1
|
Ibeas MA, Salinas-Grenet H, Johnson NR, Pérez-Díaz J, Vidal EA, Alvarez JM, Estevez JM. Filling the gaps on root hair development under salt stress and phosphate starvation using current evidence coupled with a meta-analysis approach. PLANT PHYSIOLOGY 2024; 196:2140-2149. [PMID: 38918899 DOI: 10.1093/plphys/kiae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between 2 contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these 2 stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.
Collapse
Affiliation(s)
- Miguel Angel Ibeas
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - Nathan R Johnson
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Jorge Pérez-Díaz
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Elena A Vidal
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - José Miguel Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - José M Estevez
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
2
|
Yuan P, Cai Q, Hu Z. Arabidopsis DEAD-box RNA helicase 12 is required for salt tolerance during seed germination. Biochem Biophys Res Commun 2024; 725:150228. [PMID: 38936167 DOI: 10.1016/j.bbrc.2024.150228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
The DEAD-box family is the largest family of RNA helicases (RHs), playing crucial roles in RNA metabolism and plant stress resistance. In this study, we report that an RNA helicase, RH12, positively regulates plant salt tolerance, as rh12 knockout mutants exhibit heightened sensitivity to salt stress. Further analysis indicates that RH12 is involved in the abscisic acid (ABA) response, as rh12 knockout mutants show increased sensitivity to ABA. Examination of reactive oxygen species (ROS) revealed that RH12 helps inhibit ROS accumulation under salt stress during seed germination. Additionally, RH12 accelerates the degradation of specific germination-related transcripts. In conclusion, our results demonstrate that RH12 plays multiple roles in the salt stress response in Arabidopsis.
Collapse
Affiliation(s)
- Penglai Yuan
- College of Life Sciences, Nanjing Agricultural University, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, China.
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Huang Z, Xu Z, Liu X, Chen G, Hu C, Chen M, Liu Y. Exploring the Role of the Processing Body in Plant Abiotic Stress Response. Curr Issues Mol Biol 2024; 46:9844-9855. [PMID: 39329937 PMCID: PMC11430669 DOI: 10.3390/cimb46090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Akram S, Ghaffar M, Wadood A, Shokat S, Hameed A, Waheed MQ, Arif MAR. A GBS-based genome-wide association study reveals the genetic basis of salinity tolerance at the seedling stage in bread wheat (Triticum aestivum L.). Front Genet 2022; 13:997901. [PMID: 36238161 PMCID: PMC9551609 DOI: 10.3389/fgene.2022.997901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
High salinity levels affect 20% of the cultivated area and 9%–34% of the irrigated agricultural land worldwide, ultimately leading to yield losses of crops. The current study evaluated seven salt tolerance-related traits at the seedling stage in a set of 138 pre-breeding lines (PBLs) and identified 63 highly significant marker-trait associations (MTAs) linked to salt tolerance. Different candidate genes were identified in in silico analysis, many of which were involved in various stress conditions in plants, including glycine-rich cell wall structural protein 1-like, metacaspase-1, glyceraldehyde-3-phosphate dehydrogenase GAPA1, and plastidial GAPA1. Some of these genes coded for structural protein and participated in cell wall structure, some were linked to programmed cell death, and others were reported to show abiotic stress response roles in wheat and other plants. In addition, using the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) protocol, the best-performing lines under salt stress were identified. The SNPs identified in this study and the genotypes with favorable alleles provide an excellent source to impart salt tolerance in wheat.
