1
|
Srivilai J, Neungchamnong N, Khorana N, Suksathan P, Rungsang T, Temkittaworn P, Chantakul R, Wongwad E, Charoenjittichai R, Ingkaninan K. Development of an at-line coupling of LC-QTOF-ESI-MS/MS to steroid 5-alpha reductase inhibition assay, a fast bioactive targeting and guided purification of natural complex sample, Impatiens balsamina Linn. Bioorg Chem 2024; 153:107971. [PMID: 39561440 DOI: 10.1016/j.bioorg.2024.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
This study provides a rapid and accurate method for screening steroid 5-alpha reductase (S5αR) inhibitors in Impatiens balsamina Linn (IB). using at-line LC-QTOF-ESI-MS/MS coupling S5αR inhibitory assay. IB (Balsaminaceae) is an annual herbaceous plant cultivated in tropical and subtropical regions. It has been used in traditional Chinese and Thai medicine for treatment of hair loss and various skin conditions, potentially through anti-androgenic mechanisms. A combined approach of S5αR inhibitory assay and LC-QTOF-ESI-MS/MS was developed to rapidly screen for target biomarkers and guide their isolation using preparative HPLC. The toxicity of both the extract and isolated biomarkers was evaluated on skin cells, keratinocytes, and fibroblasts. Eight bioactive compounds were identified as two naphthoquinone, two fatty acid derivatives, three nitrogenous compounds and one aromatic derivative. The most potent bioactive markers, identified as 2-methoxy-1,4-naphthoquinone (2MN) and impateinol, were targeted and isolated using preparative HPLC, yielding 5.0 % and 3.5 %, respectively. These compounds exhibited S5αR inhibitory activity higher than that of finasteride drug by 10 and 2 times, respectively. Both the isolated biomarkers and the extract demonstrated a broad therapeutic index. The developed method in this study proved to be both rapid and accurate, making it suitable for screening and targeting S5αR inhibitors in herbal plants or complex matrix samples. It facilitated the fast-guided isolation of bioactive compounds, highlighting its potential for future applications in drug discovery research.
Collapse
Affiliation(s)
- Jukkarin Srivilai
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; Research and Innovation Center in Cosmetic Sciences and Natural Products, Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Nitra Neungchamnong
- Science Laboratory Center, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nantaka Khorana
- Research and Innovation Center in Cosmetic Sciences and Natural Products, Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; Faculty of Pharmacy, Payap University, Chaing Mai 50000, Thailand
| | - Piyakaset Suksathan
- Queen Sirikit Botanic Garden, P.O. Box 7, Mae Rim, Chiang Mai 50180, Thailand
| | - Tammanoon Rungsang
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Prapapan Temkittaworn
- Center of Excellence in Cannabis Research, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Ruttanaporn Chantakul
- Center of Excellence in Cannabis Research, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Eakkaluk Wongwad
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ranit Charoenjittichai
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Kornkanok Ingkaninan
- Center of Excellence in Cannabis Research, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
2
|
Pozo-Pérez L, Tornero-Esteban P, López-Bran E. Clinical and preclinical approach in AGA treatment: a review of current and new therapies in the regenerative field. Stem Cell Res Ther 2024; 15:260. [PMID: 39148125 PMCID: PMC11328498 DOI: 10.1186/s13287-024-03801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024] Open
Abstract
Androgenetic alopecia (AGA) is the most prevalent type of hair loss. Its morbility is mainly psychological although an increased incidence in melanoma has also been observed in affected subjects. Current drug based therapies and physical treatments are either unsuccessful in the long term or have relevant side effects that limit their application. Therefore, a new therapeutic approach is needed to promote regenerative enhancement alternatives. These treatment options, focused on the cellular niche restoration, could be the solution to the impact of dihydrotestosterone in the hair follicle microenvironment. In this context emerging regenerative therapies such as Platelet-rich plasma or Platelet-rich fibrine as well as hair follicle stem cells and mesenchymal stem cell based therapies and their derivatives (conditioned medium CM or exoxomes) are highlighting in the evolving landscape of hair restoration. Nanotechnology is also leading the way in AGA treatment through the design of bioinks and nanobiomaterials whose structures are being configuring in a huge range of cases by means of 3D bioprinting. Due to the increasing number and the rapid creation of new advanced therapies alternatives in the AGA field, an extended review of the current state of art is needed. In addition this review provides a general insight in current and emerging AGA therapies which is intented to be a guidance for researchers highlighting the cutting edge treatments which are recently gaining ground.
