1
|
Chang YC, Lee PH, Hsu CL, Wang WD, Chang YL, Chuang HW. Decoding the Impact of a Bacterial Strain of Micrococcus luteus on Arabidopsis Growth and Stress Tolerance. Microorganisms 2024; 12:2283. [PMID: 39597672 PMCID: PMC11596720 DOI: 10.3390/microorganisms12112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs), specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi. The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings, causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity. Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally, exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress. MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis. Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore, MlS14 treatment increased the expression of several transcription factors associated with stress responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways essential for growth and adaptation to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan; (Y.-C.C.); (P.-H.L.); (C.-L.H.); (W.-D.W.); (Y.-L.C.)
| |
Collapse
|
2
|
Al-Saif AM, El-khamissi HA, Elnaggar IA, Farouk MH, Omar MAEW, Abd El-wahed AEWN, Hamdy AE, Abdel-Aziz HF. Licorice-root extract and potassium sorbate spray improved the yield and fruit quality and decreased heat stress of the 'osteen' mango cultivar. PeerJ 2024; 12:e18200. [PMID: 39391826 PMCID: PMC11466221 DOI: 10.7717/peerj.18200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Heat stress, low mango yields and inconsistent fruit quality are main challenges for growers. Recently, licorice-root extract (LRE) has been utilized to enhance vegetative growth, yield, and tolerance to abiotic stresses in fruit trees. Potassium sorbate (PS) also plays a significant role in various physiological and biochemical processes that are essential for mango growth, quality and abiotic stress tolerance. This work aimed to elucidate the effects of foliar sprays containing LRE and PS on the growth, yield, fruit quality, total chlorophyll content, and antioxidant enzymes of 'Osteen' mango trees. The mango trees were sprayed with LRE at 0, 2, 4 and 6 g/L and PS 0, 1, 2, and 3 mM. In mid-May, the mango trees were sprayed with a foliar solution, followed by monthly applications until 1 month before harvest. The results showed that trees with the highest concentration (6 g/L) of LRE exhibited the maximum leaf area, followed by those treated with the highest concentration (3 mM) of PS. Application of LRE and PS to Osteen mango trees significantly enhanced fruit weight, number of fruits per tree, yield (kg/tree), yield increasing%, and reduced number of sun-burned fruits compared to the control. LRE and PS foliar sprays to Osteen mango trees significantly enhanced fruit total soluble solids ˚Brix, TSS/acid ratio, and vitamin C content compared to the control. Meanwhile, total acidity percentage in 'Osteen' mango fruits significantly decreased after both LRE and PS foliar sprays. 'Osteen' mango trees showed a significant increase in leaf area, total chlorophyll content, total pigments, and leaf carotenoids. Our results suggest that foliar sprays containing LRE and PS significantly improved growth parameters, yield, fruit quality, antioxidant content, and total pigment concentration in 'Osteen' mango trees. Moreover, the most effective treatments were 3 mM PS and 6 g/L LRE. LRE and PS foliar spray caused a significant increase in yield percentage by 305.77%, and 232.44%, in the first season, and 242.55%, 232.44% in the second season, respectively.
Collapse
Affiliation(s)
- Adel M. Al-Saif
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Mohammed Hamdy Farouk
- Key Laboratory of Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, China
| | - Magdy Abd El-Wahab Omar
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | | - Ashraf Ezzat Hamdy
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
3
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Noor J, Ahmad I, Ullah A, Iqbal B, Anwar S, Jalal A, Okla MK, Alaraidh IA, Abdelgawad H, Fahad S. Enhancing saline stress tolerance in soybean seedlings through optimal NH 4+/NO 3- ratios: a coordinated regulation of ions, hormones, and antioxidant potential. BMC PLANT BIOLOGY 2024; 24:572. [PMID: 38890574 PMCID: PMC11184694 DOI: 10.1186/s12870-024-05294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.