Collapse
Affiliation(s)
- Saba Akram
- *Correspondence: Saba Akram, ; Mian Abdur Rehman Arif,
| | | | | | | | | | | | | |
Collapse
|
6
|
Lu S, He H, Wang P, Gou H, Cao X, Ma Z, Chen B, Mao J. Evolutionary relationship analysis of STARD gene family and VvSTARD5 improves tolerance of salt stress in transgenic tomatoes. PHYSIOLOGIA PLANTARUM 2022; 174:e13772. [PMID: 36054928 DOI: 10.1111/ppl.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The steroidogenic acute regulatory protein-related lipid transfer domain (STARD) forms a protein that can bind membrane-derived phospholipid second messengers and plasma membranes. Although it has been reported in many plants, the evolutionary relationship of the STARD gene family has not been systematically analyzed, and functions of the HD-START and HD-START-MEKHLA domain subgroup genes under hormone and abiotic stress are also unclear in grapes. This study identified and analyzed 23 VvSTARD genes, which were distinctly divided into five subgroups according to five conserved domain types. The analyses of codon preference, selective pressure, and synteny relationship revealed that grape had higher homology with Arabidopsis compared with rice. Interestingly, the expression levels of VvSTARD genes in subgroups 1, 2, and 3 exhibited significant upregulation under NaCl treatment at 24 h, but VvSTARD genes in subgroups 4 and 5 were upregulated under methyl jasmonate (MeJA) treatment at 24 h. The subcellular localization showed that VvSTARD5 was localized in the nucleus. Additionally, under NaCl treatment at 24 h, there were an obvious decrease in the relative electrical leakages and the content of malondialdehyde (MDA), while the relative expression level of VvSTARD5 and content of proline were obviously enhanced in three transgenic lines. Therefore, the overexpression of VvSTARD5 greatly increased the salt tolerance of transgenic tomatoes. Collectively, this study preliminarily explores the comprehensive function of the STARD gene family in grapes and verifies the function of VvSTARD5 in response to salt.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huiming Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Cui W, Wang S, Han K, Zheng E, Ji M, Chen B, Wang X, Chen J, Yan F. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1183-1197. [PMID: 34153146 DOI: 10.1111/tpj.15377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2021] [Indexed: 05/07/2023]
Abstract
Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.
Collapse
Affiliation(s)
- Weijun Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, NE 68583, USA
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ersong Zheng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Binghua Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuming Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
8
|
Hamzelou S, Melino VJ, Plett DC, Kamath KS, Nawrocki A, Larsen MR, Atwell BJ, Haynes PA. The phosphoproteome of rice leaves responds to water and nitrogen supply. Mol Omics 2021; 17:706-718. [PMID: 34291261 DOI: 10.1039/d1mo00137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scarcity of freshwater is an increasing concern in flood-irrigated rice, whilst excessive use of nitrogen fertilizers is costly and contributes to environmental pollution. To co-ordinate growth adaptation under prolonged exposure to limited water or excess nitrogen supply, plants employ complex systems for signalling and regulation of metabolic processes. There is limited information on the involvement of one of the most important post-translational modifications (PTMs), protein phosphorylation, in plant adaptation to long-term changes in resource supply. Oryza sativa cv. Nipponbare was grown under two regimes of nitrogen from the time of germination to final harvest. Twenty-five days after germination, water was withheld from half the pots in each nitrogen treatment and low water supply continued for an additional 26 days, while the remaining pots were well watered. Leaves from all four groups of plants were harvested after 51 days in order to test whether phosphorylation of leaf proteins responded to prior abiotic stress events. The dominant impact of these resources is exerted in leaves, where PTMs have been predicted to occur. Proteins were extracted and phosphopeptides were analysed by nanoLC-MS/MS analysis, coupled with label-free quantitation. Water and nitrogen regimes triggered extensive changes in phosphorylation of proteins involved in membrane transport, such as the aquaporin OsPIP2-6, a water channel protein. Our study reveals phosphorylation of several peptides belonging to proteins involved in RNA-processing and carbohydrate metabolism, suggesting that phosphorylation events regulate the signalling cascades that are required to optimize plant response to resource supply.
