1
|
Li C, Luo P, Guo F, Jia X, Shen M, Zhang T, Wang S, Du T. Identification of HSPG2 as a bladder pro-tumor protein through NID1/AKT signaling. Cancer Cell Int 2024; 24:345. [PMID: 39438949 PMCID: PMC11515648 DOI: 10.1186/s12935-024-03527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Heparan sulfate proteoglycans (HSPGs) are complex molecules found on the cell membrane and within the extracellular matrix, increasingly recognized for their role in tumor progression. This study aimed to investigate the involvement of Heparan sulfate proteoglycan 2 (HSPG2) in the progression of bladder cancer. METHODS We identified HSPG2 as a promoter of bladder tumor progression using single-cell RNA sequencing and transcriptome analysis of sequencing data from seven patient samples obtained from the Gene Expression Omnibus (GEO) database (GSE135337). Transcript profiles of 28 normal tissues and 407 bladder tumor tissues were analyzed for HSPG2 expression and survival outcomes using the Sanger tools and cBioPortal databases. HSPG2-overexpressing T24 and Biu-87 cell lines were generated, and cell proliferation and migration were assessed using CCK-8 and Transwell assays. Western blotting and immunostaining were performed to evaluate the activation of Nidogen-1 (NID1)/protein kinase B (AKT) signaling. Mouse models with patient-derived tumor organoids (HSPG2high and HSPG2low) were established to assess anticancer effects. RESULTS Our results demonstrated a marked upregulation of HSPG2 in malignant bladder tumors, which correlated significantly with poor patient prognosis. HSPG2 overexpression consistently enhanced bladder tumor cell proliferation and conferred chemotherapy resistance, as shown in both in vitro and in vivo experiments. Mechanistically, HSPG2 upregulated NID1 expression, leading to the activation of the AKT pro-survival signaling pathway and promoting sustained tumor growth in bladder cancer. CONCLUSION This study highlights the critical pro-tumor role of HSPG2/NID1/AKT signaling in bladder cancer and suggests its potential as a therapeutic target in clinical treatment.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Pengwei Luo
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengzhu Guo
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xu Jia
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Min Shen
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ting Zhang
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Shusen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Ting Du
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
2
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
3
|
North HF, Weissleder C, Bitar M, Barry G, Fullerton JM, Webster MJ, Weickert CS. RNA-sequencing suggests extracellular matrix and vasculature dysregulation could impair neurogenesis in schizophrenia cases with elevated inflammation. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:50. [PMID: 38704390 PMCID: PMC11069512 DOI: 10.1038/s41537-024-00466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
A subgroup of schizophrenia cases with elevated inflammation have reduced neurogenesis markers and increased macrophage density in the human subependymal zone (SEZ; also termed subventricular zone or SVZ) neurogenic niche. Inflammation can impair neurogenesis; however, it is unclear which other pathways are associated with reduced neurogenesis. This research aimed to discover transcriptomic differences between inflammatory subgroups of schizophrenia in the SEZ. Total RNA sequencing was performed on SEZ tissue from schizophrenia cases, designated into low inflammation (n = 13) and high inflammation (n = 14) subgroups, based on cluster analysis of inflammation marker gene expression. 718 genes were differentially expressed in high compared to low inflammation schizophrenia (FDR p < 0.05) and were most significantly over-represented in the pathway 'Hepatic Fibrosis/Hepatic Stellate-Cell Activation'. Genes in this pathway relate to extracellular matrix stability (including ten collagens) and vascular remodelling suggesting increased angiogenesis. Collagen-IV, a key element of the basement membrane and fractones, had elevated gene expression. Immunohistochemistry revealed novel collagen-IV+ fractone bulbs within the human SEZ hypocellular gap. Considering the extracellular matrix's regulatory role in SEZ neurogenesis, fibrosis-related alterations in high inflammation schizophrenia may disrupt neurogenesis. Increased angiogenesis could facilitate immune cell transmigration, potentially explaining elevated macrophages in high inflammation schizophrenia. This discovery-driven analysis sheds light on how inflammation may contribute to schizophrenia neuropathology in the neurogenic niche.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia
- Mechanism and therapy for genetic brain diseases, Institut Imagine, Paris, France
| | | | - Guy Barry
- OncoLife Therapeutics, Yeronga, QLD, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800, Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia.
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
4
|
Hutchings C, Nuriel Y, Lazar D, Kohl A, Muir E, Genin O, Cinnamon Y, Benyamini H, Nevo Y, Sela-Donenfeld D. Hindbrain boundaries as niches of neural progenitor and stem cells regulated by the extracellular matrix proteoglycan chondroitin sulphate. Development 2024; 151:dev201934. [PMID: 38251863 PMCID: PMC10911165 DOI: 10.1242/dev.201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yarden Nuriel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Daniel Lazar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Olga Genin
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Yuval Cinnamon
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Rastoldo G, Tighilet B. The Vestibular Nuclei: A Cerebral Reservoir of Stem Cells Involved in Balance Function in Normal and Pathological Conditions. Int J Mol Sci 2024; 25:1422. [PMID: 38338702 PMCID: PMC10855768 DOI: 10.3390/ijms25031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we explore the intriguing realm of neurogenesis in the vestibular nuclei-a critical brainstem region governing balance and spatial orientation. We retrace almost 20 years of research into vestibular neurogenesis, from its discovery in the feline model in 2007 to the recent discovery of a vestibular neural stem cell niche. We explore the reasons why neurogenesis is important in the vestibular nuclei and the triggers for activating the vestibular neurogenic niche. We develop the symbiotic relationship between neurogenesis and gliogenesis to promote vestibular compensation. Finally, we examine the potential impact of reactive neurogenesis on vestibular compensation, highlighting its role in restoring balance through various mechanisms.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
6
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Guidolin D, Tortorella C, De Caro R, Agnati LF. A Self-Similarity Logic May Shape the Organization of the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 36:203-225. [PMID: 38468034 DOI: 10.1007/978-3-031-47606-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy.
| | | | | | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
9
|
Avila-Martinez N, Gansevoort M, Verbakel J, Jayaprakash H, Araujo IM, Vitorino M, Tiscornia G, van Kuppevelt TH, Daamen WF. Matrisomal components involved in regenerative wound healing in axolotl and Acomys: implications for biomaterial development. Biomater Sci 2023; 11:6060-6081. [PMID: 37525590 DOI: 10.1039/d3bm00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving regeneration in humans has been a long-standing goal of many researchers. Whereas amphibians like the axolotl (Ambystoma mexicanum) are capable of regenerating whole organs and even limbs, most mammals heal their wounds via fibrotic scarring. Recently, the African spiny mouse (Acomys sp.) has been shown to be injury resistant and capable of regenerating several tissue types. A major focal point of research with Acomys has been the identification of drivers of regeneration. In this search, the matrisome components related to the extracellular matrix (ECM) are often overlooked. In this review, we compare Acomys and axolotl skin wound healing and blastema-mediated regeneration by examining their wound healing responses and comparing the expression pattern of matrisome genes, including glycosaminoglycan (GAG) related genes. The goal of this review is to identify matrisome genes that are upregulated during regeneration and could be potential candidates for inclusion in pro-regenerative biomaterials. Research papers describing transcriptomic or proteomic coverage of either skin regeneration or blastema formation in Acomys and axolotl were selected. Matrisome and GAG related genes were extracted from each dataset and the resulting lists of genes were compared. In our analysis, we found several genes that were consistently upregulated, suggesting possible involvement in regenerative processes. Most of the components have been implicated in regulation of cell behavior, extracellular matrix remodeling and wound healing. Incorporation of such pro-regenerative factors into biomaterials may help to shift pro-fibrotic processes to regenerative responses in treated wounds.
Collapse
Affiliation(s)
- Nancy Avila-Martinez
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Merel Gansevoort
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Juul Verbakel
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Haarshaadri Jayaprakash
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
| | - Ines Maria Araujo
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Marta Vitorino
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Gustavo Tiscornia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Eugin Barcelona, Balmes, 236, 08006 Barcelona, Spain
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Damle EB, Morrison VE, Cioma J, Volic M, Bix GJ. Co-administration of extracellular matrix-based biomaterials with neural stem cell transplantation for treatment of central nervous system injury. Front Neurosci 2023; 17:1177040. [PMID: 37255752 PMCID: PMC10225608 DOI: 10.3389/fnins.2023.1177040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.
Collapse
Affiliation(s)
- Eshan B. Damle
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Vivianne E. Morrison
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jozef Cioma
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Milla Volic
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
11
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
12
|
Belousov A, Patlay A, Silant’ev V, Kovalev VV, Kumeiko V. Preparation of Hydrogels Based on Modified Pectins by Tuning Their Properties for Anti-Glioma Therapy. Int J Mol Sci 2022; 24:ijms24010630. [PMID: 36614073 PMCID: PMC9820215 DOI: 10.3390/ijms24010630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) of the central nervous system (CNS), characterized by low stiffness and predominance of carbohydrates on protein components, mediates limited cell proliferation and migration. Pectins are polysaccharides derived from plants and could be very promising for a tunable hydrogel design that mimics the neural ECM. Aiming to regulate gel structure and viscoelastic properties, we elaborated 10 variants of pectin-based hydrogels via tuning the concentration of the polymer and the number of free carboxyl groups expressed in the degree of esterification (DE). Viscoelastic properties of hydrogels varied in the range of 3 to 900 Pa for G' and were chosen as the first criteria for the selection of variants suitable for CNS remodeling. For extended reciprocal characterization, two pairs of hydrogels were taken to test pectins with opposite DEs close to 0% and 50%, respectively, but with a similar rheology exceeding 100 Pa (G'), which was achieved by adjusting the concentration of pectin. Hydrogel swelling properties and in vitro stability, together with structure characterization using SEM and FTIR spectroscopy, displayed some differences that may sense for biomedical application. Bioassays on C6 and U87MG glioblastoma cultures testified the potential prospects of the anti-glioma activity of hydrogels developed by decreasing cell proliferation and modulating migration but supporting the high viability of neural cells.