Collapse
Affiliation(s)
- Javaria Noor
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Izhar Ahmad
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Shazma Anwar
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Arshad Jalal
- School of Engineering, Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
5
|
Zhang Y, Li J, Li W, Gao X, Xu X, Zhang C, Yu S, Dou Y, Luo W, Yu L. Transcriptome Analysis Reveals POD as an Important Indicator for Assessing Low-Temperature Tolerance in Maize Radicles during Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:1362. [PMID: 38794432 PMCID: PMC11125230 DOI: 10.3390/plants13101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Low-temperature stress (TS) limits maize (Zea mays L.) seed germination and agricultural production. Exposure to TS during germination inhibits radicle growth, triggering seedling emergence disorders. Here, we aimed to analyse the changes in gene expression in the radicles of maize seeds under TS by comparing Demeiya1 (DMY1) and Zhengdan958 (ZD958) (the main Northeast China cultivars) and exposing them to two temperatures: 15 °C (control) and 5 °C (TS). TS markedly decreased radicle growth as well as fresh and dry weights while increasing proline and malondialdehyde contents in both test varieties. Under TS treatment, the expression levels of 5301 and 4894 genes were significantly different in the radicles of DMY1 and ZD958, respectively, and 3005 differentially expressed genes coexisted in the radicles of both varieties. The phenylpropanoid biosynthesis pathway was implicated within the response to TS in maize radicles, and peroxidase may be an important indicator for assessing low-temperature tolerance during maize germination. Peroxidase-encoding genes could be important candidate genes for promoting low-temperature resistance in maize germinating radicles. We believe that this study enhances the knowledge of mechanisms of response and adaptation of the maize seed germination process to TS and provides a theoretical basis for efficiently assessing maize seed low-temperature tolerance and improving maize adversity germination performance.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jiayu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Weiqing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Xinhan Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Xiangru Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Chunyu Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Wenqi Luo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
6
|
Fedoreyeva LI, Lazareva EM, Kononenko NV. Features of the Effect of Quercetin on Different Genotypes of Wheat under Hypoxia. Int J Mol Sci 2024; 25:4487. [PMID: 38674072 PMCID: PMC11050432 DOI: 10.3390/ijms25084487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is one of the common abiotic stresses that negatively affects the development and productivity of agricultural crops. Quercetin is used to protect plants from oxidative stress when exposed to environmental stressors. O2 deficiency leads to impaired development and morphometric parameters in wheat varieties Orenburgskaya 22 (Triticum aestivum L.) and varieties Zolotaya (Triticum durum Desf.). Cytological analysis revealed various types of changes in the cytoplasm under conditions of hypoxia and treatment with quercetin. The most critical changes in the cytoplasm occur in the Zolotaya variety during pretreatment with quercetin followed by hypoxia, and in the Orenburgskaya 22 variety during hypoxia. Quercetin has a protective effect only on the Orenburgskaya 22 variety, and also promotes a more effective recovery after exposure to low O2 content. Hypoxia causes an increase in reactive oxygen species and activates the antioxidant system. It has been shown that the most active components of the antioxidant system in the Orenburgskaya 22 variety are MnSOD and Cu/ZnSOD, and in the Zolotaya variety GSH. We have shown that quercetin provides resistance only to the wheat genotype Orenburgskaya 22, as a protective agent against abiotic stress, which indicates the need for a comprehensive study of the effects of exogenous protectors before use in agriculture.