Collapse
Affiliation(s)
- Sara Hamzelou
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Vanessa J Melino
- King Abdullah University for Science and Technology, 2955-6990, Kingdom of Saudi Arabia
| | - Darren C Plett
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Karthik Shantharam Kamath
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia. and Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
9
|
Wang J, Zhang Y, Yan X, Guo J. Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance. PLoS One 2020; 15:e0244365. [PMID: 33351842 PMCID: PMC7755187 DOI: 10.1371/journal.pone.0244365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Yellow horn (Xanthoceras sorbifolia) is an oil-rich woody plant cultivated for bio-energy production in China. Soil saline-alkalization is a prominent agricultural-related environmental problem limiting plant growth and productivity. In this study, we performed comparative physiological and transcriptomic analyses to examine the mechanisms of X. sorbifolia seedling responding to salt and alkaline-salt stress. With the exception of chlorophyll content, physiological experiments revealed significant increases in all assessed indices in response to salt and saline-alkali treatments. Notably, compared with salt stress, we observed more pronounced changes in electrolyte leakage (EL) and malondialdehyde (MDA) levels in response to saline-alkali stress, which may contribute to the greater toxicity of saline-alkali soils. In total, 3,087 and 2,715 genes were differentially expressed in response to salt and saline-alkali treatments, respectively, among which carbon metabolism, biosynthesis of amino acids, starch and sucrose metabolism, and reactive oxygen species signaling networks were extensively enriched, and transcription factor families of bHLH, C2H2, bZIP, NAC, and ERF were transcriptionally activated. Moreover, relative to salt stress, saline-alkali stress activated more significant upregulation of genes related to H+ transport, indicating that regulation of intracellular pH may play an important role in coping with saline-alkali stress. These findings provide new insights for investigating the physiological changes and molecular mechanisms underlying the responses of X. sorbifolia to salt and saline-alkali stress.
Collapse
Affiliation(s)
- Juan Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| | - Xingrong Yan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| |
Collapse
|
10
|
Gho YS, Choi H, Moon S, Song MY, Park HE, Kim DH, Ha SH, Jung KH. Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay. FRONTIERS IN PLANT SCIENCE 2020; 11:585561. [PMID: 33424882 PMCID: PMC7793952 DOI: 10.3389/fpls.2020.585561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis. In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. We then compared the in silico expression patterns of all RNS genes in rice and Arabidopsis under normal and Pi-deficient conditions and further confirmed the expression patterns of rice RNS genes via qRT-PCR analysis. Subsequently, we found that most of the OsRNS genes were differentially regulated under Pi-deficient treatment. Association of Pi recycling by RNase activity in rice was confirmed by measuring total RNA concentration and ribonuclease activity of shoot and root samples under Pi-sufficient or Pi-deficient treatment during 21 days. The total RNA concentrations were decreased by < 60% in shoots and < 80% in roots under Pi starvation, respectively, while ribonuclease activity increased correspondingly. We further elucidate the signaling pathway of Pi starvation through upregulation of the OsRNS genes. The 2-kb promoter region of all OsRNS genes with inducible expression patterns under Pi deficiency contains a high frequency of P1BS cis-acting regulatory element (CRE) known as the OsPHR2 binding site, suggesting that the OsRNS family is likely to be controlled by OsPHR2. Finally, the dynamic transcriptional regulation of OsRNS genes by overexpression of OsPHR2, ospho2 mutant, and overexpression of OsPT1 lines involved in Pi signaling pathway suggests the molecular basis of OsRNS family in Pi recycling via RNA decay under Pi starvation.