Collapse
Affiliation(s)
- Lorena Pozo-Pérez
- Dermatology Department, Clínico San Carlos Hospital, Madrid, Spain.
- Institute for Health Research of Clinico San Carlos Hospital (IdISSC), Madrid, Spain.
| | - Pilar Tornero-Esteban
- Cellular GMP Manufacturing Facility, Institute for Health Research of Clinico San Carlos Hospital (IdISSC), Madrid, Spain
| | | |
Collapse
|
3
|
Tanuphol N, Waranuch N, Wisuitiprot V, Wisuitiprot W, Insumrong K, Temkitthawon P, Suphrom N, Jampachaisri K, Girard C, Ingkaninan K. Effectiveness and Safety of Hair Growth Formulation Containing Tectona grandis L.f (Teak) Leaf Extract: A Randomized, Double-Blind, Placebo-Controlled Study on Males with Androgenic Alopecia. J Evid Based Integr Med 2024; 29:2515690X241291141. [PMID: 39474646 PMCID: PMC11612263 DOI: 10.1177/2515690x241291141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Androgenic alopecia (AGA) is commonly known as male patterned baldness. A high level of dihydrotestosterone (DHT) plays a significant role in AGA development. Inhibition of the enzyme steroid 5-alpha reductase (S5AR), responsible for converting testosterone into DHT, has been shown to delay the progression of AGA. Teak (Tectona grandis L.f) leaf extract exhibited a potent S5AR inhibitory activity. To prove the effectiveness and safety of teak leaf extract as a hair growth promotor, a double-blind, randomized placebo-controlled trial was conducted. METHODS Eighty-one AGA subjects were randomly assigned to receive either a hair tonic containing 1% teak leaf extract (HT-teak), 5%minoxidil (positive control), or a placebo administered twice daily, for 24 weeks. Efficacy was assessed through target area hair count (TAHC), anagen-to-telogen ratio (A/T), hair shedding every 4 weeks, and patients' subjective assessments of hair regrowth were assessed at the end of the experiment. Data was analyzed using repeated measure ANOVA. RESULTS Both the HT-teak and minoxidil groups exhibited a significant increase in TAHC and A/T, along with a decrease in hair shedding compared to baseline values. Conversely, the placebo group showed no observable signs of hair regrowth. Furthermore, the HT-teak group reported the highest satisfaction scores, and there were no indications of skin irritation or systemic effects on sexual dysfunction and palpitation after 24 weeks of HT-teak application. CONCLUSION Teak leaf extract, as incorporated in HT-teak, demonstrates potential as an alternative mild hair growth promoter for individuals with AGA, offering both efficacy and safety. TRIAL REGISTRATION This study was retrospectively registered on International Standard Randomised Controlled Trial Number (ISRCTN.com); ISRCTN24541842 (registered on January 8, 2024).