Collapse
Affiliation(s)
- Larisa Ivanovna Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| | - Elena Michailovna Lazareva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Neonila Vasilievna Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| |
Collapse
|
7
|
Alizadeh MM, Gerami M, Majidian P, Ghorbani HR. The potential application of biochar and salicylic acid to alleviate salt stress in soybean ( Glycine max L.). Heliyon 2024; 10:e26677. [PMID: 38434021 PMCID: PMC10906409 DOI: 10.1016/j.heliyon.2024.e26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/23/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Salt stress has been one of the major contributor which affect soybean seed germination, its establishment, growth, and physiology stages. Utilization of strategies such as soil amendment and elicitors are of significant importance to reduce the disadvantageous effects of salt stress. In this regard, the objectives of the present study were to evaluate the effect of biochar and salicylic acid on morphological and physiological properties of soybean subjected to salinity. The first experiment was carried out based on completely randomized design with three replications including 11 soybean cultivars such as Williams, Saba, Kowsar, Tapor, Sari, Telar, Caspian, Nekador, Amir, Katol and Sahar and various levels of salinity such as 0, 2, 4, 6 dS/m of NaCl. The second experiment was performed as factorial design in a randomized complete block design with three replications consisting of treatments of biochar (0, 5 and 10 WP), salicylic acid (0, 0.5 and 1 mM), and NaCl (0, 2.5, 5, 7.5 dS/m). With respect to seed germination result, various concentrations of salt stress showed negative impact not only on all studied traits, but also varied among soybean cultivars indicating Amir cultivar as the best salt tolerant soybean genotype among others. In addition, our data exhibited that the interaction effect of biochar and salicylic acid on salt treated soybean plant were positively significant on some morphological traits such as leaf area, shoot dry/fresh weight, total dry/fresh weight and physiological attributes including chlorophyll a, flavonoid, proline contents, catalase and peroxidase activities. Moreover, the resultant data showed that the combination treatment of 5 and 10 WP of biochar and 1 mM of salicylic acid caused increase of the aforementioned parameters in order to improve their performance subjected to higher concentration of salinity. In final, it was concluded that the coupled application of biochar alongside salicylic acid was recommended as proficient strategy to mitigate the injurious influences of salt stress in soybean or other probable crops.
Collapse
Affiliation(s)
| | - Mahyar Gerami
- Department of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Hamid Reza Ghorbani
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| |
Collapse
|
8
|
Wu Z, Meng R, Feng W, Wongsnansilp T, Li Z, Lu X, Wang X. Study of Dandelion ( Taraxacum mongolicum Hand.-Mazz.) Salt Response and Caffeic Acid Metabolism under Saline Stress by Transcriptome Analysis. Genes (Basel) 2024; 15:220. [PMID: 38397210 PMCID: PMC10888437 DOI: 10.3390/genes15020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Utilizing salt-tolerant plants is a cost-effective strategy for agricultural production on salinized land. However, little is known about the mechanism of dandelion (Taraxacum mongolicum Hand.-Mazz.) in response to saline stress and caffeic acid biosynthesis. We investigated the morphological and physiological variations of two dandelions, namely, "BINPU2" (dandelion A) and "TANGHAI" (dandelion B) under gradient NaCl concentrations (0, 0.3%, 0.5%, 0.7%, and 0.9%), and analyzed potential mechanisms through a comparison analysis of transcriptomes in the two dandelions. Dandelion A had a high leaf weight; high ρ-coumaric acid, caffeic acid, ferulic acid, and caffeoyl shikimic acid contents; and high activities of POD and Pro. The maximum content of four kinds of phenolic acids mostly occurred in the 0.7% NaCl treatment. In this saline treatment, 2468 and 3238 differentially expressed genes (DEGs) in dandelion A and B were found, of which 1456 and 1369 DEGs in the two dandelions, respectively, showed up-regulation, indicating that more up-regulated DEGs in dandelion A may cause its high salt tolerance. Further, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that dandelion salt response and caffeic acid metabolism were mainly enriched in the phenylpropanoid biosynthesis pathway (ko00940) and response to ethylene (GO: 0009723). The caffeic acid biosynthesis pathway was reconstructed based on DEGs which were annotated to PAL, C4H, 4CL, HCT, C3'H, and CSE. Most of these genes showed a down-regulated mode, except for parts of DEGs of 4CL (TbA05G077650 and TbA07G073600), HCT (TbA03G009110, TbA03G009080, and novel.16880), and COMT (novel.13839). In addition, more up-regulated transcription factors (TFs) of ethylene TFs in dandelion A were found, but the TFs of ERF104, CEJ1, and ERF3 in the two dandelions under saline stress showed an opposite expression pattern. These up-regulated genes could enhance dandelion salt tolerance, and down-regulated DEGs in the caffeic acid biosynthesis pathway, especially CSE (TbA08G014310) and COMT (TbA04G07330), could be important candidate genes in the synthesis of caffeic acid under saline stress. The above findings revealed the potential mechanisms of salt response and caffeic acid metabolism in dandelion under saline stress, and provide references for salt-tolerant plant breeding and cultivation on saline-alkali land in the future.