Collapse
Affiliation(s)
- Yun-Shil Gho
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Heebak Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Min Yeong Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ha Eun Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Doh-Hoon Kim
- Department of Life Science, College of Life Science and Natural Resources, Dong-A University, Busan, South Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
11
|
Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. PLANT COMMUNICATIONS 2020; 1:100099. [PMID: 32984814 PMCID: PMC7518510 DOI: 10.1016/j.xplc.2020.100099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
A complex network of cellular receptors, RNA targeting pathways, and small-molecule signaling provides robust plant immunity and tolerance to viruses. To maximize their fitness, viruses must evolve control mechanisms to balance host immune evasion and plant-damaging effects. The genus Potyvirus comprises plant viruses characterized by RNA genomes that encode large polyproteins led by the P1 protease. A P1 autoinhibitory domain controls polyprotein processing, the release of a downstream functional RNA-silencing suppressor, and viral replication. Here, we show that P1Pro, a plum pox virus clone that lacks the P1 autoinhibitory domain, triggers complex reprogramming of the host transcriptome and high levels of abscisic acid (ABA) accumulation. A meta-analysis highlighted ABA connections with host pathways known to control RNA stability, turnover, maturation, and translation. Transcriptomic changes triggered by P1Pro infection or ABA showed similarities in host RNA abundance and diversity. Genetic and hormone treatment assays showed that ABA promotes plant resistance to potyviral infection. Finally, quantitative mathematical modeling of viral replication in the presence of defense pathways supported self-control of polyprotein processing kinetics as a viral mechanism that attenuates the magnitude of the host antiviral response. Overall, our findings indicate that ABA is an active player in plant antiviral immunity, which is nonetheless evaded by a self-controlled RNA virus.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hongying Shan
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maren Müller
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - David San León
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - David H. Fresno
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - Sergi Munné-Bosch
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Paterna, Spain
| | | |
Collapse
|
12
|
Roda FA, Marques I, Batista-Santos P, Esquível MG, Ndayiragije A, Lidon FC, Swamy BPM, Ramalho JC, Ribeiro-Barros AI. Rice Biofortification With Zinc and Selenium: A Transcriptomic Approach to Understand Mineral Accumulation in Flag Leaves. Front Genet 2020; 11:543. [PMID: 32733530 PMCID: PMC7359728 DOI: 10.3389/fgene.2020.00543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
Human malnutrition due to micronutrient deficiencies, particularly with regards to Zinc (Zn) and Selenium (Se), affects millions of people around the world, and the enrichment of staple foods through biofortification has been successfully used to fight hidden hunger. Rice (Oryza sativa L.) is one of the staple foods most consumed in countries with high levels of malnutrition. However, it is poor in micronutrients, which are often removed during grain processing. In this study, we have analyzed the transcriptome of rice flag leaves biofortified with Zn (900 g ha-1), Se (500 g ha-1), and Zn-Se. Flag leaves play an important role in plant photosynthesis and provide sources of metal remobilization for developing grains. A total of 3170 differentially expressed genes (DEGs) were identified. The expression patterns and gene ontology of DEGs varied among the three sets of biofortified plants and were limited to specific metabolic pathways related to micronutrient mobilization and to the specific functions of Zn (i.e., its enzymatic co-factor/coenzyme function in the biosynthesis of nitrogenous compounds, carboxylic acids, organic acids, and amino acids) and Se (vitamin biosynthesis and ion homeostasis). The success of this approach should be followed in future studies to understand how landraces and other cultivars respond to biofortification.
