1
|
Li G, Ma Y, Zhang S, Lin W, Yao X, Zhou Y, Zhao Y, Rao Q, Qu Y, Gao Y, Chen L, Zhang Y, Han F, Sun M, Zhao C. A mechanistic systems biology model of brain microvascular endothelial cell signaling reveals dynamic pathway-based therapeutic targets for brain ischemia. Redox Biol 2024; 78:103415. [PMID: 39520909 PMCID: PMC11584692 DOI: 10.1016/j.redox.2024.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemic stroke is a significant threat to human health. Currently, there is a lack of effective treatments for stroke, and progress in new neuron-centered drug target development is relatively slow. On the other hand, studies have demonstrated that brain microvascular endothelial cells (BMECs) are crucial components of the neurovascular unit and play pivotal roles in ischemic stroke progression. To better understand the complex multifaceted roles of BMECs in the regulation of ischemic stroke pathophysiology and facilitate BMEC-based drug target discovery, we utilized a transcriptomics-informed systems biology modeling approach and constructed a mechanism-based computational multipathway model to systematically investigate BMEC function and its modulatory potential. Extensive multilevel data regarding complex BMEC pathway signal transduction and biomarker expression under various pathophysiological conditions were used for quantitative model calibration and validation, and we generated dynamic BMEC phenotype maps in response to various stroke-related stimuli to identify potential determinants of BMEC fate under stress conditions. Through high-throughput model sensitivity analyses and virtual target perturbations in model-based single cells, our model predicted that targeting succinate could effectively reverse the detrimental cell phenotype of BMECs under oxygen and glucose deprivation/reoxygenation, a condition that mimics stroke pathogenesis, and we experimentally validated the utility of this new target in terms of regulating inflammatory factor production, free radical generation and tight junction protection in vitro and in vivo. Our work is the first that complementarily couples transcriptomic analysis with mechanistic systems-level pathway modeling in the study of BMEC function and endothelium-based therapeutic targets in ischemic stroke.
Collapse
Affiliation(s)
- Geli Li
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China; Gusu School, Nanjing Medical University, 215000, Suzhou, China
| | - Yuchen Ma
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Sujie Zhang
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Wen Lin
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Xinyi Yao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yating Zhou
- The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Qi Rao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yuchen Qu
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, 210000, Nanjing, China
| | - Lianmin Chen
- The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China
| | - Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 21205, Baltimore, USA
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China.
| | - Meiling Sun
- School of Basic Medical Sciences, Nanjing Medical University, 210000, Nanjing, China.
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China; The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China.
| |
Collapse
|
2
|
Yuan C, Shentu Y, Ji Q. Research on the innate immune response in transgenic mice following ischemic stroke. Front Aging Neurosci 2024; 16:1476913. [PMID: 39649720 PMCID: PMC11621074 DOI: 10.3389/fnagi.2024.1476913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
The high incidence, death, disability, and recurrence of ischemic stroke (CIS) place a significant cost on families and society. According to recent research on the condition, immune-related damage is a major contributor to the development and occurrence of CIS. Innate immunity and adaptive immunity are the two primary categories of the immune system in the body. The body's first line of defense is innate immunity, and immune cells play a role in every stage of the immune system. At the same time, protein molecules play a vital function in regulating and differentiating immune cells. It can be said that protein molecules are the foundation of immune regulation. Model mice are necessary for us to examine fixed compounds in our studies. Conditional deletion and overexpression mouse models are the two primary categories of model mice. Numerous model mice have been documented in CIS research. The study of innate immune responses following ischemic stroke will benefit more from the use of these transgenic mice that target innate immunity. This paper analyzes the literature on transgenic mice related to innate immune responses following ischemic stroke because of the significance of these responses. It is anticipated to produce novel medications, improve clinical treatment guidance, and undergo a metamorphosis and application in the clinic in the future.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Neurology, Nantong University, Nantong, China
| | - Yuting Shentu
- Department of Neurology, Nantong University, Nantong, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Guo W, Xu M, Song X, Cheng Y, Deng Y, Liu M. Association of Serum Macrophage Migration Inhibitory Factor with 3-Month Poor Outcome and Malignant Cerebral Edema in Patients with Large Hemispheric Infarction. Neurocrit Care 2024; 41:558-567. [PMID: 38561586 DOI: 10.1007/s12028-024-01958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND We aimed to investigate the associations of macrophage migration inhibitory factor (MIF), toll-like receptors 2 and 4 (TLR2/4), and matrix metalloproteinase 9 (MMP9) with 3-month poor outcome, death, and malignant cerebral edema (MCE) in patients with large hemispheric infarction (LHI). METHODS Patients with LHI within 24 h of onset were enrolled consecutively. Serum MIF, TLR2/4, and MMP9 concentrations on admission were measured. Poor outcome was defined as a modified Rankin Scale score of ≥ 3 at 3 months. MCE was defined as a decreased level of consciousness, anisocoria and midline shift > 5 mm or basal cistern effacement, or indications for decompressive craniectomy during hospitalization. The cutoff values for MIF/MMP9 were obtained from the receiver operating characteristic curve. RESULTS Of the 130 patients with LHI enrolled, 90 patients (69.2%) had 3-month poor outcome, and MCE occurred in 55 patients (42.3%). Patients with serum MIF concentrations ≤ 7.82 ng/mL for predicting 3-month poor outcome [adjusted odds ratio (OR) 2.827, 95% confidence interval (CI) 1.144-6.990, p = 0.024] also distinguished death (adjusted OR 4.329, 95% CI 1.841-10.178, p = 0.001). Similarly, MMP9 concentrations ≤ 46.56 ng/mL for predicting 3-month poor outcome (adjusted OR 2.814, 95% CI 1.236-6.406, p = 0.014) also distinguished 3-month death (adjusted OR 3.845, 95% CI 1.534-9.637, p = 0.004). CONCLUSIONS Lower serum MIF and MMP9 concentrations at an early stage were independently associated with 3-month poor outcomes and death in patients with LHI. These findings need further confirmation in larger sample studies.
Collapse
Affiliation(s)
- Wen Guo
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Mangmang Xu
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xindi Song
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yajun Cheng
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yilun Deng
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Ming Liu
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Tian L, Cao G, Zhu X, Wang L, Hou J, Zhang Y, Xu H, Wang L, Wang S, Zhao C, Yang H, Zhang J. Transcriptomics and Metabolomics Unveil the Neuroprotection Mechanism of AnGong NiuHuang (AGNH) Pill Against Ischaemic Stroke Injury. Mol Neurobiol 2024; 61:7500-7516. [PMID: 38401045 DOI: 10.1007/s12035-024-04016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
As a famous prescription in China, AnGong NiuHuang (AGNH) pill exerts good neuroprotection for ischaemic stroke (IS), but its mechanism is still unclear. In this study, the neuroprotection of AGNH was evaluated in the rat IS model which were established with the surgery of middle cerebral artery occlusion (MCAO), and the potential mechanism was elucidated by transcriptomic analysis and metabolomic analysis. AGNH treatment obviously decreased the infarct volume and Zea-Longa 5-point neurological deficit scores, improved the survival percentage of rats, regional cerebral blood flow (rCBF), and rat activity distance and activity time. Transcriptomics showed that AGNH exerted its anti-inflammatory effects by affecting the regulatory network including Tyrobp, Syk, Tlr2, Myd88 and Ccl2 as the core. Integrating transcriptomics and metabolomics identified 8 key metabolites regulated by AGNH, including L-histidine, L-serine, L-alanine, fumaric acid, malic acid, and N-(L-arginino) succinate, 1-pyrroline-4-hydroxy-2-carboxylate and 1-methylhistamine in the rats with IS. Additionally, AGNH obviously reduced Tyrobp, Syk, Tlr2, Myd88 and Ccl2 at both the mRNA and protein levels, decreased IL-1β, KC-GRO, IL-13, TNF-α, cleaved caspase 3 and p65 nucleus translocation, but increased IκBα expression. Network pharmacology analysis showed that quercetin, beta-sitosterol, baicalein, naringenin, acacetin, berberine and palmatine may play an important role in protecting against IS. Taken together, this study reveals that AGNH reduced neuroinflammation and protected against IS by inhibiting Tyrobp/Syk and Tlr2/Myd88, as well as NF-κB signalling pathway and regulating multiple metabolites.