Collapse
Affiliation(s)
- Nutchaninad Tanuphol
- Center of Excellence for Natural Health Product Innovation, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Neti Waranuch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Vanuchawan Wisuitiprot
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Wudtichai Wisuitiprot
- Department of Thai Traditional Medicine, Sirindhorn College of Public Health, Phitsanulok, Thailand
| | - Kamonlak Insumrong
- Department of Chemistry, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| | - Prapapan Temkitthawon
- Center of Excellence for Natural Health Product Innovation, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| | - Katechan Jampachaisri
- Department of Mathematics, Faculty of Sciences, Naresuan University, Phitsanulok, Thailand
| | - Corine Girard
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Kornkanok Ingkaninan
- Center of Excellence for Natural Health Product Innovation, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
4
|
Zhao P, Qiu J, Pan C, Tang Y, Chen M, Song H, Yang J, Hao X. Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154810. [PMID: 37075623 DOI: 10.1016/j.phymed.2023.154810] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS Crude extracts and 7 main bioactive phytochemicals (curcumol, β-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China.
| |
Collapse
|
5
|
Lin ACK, Netcharoensirisuk P, Sanachai K, Sukma W, Chansriniyom C, Chaotham C, De-Eknamkul W, Rungrotmongkol T, Chamni S. Caffeic acid N-[3,5-bis(trifluoromethyl)phenyl] amide as a non-steroidal inhibitor for steroid 5α-reductase type 1 using a human keratinocyte cell-based assay and molecular dynamics. Sci Rep 2022; 12:20858. [PMID: 36460729 PMCID: PMC9718795 DOI: 10.1038/s41598-022-25335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Caffeic acid derivatives containing amide moieties similar to those of finasteride and dutasteride were synthesized. An in vitro inhibitory activity evaluation of caffeic acid (1) and its amide derivatives (2 - 4) against the steroid 5α-reductase type 1 (SRD5A1) produced by human keratinocyte cells coupled with the non-radioactive high-performance thin-layer chromatography detection revealed that caffeic acid N-[3,5-bis(trifluoromethyl)phenyl] amide (4) was a promising non-steroidal suppressor, with a half-maximal inhibitory concentration (IC50) of 1.44 ± 0.13 µM and relatively low cytotoxicity with an IC50 of 29.99 ± 8.69 µM. The regulatory role of compound 4 against SRD5A1 involved both suppression of SRD5A1 expression and mixed mode SRD5A1 inhibition. The Ki value of compound 4 was 2.382 µM based on the whole-cell kinetic studies under specific conditions. Molecular docking and molecular dynamics simulations with AlphaFold generated the human SRD5A1 structure and confirmed the stability of compound 4 at the SRD5A1 catalytic site with greater interactions, including hydrogen bonding of the key M119 amino-acid residue than those of finasteride and dutasteride. Thus, compound 4 shows the potential for further development as an SRD5A1 suppressor for androgenic alopecia treatment.
Collapse
Affiliation(s)
- Aye Chan Khine Lin
- grid.7922.e0000 0001 0244 7875Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330 Thailand
| | - Ponsawan Netcharoensirisuk
- grid.7922.e0000 0001 0244 7875Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Natural Product Biotechnology Research Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Kamonpan Sanachai
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Warongrit Sukma
- grid.7922.e0000 0001 0244 7875Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chaisak Chansriniyom
- grid.7922.e0000 0001 0244 7875Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chatchai Chaotham
- grid.7922.e0000 0001 0244 7875Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Wanchai De-Eknamkul
- grid.7922.e0000 0001 0244 7875Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Natural Product Biotechnology Research Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Thanyada Rungrotmongkol
- grid.7922.e0000 0001 0244 7875Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Supakarn Chamni
- grid.7922.e0000 0001 0244 7875Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
6
|
Youssef A, Al-Mahdy DA, Sayed RH, Choucry MA, El-Askary H. A Comprehensive Review of Natural Alternatives for Treatment of Alopecia with an Overview of Market Products. J Med Food 2022; 25:869-881. [PMID: 35796701 DOI: 10.1089/jmf.2021.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alopecia or hair loss is a widespread issue that has significant effects on personal well-being for both genders nationally and internationally. In addition, alopecia causes extreme emotional stress and negatively impacts the psychological health and self-esteem of cancer patients suffering from chemotherapy-induced alopecia. Unfortunately, available synthetic medications are costly, invasive, or have extreme adverse effects. On the contrary, natural and herbal hair loss products are widely available in the local and international markets in variable pharmaceutical forms with different mechanisms of action, namely, androgen antagonists, nutritional supplements, vasodilators, and 5α-reductase inhibitors or dihydrotestosterone blockers. Thus, it is of great importance to encourage researchers to investigate these natural alternatives that can act as potent therapeutic agents having diverse mechanisms of action as well as limited side effects. Currently, natural remedies are considered a fast-rising pharmaceutical segment with demand from a wide range of consumers. In this study, we present a review of reported herbal remedies and herb combinations recommended for hair loss and their mode of action, along with an overview of available market products and formulations, their composition, and declared effects. In addition, a general outline of the different forms of alopecia, its causes, and recommended treatments are mentioned as well. This was all done with the aim of assisting further studies with developing standardized natural formulations for alopecia as many were found to lack standardization of their bioactive ingredients and efficiency confirmation.