Collapse
Affiliation(s)
- Faustino Adriano Roda
- Ministério de Agricultura e Segurança Alimentar, Instituto de Investigação Agrária de Moçambique, Centro Zonal Noroeste, Lichinga, Mozambique
- Universidade Eduardo Mondlane-Centro de Biotechnologia, Maputo, Mozambique
- PlantStress&Biodiversity Lab, Forest Research Center (IM, JCR, AIRB) and Linking, Landscape, Environment, Agriculture and Food (PBS, MGE), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Marques
- PlantStress&Biodiversity Lab, Forest Research Center (IM, JCR, AIRB) and Linking, Landscape, Environment, Agriculture and Food (PBS, MGE), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Batista-Santos
- PlantStress&Biodiversity Lab, Forest Research Center (IM, JCR, AIRB) and Linking, Landscape, Environment, Agriculture and Food (PBS, MGE), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Glória Esquível
- PlantStress&Biodiversity Lab, Forest Research Center (IM, JCR, AIRB) and Linking, Landscape, Environment, Agriculture and Food (PBS, MGE), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Alexis Ndayiragije
- International Rice Research Institute, Maputo, Mozambique
- International Rice Research Institute, Laguna, Philippines
| | - Fernando Cebola Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - B. P. Mallikarjuna Swamy
- International Rice Research Institute, Maputo, Mozambique
- International Rice Research Institute, Laguna, Philippines
| | - José Cochicho Ramalho
- PlantStress&Biodiversity Lab, Forest Research Center (IM, JCR, AIRB) and Linking, Landscape, Environment, Agriculture and Food (PBS, MGE), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- PlantStress&Biodiversity Lab, Forest Research Center (IM, JCR, AIRB) and Linking, Landscape, Environment, Agriculture and Food (PBS, MGE), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
13
|
Abstract
Crop loss due to soil salinization is an increasing threat to agriculture worldwide. This review provides an overview of cellular and physiological mechanisms in plant responses to salt. We place cellular responses in a time- and tissue-dependent context in order to link them to observed phases in growth rate that occur in response to stress. Recent advances in phenotyping can now functionally or genetically link cellular signaling responses, ion transport, water management, and gene expression to growth, development, and survival. Halophytes, which are naturally salt-tolerant plants, are highlighted as success stories to learn from. We emphasize that (a) filling the major knowledge gaps in salt-induced signaling pathways, (b) increasing the spatial and temporal resolution of our knowledge of salt stress responses, (c) discovering and considering crop-specific responses, and (d) including halophytes in our comparative studies are all essential in order to take our approaches to increasing crop yields in saline soils to the next level.
Collapse
Affiliation(s)
- Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
14
|
Tack DC, Su Z, Yu Y, Bevilacqua PC, Assmann SM. Tissue-specific changes in the RNA structurome mediate salinity response in Arabidopsis. RNA (NEW YORK, N.Y.) 2020; 26:492-511. [PMID: 31937672 PMCID: PMC7075263 DOI: 10.1261/rna.072850.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.
Collapse
Affiliation(s)
- David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Spectrum Health Office of Research, Grand Rapids, Michigan 49503, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yunqing Yu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
Kawa D, Meyer AJ, Dekker HL, Abd-El-Haliem AM, Gevaert K, Van De Slijke E, Maszkowska J, Bucholc M, Dobrowolska G, De Jaeger G, Schuurink RC, Haring MA, Testerink C. SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. PLANT PHYSIOLOGY 2020; 182:361-377. [PMID: 31570508 PMCID: PMC6945840 DOI: 10.1104/pp.19.00818] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)-activated protein kinases SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the posttranscriptional level via phosphorylation of VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 5'mRNA decay. Here, we identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and SnRK2.10. All three protein kinases phosphorylated Ser-645 and Ser-1156 of VCS, whereas SnRK2.6 and SnRK2.10 also phosphorylated VCS Ser-692 and Ser-680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 5' EXORIBONUCLEASE 4 (XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with SnRK2.1, SnRK2.5, and SnRK2.9 controlling root growth under nonstress conditions and SnRK2.4 and SnRK2.10 acting mostly in response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ahmed M Abd-El-Haliem
- Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Gent, Belgium