Collapse
Affiliation(s)
- Liangliang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaotong Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lihan Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingyi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shicong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, China
| | - Chen Zhao
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
5
|
Cui Y, Hu Z, Wang L, Zhu B, Deng L, Zhang H, Wang X. DL-3-n-Butylphthalide Ameliorates Post-stroke Emotional Disorders by Suppressing Neuroinflammation and PANoptosis. Neurochem Res 2024; 49:2215-2227. [PMID: 38834844 DOI: 10.1007/s11064-024-04171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Post-stroke emotional disorders such as post-stroke anxiety and post-stroke depression are typical symptoms in patients with stroke. They are closely associated with poor prognosis and low quality of life. The State Food and Drug Administration of China has approved DL-3-n-butylphthalide (NBP) as a treatment for ischemic stroke (IS). Clinical research has shown that NBP alleviates anxiety and depressive symptoms in patients with IS. Therefore, this study explored the role and molecular mechanisms of NBP in cases of post-stroke emotional disorders using network pharmacology and experimental validation. The results showed that NBP treatment significantly increased the percentage of time spent in the center of the middle cerebral artery occlusion (MCAO) rats in the open field test and the percentage of sucrose consumption in the sucrose preference test. Network pharmacology results suggest that NBP may regulate neuroinflammation and cell death. Further experiments revealed that NBP inhibited the toll-like receptor 4/nuclear factor kappa B signaling pathway, decreased the level of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, and M1-type microglia markers (CD68, inducible nitric oxide synthase), and reduced the expression of PANoptosis-related molecules including caspase-1, caspase-3, caspase-8, gasdermin D, and mixed lineage kinase domain-like protein in the hippocampus of the MACO rats. These findings demonstrate that the mechanisms through which NBP ameliorates post-stroke emotional disorders in rats are associated with inhibiting neuroinflammation and PANoptosis, providing a new strategy and experimental basis for treating post-stroke emotional disorders.
Collapse
Affiliation(s)
- Yanhui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China
| | - Bi Zhu
- Class 2011 Clinical Medicine Eight-year Program of Central, South University, Changsha, 410000, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China
| | - Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China.
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China.
- Wuzhou Medical College, Wuzhou, 543199, China.
| |
Collapse
|
6
|
Guo S, Yang Q, Fan Y, Ran M, Shi Q, Song Z. Characterization and expression profiles of toll-like receptor genes (TLR2 and TLR5) in immune tissues of hybrid yellow catfish under bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109627. [PMID: 38754649 DOI: 10.1016/j.fsi.2024.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
8
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
9
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
10
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Du Y, Wang J, Zhang J, Li N, Li G, Liu X, Lin Y, Wang D, Kang K, Bian L, Zhao X. Intracerebral hemorrhage-induced brain injury in mice: The role of peroxiredoxin 2-Toll-like receptor 4 inflammatory axis. CNS Neurosci Ther 2024; 30:e14681. [PMID: 38516845 PMCID: PMC10958402 DOI: 10.1111/cns.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Peroxiredoxin 2 (Prx2), an intracellular protein that regulates redox reactions, released from red blood cells is involved in inflammatory brain injury after intracerebral hemorrhage (ICH). Toll-like receptor 4 (TLR4) may be crucial in this process. This study investigated the role of the Prx2-TLR4 inflammatory axis in brain injury following experimental ICH in mice. METHODS First, C57BL/6 mice received an intracaudate injection of autologous arterial blood or saline and their brains were harvested on day 1 to measure Prx2 levels. Second, mice received an intracaudate injection of either recombinant mouse Prx2 or saline. Third, the mice were co-injected with autologous arterial blood and conoidin A, a Prx2 inhibitor, or vehicle. Fourth, the mice received a Prx2 injection and were treated with TAK-242, a TLR4 antagonist, or saline (intraperitoneally). Behavioral tests, magnetic resonance imaging, western blot, immunohistochemistry/immunofluorescence staining, and RNA sequencing (RNA-seq) were performed. RESULTS Brain Prx2 levels were elevated after autologous arterial blood injection. Intracaudate injection of Prx2 caused brain swelling, microglial activation, neutrophil infiltration, neuronal death, and neurological deficits. Co-injection of conoidin A attenuated autologous arterial blood-induced brain injury. TLR4 was expressed on the surface of microglia/macrophages and neutrophils and participated in Prx2-induced inflammation. TAK-242 treatment attenuated Prx2-induced inflammation and neurological deficits. CONCLUSIONS Prx2 can cause brain injury following ICH through the TLR4 pathway, revealing the Prx2-TLR4 inflammatory axis as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Du
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jinjin Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jia Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Ning Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Guangshuo Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xinmin Liu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Yijun Lin
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Dandan Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Kaijiang Kang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Liheng Bian
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
12
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
13
|
Ma Q, Chen J, Kong X, Zeng Y, Chen Z, Liu H, Liu L, Lu S, Wang X. Interactions between CNS and immune cells in tuberculous meningitis. Front Immunol 2024; 15:1326859. [PMID: 38361935 PMCID: PMC10867975 DOI: 10.3389/fimmu.2024.1326859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
The central nervous system (CNS) harbors its own special immune system composed of microglia in the parenchyma, CNS-associated macrophages (CAMs), dendritic cells, monocytes, and the barrier systems within the brain. Recently, advances in the immune cells in the CNS provided new insights to understand the development of tuberculous meningitis (TBM), which is the predominant form of Mycobacterium tuberculosis (M.tb) infection in the CNS and accompanied with high mortality and disability. The development of the CNS requires the protection of immune cells, including macrophages and microglia, during embryogenesis to ensure the accurate development of the CNS and immune response following pathogenic invasion. In this review, we summarize the current understanding on the CNS immune cells during the initiation and development of the TBM. We also explore the interactions of immune cells with the CNS in TBM. In the future, the combination of modern techniques should be applied to explore the role of immune cells of CNS in TBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Xiaomin Wang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Zhang L, Lang F, Feng J, Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117275. [PMID: 37797873 DOI: 10.1016/j.jep.2023.117275] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Fenglong Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
15
|
Bai M, Sun R, Cao B, Feng J, Wang J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 2023; 29:3693-3712. [PMID: 37452512 PMCID: PMC10651979 DOI: 10.1111/cns.14368] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide and the most common cause of disability in Western countries. Multiple mechanisms contribute to the development and progression of ischemic stroke, and inflammation is one of the most important mechanisms. DISCUSSION Ischemia induces the release of adenosine triphosphate/reactive oxygen species, which activates immune cells to produce many proinflammatory cytokines that activate downstream inflammatory cascades to induce fatal immune responses. Research has confirmed that peripheral blood immune cells play a vital role in the immunological cascade after ischemic stroke. The role of monocytes has received much attention among numerous peripheral blood immune cells. Monocytes induce their effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play important roles in the process of monocyte recruitment, migration, and differentiation. CONCLUSION This review focuses on the function and mechanism of the cytokines secreted by monocytes in the process of ischemic stroke and provides novel targets for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiling Bai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
