pathogenesis have been studied in isolation, it is certain that multiple coincident mechanisms combine to determine the ultimate outcome. For these reasons, Chagas disease is best considered a collection of related but distinct illnesses. This review highlights the pathology and pathogenesis of the most common adverse sequela of T. cruzi infection-Chagas heart disease-and concludes with a discussion of key unanswered questions and a view to the future.
Collapse
Affiliation(s)
- Kevin M Bonney
- Liberal Studies, Faculty of Arts and Sciences, New York University, New York, NY 10003, USA;
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Stacey A Kim
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA;
| | - David M Engman
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| |
Collapse
|
34
|
Wang X, Gong P, Zhang X, Li S, Lu X, Zhao C, Yu Q, Wei Z, Yang Y, Liu Q, Yang Z, Li J, Zhang X. NLRP3 Inflammasome Participates in Host Response to Neospora caninum Infection. Front Immunol 2018; 9:1791. [PMID: 30105037 PMCID: PMC6077289 DOI: 10.3389/fimmu.2018.01791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/19/2018] [Indexed: 02/01/2023] Open
Abstract
Neospora caninum is an intracellular protozoan parasite closely related to Toxoplasma gondii that mainly infects canids as the definitive host and cattle as the intermediate host, resulting in abortion in cattle and leading to financial losses worldwide. Commercial vaccines or drugs are not available for the prevention and treatment of bovine neosporosis. Knowledge about the hallmarks of the immune response to this infection could form the basis of important prevention strategies. The innate immune system first responds to invading parasite and subsequently initiates the appropriate adaptive immune response against this parasite. Upon infection, activation of host pattern-recognition receptors expressed by immune cells triggers the innate immune response. Toll-like receptors, NOD-like receptors, and C-type lectin receptors play key roles in recognizing protozoan parasite. Therefore, we aimed to explore the role of the NLRP3 inflammasome during the acute period of N. caninum infection. In vitro results showed that N. caninum infection of murine bone marrow-derived macrophages activated the NLRP3 inflammasome, accompanied by the release of IL-1β and IL-18, cleavage of caspase-1, and induction of cell death. K+ efflux induced by N. caninum infection participated in the activation of the inflammasome. Infection of mice deficient in NLRP3, ASC, and caspase-1/11 resulted in decreased production of IL-18 and reduced IFN-γ in serum. Elevated numbers of monocytes/macrophages and neutrophils were found at the initial infection site, but they failed to limit N. caninum replication. These findings suggest that the NLRP3 inflammasome is involved in the host response to N. caninum infection at the acute stage and plays an important role in limiting parasite growth, and it may enhance Th1 response by inducing production of IFN-γ. These findings may help devise protocols for controlling neosporosis.
Collapse
Affiliation(s)
- Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shan Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiangyun Lu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Chunyan Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qile Yu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yongjun Yang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qun Liu
- National Animal Protozoa Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
35
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
36
|
Paroli AF, Gonzalez PV, Díaz-Luján C, Onofrio LI, Arocena A, Cano RC, Carrera-Silva EA, Gea S. NLRP3 Inflammasome and Caspase-1/11 Pathway Orchestrate Different Outcomes in the Host Protection Against Trypanosoma cruzi Acute Infection. Front Immunol 2018; 9:913. [PMID: 29774028 PMCID: PMC5944318 DOI: 10.3389/fimmu.2018.00913] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Infection with protozoan parasite Trypanosoma cruzi results in activation of nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Considering that inflammasome activation and IL-1β induction by macrophages are key players for an appropriate T cell response, we investigated the relevance of NLR pyrin domain-containing 3 (NLRP3) and caspase-1/11 to elucidate their roles in the induction of different T cell phenotypes and the relationship with parasite load and hepatic inflammation during T. cruzi-Tulahuen strain acute infection. We demonstrated that infected nlrp3-/- and C57BL/6 wild type (WT) mice exhibited similar parasitemia and survival, although the parasite load was higher in the livers of nlrp3-/- mice than in those of WT mice. Increased levels of transaminases and pro-inflammatory cytokines were found in the plasma of WT and nlrp3-/- mice indicating that NLRP3 is dispensable to control the parasitemia but it is required for a better clearance of parasites in the liver. Importantly, we have found that NLRP3 and caspase-1/11-deficient mice differentially modulate T helper (Th1, Th2, and Th17) and cytotoxic T lymphocyte phenotypes. Strikingly, caspase-1/11-/- mice showed the most dramatic reduction in the number of IFN-γ- and IL-17-producing CD4+ and CD8+ T cells associated with higher parasitemia and lower survival. Additionally, caspase-1/11-/- mice demonstrated significantly reduced liver inflammation with the lowest alanine aminotransferase (ALT) levels but the highest hepatic parasitic load. These results unequivocally demonstrate that caspase-1/11 pathway plays an important role in the induction of liver adaptive immunity against this parasite infection as well as in hepatic inflammation.
Collapse
Affiliation(s)
- Augusto F Paroli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Patricia V Gonzalez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cintia Díaz-Luján
- Instituto de Biología Celular, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luisina I Onofrio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Arocena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana C Cano
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eugenio A Carrera-Silva
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Susana Gea
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
37
|
IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. J Invest Dermatol 2017; 138:1107-1115. [PMID: 29246797 DOI: 10.1016/j.jid.2017.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
Cutaneous leishmaniasis due to Leishmania braziliensis infection is an inflammatory disease in which skin ulcer development is associated with mononuclear cell infiltrate and high levels of inflammatory cytokine production. Recently, NLRP3 inflammasome activation and IL-1β production have been associated with increased pathology in murine cutaneous leishmaniasis. We hypothesized that cutaneous leishmaniasis patients have increased expression of NLRP3, leading to high levels of IL-1β production. In this article we show high production of IL-1β in biopsy samples and Leishmania antigen-stimulated peripheral blood mononuclear cells from patients infected with L. braziliensis and reduced IL-1β levels after cure. IL-1β production positively correlated with the area of necrosis in lesions and duration of the lesions. The main source of IL-1β was intermediate monocytes (CD14++CD16+). Furthermore, our murine experiments show that IL-1β production in response to L. braziliensis was dependent on NLRP3, caspase-1, and caspase-recruiting domain (ASC). Additionally, we observed an increased expression of the NLRP3 gene in macrophages and the NLRP3 protein in intermediate monocytes from cutaneous leishmaniasis patients. These results identify an important role for human intermediate monocytes in the production of IL-1β, which contributes to the immunopathology observed in cutaneous leishmaniasis patients.
Collapse
|
38
|
Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T, Li YF, Johnson C, Yang WY, Yang F, Xu Y, Xi H, Liu W, Yu J, Choi ET, Cheng X, Wang H, Yang X. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 2017; 10:168. [PMID: 29065888 PMCID: PMC5655880 DOI: 10.1186/s13045-017-0526-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. Methods To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. Results We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Conclusions Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Yang
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Charles Drummer
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ya-Feng Li
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Weiqing Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Yu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|