- VIB Center for Medical Biotechnology, 9000 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Gent, Belgium
- VIB Center for Plant Systems Biology, 9052 Gent, Belgium
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9000 Gent, Belgium
- VIB Center for Plant Systems Biology, 9052 Gent, Belgium
| | - Robert C Schuurink
- Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Michel A Haring
- Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, 1098 XH Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
16
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|
17
|
Albaqami M, Laluk K, Reddy ASN. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. PLANT MOLECULAR BIOLOGY 2019; 100:379-390. [PMID: 30968308 DOI: 10.1007/s11103-019-00864-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/28/2019] [Indexed: 05/08/2023]
Abstract
Functions of most splice isoforms that are generated by alternative splicing are unknown. We show that two splice variants that encode proteins differing in only eight amino acids have distinct functions in a stress response. Serine/arginine-rich (SR) and SR-like proteins, a conserved family of RNA binding proteins across eukaryotes, play important roles in pre-mRNA splicing and other post-transcriptional processes. Pre-mRNAs of SR and SR-like proteins undergo extensive alternative splicing in response to diverse stresses and produce multiple splice isoforms. However, the functions of most splice isoforms remain elusive. Alternative splicing of pre-mRNA of Arabidopsis SR45, which encodes an SR-like splicing regulator, generates two isoforms (long-SR45.1 and short-SR45.2). The proteins encoded by these two isoforms differ in eight amino acids. Here, we investigated the role of SR45 and its splice variants in salt stress tolerance. The loss of SR45 resulted in enhanced sensitivity to salt stress and changes in expression and splicing of genes involved in regulating salt stress response. Interestingly, only the long isoform (SR45.1) rescued the salt-sensitive phenotype as well as the altered gene expression and splicing patterns in the mutant. These results suggest that SR45 positively regulates salt tolerance. Furthermore, only the long isoform is required for SR45-mediated salt tolerance.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca, 21955, Kingdom of Saudi Arabia
| | - K Laluk
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Jiang J, Ma J, Liu B, Wang Y. Combining a Simple Method for DNA/RNA/Protein Co-Purification and Arabidopsis Protoplast Assay to Facilitate Viroid Research. Viruses 2019; 11:v11040324. [PMID: 30987196 PMCID: PMC6521142 DOI: 10.3390/v11040324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Plant–viroid interactions represent a valuable model for delineating structure–function relationships of noncoding RNAs. For various functional studies, it is desirable to minimize sample variations by using DNA, RNA, and proteins co-purified from the same samples. Currently, most of the co-purification protocols rely on TRI Reagent (Trizol as a common representative) and require protein precipitation and dissolving steps, which render difficulties in experimental handling and high-throughput analyses. Here, we established a simple and robust method to minimize the precipitation steps and yield ready-to-use RNA and protein in solutions. This method can be applied to samples in small quantities, such as protoplasts. Given the ease and the robustness of this new method, it will have broad applications in virology and other disciplines in molecular biology.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
19
|
Dietz KJ, Wesemann C, Wegener M, Seidel T. Toward an Integrated Understanding of Retrograde Control of Photosynthesis. Antioxid Redox Signal 2019; 30:1186-1205. [PMID: 29463103 DOI: 10.1089/ars.2018.7519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Photosynthesis takes place in the chloroplast of eukaryotes, which occupies a large portion of the photosynthetic cell. The chloroplast function and integrity depend on intensive material and signal exchange between all genetic compartments and conditionally secure efficient photosynthesis and high fitness. Recent Advances: During the last two decades, the concept of mutual control of plastid performance by extraplastidic anterograde signals acting on the chloroplast and the feedback from the chloroplast to the extraplastidic space by retrograde signals has been profoundly revised and expanded. It has become clear that a complex set of diverse signals is released from the chloroplast and exceeds the historically proposed small number of information signals. Thus, it is also recognized that redox compounds and reactive oxygen species play a decisive role in retrograde