17
|
Xu K, Du W, Zhuang X, Liang D, Mo Y, Wang J. Glycogen synthase kinase-3β mediates toll-like receptors 4/nuclear factor kappa-B-activated cerebral ischemia-reperfusion injury through regulation of fat mass and obesity-associated protein. Brain Circ 2023; 9:162-171. [PMID: 38020949 PMCID: PMC10679630 DOI: 10.4103/bc.bc_3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β), fat mass and obesity-associated protein (FTO), and toll-like receptors 4 (TLR4) take on critical significance in different biological processes, whereas their interactions remain unclear. The objective was the investigation of the interaction effect in cerebral ischemia-reperfusion (I/R) injury. METHODS The function of the cerebral cortex in the mouse middle cerebral artery occlusion (MCAO) model (each group n = 6) and P12 cells oxygen-glucose deprivation/reoxygenation (OGD/R) model was analyzed using short hairpin GSK3β lentivirus and overexpression of FTO lentivirus (in vitro), TLR4 inhibitor (TAK242), and LiCl to regulate GSK3β, FTO, TLR4 expression, and GSK3β activity, respectively. RESULTS After GSK3β knockdown in the OGD/R model of PC12 cells, the levels of TLR4 and p-p65 were lower than in the control, and the level of FTO was higher than in the control. Knockdown GSK3β reversed the OGD/R-induced nuclear factor kappa-B transfer to the intranuclear nuclei. As indicated by the result, TLR4 expression was down-regulated by overexpressed FTO, and TLR4 expression was up-regulated notably after inhibition of FTO with the use of R-2HG. After the inhibition of the activity of GSK3β in vivo, the reduction of FTO in mice suffering from MCAO was reversed. CONCLUSIONS Our research shows that GSK3β/FTO/TLR4 pathway contributes to cerebral I/R injury.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Du
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongdong Liang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
George M, Lang M, Gali CC, Babalola JA, Tam-Amersdorfer C, Stracke A, Strobl H, Zimmermann R, Panzenboeck U, Wadsack C. Liver X Receptor Activation Attenuates Oxysterol-Induced Inflammatory Responses in Fetoplacental Endothelial Cells. Cells 2023; 12:cells12081186. [PMID: 37190095 DOI: 10.3390/cells12081186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Oxysterols are oxidized cholesterol derivatives whose systemic levels are found elevated in pregnancy disorders such as gestational diabetes mellitus (GDM). Oxysterols act through various cellular receptors and serve as a key metabolic signal, coordinating inflammation. GDM is a condition of low-grade chronic inflammation accompanied by altered inflammatory profiles in the mother, placenta and fetus. Higher levels of two oxysterols, namely 7-ketocholesterol (7-ketoC) and 7β-hydroxycholesterol (7β-OHC), were observed in fetoplacental endothelial cells (fpEC) and cord blood of GDM offspring. In this study, we tested the effects of 7-ketoC and 7β-OHC on inflammation and investigated the underlying mechanisms involved. Primary fpEC in culture treated with 7-ketoC or 7β-OHC, induced the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) signaling, which resulted in the expression of pro-inflammatory cytokines (IL-6, IL-8) and intercellular cell adhesion molecule-1 (ICAM-1). Liver-X receptor (LXR) activation is known to repress inflammation. Treatment with LXR synthetic agonist T0901317 dampened oxysterol-induced inflammatory responses. Probucol, an inhibitor of LXR target gene ATP-binding cassette transporter A-1 (ABCA-1), antagonized the protective effects of T0901317, suggesting a potential involvement of ABCA-1 in LXR-mediated repression of inflammatory signaling in fpEC. TLR-4 inhibitor Tak-242 attenuated pro-inflammatory signaling induced by oxysterols downstream of the TLR-4 inflammatory signaling cascade. Taken together, our findings suggest that 7-ketoC and 7β-OHC contribute to placental inflammation through the activation of TLR-4. Pharmacologic activation of LXR in fpEC decelerates its shift to a pro-inflammatory phenotype in the presence of oxysterols.
Collapse
Affiliation(s)
- Meekha George
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Magdalena Lang
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | | | - Carmen Tam-Amersdorfer
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Anika Stracke
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute for Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Ute Panzenboeck
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
- BioTech-Med, 8010 Graz, Austria
| |
Collapse
|
19
|
Tajalli-Nezhad S, Mohammadi S, Atlasi MA, Kheiran M, Moghadam SE, Naderian H, Azami Tameh A. Calcitriol modulate post-ischemic TLR signaling pathway in ischemic stroke patients. J Neuroimmunol 2023; 375:578013. [PMID: 36657372 DOI: 10.1016/j.jneuroim.2022.578013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neuroinflammation is a significant contributor to post-ischemic neuronal death after stroke, and Toll-Like Receptors (TLRs) are one of the essential mediators in many inflammatory pathways. TLRs activate the nuclear factor kappa β (NF-kβ), which promotes the expression of various pro-inflammatory genes such as interleukin (IL-1β) and IL-6. 1,25(OH)2D3, also known as calcitriol, is an active form of vitamin D3 that acts as a neurosteroid compound with anti-inflammatory properties. This study aimed to determine the modulatory effects of calcitriol hormone on post-ischemic immunity response. METHODS Neurological tests and conventional blood factors were evaluated in patients with stroke symptoms upon arrival (n = 38) to confirm the stroke. A blood sample was taken from each stroke patient immediately upon admission and again after 24 h. The experimental group was given 10 μg calcitriol orally. The gene expression levels of TLR4, TLR2, NF-kβ, IL-1β, and IL-6 pro-inflammatory factors were measured using real-time PCR. The protein expression of TLR4 and NF-kβ markers was assessed using the flow cytometry technique. RESULTS TLR4, NF-kβ, and pro-inflammatory factors IL-1β and IL-6 expression increased significantly after an ischemic stroke, and calcitriol could modulate the TLR4/NF-kβ signaling pathway 24 h after ischemia. CONCLUSIONS Calcitriol may be considered a protective reagent after ischemia by reducing the TLR4/NF-kB activation cascade and probably plays a beneficial role in reducing and improving ischemic stroke patients' symptoms. TRIAL REGISTRATION Iranian Registry of Clinical Trials identifier: IRCT2017012532174N1.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Salimeh Mohammadi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Kheiran
- Department of Neurology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Etehadi Moghadam
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Homayoun Naderian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Zhou SY, Guo ZN, Yang Y, Qu Y, Jin H. Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions. Front Neurosci 2023; 17:1081347. [PMID: 36777635 PMCID: PMC9911679 DOI: 10.3389/fnins.2023.1081347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