Collapse
Affiliation(s)
- Alaa Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Dalia A Al-Mahdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mouchira A Choucry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
| | - Hesham El-Askary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Isolation and HPLC Quantitative Determination of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extract. Molecules 2022; 27:molecules27092893. [PMID: 35566245 PMCID: PMC9101728 DOI: 10.3390/molecules27092893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Steroid 5α-reductase plays a crucial role in catalyzing the conversion of testosterone to dihydrotestosterone, which is involved in many androgen-dependent disorders. Leaf-hexane extract from Tectona grandis L.f. has shown promise as a 5α-reductase inhibitor. The objectives of this current study were to isolate and identify 5α-reductase inhibitors from T. grandis leaves and to use them as the bioactive markers for standardization of the extract. Three terpenoid compounds, (+)-eperua-8,13-dien-15-oic acid (1), (+)-eperua-7,13-dien-15-oic acid (2), and lupeol (3), were isolated and evaluated for 5α-reductase inhibitory activity. Compounds 1 and 2 exhibited potent 5α-reductase inhibitory activity, while 3 showed weak inhibitory activity. An HPLC method for the quantitative determination of the two potent inhibitors (1 and 2), applicable for quality control of T. grandis leaf extracts, was also developed. The ethanolic extract showed a significantly higher content of 1 and 2 than found in the hexane extract, suggesting that ethanol is a preferable extraction solvent. This study is the first reported isolation of 5α-reductase inhibitors (1 and 2) from T. grandis leaves. The extraction and quality control methods that are safe and useful for further development of T. grandis leaf extract as an active ingredient for hair loss treatment products are also reported.
Collapse
|
8
|
Wisuitiprot V, Ingkaninan K, Chakkavittumrong P, Wisuitiprot W, Neungchamnong N, Chantakul R, Waranuch N. Effects of Acanthus ebracteatus Vahl. extract and verbascoside on human dermal papilla and murine macrophage. Sci Rep 2022; 12:1491. [PMID: 35087085 PMCID: PMC8795396 DOI: 10.1038/s41598-022-04966-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Androgenic alopecia is a common type of hair loss, usually caused by testosterone metabolism generating dihydrotestosterone and hair follicular micro-inflammation. These processes induce dermal papilla cells to undergo apoptosis. Currently approved effective medications for alopecia are Finasteride, an oral 5α-reductase inhibitor, Minoxidil, a topical hair growth promoter, and Diclofenac, an anti-inflammatory agent, all of which, however, have several adverse side effects. In our study, we showed the bioactivity of Acanthus ebracteatus Vahl. (AE) extract performed by 95% ethanol, and verbascoside (VB), a biomarker of AE extract. Both AE extract and VB were studied for their effects on dermal papilla cell viability and the cell cycle by using MTT assay and flow cytometry. The effect of an anti-inflammatory activity of AE extract and VB on IL-1β, NO, and TNF-α, released from LPS induced RAW 264.7 cells, and IL-1α and IL-6 released from irradiated dermal papilla cells were detected using ELISA technique. The preventive effect on dermal papilla cell apoptosis induced by testosterone was determined by MTT assay. In controlled in vitro assays it was found that AE extract and VB at various concentrations induced dermal papilla cell proliferation which was indicated by an increase in the number of cells in the S and G2/M phases of the cell cycle. AE extract at 250 µg/mL concentration or VB at 62.50 µg/mL concentration prevented cell apoptosis induced by testosterone at a statistically significant level. In addition, both AE extract and VB greatly inhibited the release of pro-inflammatory cytokines from RAW 264.7 and dermal papilla cells. The release of IL-1β, TNF-α, and NO from RAW 264.7 cells, as well as IL-1α and IL-6 from dermal papilla cells, was also diminished by AE extract 250 µg/mL and VB 125 µg/mL. Our results indicate that AE extract and VB are promising ingredients for anti-hair loss applications. However, further clinical study is necessary to evaluate the effectiveness of AE extract and VB as treatment for actual hair loss.