signaling. CRITICAL ISSUES The diversity of processes controlled or modulated by the retrograde network covers all molecular levels, including RNA fate and translation, and also includes subcellular heterogeneity, indirect gating of other organelles' metabolism, and specific signaling routes and pathways, previously not considered. All these processes must be integrated for optimal adjustment of the chloroplast processes. Thus, evidence is presented suggesting that retrograde signaling affects translation, stress granule, and processing body (P-body) dynamics. FUTURE DIRECTIONS Redundancy of signal transduction elements, parallelisms of pathways, and conditionally alternative mechanisms generate a robust network and system that only tentatively can be assessed by use of single-site mutants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Corinna Wesemann
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Melanie Wegener
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
20
|
Eida AA, Alzubaidy HS, de Zélicourt A, Synek L, Alsharif W, Lafi FF, Hirt H, Saad MM. Phylogenetically diverse endophytic bacteria from desert plants induce transcriptional changes of tissue-specific ion transporters and salinity stress in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:228-240. [PMID: 30824001 DOI: 10.1016/j.plantsci.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 05/02/2023]
Abstract
Salinity severely hampers crop productivity worldwide and plant growth promoting bacteria could serve as a sustainable solution to improve plant growth under salt stress. However, the molecular mechanisms underlying salt stress tolerance promotion by beneficial bacteria remain unclear. In this work, six bacterial isolates from four different desert plant species were screened for their biochemical plant growth promoting traits and salinity stress tolerance promotion of the unknown host plant Arabidopsis thaliana. Five of the isolates induced variable root phenotypes but could all increase plant shoot and root weight under salinity stress. Inoculation of Arabidopsis with five isolates under salinity stress resulted in tissue-specific transcriptional changes of ion transporters and reduced Na+/K+ shoot ratios. The work provides first insights into the possible mechanisms and the commonality by which phylogenetically diverse bacteria from different desert plants induce salinity stress tolerance in Arabidopsis. The bacterial isolates provide new tools for studying abiotic stress tolerance mechanisms in plants and a promising agricultural solution for increasing crop yields in semi-arid regions.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Hanin S Alzubaidy
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Axel de Zélicourt
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Lukáš Synek
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Wiam Alsharif
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia.
| | - Maged M Saad
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| |
Collapse
|
21
|
Fan T, Roling L, Meiers A, Brings L, Ortega-Rodés P, Hedtke B, Grimm B. Complementation studies of the Arabidopsis fc1 mutant substantiate essential functions of ferrochelatase 1 during embryogenesis and salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:618-632. [PMID: 30242849 DOI: 10.1111/pce.13448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Ferrochelatase (FC) is the final enzyme for haem formation in the tetrapyrrole biosynthesis pathway and encoded by two genes in higher plants. FC2 exists predominantly in green tissue, whereas FC1 is constitutively expressed. We intended to substantiate the specific roles of FC1. The embryo-lethal fc1-2 mutant was used to express the two genomic FC-encoding sequences under the FC1 and FC2 promoter and explore the complementation of the FC1 deficiency. Apart from the successful complementation with FC1, expression of FC2 under control of the FC1 promoter (pFC1::FC2) compensates for missing FC1 but not by FC2 promoter expression. The complementing lines pFC1FC2(fc1/fc1) succeeded under standard growth condition but failed under salt stress. The pFC1FC2(fc1/fc1) line exhibited symptoms of leaf senescence, including accelerated loss of haem and chlorophyll and elevated gene expression for chlorophyll catabolism. In contrast, ectopic FC1 expression (p35S::FC1) resulted in increased chlorophyll accumulation. The limited ability of FC2 to complement fc1 is explained by a faster turnover of FC2 mRNA during stress. It is suggested that FC1-produced haem is essential for embryogenesis and stress response. The pFC1::FC2 expression readily complements the fc1-2 embryo lethality, whereas higher FC1 transcript content contributes essentially to stress tolerance.