After an ischemic stroke (IS) occurs, immune cells begin traveling to the brain and immune system from the gut and gastrointestinal tract, where most of them typically reside. Because the majority of the body's macrophages and more than 70% of the total immune cell pool are typically found within the gut and gastrointestinal tract, inflammation and immune responses in the brain and immune organs require the mobilization of a large number of immune cells. The bidirectional communication pathway between the brain and gut is often referred to as the gut-brain axis. IS usually leads to intestinal motility disorders, dysbiosis of intestinal microbiota, and a leaky gut, which are often associated with poor prognosis in patients with IS. In recent years, several studies have suggested that intestinal inflammation and immune responses play key roles in the development of IS, and thus may become potential therapeutic targets that can drive new therapeutic strategies. However, research on gut inflammation and immune responses after stroke remains in its infancy. A better understanding of gut inflammation and immune responses after stroke may be important for developing effective therapies. This review discusses the immune-related mechanisms of the gut-brain axis after IS and compiles potential therapeutic targets to provide new ideas and strategies for the future effective treatment of IS.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China,*Correspondence: Hang Jin,
| |
Collapse
|
21
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
22
|
Zhou Y, Jiang H, Wei H, Liu L, Zhou C, Ji X. Venous stroke–a stroke subtype that should not be ignored. Front Neurol 2022; 13:1019671. [PMID: 36277910 PMCID: PMC9582250 DOI: 10.3389/fneur.2022.1019671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the etiology, stroke can be classified into ischemic or hemorrhagic subtypes, which ranks second among the leading causes of death. Stroke is caused not only by arterial thrombosis but also by cerebral venous thrombosis. Arterial stroke is currently the main subtype of stroke, and research on this type has gradually improved. Venous thrombosis, the particular type, accounts for 0.5–1% of all strokes. Due to the lack of a full understanding of venous thrombosis, as well as its diverse clinical manifestations and neuroimaging features, there are often delays in admission for it, and it is easy to misdiagnose. The purpose of this study was to review the pathophysiology mechanisms and clinical features of arterial and venous thrombosis and to provide guidance for further research on the pathophysiological mechanism, clinical diagnosis, and treatment of venous thrombosis. This review summarizes the pathophysiological mechanisms, etiology, epidemiology, symptomatology, diagnosis, and treatment heterogeneity of venous thrombosis and compares it with arterial stroke. The aim is to provide a reference for a comprehensive understanding of venous thrombosis and a scientific understanding of various pathophysiological mechanisms and clinical features related to venous thrombosis, which will contribute to understanding the pathogenesis of intravenous stroke and provide insight into diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Wei
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Chen Zhou
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xunming Ji
| |
Collapse
|
23
|
Exopolysaccharides of Bacillus amyloliquefaciens Amy-1 Mitigate Inflammation by Inhibiting ERK1/2 and NF-κB Pathways and Activating p38/Nrf2 Pathway. Int J Mol Sci 2022; 23:ijms231810237. [PMID: 36142159 PMCID: PMC9499622 DOI: 10.3390/ijms231810237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Bacillus amyloliquefaciens is a probiotic for animals. Evidence suggests that diets supplemented with B. amyloliquefaciens can reduce inflammation; however, the underlying mechanism is unclear and requires further exploration. The exopolysaccharides of B. amyloliquefaciens amy-1 displayed hypoglycemic activity previously, suggesting that they are bioactive molecules. In addition, they counteracted the effect of lipopolysaccharide (LPS) on inducing cellular insulin resistance in exploratory tests. Therefore, this study aimed to explore the anti-inflammatory effect and molecular mechanisms of the exopolysaccharide preparation of amy-1 (EPS). Consequently, EPS reduced the expression of proinflammatory factors, the phagocytic activity and oxidative stress of LPS-stimulated THP-1 cells. In animal tests, EPS effectively ameliorated ear inflammation of mice. These data suggested that EPS possess anti-inflammatory activity. A mechanism study revealed that EPS inhibited the nuclear factor-κB pathway, activated the mitogen-activated protein kinase (MAPK) p38, and prohibited the extracellular signal-regulated kinase 1/2, but had no effect on the c-Jun-N-terminal kinase 2 (JNK). EPS also activated the anti-oxidative nuclear factor erythroid 2–related factor 2 (Nrf2) pathway. Evidence suggested that p38, but not JNK, was involved in activating the Nrf2 pathway. Together, these mechanisms reduced the severity of inflammation. These findings support the proposal that exopolysaccharides may play important roles in the anti-inflammatory functions of probiotics.
Collapse
|
24
|
Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022; 2022:7924199. [PMID: 36046763 PMCID: PMC9420645 DOI: 10.1155/2022/7924199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Collapse
|
25
|
Zhou M, Zhang T, Zhang X, Zhang M, Gao S, Zhang T, Li S, Cai X, Li J, Lin Y. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37478-37492. [PMID: 35951372 DOI: 10.1021/acsami.2c10364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Astrocytes, as the most plentiful subtypes of glial cells, play an essential biphasic function in ischemic stroke (IS). However, although having beneficial effects on stroke via promoting nerve restoration and limiting lesion extension, astrocytes can unavoidably cause exacerbated brain damage due to their participation in the inflammatory response. Therefore, seeking an effective and safe drug/strategy for protecting and regulating astrocytes in stroke is urgent. Here, we employ tetrahedral framework nucleic acid (tFNA) nanomaterials for astrocytes in stroke, considering their excellent biological properties and outstanding biosafety. In vitro, tFNA can inhibit calcium overload and ROS regeneration triggered by oxygen-glucose deprivation/reoxygenation (OGD/R), which provides a protective effect against astrocytic apoptosis. Furthermore, morphological changes such as hyperplasia and hypertrophy of reactive astrocytes are restrained, and the astrocytic polarization from the proinflammatory A1 phenotype to the neuroprotective A2 phenotype is facilitated by tFNA, which further alleviates cerebral infarct volume and facilitates the recovery of neurological function in transient middle cerebral artery occlusion (tMCAo) rat models. Moreover, the TLRs/NF-κB signaling pathway is downregulated by tFNA, which may be the potential mechanism of tFNA for protecting astrocytes in stroke. Collectively, we demonstrate that tFNA can effectively mediate astrocytic apoptosis, activation, and polarization to alleviate brain injury, which represents a potential intervention strategy for IS.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
26
|
Wang Y, Lv S, Zhou X, Niu X, Chen L, Yang Z, Peng D. Identification of TLR2 as a Key Target in Neuroinflammation in Vascular Dementia. Front Genet 2022; 13:860122. [PMID: 35873459 PMCID: PMC9296774 DOI: 10.3389/fgene.2022.860122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular dementia (VaD) is the second most common cause of dementia. At present, precise molecular processes of VaD are unclear. We attempted to discover the VaD relevant candidate genes, enrichment biological processes and pathways, key targets, and the underlying mechanism by microarray bioinformatic analysis. We selected GSE122063 related to the autopsy samples of VaD for analysis. We first took use of Weighted Gene Co-expression Network Analysis (WGCNA) to achieve modules related to VaD and hub genes. Second, we filtered out significant differentially expressed genes (DEGs). Third, significant DEGs then went through Geno Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Fourth, Gene Set Enrichment Analysis (GSEA) was performed. At last, we constructed the protein–protein interaction (PPI) network. The results showed that the yellow module had the strongest correlation with VaD, and we finally identified 21 hub genes. Toll-like receptor 2 (TLR2) was the top hub gene and was strongly correlated with other possible candidate genes. In total, 456 significant DEGs were filtered out and these genes were found to be enriched in the Toll receptor signaling pathway and several other immune-related pathways. In addition, Gene Set Enrichment Analysis results showed that similar pathways were significantly over-represented in TLR2-high samples. In the PPI network, TLR2 was still an important node with high weight and combined scores. We concluded that the TLR2 acts as a key target in neuroinflammation which may participate in the pathophysiological process of VaD.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Lv