Collapse
Affiliation(s)
- Andrei Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Aleksandra Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Vladimir Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, Vladivostok 690022, Russia
| | - Valeri V. Kovalev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690041, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690041, Russia
- Correspondence:
| |
Collapse
|
13
|
Li G, Liu S, Chen W, Jiang Z, Luo Y, Wang D, Zheng Y, Liu Y. Acellularized Uvea Hydrogel as Novel Injectable Platform for Cell-Based Delivering Treatment of Retinal Degeneration and Optimizing Retinal Organoids Inducible System. Adv Healthc Mater 2022; 11:e2202114. [PMID: 36189847 DOI: 10.1002/adhm.202202114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Replenishing the retina with retinal pigment epithelial (RPE) cells derived from pluripotent stem cells (PSCs) has great promise for treating retinal degenerative diseases, but it is limited by poor cell survival and integration in vivo. Herein, porcine acellular sclera and uvea extracellular matrix (ECM) and their counterpart hydrogels are developed, and their effects on the biological behavior of human induced pluripotent stem cell (hiPSC)-derived RPE cells (hiPSC-RPE) and embryoid body (hiPSC-EB) differentiation are investigated. Both acellular ECM hydrogels have excellent biocompatibility and suitable biodegradability without evoking an obvious immune response. Most importantly, the decellularized uvea hydrogel-delivered cells' injection remarkably promotes the hiPSC-RPE cells' survival and integration in the subretinal space, rescues the photoreceptor cells' death and retinal gliosis, and restores vision in rats with retinal degeneration for a long duration. In addition, medium supplementation with decellularized uvea peptides promotes hiPSC-EBs onset morphogenesis and neural/retinal differentiation, forming layered retinal organoids. This study demonstrates that ECM hydrogel-delivered hiPSC-RPE cells' injection may be a useful approach for treating retinal degeneration disease, combined with an optimized retinal seeding cells' induction program, which has potential for clinical application.
Collapse
Affiliation(s)
- Guilan Li
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Wenfei Chen
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Zhijian Jiang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yuanting Luo
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yingfeng Zheng
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yizhi Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
14
|
Rastoldo G, Watabe I, Lapotre A, Tonetto A, López-Juárez A, Tighilet B. Vestibular Nuclei: A New Neural Stem Cell Niche? Cells 2022; 11:cells11223598. [PMID: 36429025 PMCID: PMC9688605 DOI: 10.3390/cells11223598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei. The aim of our study was to provide insight into the potential neurogenic niche status of the vestibular nuclei in physiological conditions by using specific markers of stem cells (Nestin, SOX2, GFAP), cell proliferation (BrdU) and neuronal differentiation (NeuN). The present study confirmed the presence of quiescent and activated adult neural stem cells generating some new neurons in the vestibular nuclei of control rats. These unique features provide evidence that the vestibular nuclei represent a novel NSC site for the generation of neurons and/or glia in the adult rodent under physiological conditions.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Isabelle Watabe
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Agnes Lapotre
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle PRATIM, 13331 Marseille, France
| | - Alejandra López-Juárez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato 38116, Mexico
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire-Unité GDR2074 CNRS, 13331 Marseille, France
- Correspondence: ; Tel.: +33-413550881; Fax: +33-413550869
| |
Collapse
|
15
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
16
|
Quaresima S, Istiaq A, Jono H, Cacci E, Ohta K, Lupo G. Assessing the Role of Ependymal and Vascular Cells as Sources of Extracellular Cues Regulating the Mouse Ventricular-Subventricular Zone Neurogenic Niche. Front Cell Dev Biol 2022; 10:845567. [PMID: 35450289 PMCID: PMC9016221 DOI: 10.3389/fcell.2022.845567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis persists in selected regions of the adult mouse brain; among them, the ventricular-subventricular zone (V-SVZ) of the lateral ventricles represents a major experimental paradigm due to its conspicuous neurogenic output. Postnatal V-SVZ neurogenesis is maintained by a resident population of neural stem cells (NSCs). Although V-SVZ NSCs are largely quiescent, they can be activated to enter the cell cycle, self-renew and generate progeny that gives rise to olfactory bulb interneurons. These adult-born neurons integrate into existing circuits to modify cognitive functions in response to external stimuli, but cells shed by V-SVZ NSCs can also reach injured brain regions, suggesting a latent regenerative potential. The V-SVZ is endowed with a specialized microenvironment, which is essential to maintain the proliferative and neurogenic potential of NSCs, and to preserve the NSC pool from exhaustion by finely tuning their quiescent and active states. Intercellular communication is paramount to the stem cell niche properties of the V-SVZ, and several extracellular signals acting in the niche milieu have been identified. An important part of these signals comes from non-neural cell types, such as local vascular cells, ependymal and glial cells. Understanding the crosstalk between NSCs and other niche components may aid therapeutic approaches for neuropathological conditions, since neurodevelopmental disorders, age-related cognitive decline and neurodegenerative diseases have been associated with dysfunctional neurogenic niches. Here, we review recent advances in the study of the complex interactions between V-SVZ NSCs and their cellular niche. We focus on the extracellular cues produced by ependymal and vascular cells that regulate NSC behavior in the mouse postnatal V-SVZ, and discuss the potential implication of these molecular signals in pathological conditions.