Collapse
Affiliation(s)
- Tingting Fan
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lena Roling
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Anna Meiers
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lea Brings
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | | | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
22
|
Rosa MTG, Almeida DM, Pires IS, da Rosa Farias D, Martins AG, da Maia LC, de Oliveira AC, Saibo NJM, Oliveira MM, Abreu IA. Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC PLANT BIOLOGY 2018; 18:349. [PMID: 30541427 PMCID: PMC6291987 DOI: 10.1186/s12870-018-1547-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND SUMOylation is an essential eukaryotic post-translation modification that, in plants, regulates numerous cellular processes, ranging from seed development to stress response. Using rice as a model crop plant, we searched for potential regulatory points that may influence the activity of the rice SUMOylation machinery genes. RESULTS We analyzed the presence of putative cis-acting regulatory elements (CREs) within the promoter regions of the rice SUMOylation machinery genes and found CREs related to different cellular processes, including hormone signaling. We confirmed that the transcript levels of genes involved in target-SUMOylation, containing ABA- and GA-related CREs, are responsive to treatments with these hormones. Transcriptional analysis in Nipponbare (spp. japonica) and LC-93-4 (spp. indica), showed that the transcript levels of all studied genes are maintained in the two subspecies, under normal growth. OsSUMO3 is an exceptional case since it is expressed at low levels or is not detectable at all in LC-93-4 roots and shoots, respectively. We revealed post-transcriptional regulation by alternative splicing (AS) for all genes studied, except for SUMO coding genes, OsSIZ2, OsOTS3, and OsELS2. Some AS forms have the potential to alter protein domains and catalytic centers. We also performed the molecular and phenotypic characterization of T-DNA insertion lines of some of the genes under study. Knockouts of OsFUG1 and OsELS1 showed increased SUMOylation levels and non-overlapping phenotypes. The fug1 line showed a dwarf phenotype, and significant defects in fertility, seed weight, and panicle architecture, while the els1 line showed early flowering and decreased plant height. We suggest that OsELS1 is an ortholog of AtEsd4, which was also supported by our phylogenetic analysis. CONCLUSIONS Overall, we provide a comprehensive analysis of the rice SUMOylation machinery and discuss possible effects of the regulation of these genes at the transcriptional and post-transcriptional level. We also contribute to the characterization of two rice SUMO proteases, OsELS1 and OsFUG1.
Collapse
Affiliation(s)
- Margarida T. G. Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Diego M. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM), Montpellier, France
| | - Inês S. Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- Frontiers Media SA, Avenue du Tribunal-Fédéral 34, CH-1015 Lausanne, Switzerland
| | - Daniel da Rosa Farias
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Alice G. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Luciano Carlos da Maia
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - António Costa de Oliveira
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
23
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
24
|
Abstract
The halophyte tamarisk (Tamarix) is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology) terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658), which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.
Collapse
|
25
|
Wawer I, Golisz A, Sulkowska A, Kawa D, Kulik A, Kufel J. mRNA Decapping and 5'-3' Decay Contribute to the Regulation of ABA Signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:312. [PMID: 29593767 PMCID: PMC5857609 DOI: 10.3389/fpls.2018.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Defects in RNA processing and degradation pathways often lead to developmental abnormalities, impaired hormonal signaling and altered resistance to abiotic and biotic stress. Here we report that components of the 5'-3' mRNA decay pathway, DCP5, LSM1-7 and XRN4, contribute to a proper response to a key plant hormone abscisc acid (ABA), albeit in a different manner. Plants lacking DCP5 are more sensitive to ABA during germination, whereas lsm1a lsm1b and xrn4-5 mutants are affected at the early stages of vegetative growth. In addition, we show that DCP5 and LSM1 regulate mRNA stability and act in translational repression of the main components of the early ABA signaling, PYR/PYL ABA receptors and SnRK2s protein kinases. mRNA decapping DCP and LSM1-7 complexes also appear to modulate ABA-dependent expression of stress related transcription factors from the AP2/ERF/DREB family that in turn affect the level of genes regulated by the PYL/PYR/RCAR-PP2C-SnRK2 pathway. These observations suggest that ABA signaling through PYL/PYR/RCAR receptors and SnRK2s kinases is regulated directly and indirectly by the cytoplasmic mRNA decay pathway.
Collapse
Affiliation(s)
- Izabela Wawer
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- *Correspondence: Izabela Wawer
| | - Anna Golisz
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Sulkowska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Dorota Kawa
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Joanna Kufel
| |
Collapse
|