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- *Correspondence: Dantao Peng,
| |
Collapse
|
27
|
Khassafi N, Zahraei Z, Vahidinia Z, Karimian M, Azami Tameh A. Calcitriol Pretreatment Attenuates Glutamate Neurotoxicity by Regulating NMDAR and CYP46A1 Gene Expression in Rats Subjected to Transient Middle Cerebral Artery Occlusion. J Neuropathol Exp Neurol 2022; 81:252-259. [PMID: 35244169 DOI: 10.1093/jnen/nlac011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the neuroprotective effects of calcitriol have been demonstrated in a variety of neurological diseases, such as stroke, the precise molecular mechanism has yet to be determined. This study aimed to investigate the possible role of calcitriol as a neuroprotective agent via CYP46A1 and glutamate receptors in a middle cerebral artery occlusion (MCAO) animal model. The MCAO technique was performed on adult male Wistar rats to induce focal cerebral ischemia for 1 hour followed by 23 hours of reperfusion. Calcitriol was given for 7 days prior to stroke induction. Sensorimotor functional tests were done 24 hours after ischemia/reperfusion, and infarct volume was estimated by tetrazolium chloride staining of brain sections. Gene expression of NR2A, NR2B, NR3B, and CYP46A1 was evaluated by RT-PCR followed by western blotting for NR3B protein. Our data revealed that calcitriol pretreatment reduced lesion volume and improved ischemic neurobehavioral parameters. Calcitriol therapy altered the expression of glutamate receptor and CYP46A1 genes. A possible molecular mechanism of calcitriol to reduce the severity and complications of ischemia may be through alterations of glutamate receptor and CYP46A1 gene expression.
Collapse
Affiliation(s)
- Negar Khassafi
- From the Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.,Department of Anatomy, Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zohreh Zahraei
- From the Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeinab Vahidinia
- Department of Anatomy, Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Anatomy, Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Abolfazl Azami Tameh
- From the Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
28
|
Chou MC, Lee YJ, Wang YT, Cheng SY, Cheng HL. Cytotoxic and Anti-Inflammatory Triterpenoids in the Vines and Leaves of Momordica charantia. Int J Mol Sci 2022; 23:ijms23031071. [PMID: 35163001 PMCID: PMC8834831 DOI: 10.3390/ijms23031071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vines and leaves of Momordica charantia L. are used as herbal medicines to treat inflammation-related disorders. However, their safety profile remains uncharacterized, and the constituents in their extracts that exert anti-inflammatory and adverse effects remain unclear. This study isolated the characteristic cucurbitane-type triterpenoid species in the vines and leaves of M. charantia L. and analyzed their cytotoxicity, anti-inflammatory effects, and underlying mechanisms. Four structurally related triterpenoids—momordicines I, II, IV, and (23E) 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD)—were isolated from the triterpenoid-rich fractions of extracts from the vines and leaves of M. charantia. Momordicine I was cytotoxic on normal cells, momordicine II exerted milder cytotoxicity, and momordicine IV and TCD had no obvious adverse effects on cell growth. TCD had anti-inflammatory activity both in vivo and in vitro. In lipopolysaccharide-stimulated RAW 264.7 cells, TCD inhibited the inhibitor kappa B kinase/nuclear factor-κB pathway and enhanced the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate-cysteine ligase modifier subunit through the extracellular signal-regulated kinase1/2 and p38. Thus, the vines and leaves of M. charantia should be used with caution. An extraction protocol that can enrich TCD but remove momordicine I would likely enhance the safety of the extract.
Collapse
Affiliation(s)
- Mei-Chia Chou
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan;
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Neipu, Pingtung County 912012, Taiwan
- Department of Recreation and Sports Management, Tajen University, Yanpu, Pingtung County 907101, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Yuan-Jia Lee
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan;
| | - Yao-Ting Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan;
| | - Shi-Yie Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan;
- Correspondence: (S.-Y.C.); (H.-L.C.); Tel.: +886-7-5916693 (S.-Y.C.); +886-8-7703202 (ext. 5186) (H.-L.C.)
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan;
- Correspondence: (S.-Y.C.); (H.-L.C.); Tel.: +886-7-5916693 (S.-Y.C.); +886-8-7703202 (ext. 5186) (H.-L.C.)
| |
Collapse
|
29
|
Zhou M, Zhang T, Zhang B, Zhang X, Gao S, Zhang T, Li S, Cai X, Lin Y. A DNA Nanostructure-Based Neuroprotectant against Neuronal Apoptosis via Inhibiting Toll-like Receptor 2 Signaling Pathway in Acute Ischemic Stroke. ACS NANO 2021; 16:1456-1470. [PMID: 34967217 DOI: 10.1021/acsnano.1c09626] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is a main cause of cognitive neurological deficits and disability worldwide due to a plethora of neuronal apoptosis. Unfortunately, numerous neuroprotectants for neurons have failed because of biological toxicity, severe side effects, and poor efficacy. Tetrahedral framework nucleic acids (tFNAs) possess excellent biocompatibility and various biological functions. Here, we tested the efficacy of a tFNA for providing neuroprotection against neuronal apoptosis in ischemic stroke. The tFNA prevented apoptosis of neurons (SHSY-5Y cells) caused by oxygen-glucose deprivation/reoxygenation through interfering with ischemia cascades (excitotoxicity and oxidative stress) in vitro. It effectively ameliorated the microenvironment of the ischemic hemisphere by upregulating expression of erythropoietin and inhibiting inflammation, which reversed neuronal loss, alleviated cell apoptosis, significantly shrank the infarction volume from 33.9% to 2.7%, and attenuated neurological deficits in transient middle cerebral artery occlusion (tMCAo) rat models in vivo. In addition, blocking the TLR2-MyD88-NF-κB signaling pathway is a potential mechanism of the neuroprotection by tFNA in ischemic stroke. These findings indicate that tFNA is a safe pleiotropic nanoneuroprotectant and a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
30
|
New Drug Targets to Prevent Death Due to Stroke: A Review Based on Results of Protein-Protein Interaction Network, Enrichment, and Annotation Analyses. Int J Mol Sci 2021; 22:ijms222212108. [PMID: 34829993 PMCID: PMC8619767 DOI: 10.3390/ijms222212108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
This study used established biomarkers of death from ischemic stroke (IS) versus stroke survival to perform network, enrichment, and annotation analyses. Protein-protein interaction (PPI) network analysis revealed that the backbone of the highly connective network of IS death consisted of IL6, ALB, TNF, SERPINE1, VWF, VCAM1, TGFB1, and SELE. Cluster analysis revealed immune and hemostasis subnetworks, which were strongly interconnected through the major switches ALB and VWF. Enrichment analysis revealed that the PPI immune subnetwork of death due to IS was highly associated with TLR2/4, TNF, JAK-STAT, NOD, IL10, IL13, IL4, and TGF-β1/SMAD pathways. The top biological and molecular functions and pathways enriched in the hemostasis network of death due to IS were platelet degranulation and activation, the intrinsic pathway of fibrin clot formation, the urokinase-type plasminogen activator pathway, post-translational protein phosphorylation, integrin cell-surface interactions, and the proteoglycan-integrin extracellular matrix complex (ECM). Regulation Explorer analysis of transcriptional factors shows: (a) that NFKB1, RELA and SP1 were the major regulating actors of the PPI network; and (b) hsa-mir-26-5p and hsa-16-5p were the major regulating microRNA actors. In conclusion, prevention of death due to IS should consider that current IS treatments may be improved by targeting VWF, the proteoglycan-integrin-ECM complex, TGF-β1/SMAD, NF-κB/RELA and SP1.