Collapse
Affiliation(s)
- Sabrina Quaresima
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Emanuele Cacci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| | - Giuseppe Lupo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| |
Collapse
|
17
|
Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022; 10:856261. [PMID: 35433700 PMCID: PMC9010944 DOI: 10.3389/fcell.2022.856261] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Brooke L. Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ifechukwude J. Biose
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
18
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
19
|
Autism, heparan sulfate and potential interventions. Exp Neurol 2022; 353:114050. [DOI: 10.1016/j.expneurol.2022.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
|
20
|
Kerever A, Arikawa-Hirasawa E. Optimal Extracellular Matrix Niches for Neurogenesis: Identifying Glycosaminoglycan Chain Composition in the Subventricular Neurogenic Zone. Front Neuroanat 2021; 15:764458. [PMID: 34671246 PMCID: PMC8520954 DOI: 10.3389/fnana.2021.764458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
In the adult mammalian brain, new neurons are generated in a restricted region called the neurogenic niche, which refers to the specific regulatory microenvironment of neural stem cells (NSCs). Among the constituents of neurogenic niches, the extracellular matrix (ECM) has emerged as a key player in NSC maintenance, proliferation, and differentiation. In particular, heparan sulfate (HS) proteoglycans are capable of regulating various growth factor signaling pathways that influence neurogenesis. In this review, we summarize our current understanding of the ECM niche in the adult subventricular zone (SVZ), with a special focus on basement membrane (BM)-like structures called fractones, and discuss how fractones, particularly their composition of glycosaminoglycans (GAGs), may influence neurogenesis.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Zorzin S, Corsi A, Ciarpella F, Bottani E, Dolci S, Malpeli G, Pino A, Amenta A, Fumagalli GF, Chiamulera C, Bifari F, Decimo I. Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling. Int J Mol Sci 2021; 22:ijms221910657. [PMID: 34638999 PMCID: PMC8508649 DOI: 10.3390/ijms221910657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced β3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.
Collapse
Affiliation(s)
- Stefania Zorzin
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Andrea Corsi
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesca Ciarpella
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Emanuela Bottani
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Sissi Dolci
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy;
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Guido Franceso Fumagalli
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
- Correspondence: ; Tel.: +39-045-802-7509; Fax: +39-045-802-7452
| |
Collapse
|
22
|
Kim HJ, Lee E, Nam M, Chung JK, Joo S, Nam Y, Sun W. Contribution of Extracellular Matrix Component Landscapes in the Adult Subventricular Zone to the Positioning of Neural Stem/Progenitor Cells. Exp Neurobiol 2021; 30:275-284. [PMID: 34483142 PMCID: PMC8424380 DOI: 10.5607/en21012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023] Open
Abstract
Neurogenesis persists in restricted regions of the adult brain, including the subventricular zone (SVZ). Adult neural stem cells (NSCs) in the SVZ proliferate and give rise to new neurons and glial cells depending on intrinsic and environmental cues. Among the multiple factors that contribute to the chemical, physical, and mechanical components of the neurogenic niche, we focused on the composition of the extracellular matrix (ECM) of vasculature and fractones in the SVZ. The SVZ consists of ECM-rich blood vessels and fractones during development and adulthood, and adult neural stem/progenitor cells (NS/PCs) preferentially attach to the laminin-rich basal lamina. To examine the ECM preference of adult NS/PCs, we designed a competition assay using cell micropatterning. Although both laminin and collagen type IV, which are the main components of basal lamina, act as physical scaffolds, adult NS/PCs preferred to adhere to laminin over collagen type IV. Interestingly, the ECM preference of adult NS/PCs could be manipulated by chemokines such as stromal-derived factor 1 (SDF1) and α6 integrin. As SDF1 re-routes NSCs and their progenitors toward the injury site after brain damage, these results suggest that the alteration in ECM preferences may provide a molecular basis for context-dependent NS/PC positioning.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejon 34141, Korea
| | - Eunsoo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea.,Fluorescence Core Imaging Center, Ewha Womans University, Seoul 03760, Korea
| | - Myungwoo Nam
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jae Kwon Chung
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sunghoon Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
23
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
24
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
25
|
Au HK, Peng SW, Guo CL, Lin CC, Wang YL, Kuo YC, Law TY, Ho HN, Ling TY, Huang YH. Niche Laminin and IGF-1 Additively Coordinate the Maintenance of Oct-4 Through CD49f/IGF-1R-Hif-2α Feedforward Loop in Mouse Germline Stem Cells. Front Cell Dev Biol 2021; 9:646644. [PMID: 34381769 PMCID: PMC8351907 DOI: 10.3389/fcell.2021.646644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanism on how extracellular matrix (ECM) cooperates with niche growth factors and oxygen tension to regulate the self-renewal of embryonic germline stem cells (GSCs) still remains unclear. Lacking of an appropriate in vitro cell model dramatically hinders the progress. Herein, using a serum-free culture system, we demonstrated that ECM laminin cooperated with hypoxia and insulin-like growth factor 1 receptor (IGF-1R) to additively maintain AP activity and Oct-4 expression of AP+GSCs. We found the laminin receptor CD49f expression in d2 testicular GSCs that were surrounded by laminin. Laminin and hypoxia significantly increased the GSC stemness-related genes, including Hif-2α, Oct-4, IGF-1R, and CD49f. Cotreatment of IGF-1 and laminin additively increased the expression of IGF-IR, CD49f, Hif-2α, and Oct-4. Conversely, silencing IGF-1R and/or CD49f decreased the expression of Hif-2α and Oct-4. The underlying mechanism involved CD49f/IGF1R-(PI3K/AKT)-Hif-2α signaling loop, which in turn maintains Oct-4 expression, symmetric self-renewal, and cell migration. These findings reveal the additive niche laminin/IGF-IR network during early GSC development.