Collapse
Affiliation(s)
- Zhe Wu
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (Z.W.); (R.M.); (Z.L.); (X.L.)
| | - Ran Meng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (Z.W.); (R.M.); (Z.L.); (X.L.)
| | - Wei Feng
- Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand;
| | - Tassnapa Wongsnansilp
- Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang 92150, Thailand;
| | - Zhaojia Li
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (Z.W.); (R.M.); (Z.L.); (X.L.)
| | - Xuelin Lu
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (Z.W.); (R.M.); (Z.L.); (X.L.)
| | - Xiuping Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China; (Z.W.); (R.M.); (Z.L.); (X.L.)
| |
Collapse
|
9
|
Albogami A, Naguib DM. Agricultural wastes: a new promising source for phenylalanine ammonia-lyase as anticancer agent. 3 Biotech 2024; 14:22. [PMID: 38156037 PMCID: PMC10751285 DOI: 10.1007/s13205-023-03871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023] Open
Abstract
The present study aims to investigate the physicochemical characteristics of phenylalanine ammonia-lyase (PAL) extracted from agricultural waste and its potential use as an anticancer agent in comparison to microbial PAL. We extracted and partially purified PAL from agricultural waste sources. We assessed the temperature and pH range of PAL and determined enzyme kinetics parameters including Michaelis constants (Km), maximum velocity (Vmax), and specificity constant values (Vmax/Km). Additionally, we examined the effects of different storage temperatures on PAL activity. In our analysis, we compared the efficacy of agricultural waste-derived PAL with PAL from Rhodotorula glutinis. The results demonstrated that PAL extracted from agricultural waste exhibited significantly higher specific activity (Vmax/Km) compared to its microbial counterpart. The agricultural waste-derived PAL displayed a stronger affinity for phenylalanine, as indicated by a lower Km value than the microbial PAL did. Furthermore, PAL from agricultural waste maintained activity across a broader temperature and pH range (15-75 °C, pH 5-11), in contrast to microbial PAL (20-60 °C, pH 5.5-10). Importantly, the PAL derived from agricultural waste exhibited superior stability, retaining over 90% of its activity after 6 months of storage at room temperature (25 °C), whereas microbial PAL lost more than 70% of its activity under similar storage conditions. In anticancer experiments against various cancer cell lines, agricultural waste-derived PAL demonstrated greater anticancer activity compared to microbial PAL. These findings suggest that PAL sourced from agricultural waste has the potential to be a safe and effective natural anticancer agent.
Collapse
Affiliation(s)
- Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University (BU), Alaqiq, Saudi Arabia
| | - Deyala M. Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University (BU), Al-Mikhwah, Saudi Arabia
| |
Collapse
|
10
|
Wang M, Liu Z, Wu M, Wang T, Yu X, Niu N, Chen L. Ratiometric luminescent sensor based on BSA-coated gold/silver nanoclusters for the selective determination and spatiotemporal imaging of gallic acid in plants. Mikrochim Acta 2023; 191:60. [PMID: 38153646 DOI: 10.1007/s00604-023-06156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
A new fluorescence sensing strategy has been developed. Four bimetallic nanoclusters, gold/silver, gold/copper, gold/molybdenum and gold/cobalt, were prepared using bovine serum albumin (BSA) as a reducing and stabilizing agent. The fluorescence properties of four nanoclusters were explored by solid-state UV and XPS. The gold/silver nanoclusters (BSA-Au/Ag NCs) with the best ratiometric fluorescence properties for gallic acid (GA) in plants were selected to realize the sensitive detection of GA. GA affected the conformation of BSA, thereby disrupting the luminescent environment of the nanoclusters, resulting in a pronounced fluorescence quenching at 566 nm. The ratiometric fluorescence signal (I566/I453) was used for trace detection of GA in plants. It has a wide response range of 1.25-40.0 μM and a low detection limit of 45.27 nM. GA was detected at 19.49 μM in the plant extract, and the spiked recoveries ranged from 96.09 to 104.6%. In addition, due to the non-toxic and biocompatible properties of BSA, BSA-Au/Ag NCs have also been validated for fluorescence imaging of plant tissues. It realized the comparison of GA content in different parts of plants and the difference of GA content in plants after abiotic stress. Therefore, the developed strategy offers potential application for the analytical study of active substances in plants.