Collapse
|
31
|
Wang N, Liu Y, Jia C, Gao C, Zheng T, Wu M, Zhang Q, Zhao X, Li Z, Chen J, Wu C. Machine learning enables discovery of Gentianine targeting TLR4/NF-κB pathway to repair ischemic stroke injury. Pharmacol Res 2021; 173:105913. [PMID: 34563661 DOI: 10.1016/j.phrs.2021.105913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory response is believed to accelerate the development of stroke injury. Gentianine, an alkaloid isolated from Gentiana Scabra Bunge, shows effectiveness in anti-inflammation. In this study, the effect of Gentianine on transient middle cerebral artery occlusion (tMCAO) induced mouse model in vivo and further related mechanism in LPS-injuried microglia BV-2 cells in vitro were explored. Effect of Gentianine on tMCAO mouse demonstrated that Gentianine significantly ameliorated tMCAO induced ischemic injury by decreasing brain infarct volume and increasing the neurological score and upper limb muscle strength. Meanwhile, Gentianine significantly decreased the release of serum inflammatory cytokines. Machine learning enables that Gentianine might had anti-ischemic stroke effect through the TLR4/NF-κB signaling pathway. This was verified in vivo and in vitro. Gentianine significantly decrease the TLR4 and Iba-1 expression in vivo. These results also verified in BV-2 cells. Gentianine significantly decreased TLR4, MyD88 and NF-κB expression, as well as NO production and inflammatory cytokines release. Gentianine co-treatment with TLR4 inhibitor, further decreased TLR4, MyD88 and NF-κB expression, NO production, as well as the inflammatory cytokines. Taken together, Gentianine could be used as a potential anti-ischemic stroke agent by suppressing inflammatory responses via TLR4/NF-κB signaling pathway. This study is expected to provide an integrated traditional Chinese and western medicine solution to find potential anti-ischemic stroke compounds based on machine learning.
Collapse
Affiliation(s)
- Na Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Liu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Caixia Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | | | - Mingxuan Wu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Chuanhong Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Xu J, Zhou Y, Yan C, Wang X, Lou J, Luo Y, Gao S, Wang J, Wu L, Gao X, Shao A. Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. J Neurochem 2021; 160:113-127. [PMID: 34482541 DOI: 10.1111/jnc.15503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caochong Yan
- The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, Zhejiang, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangfu Gao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Chen R, Zhang X, Gu L, Zhu H, Zhong Y, Ye Y, Xiong X, Jian Z. New Insight Into Neutrophils: A Potential Therapeutic Target for Cerebral Ischemia. Front Immunol 2021; 12:692061. [PMID: 34335600 PMCID: PMC8317226 DOI: 10.3389/fimmu.2021.692061] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the main issues threatening human health worldwide, and it is also the main cause of permanent disability in adults. Energy consumption and hypoxia after ischemic stroke leads to the death of nerve cells, activate resident glial cells, and promote the infiltration of peripheral immune cells into the brain, resulting in various immune-mediated effects and even contradictory effects. Immune cell infiltration can mediate neuronal apoptosis and aggravate ischemic injury, but it can also promote neuronal repair, differentiation and regeneration. The central nervous system (CNS), which is one of the most important immune privileged parts of the human body, is separated from the peripheral immune system by the blood-brain barrier (BBB). Under physiological conditions, the infiltration of peripheral immune cells into the CNS is controlled by the BBB and regulated by the interaction between immune cells and vascular endothelial cells. As the immune response plays a key role in regulating the development of ischemic injury, neutrophils have been proven to be involved in many inflammatory diseases, especially acute ischemic stroke (AIS). However, neutrophils may play a dual role in the CNS. Neutrophils are the first group of immune cells to enter the brain from the periphery after ischemic stroke, and their exact role in cerebral ischemia remains to be further explored. Elucidating the characteristics of immune cells and their role in the regulation of the inflammatory response may lead to the identification of new potential therapeutic strategies. Thus, this review will specifically discuss the role of neutrophils in ischemic stroke from production to functional differentiation, emphasizing promising targeted interventions, which may promote the development of ischemic stroke treatments in the future.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
35
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
36
|
Pascual M, Calvo-Rodriguez M, Núñez L, Villalobos C, Ureña J, Guerri C. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 2021; 73:900-915. [PMID: 34033211 DOI: 10.1002/iub.2510] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) or pattern recognition receptors respond to pathogen-associated molecular patterns (PAMPs) or internal damage-associated molecular patterns (DAMPs). TLRs are integral membrane proteins with both extracellular leucine-rich and cytoplasmic domains that initiate downstream signaling through kinases by activating transcription factors like AP-1 and NF-κB, which lead to the release of various inflammatory cytokines and immune modulators. In the central nervous system, different TLRs are expressed mainly in microglia and astroglial cells, although some TLRs are also expressed in oligodendroglia and neurons. Activation of TLRs triggers signaling cascades by the host as a defense mechanism against invaders to repair damaged tissue. However, overactivation of TLRs disrupts the sustained immune homeostasis-induced production of pro-inflammatory molecules, such as cytokines, miRNAs, and inflammatory components of extracellular vesicles. These inflammatory mediators can, in turn, induce neuroinflammation, and neural tissue damage associated with many neurodegenerative diseases. This review discusses the critical role of TLRs response in Alzheimer's disease, Parkinson's disease, ischemic stroke, amyotrophic lateral sclerosis, and alcohol-induced brain damage and neurodegeneration.