Collapse
Affiliation(s)
- Heng-Kien Au
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Syue-Wei Peng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chien-Chia Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lin Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsz-Yau Law
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hua Huang
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Holdhof D, Schoof M, Al-Kershi S, Spohn M, Kresbach C, Göbel C, Hellwig M, Indenbirken D, Moreno N, Kerl K, Schüller U. Brahma-related gene 1 has time-specific roles during brain and eye development. Development 2021; 148:268382. [PMID: 34042968 DOI: 10.1242/dev.196147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
During development, gene expression is tightly controlled to facilitate the generation of the diverse cell types that form the central nervous system. Brahma-related gene 1 (Brg1, also known as Smarca4) is the catalytic subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex that regulates transcription. We investigated the role of Brg1 between embryonic day 6.5 (E6.5) and E14.5 in Sox2-positive neural stem cells (NSCs). Being without major consequences at E6.5 and E14.5, loss of Brg1 between E7.5 and E12.5 resulted in the formation of rosette-like structures in the subventricular zone, as well as morphological alterations and enlargement of neural retina (NR). Additionally, Brg1-deficient cells showed decreased survival in vitro and in vivo. Furthermore, we uncovered distinct changes in gene expression upon Brg1 loss, pointing towards impaired neuron functions, especially those involving synaptic communication and altered composition of the extracellular matrix. Comparison with mice deficient for integrase interactor 1 (Ini1, also known as Smarcb1) revealed that the enlarged NR was Brg1 specific and was not caused by a general dysfunction of the SWI/SNF complex. These results suggest a crucial role for Brg1 in NSCs during brain and eye development.
Collapse
Affiliation(s)
- Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Sina Al-Kershi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany.,Bioinformatics Facility, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
27
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
28
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
29
|
Modulatory properties of extracellular matrix glycosaminoglycans and proteoglycans on neural stem cells behavior: Highlights on regenerative potential and bioactivity. Int J Biol Macromol 2021; 171:366-381. [PMID: 33422514 DOI: 10.1016/j.ijbiomac.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Despite the poor regenerative capacity of the adult central nervous system (CNS) in mammals, two distinct regions, subventricular zone (SVZ) and the subgranular zone (SGZ), continue to generate new functional neurons throughout life which integrate into the pre-existing neuronal circuitry. This process is not fixed but highly modulated, revealing many intrinsic and extrinsic mechanisms by which this performance can be optimized for a given environment. The capacity for self-renewal, proliferation, migration, and multi-lineage potency of neural stem cells (NSCs) underlines the necessity of controlling stem cell fate. In this context, the native and local microenvironment plays a critical role, and the application of this highly organized architecture in the CNS has been considered as a fundamental concept in the generation of new effective therapeutic strategies in tissue engineering approaches. The brain extracellular matrix (ECM) is composed of biomacromolecules, including glycosaminoglycans, proteoglycans, and glycoproteins that provide various biological actions through biophysical and biochemical signaling pathways. Herein, we review predominantly the structure and function of the mentioned ECM composition and their regulatory impact on multiple and diversity of biological functions, including neural regeneration, survival, migration, differentiation, and final destiny of NSCs.
Collapse
|
30
|
Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol 2021; 10:603738. [PMID: 33489908 PMCID: PMC7820896 DOI: 10.3389/fonc.2020.603738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.
Collapse
Affiliation(s)
- David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Anderson AR, Segura T. Injectable biomaterials for treatment of glioblastoma. ADVANCED MATERIALS INTERFACES 2020; 7:2001055. [PMID: 34660174 PMCID: PMC8513688 DOI: 10.1002/admi.202001055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/13/2023]
Abstract
Despite ongoing advancements in the field of medicine, glioblastoma multiforme (GBM) is presently incurable, making this advanced brain tumor the deadliest tumor type in the central nervous system. The primary treatment strategies for GBM (i.e. surgical resection, radiation therapy, chemotherapy, and newly incorporated targeted therapies) fail to overcome the challenging characteristics of highly aggressive GBM tumors and are presently given with the goal of increasing the quality of life for patients. With the aim of creating effective treatment solutions, research has shifted toward utilizing injectable biomaterial adjuncts to minimize invasiveness of treatment, provide spatiotemporal control of therapeutic delivery, and engage with cells through material-cell interfaces. This review aims to summarize the limitations of the current standard of care for GBM, discuss how these limitations can be addressed by local employment of injectable biomaterial systems, and highlight developments in the field of biomaterials for these applications.