Collapse
Affiliation(s)
- Vanuchawan Wisuitiprot
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Panlop Chakkavittumrong
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Thammasat University, Khlong Luang, Pathumthani, 12121, Thailand
| | - Wudtichai Wisuitiprot
- Department of Thai Traditional Medicine, Sirindhorn College of Public Health, Phitsanulok, 65130, Thailand
| | - Nitra Neungchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Mueang, Phitsanulok, 65000, Thailand
| | - Ruttanaporn Chantakul
- Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Neti Waranuch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand. .,Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
9
|
Ntshingila S, Khumalo NP, Engel M, Arowolo AT. An appraisal of laboratory models of androgenetic alopecia: A systematic review. SKIN HEALTH AND DISEASE 2021; 1:e15. [PMID: 35664985 PMCID: PMC9060143 DOI: 10.1002/ski2.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Background Androgenetic alopecia (AGA) is the most common form of non‐scarring alopecia in humans. Several studies have used different laboratory models to study the pathogenesis and interventions for AGA. These study models have proved beneficial and have led to the approval of two drugs. However, the need to build on existing knowledge remains by examining the relevance of study models to the disease. Objective We sought to appraise laboratory or pre‐clinical models of AGA. Method We searched through databases (PubMed, ScienceDirect, Web of Science, World CAT, Scopus and Google Scholar) for articles on AGA‐related studies from 1942 to March 2019 with a focus on study models. Results The search rendered 101 studies after screening and deduplication. Several studies (70) used in vitro models, mostly consisting of two‐dimensional monolayer cells for experiments involving the characterization of androgen and 5‐alpha reductase (5AR) and inhibition thereof, the effects of dihydrotestosterone (DHT) and biomarker(s) of AGA. Twenty‐seven studies used in vivo models of mice and monkeys to investigate DHT synthesis, the expression and inhibition of 5AR and hair growth. Only four studies used AGA‐related or healthy excisional/punch biopsy explants as ex vivo models to study the action of 5AR inhibitors and AGA‐associated genes. No study used three‐dimensional [3‐D] organoids or organotypic human skin culture models. Conclusion We recommend clinically relevant laboratory models like human or patient‐derived 3‐D organoids or organotypic skin in AGA‐related studies. These models are closer to human scalp tissue and minimize the use of laboratory animals and could ultimately facilitate novel therapeutics.