Collapse
Affiliation(s)
- María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer's Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lucía Núñez
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.,Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Carlos Villalobos
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - Juan Ureña
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
37
|
Jiang Q, Stone CR, Elkin K, Geng X, Ding Y. Immunosuppression and Neuroinflammation in Stroke Pathobiology. Exp Neurobiol 2021; 30:101-112. [PMID: 33972464 PMCID: PMC8118752 DOI: 10.5607/en20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Over the preceding decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. One such advance has been an increased understanding of the multifarious crosstalk in which the nervous and immune systems engage in order to maintain homeostasis. By interrupting the immune-nervous nexus, it is thought that stroke induces change in both systems. Additionally, it has been found that both innate and adaptive immunosuppression play protective roles against the effects of stroke. The release of danger-/damage-associated molecular patterns (DAMPs) activates Toll-like receptors (TLRs), contributing to the harmful inflammatory effects of ischemia/reperfusion injury after stroke; the Tyro3, Axl, and MerTK (TAM)/Gas6 system, however, has been shown to suppress inflammation via downstream signaling molecules that inhibit TLR signaling. Anti-inflammatory cytokines have also been found to promote neuroprotection following stroke. Additionally, adaptive immunosuppression merits further consideration as a potential endogenous protective mechanism. In this review, we highlight recent studies regarding the effects and mechanism of immunosuppression on the pathophysiology of stroke, with the hope that a better understanding of the function of both of innate and adaptive immunity in this setting will facilitate the development of effective therapies for post-stroke inflammation.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit 48201, MI, USA
| |
Collapse
|
38
|
Deng Y, Ma G, Gao F, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, He H, Miao Z. SOX9 Knockdown-Mediated FOXO3 Downregulation Confers Neuroprotection Against Ischemic Brain Injury. Front Cell Dev Biol 2021; 8:555175. [PMID: 33791290 PMCID: PMC8006459 DOI: 10.3389/fcell.2020.555175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Evidence exists uncovering that SRY-box transcription factor 9 (SOX9) plays a role in ischemic brain injury (IBI). Thus, the current study was conducted to elucidate the specific role of SOX9 and the mechanism by which SOX9 influenced IBI. Methods The IBI-associated regulatory factors were searched by bioinformatics analysis. The rat model of IBI was generated using middle cerebral artery occlusion (MCAO) treatment. Neuronal cells were exposed to oxygen-glucose deprivation (OGD). The expressions of SOX9, forkhead box O3 (FOXO3), transcription of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2), and IκB kinase α (IKKα) in OGD-treated neuronal cells were characterized using reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. The interaction among CITED2, IKKα, and FOXO3 was identified by chromatin immunoprecipitation (ChIP) and dual luciferase reporter gene assays. Gain- and loss-of-function experiments were performed to verify the relationship among SOX9, FOXO3, CITED2, and IKKα and to investigate their functional effects on apoptosis and the inflammatory response of OGD-treated neuronal cells as well as neurological deficit and infarct area of the rat brain. Results SOX9, FOXO3, CITED2, and IKKα were highly expressed in OGD-treated neuronal cells. Silencing of SOX9 inhibited OGD-induced neuronal apoptosis and inflammatory response and reduced the neurological deficit and infarct area of the brain in the rats, which were caused by MCAO but were reversed by overexpressing FOXO3, CITED2, or IKKα. Conclusion Taken together, our study suggested that upregulation of SOX9 promoted IBI though upregulation of the FOXO3/CITED2/IKKα axis, highlighting a basic therapeutic consideration for IBI treatment.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Gaoting Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Hongwei He
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
39
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
40
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
41
|
Liu F, Cheng X, Zhong S, Liu C, Jolkkonen J, Zhang X, Liang Y, Liu Z, Zhao C. Communications Between Peripheral and the Brain-Resident Immune System in Neuronal Regeneration After Stroke. Front Immunol 2020; 11:1931. [PMID: 33042113 PMCID: PMC7530165 DOI: 10.3389/fimmu.2020.01931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemia may cause irreversible neural network damage and result in functional deficits. Targeting neuronal repair after stroke potentiates the formation of new connections, which can be translated into a better functional outcome. Innate and adaptive immune responses in the brain and the periphery triggered by ischemic damage participate in regulating neural repair after a stroke. Immune cells in the blood circulation and gut lymphatic tissues that have been shaped by immune components including gut microbiota and metabolites can infiltrate the ischemic brain and, once there, influence neuronal regeneration either directly or by modulating the properties of brain-resident immune cells. Immune-related signalings and metabolites from the gut microbiota can also directly alter the phenotypes of resident immune cells to promote neuronal regeneration. In this review, we discuss several potential mechanisms through which peripheral and brain-resident immune components can cooperate to promote first the resolution of neuroinflammation and subsequently to improved neural regeneration and a better functional recovery. We propose that new insights into discovery of regulators targeting pro-regenerative process in this complex neuro-immune network may lead to novel strategies for neuronal regeneration.
Collapse
Affiliation(s)
- Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xi Cheng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhong
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chang Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Jukka Jolkkonen
- A.I. Virtanen Institute and Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Liang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhouyang Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China.,Stroke Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
TAK‑242 exerts a neuroprotective effect via suppression of the TLR4/MyD88/TRIF/NF‑κB signaling pathway in a neonatal hypoxic‑ischemic encephalopathy rat model. Mol Med Rep 2020; 22:1440-1448. [PMID: 32627010 PMCID: PMC7339810 DOI: 10.3892/mmr.2020.11220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the main causes of death and nervous system damage in neonates. The aim of the present study was to investigate the effect of the Toll-like receptor 4 (TLR4) antagonist TAK-242 on HIE. The Rice-Vannucci method was used for ligation of the left common carotid artery, followed by hypoxic treatment for 2.5 h to establish a neonatal HIE rat model. Rats were intraperitoneally injected with 7.5 ml/kg TAK-242 after hypoxia-ischemia. It was demonstrated that TAK-242 significantly reduced the infarct volume and cerebral edema content of neonatal rats after HIE, alleviating neuronal damage and neurobehavioral function deficits. Furthermore, TAK-242 decreased the protein expression levels of TLR4, MyD88, TIR-domain-containing adapter-inducing interferon-β (TRIF), NF-κB, tumor necrosis factor α (TNF-α) and interleukin-1β in the hippocampus. The present results suggested that TAK-242 may exert a neuroprotective effect after HIE by inhibiting the TLR4/MyD88/TRIF/NF-κB signaling pathway, and reducing the release of downstream inflammatory cytokines.
Collapse
|
43
|
Protective effects of FGF10 on neurovascular unit in a rat model of neonatal hypoxic-ischemic brain injury. Exp Neurol 2020; 332:113393. [PMID: 32610105 DOI: 10.1016/j.expneurol.2020.113393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/02/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Abstract
Neonatal hypoxic-ischemic (HI) brain injury remains a devastating clinical disease associated with high mortality and lifetime disability. Neonatal HI injury damages the architecture of neurovascular unit (NVU), thus, therapy targeting the NVU may provide effective neuroprotection against HI. This study was designed to investigate whether fibroblast growth factor 10 (FGF10) protected the NVU against HI and afforded observable neuroprotection in a rat model of neonatal HI brain injury. The results showed that FGF10 treatment significantly reduced brain damage post HI, characterized by reduction in brain infarct volume and tissue loss. Further interesting findings showed that FGF10 treatment exerted neuroprotective effects on HI brain injury in neonate rats through protecting the NVU against HI, evidenced by inhibition of neuronal cell apoptosis, suppression of gliosis, and amelioration of blood-brain barrier disruption. Collectively, our study indicates that FGF10 treatment exhibits great potential for protecting NVU against HI and attenuates neonatal brain injury, suggesting a potential novel therapeutic agent to this disease.