Collapse
Affiliation(s)
- Alexa R. Anderson
- Duke University Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27708, U.S.A
| | - Tatiana Segura
- Duke University Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27708, U.S.A
| |
Collapse
|
32
|
Zhang Z, Jhaveri D, Sharmin S, Harvey TJ, Dawson PA, Piper M, Simmons DG. Cell-extrinsic requirement for sulfate in regulating hippocampal neurogenesis. Biol Open 2020; 9:bio053132. [PMID: 32661132 PMCID: PMC7406315 DOI: 10.1242/bio.053132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Sulfate is a key anion required for a range of physiological functions within the brain. These include sulfonation of extracellular proteoglycans to facilitate local growth factor binding and to regulate the shape of morphogen gradients during development. We have previously shown that mice lacking one allele of the sulfate transporter Slc13a4 exhibit reduced sulfate transport into the brain, deficits in social behaviour, reduced performance in learning and memory tasks, and abnormal neurogenesis within the ventricular/subventricular zone lining the lateral ventricles. However, whether these mice have deficits in hippocampal neurogenesis was not addressed. Here, we demonstrate that adult Slc13a4+/- mice have increased neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus, with elevated numbers of neural progenitor cells and intermediate progenitors. In contrast, by 12 months of age there were reduced numbers of neural stem cells in the SGZ of heterozygous mice. Importantly, we did not observe any changes in proliferation when we isolated and cultured progenitors in vitro in neurosphere assays, suggestive of a cell-extrinsic requirement for sulfate in regulating hippocampal neurogenesis. Collectively, these data demonstrate a requirement for sulfate transport during postnatal brain development to ensure normal adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Dhanisha Jhaveri
- Mater Research Institute, The University of Queensland, TRI Building, Woolloongabba, Brisbane, 4102, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Sazia Sharmin
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Tracey J Harvey
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, TRI Building, Woolloongabba, Brisbane, 4102, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
33
|
Liu H, Xu X, Tu Y, Chen K, Song L, Zhai J, Chen S, Rong L, Zhou L, Wu W, So KF, Ramakrishna S, He L. Engineering Microenvironment for Endogenous Neural Regeneration after Spinal Cord Injury by Reassembling Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17207-17219. [PMID: 32207300 DOI: 10.1021/acsami.9b19638] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation of a fluid-filled cystic cavity after spinal cord injury (SCI) is a major obstacle for neural regeneration. In this study, the post-SCI cavity was bridged by a functional self-assembling peptide (F-SAP) nanofiber hydrogel coupled with growth factor "cocktail". A sustained release of growth factors was achieved by carefully tailoring the physical hindrances and charge-induced interactions between the growth factors and the peptide nanofibers. Such an engineering microenvironment elicited axon regeneration, as determined by tracing of the descending pathway in the dorsal columns and immunochemical detection of regenerating axons beyond the lesion. Furthermore, the dynamic spatiotemporal activation line of endogenous NSCs (eNSCs) after severe SCI was thoroughly investigated. The results indicated that the growth factor-coupled F-SAP greatly facilitated eNSC proliferation, neuronal differentiation, maturation, myelination, and more importantly, the formation of interconnection with severed descending corticospinal tracts. The robust endogenous neurogenesis essentially led to the recovery of locomotion and electrophysiological properties. In conclusion, the growth factor-coupled F-SAP nanofiber hydrogel elucidated the therapeutic effect of eliciting endogenous neurogenesis by locally reassembling an extracellular matrix.
Collapse
Affiliation(s)
- Haiqian Liu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Xiaoting Xu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Yujie Tu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Kaixin Chen
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Li Song
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Jingyan Zhai
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Shengfeng Chen
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Libing Zhou
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Wutian Wu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Kwok-Fai So
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Liumin He
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
34
|
Communication, Cross Talk, and Signal Integration in the Adult Hippocampal Neurogenic Niche. Neuron 2020; 105:220-235. [PMID: 31972145 DOI: 10.1016/j.neuron.2019.11.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis. Adult hippocampal neurogenesis is sensitive to experiences, suggesting that it may represent an adaptive mechanism by which hippocampal circuitry is modified in response to environmental demands. Experiential information is conveyed to RGLs, progenitors, and adult-born DGCs via the neurogenic niche that is composed of diverse cell types, extracellular matrix, and afferents. Understanding how the niche performs its functions may guide strategies to maintain its health span and provide a permissive milieu for neurogenesis. Here, we first discuss representative contributions of niche cell types to regulation of neural stem cell (NSC) homeostasis and maturation of adult-born DGCs. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate niche-derived signals to govern their regulation.
Collapse
|
35
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
36
|
Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V, Kagansky A, Kumeiko V. The Extracellular Matrix and Biocompatible Materials in Glioblastoma Treatment. Front Bioeng Biotechnol 2019; 7:341. [PMID: 31803736 PMCID: PMC6877546 DOI: 10.3389/fbioe.2019.00341] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
During cancer genesis, the extracellular matrix (ECM) in the human brain undergoes important transformations, starting to resemble embryonic brain cell milieu with a much denser structure. However, the stiffness of the tumor ECM does not preclude cancer cells from migration. The importance of the ECM role in normal brain tissue as well as in tumor homeostasis has engaged much effort in trials to implement ECM as a target and an instrument in the treatment of brain cancers. This review provides a detailed analysis of both experimental and applied approaches in combined therapy for gliomas in adults. In general, matrix materials for glioma treatment should have properties facilitating the simplest delivery into the body. Hence, to deliver an artificial implant directly into the operation cavity it should be packed into a gel form, while for bloodstream injections matrix needs to be in the form of polymer micelles, nanoparticles, etc. Furthermore, the delivered material should mimic biomechanical properties of the native tissue, support vital functions, and slow down or stop the proliferation of surrounding cells for a prolonged period. The authors propose a two-step approach aimed, on the one hand, at elimination of remaining cancer cells and on the other hand, at restoring normal brain tissue. Thereby, the first bioartificial matrix to be applied should have relatively low elastic modulus should be loaded with anticancer drugs, while the second material with a higher elastic modulus for neurite outgrowth support should contain specific factors stimulating neuroregeneration.
Collapse
Affiliation(s)
- Andrei Belousov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Sergei Titov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Nikita Shved
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Mikhail Garbuz
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Grigorii Malykin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Valeriia Gulaia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
37
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
38
|
Ma W, Suh WH. Cost-Effective Cosmetic-Grade Hyaluronan Hydrogels for ReNcell VM Human Neural Stem Cell Culture. Biomolecules 2019; 9:E515. [PMID: 31547190 PMCID: PMC6843608 DOI: 10.3390/biom9100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) is a polysaccharide polymer frequently used as a starting material to fabricate hydrogels, especially for recapitulating the brain's extracellular matrix (ECM) for in vitro neural stem cell (NSC) cultures. Here, we report the successful synthesis of a methacrylated HA (MeHA) polymer from an inexpensive cosmetic-grade hyaluronan starting material. The MeHA polymers synthesized from cosmetic-grade HA yielded similar chemical purity to those from pharmaceutical/research-grade HA reported in the literature. Crosslinked MeHA (x-MeHA) hydrogels were formed using radical polymerization which resulted in mechanical properties matching previously reported mechanical property ranges for enhanced neuronal differentiation of NSCs. We assessed cellular adhesion, spreading, proliferation, and stiffness-dependent neuronal differentiation properties of ReNcell VM human neural stem cells (hNSCs) and compared our results to studies reported in the literature (that utilized non-human and human pluripotent cell-derived NSCs).