Collapse
Affiliation(s)
- S. Ntshingila
- Hair and Skin Research Laboratory Division of Dermatology Department of Medicine Faculty of Health Sciences and Groote Schuur Hospital University of Cape Town Cape Town South Africa
| | - N. P. Khumalo
- Hair and Skin Research Laboratory Division of Dermatology Department of Medicine Faculty of Health Sciences and Groote Schuur Hospital University of Cape Town Cape Town South Africa
| | - M. Engel
- Department of Medicine Faculty of Health Sciences and Groote Schuur Hospital University of Cape Town Cape Town South Africa
| | - A. T. Arowolo
- Hair and Skin Research Laboratory Division of Dermatology Department of Medicine Faculty of Health Sciences and Groote Schuur Hospital University of Cape Town Cape Town South Africa
| |
Collapse
|
10
|
Galbadage T, Peterson BM, Wang JS, Jayasekara A, Ramirez DA, Awada J, Walsh JP, Gunasekera RS. Molecular Mechanisms Lead to Sex-Specific COVID-19 Prognosis and Targeted Therapies. Front Med (Lausanne) 2020; 7:589060. [PMID: 33364247 PMCID: PMC7753152 DOI: 10.3389/fmed.2020.589060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and epidemiological studies have identified male sex as an important risk factor for COVID-19 clinical outcomes and mortality. This raises the question as to how this risk factor can be addressed in the prognosis, clinical management, and the treatment of patients with Coronavirus disease 2019 (COVID-19). Currently, there are no guidelines or protocols to help alter the course of sex-specific COVID-19 prognosis, especially in severe disease presentations. This is partly due to the lack of research studies characterizing the differences in male vs. female host response to the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection and a lack of a well-rounded understanding of the molecular mechanisms involved. Here, we discuss three distinct but interconnected molecular-level differences in males and females that likely play an essential role in the COVID-19 prognosis. We review interactions of SARS-CoV-2 with host cell angiotensin-converting enzyme 2 (ACE2) in the viral entry between males vs. females and discuss the differential regulation of the renin-angiotensin system (RAS) between the two sexes. Next, we present immune response disparities and how immune function and endocrine regulation may render males increasingly vulnerable to severe COVID-19. We describe the interconnected roles of these three regulatory systems in males and females in response to SARS-CoV-2 infection. Finally, we highlight the clinical implications of these mechanisms to patients with COVID-19 and propose putative targeted therapies that can help reduce COVID-19 severity in those critically ill.
Collapse
Affiliation(s)
- Thushara Galbadage
- Department of Kinesiology and Health Science, Biola University, La Mirada, CA, United States
| | - Brent M Peterson
- Department of Kinesiology and Health Science, Biola University, La Mirada, CA, United States
| | - Jeffrey S Wang
- Department of Infectious Diseases, Southern California Permanente Medical Group, Pasadena, CA, United States
| | - Avishka Jayasekara
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Danny A Ramirez
- Department of Chemistry, Physics, and Engineering, Biola University, La Mirada, CA, United States
| | - Joseph Awada
- Department of Chemistry, Physics, and Engineering, Biola University, La Mirada, CA, United States
| | - John P Walsh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Richard S Gunasekera
- Department of Chemistry, Physics, and Engineering, Biola University, La Mirada, CA, United States
| |
Collapse
|
11
|
Pintatum A, Maneerat W, Logie E, Tuenter E, Sakavitsi ME, Pieters L, Berghe WV, Sripisut T, Deachathai S, Laphookhieo S. In Vitro Anti-Inflammatory, Anti-Oxidant, and Cytotoxic Activities of Four Curcuma Species and the Isolation of Compounds from Curcuma aromatica Rhizome. Biomolecules 2020; 10:biom10050799. [PMID: 32455782 PMCID: PMC7277146 DOI: 10.3390/biom10050799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The genus Curcuma is part of the Zingiberaceae family, and many Curcuma species have been used as traditional medicine and cosmetics in Thailand. To find new cosmeceutical ingredients, the in vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species as well as the isolation of compounds from the most active crude extract (C. aromatica) were investigated. The crude extract of C. aromatica showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with an IC50 value of 102.3 μg/mL. The cytotoxicity effect of C. aeruginosa, C. comosa, C. aromatica, and C. longa extracts assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay at 200 μg/mL were 12.1 ± 2.9, 14.4 ± 4.1, 28.6 ± 4.1, and 46.9 ± 8.6, respectively. C. aeruginosa and C. comosa presented apoptosis cells (57.7 ± 3.1% and 32.6 ± 2.2%, respectively) using the CytoTox-ONE™ assay. Different crude extracts or phytochemicals purified from C. aromatica were evaluated for their anti-inflammatory properties. The crude extract of C. aromatica showed the highest potential to inhibit NF-κB activity, followed by C. aeruginosa, C. comosa, and C. longa, respectively. Among the various purified phytochemicals curcumin, germacrone, curdione, zederone, and curcumenol significantly inhibited NF-κB activation in tumor necrosis factor (TNF) stimulated HaCaT keratinocytes. Of all compounds, curcumin was the most potent anti-inflammatory.