Collapse
Affiliation(s)
- Mengyuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhixin Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Tong Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xueling Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
11
|
Haydar MS, Kundu S, Kundu S, Mandal P, Roy S. Zinc oxide nano-flowers improve the growth and propagation of mulberry cuttings grown under different irrigation regimes by mitigating drought-related complications and enhancing zinc uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107910. [PMID: 37531852 DOI: 10.1016/j.plaphy.2023.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Silkworm larvae mainly consume mulberry leaves; therefore, mulberry cultivation is important for the production of raw silk. Drought stress and micronutrient deficiency (Zn) are known to affect the propagation of mulberry cuttings. In this purview, the current investigation attempted to inspect the efficacy of different concentrations of zinc oxide nano-flower (ZnNFs) applied through both soil admixture and foliar spray on the propagation of mulberry cuttings grown under deficit irrigation regimes. The overall results demonstrated that the ZnNF-treated plant cuttings were well-adapted to drought stress and performed better in comparison to the control set. Out of the tested concentrations - ZnNF-10 (applied as 10 mg/kg soil and 10 ppm as foliar spray thrice) was found to be optimum, showing relatively better initial root establishment, the emergence of leaves, and survival and sprouting percentage. Further studies also confirmed an improvement in the accumulation of photosynthetic pigments, carbohydrates, and protein content even under extreme drought conditions. Most importantly, the ZnNF-10 treatment contributed to ROS detoxification and cell membrane protection by enhancing the pool of antioxidant enzymes. The study further demonstrated that ZnNF-10 application enhanced zinc content by 147.50%, 179.49%, and 171.99% in root, shoot, and leaves of the treated cuttings; thereby, improving the bioaccumulation factor of the plant parts. All of these interactive phenomena led to an increment in shoot height, biomass, leaf area, and leaf number of cuttings. These findings, therefore, indicated that ZnNFs can be developed as a promising nano-fertilizer for mulberry growth facilitating Zn uptake and mitigation of drought-induced complications.
Collapse
Affiliation(s)
- Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India; Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Sudipta Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Sourav Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
12
|
Haydar MS, Ali S, Mandal P, Roy D, Roy MN, Kundu S, Kundu S, Choudhuri C. Fe-Mn nanocomposites doped graphene quantum dots alleviate salt stress of Triticum aestivum through osmolyte accumulation and antioxidant defense. Sci Rep 2023; 13:11040. [PMID: 37419934 PMCID: PMC10328949 DOI: 10.1038/s41598-023-38268-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
An investigation was carried out to evaluate the effect of graphene quantum dots (GQD) and its nanocomposites on germination, growth, biochemical, histological, and major ROS detoxifying antioxidant enzyme activities involved in salinity stress tolerance of wheat. Seedlings were grown on nutrient-free sand and treatment solutions were applied through solid matrix priming and by foliar spray. Control seedlings under salinity stress exhibited a reduction in photosynthetic pigment, sugar content, growth, increased electrolyte leakage, and lipid peroxidation, whereas iron-manganese nanocomposites doped GQD (FM_GQD) treated seedlings were well adapted and performed better compared to control. Enzymatic antioxidants like catalase, peroxidase, glutathione reductase and NADPH oxidase were noted to increase by 40.5, 103.2, 130.19, and 141.23% respectively by application of FM_GQD. Histological evidence confirmed a lower extent of lipid peroxidation and safeguarding the plasma membrane integrity through osmolyte accumulation and redox homeostasis. All of these interactive phenomena lead to an increment in wheat seedling growth by 28.06% through FM_GQD application. These findings highlight that micronutrient like iron, manganese doped GQD can be a promising nano-fertilizer for plant growth and this article will serve as a reference as it is the very first report regarding the ameliorative role of GQD in salt stress mitigation.