Collapse
Affiliation(s)
- Weili Ma
- Department of Bioengineering, College of Engineering, Temple University,1947 N. 12th St. Philadelphia, PA 19122, USA.
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University,1947 N. 12th St. Philadelphia, PA 19122, USA.
| |
Collapse
|
39
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
40
|
Spindola A, Targa ADS, Rodrigues LS, Winnischofer SMB, Lima MMS, Sogayar MC, Trombetta-Lima M. Increased Mmp/Reck Expression Ratio Is Associated with Increased Recognition Memory Performance in a Parkinson's Disease Animal Model. Mol Neurobiol 2019; 57:837-847. [PMID: 31493243 DOI: 10.1007/s12035-019-01740-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Among its non-motor symptoms, sleep disorders are extremely common, being linked to cognitive and memory disruption. The microenvironment, particularly the extracellular matrix (ECM), is deeply involved in memory consolidation as well as in neuropathological processes, such as inflammation, damage to the blood-brain barrier and neuronal death. To better understand ECM dynamics in PD memory disturbances, we investigated the orchestrated expression of Mmps (Mmp-3, Mmp-7, and Mmp-9) and their modulators (Reck and Timp-3) in a rotenone-induced PD model. Also, we introduced an additional intervention in the memory process through rapid eye movement sleep deprivation (REMSD). We observed a REMSD-induced trend in reversing the memory impairment caused by rotenone administration. Associated to this phenotype, we observed a significant increase in Mmp-7/Reck and Mmp-9/Reck mRNA expression ratio in the substantia nigra and Mmp-9/Reck ratio in the hypothalamus. Moreover, the positive correlation of Mmp/Reck expression ratios between the substantia nigra and the striatum, observed upon rotenone infusion, was reversed by REMSD. Taken together, our results suggest a potential orchestrated association between an increase in Mmp-7 and Mmp-9/Reck expression ratios in the substantia nigra and a possible positive effect on cognitive performance in subjects affected by PD.
Collapse
Affiliation(s)
- Adauto Spindola
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, 05360-130, Brazil
| | - Adriano D S Targa
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil.,Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| | - Lais Soares Rodrigues
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil.,Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| | - Sheila Maria Brochado Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil.,Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil.,Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| | - Mari Cleide Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, 05360-130, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, 05360-130, Brazil.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Neural stem cells (NSCs) have the potential to proliferate and differentiate into functional neurons, heightening their potential use for therapeutic applications. This review explores bioengineered systems which recapitulate NSC niche cell-cell and cell-matrix interactions. RECENT FINDINGS Delivery of NSCs to the cytotoxic injured brain is limited by low cell survival rates post-transplantation and poor maintenance of native niche bioactive components. The use of biomaterial platforms can mimic in vivo the environment of the two germinal areas of the adult brain in which NSCs thrive. An environmental mimic that includes extracellular proteins and moieties, along with appropriate biomechanical cues has recently demonstrated promising results in enhancing neurogenesis, aiding the production of a bioengineered niche. SUMMARY Biocomposition, biomechanics, and biostructure can be manipulated through engineered platforms to re-create the biofunctionality of an NSC niche. Upon transplantation and delivery with biomimetic scaffolds, NSCs show potential to promote functional recovery and rebuild neural circuitry post neurological trauma.
Collapse
Affiliation(s)
- Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
42
|
Wilems T, Vardhan S, Wu S, Sakiyama-Elbert S. The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials. Brain Res Bull 2019; 148:25-33. [PMID: 30898579 DOI: 10.1016/j.brainresbull.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.