Collapse
Affiliation(s)
- Aknarin Pintatum
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.P.); (W.M.); (S.D.)
| | - Wisanu Maneerat
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.P.); (W.M.); (S.D.)
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Emilie Logie
- Lab Protein Chemistry, Proteomics & Epigenetic Signalling (PPES), Department Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.T.); (L.P.)
| | - Maria E. Sakavitsi
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.T.); (L.P.)
| | - Wim Vanden Berghe
- Lab Protein Chemistry, Proteomics & Epigenetic Signalling (PPES), Department Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (W.V.B.); (S.L.); Tel.: +32-3265-2657 (W.V.B.); +66-5391-6782 (S.L.)
| | - Tawanun Sripisut
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Suwanna Deachathai
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.P.); (W.M.); (S.D.)
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.P.); (W.M.); (S.D.)
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (W.V.B.); (S.L.); Tel.: +32-3265-2657 (W.V.B.); +66-5391-6782 (S.L.)
| |
Collapse
|
12
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Rodríguez Castaño P, Parween S, Pandey AV. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway. Int J Mol Sci 2019; 20:ijms20184606. [PMID: 31533365 PMCID: PMC6770025 DOI: 10.3390/ijms20184606] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. The molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
14
|
Srivilai J, Minale G, Scholfield CN, Ingkaninan K. Discovery of Natural Steroid 5 Alpha-Reductase Inhibitors. Assay Drug Dev Technol 2018; 17:44-57. [PMID: 30575417 DOI: 10.1089/adt.2018.870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human steroid 5 alpha-reductases (S5αRs) and NADPH irreversibly reduce testosterone to the more potent dihydrotestosterone (DHT). S5αR inhibitors are useful treatments for DHT-dependent diseases, including benign prostatic hyperplasia, androgenic alopecia and hair growth, and acne. There are three S5αR isozymes, and there is a need for safer and more isozyme selective inhibitors than finasteride and dutasteride currently licensed. In this study, we review the methods used to screen for S5αR inhibitory activity and describe studies that characterize the ability of herbal preparations and their constituents to inhibit S5αRs. We identified enormous variations between studies in IC50s for finasteride and dutasteride used as standards. Accordingly, we make several recommendations: Stable isozyme specific transfection systems need creating a standardized enzyme/microsome preparation and all three isozymes, as well as androgen receptor binding, should be tested; agreed reaction conditions, especially the substrate concentrations, and separation/quantitation method optimized for high throughput screening; systematic screening of herbal compounds and most extensive use of leads to develop more potent and isozyme specific inhibitors.