Collapse
|
44
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
45
|
Famakin BM, Vemuganti R. Toll-Like Receptor 4 Signaling in Focal Cerebral Ischemia: a Focus on the Neurovascular Unit. Mol Neurobiol 2020; 57:2690-2701. [PMID: 32306272 DOI: 10.1007/s12035-020-01906-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
A robust innate immune activation leads to downstream expression of inflammatory mediators that amplify tissue damage and consequently increase the morbidity after stroke. The Toll-like receptor 4 (TLR4) pathway is a major innate immune pathway activated acutely and chronically after stroke. Hence, understanding the intricacies of the temporal profile, specific control points, and cellular specificity of TLR4 activation is crucial for the development of any novel therapeutics targeting the endogenous innate immune response after focal cerebral ischemia. The goal of this review is to summarize the current findings related to TLR4 signaling after stroke with a specific focus on the components of the neurovascular unit such as astrocytes, neurons, endothelial cells, and pericytes. In addition, this review will examine the effects of focal cerebral ischemia on interaction of these neurovascular unit components.
Collapse
Affiliation(s)
| | - R Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
46
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Jiang LJ, Xu ZX, Wu MF, Dong GQ, Zhang LL, Gao JY, Feng CX, Feng X. Resatorvid protects against hypoxic-ischemic brain damage in neonatal rats. Neural Regen Res 2020; 15:1316-1325. [PMID: 31960818 PMCID: PMC7047798 DOI: 10.4103/1673-5374.272615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Secondary brain damage caused by hyperactivation of autophagy and inflammatory responses in neurons plays an important role in hypoxic-ischemic brain damage (HIBD). Although previous studies have implicated Toll-like receptor 4 (TLR4) and nuclear factor kappa-B (NF-κB) in the neuroinflammatory response elicited by brain injury, the role and mechanisms of the TLR4-mediated autophagy signaling pathway in neonatal HIBD are still unclear. We hypothesized that this pathway can regulate brain damage by modulating neuron autophagy and neuroinflammation in neonatal rats with HIBD. Hence, we established a neonatal HIBD rat model using the Rice-Vannucci method, and injected 0.75, 1.5, or 3 mg/kg of the TLR4 inhibitor resatorvid (TAK-242) 30 minutes after hypoxic ischemia. Our results indicate that administering TAK-242 to neonatal rats after HIBD could significantly reduce the infarct volume and the extent of cerebral edema, alleviate neuronal damage and neurobehavioral impairment, and decrease the expression levels of TLR4, phospho-NF-κB p65, Beclin-1, microtubule-associated protein l light chain 3, tumor necrosis factor-α, and interleukin-1β in the hippocampus. Thus, TAK-242 appears to exert a neuroprotective effect after HIBD by inhibiting activation of autophagy and the release of inflammatory cytokines via inhibition of the TLR4/NF-κB signaling pathway. This study was approved by the Laboratory Animal Ethics Committee of Affiliated Hospital of Yangzhou University, China (approval No. 20180114-15) on January 14, 2018.
Collapse
Affiliation(s)
- Li-Jun Jiang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou; Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhen-Xing Xu
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Ming-Fu Wu
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Gai-Qin Dong
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Li-Li Zhang
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jun-Yan Gao
- Department of Neonatology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chen-Xi Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
48
|
Xie Y, Peng J, Pang J, Guo K, Zhang L, Yin S, Zhou J, Gu L, Tu T, Mu Q, Liao Y, Zhang X, Chen L, Jiang Y. Biglycan regulates neuroinflammation by promoting M1 microglial activation in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 2019; 152:368-380. [PMID: 31778579 DOI: 10.1111/jnc.14926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yuke Xie
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Jianhua Peng
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Jinwei Pang
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Kecheng Guo
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Lifang Zhang
- Neurosurgery Clinical Medical Research Center of Sichuan Province Luzhou China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Functions Clinical Medical Research Center of Southwest Medical University Luzhou China
| | - Jian Zhou
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Long Gu
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Tianqi Tu
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Qiancheng Mu
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yuyan Liao
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Xianhui Zhang
- Neurosurgery Clinical Medical Research Center of Sichuan Province Luzhou China
| | - Ligang Chen
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yong Jiang
- Department of Neurosurgery the Affiliated Hospital of Southwest Medical University Luzhou China
- Neurosurgery Clinical Medical Research Center of Sichuan Province Luzhou China
- Laboratory of Neurological Diseases and Brain Functions Clinical Medical Research Center of Southwest Medical University Luzhou China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province Luzhou China
| |
Collapse
|
49
|
Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 2019; 44:356-367. [PMID: 31502740 DOI: 10.1002/cbin.11237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a major common cause of death and long-term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti-oxidant, anti-inflammatory, anti-apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.
Collapse
Affiliation(s)
- Marjan Behdarvandy
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| |
Collapse
|
50
|
Rosciszewski G, Cadena V, Auzmendi J, Cieri MB, Lukin J, Rossi AR, Murta V, Villarreal A, Reinés A, Gomes FCA, Ramos AJ. Detrimental Effects of HMGB-1 Require Microglial-Astroglial Interaction: Implications for the Status Epilepticus -Induced Neuroinflammation. Front Cell Neurosci 2019; 13:380. [PMID: 31507379 PMCID: PMC6718475 DOI: 10.3389/fncel.2019.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is the most common form of human epilepsy and available treatments with antiepileptic drugs are not disease-modifying therapies. The neuroinflammation, neuronal death and exacerbated plasticity that occur during the silent period, following the initial precipitating event (IPE), seem to be crucial for epileptogenesis. Damage Associated Molecular Patterns (DAMP) such as HMGB-1, are released early during this period concomitantly with a phenomenon of reactive gliosis and neurodegeneration. Here, using a combination of primary neuronal and glial cell cultures, we show that exposure to HMGB-1 induces dendrite loss and neurodegeneration in a glial-dependent manner. In glial cells, loss of function studies showed that HMGB-1 exposure induces NF-κB activation by engaging a signaling pathway that involves TLR2, TLR4, and RAGE. In the absence of glial cells, HMGB-1 failed to induce neurodegeneration of primary cultured cortical neurons. Moreover, purified astrocytes were unable to fully respond to HMGB-1 with NF-κB activation and required microglial cooperation. In agreement, in vivo HMGB-1 blockage with glycyrrhizin, immediately after pilocarpine-induced status epilepticus (SE), reduced neuronal degeneration, reactive astrogliosis and microgliosis in the long term. We conclude that microglial-astroglial cooperation is required for astrocytes to respond to HMGB-1 and to induce neurodegeneration. Disruption of this HMGB-1 mediated signaling pathway shows beneficial effects by reducing neuroinflammation and neurodegeneration after SE. Thus, early treatment strategies during the latency period aimed at blocking downstream signaling pathways activated by HMGB-1 are likely to have a significant effect in the neuroinflammation and neurodegeneration that are proposed as key factors in epileptogenesis.
Collapse
Affiliation(s)
- Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Cadena
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Lukin
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia R Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analia Reinés
- Laboratorio de Neurofarmacología, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|