Collapse
Affiliation(s)
- Thomas Wilems
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sangamithra Vardhan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Siliang Wu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Shelly Sakiyama-Elbert
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
43
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
44
|
Hoshiba T, Sugano Y, Yokoyama N. Murine Neural Stem Cell (NSC) Line, MEB5-derived Decellularized Matrix as an In Vitro Extracellular Matrix Model in NSC Niche. CHEM LETT 2018. [DOI: 10.1246/cl.180788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative Flex Course for Frontier Organic Materials Systems, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yuki Sugano
- Yamagata Prefectural Yonezawa Kojokan Senior High School, 1101 Oh-aza Sasano, Yonezawa, Yamagata 992-1443, Japan
| | - Natsumi Yokoyama
- Yamagata Prefectural Yonezawa Kojokan Senior High School, 1101 Oh-aza Sasano, Yonezawa, Yamagata 992-1443, Japan
| |
Collapse
|
45
|
Valero J, Bernardino L, Cardoso FL, Silva AP, Fontes-Ribeiro C, Ambrósio AF, Malva JO. Impact of Neuroinflammation on Hippocampal Neurogenesis: Relevance to Aging and Alzheimer's Disease. J Alzheimers Dis 2018; 60:S161-S168. [PMID: 28671124 DOI: 10.3233/jad-170239] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cognitive reserve is associated with the capacity of the brain to maintain cognitive performance in spite of being challenged by stressful degenerative insults related to aging. Hippocampal neurogenesis is a life-long process of continuous addition of functional new neurons in the memory processing circuits. Accordingly, adult hippocampal neurogenesis is increasingly seen as a key determinant of cognitive reserve robustness. On the other side, neuroinflammation, by releasing a plethora of proinflammatory cytokines and other inflammatory molecules, is increasingly shown to be one of the key determinant pathophysiological factors that negatively impact on neurogenesis and on the cognitive reserve, playing a detrimental role in hippocampal neurogenic niche dynamics and in the progression of neurodegenerative diseases, such as Alzheimer's disease. In the present manuscript, we highlight the functional interplay between neuroinflammation, dynamics of the neurogenic niche, and spatial memory performance in healthy and age-related pathological processes, including progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Jorge Valero
- Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain and Ikerbasque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Filipa Lourenço Cardoso
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Oliveira Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
47
|
Shan X, Tomlinson L, Yang Q, Colognato H. Distinct Requirements for Extracellular and Intracellular MMP12 in the Development of the Adult V-SVZ Neural Stem Cell Niche. Stem Cell Reports 2018; 10:984-999. [PMID: 29503085 PMCID: PMC5918618 DOI: 10.1016/j.stemcr.2018.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/04/2023] Open
Abstract
The regulatory mechanisms that control neural stem cell (NSC) activation in the adult ventricular-subventricular zone (V-SVZ) stem cell niche have been the focus of intense investigation, yet how the niche first develops and organizes is poorly understood. Here, we examined matrix metalloproteinases (MMPs) for potential roles in V-SVZ stem cell niche development. MMP12 was found to promote appropriate niche cellular arrangements, the formation of specialized niche extracellular matrix, and the translational planar cell polarity of ependymal cells that surround and support niche NSCs. Surprisingly, ependymal cells were found to have an intracellular pool of MMP12 that promoted ependymal cell ciliogenesis by upregulating FOXJ1. In addition, both extracellular and intracellular MMP12 were found to regulate V-SVZ niche output by promoting NSC quiescence. These findings reveal that extracellular and intracellular MMP12 have both unique and overlapping roles that help orchestrate the development of the adult V-SVZ stem cell niche.
Collapse
Affiliation(s)
- Xiwei Shan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lyl Tomlinson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qian Yang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
48
|
Kazanskaya GM, Tsidulko AY, Volkov AM, Kiselev RS, Suhovskih AV, Kobozev VV, Gaytan AS, Aidagulova SV, Krivoshapkin AL, Grigorieva EV. Heparan sulfate accumulation and perlecan/HSPG2 up-regulation in tumour tissue predict low relapse-free survival for patients with glioblastoma. Histochem Cell Biol 2018; 149:235-244. [DOI: 10.1007/s00418-018-1631-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
|
49
|
Junkunlo K, Söderhäll K, Söderhäll I. Clotting protein - An extracellular matrix (ECM) protein involved in crustacean hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:132-140. [PMID: 28943319 DOI: 10.1016/j.dci.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Hematopoietic progenitor cells in crustaceans are organized in lobule-like structures surrounded by different types of cells and extracellular matrix (ECM) proteins in a Hematopoietic tissue (HPT). Here we show that the clotting protein (CP) is part of the ECM in HPT and is secreted during HPT cell culture. The formation of a filamentous network of CP was observed in HPT cell culture. A high amount of CP protein was detected at the surfaces of undifferentiated cells (round-shaped) compared with migrating cells (spindle shaped). Co-localization of the CP protein and TGase activity was observed on the cell surface and filamentous network between cells. A role for CP together with collagen was revealed in a 3D culture in which a collagen-I matrix was immobilized with CP or supplemented with CP. The results showed possible functions of CP, collagen, TGase and the cytokine Ast1 in the regulation of HPT progenitor cell behavior. This is the first study to provide insight into the role of CP, which probably not only participates in clot formation but also functions as an ECM component protein controlling hematopoietic stem cell behavior.
Collapse
Affiliation(s)
- Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
50
|
Waschek JA, Cohen JR, Chi GC, Proszynski TJ, Niewiadomski P. PACAP Promotes Matrix-Driven Adhesion of Cultured Adult Murine Neural Progenitors. ASN Neuro 2017; 9:1759091417708720. [PMID: 28523979 PMCID: PMC5439654 DOI: 10.1177/1759091417708720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New neurons are born throughout the life of mammals in germinal zones of the brain known as neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus. These niches contain a subpopulation of cells known as adult neural progenitor cells (aNPCs), which self-renew and give rise to new neurons and glia. aNPCs are regulated by many factors present in the niche, including the extracellular matrix (ECM). We show that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) affects subventricular zone-derived aNPCs by increasing their surface adhesion. Gene array and reconstitution assays indicate that this effect can be attributed to the regulation of ECM components and ECM-modifying enzymes in aNPCs by PACAP. Our work suggests that PACAP regulates a bidirectional interaction between the aNPCs and their niche: PACAP modifies ECM production and remodeling, in turn the ECM regulates progenitor cell adherence. We speculate that PACAP may in this manner help restrict adult neural progenitors to the stem cell niche in vivo, with potential significance for aNPC function in physiological and pathological states.
Collapse
Affiliation(s)
- James A Waschek
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Joseph R Cohen
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gloria C Chi
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tomasz J Proszynski
- 2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Niewiadomski
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,3 Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|