Collapse
Affiliation(s)
- Jukkarin Srivilai
- 1 Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Genet Minale
- 2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - C Norman Scholfield
- 2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kornkanok Ingkaninan
- 2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
15
|
Sadgrove NJ. The new paradigm for androgenetic alopecia and plant-based folk remedies: 5α-reductase inhibition, reversal of secondary microinflammation and improving insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:206-236. [PMID: 30195058 DOI: 10.1016/j.jep.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/05/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Research in the past half a century has gradually sketched the biological mechanism leading to androgenetic alopecia (AGA). Until recently the aetiological paradigm has been too limited to enable intelligent commentary on the use of folk remedies to treat or reduce the expression of this condition. However, our understanding is now at a point where we can describe how some folk remedies work, predict how effective they will be or why they fail. RESULTS The new paradigm of AGA is that inheritance and androgens (dihydrotestosterone) are the primary contributors and a secondary pathology, microinflammation, reinforces the process at more advanced stages of follicular miniaturisation. The main protagonist to microinflammation is believed to be microbial or Demodex over-colonisation of the infundibulum of the pilosebaceous unit, which can be ameliorated by antimicrobial/acaricidal or anti-inflammatory therapies that are used as adjuvants to androgen dependent treatments (either synthetic or natural). Furthermore, studies reveal that suboptimal androgen metabolism occurs in both AGA and insulin resistance (low SHBG or high DHT), suggesting comorbidity. Both can be ameliorated by dietary phytochemicals, such as specific classes of phenols (isoflavones, phenolic methoxy abietanes, hydroxylated anthraquinones) or polycyclic triterpenes (sterols, lupanes), by dual inhibition of key enzymes in AGA (5α-reductase) and insulin resistance (ie., DPP-4 or PTP1B) or agonism of nuclear receptors (PPARγ). Evidence strongly indicates that some plant-based folk remedies can ameliorate both primary and secondary aetiological factors in AGA and improve insulin resistance, or act merely as successful adjuvants to mainstream androgen dependent therapies. CONCLUSION Thus, if AGA is viewed as an outcome of primary and secondary factors, then it is better that a 'multimodal' or 'umbrella' approach, to achieve cessation and/or reversal, is put into practice, using complementation of chemical species (isoflavones, anthraquinones, procyanidins, triterpenes, saponins and hydrogen sulphide prodrugs), thereby targeting multiple 'factors'.
Collapse
|
16
|
Madaan A, Verma R, Singh AT, Jaggi M. Review of Hair Follicle Dermal Papilla cells as in vitro screening model for hair growth. Int J Cosmet Sci 2018; 40:429-450. [PMID: 30144361 DOI: 10.1111/ics.12489] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Hair disorders such as hair loss (alopecia) and androgen dependent, excessive hair growth (hirsutism, hypertrichosis) may impact the social and psychological well-being of an individual. Recent advances in understanding the biology of hair have accelerated the research and development of novel therapeutic and cosmetic hair growth agents. Preclinical models aid in dermocosmetic efficacy testing and claim substantiation of hair growth modulators. The in vitro models to investigate hair growth utilize the hair follicle Dermal Papilla cells (DPCs), specialized mesenchymal cells located at the base of hair follicle that play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. In this review, we have compiled and discussed the extensively reported literature citing DPCs as in vitro model to study hair growth promoting and inhibitory effects. A variety of agents such as herbal and natural extracts, growth factors and cytokines, platelet-rich plasma, placental extract, stem cells and conditioned medium, peptides, hormones, lipid-nanocarrier, light, electrical and electromagnetic field stimulation, androgens and their analogs, stress-serum and chemotherapeutic agents etc. have been examined for their hair growth modulating effects in DPCs. Effects on DPCs' activity were determined from untreated (basal) or stress induced levels. Cell proliferation, apoptosis and secretion of growth factors were included as primary end-point markers. Effects on a wide range of biomolecules and mechanistic pathways that play key role in the biology of hair growth were also investigated. This consolidated and comprehensive review summarizes the up-to-date information and understanding regarding DPCs based screening models for hair growth and may be helpful for researchers to select the appropriate assay system and biomarkers. This review highlights the pivotal role of DPCs in the forefront of hair research as screening platforms by providing insights into mechanistic action at cellular level, which may further direct the development of novel hair growth modulators.
Collapse
Affiliation(s)
- Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Ritu Verma
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| |
Collapse
|