Collapse
Affiliation(s)
- Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
- Department of Chemistry, Alipurduar University, Alipurduar, West Bengal, 734013, India
| | - Sourav Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Sudipta Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Chandrani Choudhuri
- Department of Botany, North Bengal St. Xavier's College, University of North Bengal, Rajganj, Jalpaiguri, West Bengal, 735134, India.
| |
Collapse
|
13
|
Dong S, Ling J, Song L, Zhao L, Wang Y, Zhao T. Transcriptomic Profiling of Tomato Leaves Identifies Novel Transcription Factors Responding to Dehydration Stress. Int J Mol Sci 2023; 24:9725. [PMID: 37298675 PMCID: PMC10253658 DOI: 10.3390/ijms24119725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Drought is among the most challenging environmental restrictions to tomatoes (Solanum lycopersi-cum), which causes dehydration of the tissues and results in massive loss of yield. Breeding for dehydration-tolerant tomatoes is a pressing issue as a result of global climate change that leads to increased duration and frequency of droughts. However, the key genes involved in dehydration response and tolerance in tomato are not widely known, and genes that can be targeted for dehydration-tolerant tomato breeding remains to be discovered. Here, we compared phenotypes and transcriptomic profiles of tomato leaves between control and dehydration conditions. We show that dehydration decreased the relative water content of tomato leaves after 2 h of dehydration treatment; however, it promoted the malondialdehyde (MDA) content and ion leakage ratio after 4 h and 12 h of dehydration, respectively. Moreover, dehydration stress triggered oxidative stress as we detected significant increases in H2O2 and O2- levels. Simultaneously, dehydration enhanced the activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia-lyase (PAL). Genome-wide RNA sequencing of tomato leaves treated with or without dehydration (control) identified 8116 and 5670 differentially expressed genes (DEGs) after 2 h and 4 h of dehydration, respectively. These DEGs included genes involved in translation, photosynthesis, stress response, and cytoplasmic translation. We then focused specifically on DEGs annotated as transcription factors (TFs). RNA-seq analysis identified 742 TFs as DEGs by comparing samples dehydrated for 2 h with 0 h control, while among all the DEGs detected after 4 h of dehydration, only 499 of them were TFs. Furthermore, we performed real-time quantitative PCR analyses and validated expression patterns of 31 differentially expressed TFs of NAC, AP2/ERF, MYB, bHLH, bZIP, WRKY, and HB families. In addition, the transcriptomic data revealed that expression levels of six drought-responsive marker genes were upregulated by de-hydration treatment. Collectively, our findings not only provide a solid foundation for further functional characterization of dehydration-responsive TFs in tomatoes but may also benefit the improvement of dehydration/drought tolerance in tomatoes in the future.
Collapse
Affiliation(s)
- Shuchao Dong
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jiayi Ling
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225100, China
| | - Liuxia Song
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Liping Zhao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Yinlei Wang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Tongmin Zhao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
14
|
Duan H, Tiika RJ, Tian F, Lu Y, Zhang Q, Hu Y, Cui G, Yang H. Metabolomics analysis unveils important changes involved in the salt tolerance of Salicornia europaea. FRONTIERS IN PLANT SCIENCE 2023; 13:1097076. [PMID: 36743536 PMCID: PMC9896792 DOI: 10.3389/fpls.2022.1097076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Salicornia europaea is one of the world's salt-tolerant plant species and is recognized as a model plant for studying the metabolism and molecular mechanisms of halophytes under salinity. To investigate the metabolic responses to salinity stress in S. europaea, this study performed a widely targeted metabolomic analysis after analyzing the physiological characteristics of plants exposed to various NaCl treatments. S. europaea exhibited excellent salt tolerance and could withstand extremely high NaCl concentrations, while lower NaCl conditions (50 and 100 mM) significantly promoted growth by increasing tissue succulence and maintaining a relatively stable K+ concentration. A total of 552 metabolites were detected, 500 of which were differently accumulated, mainly consisting of lipids, organic acids, saccharides, alcohols, amino acids, flavonoids, phenolic acids, and alkaloids. Sucrose, glucose, p-proline, quercetin and its derivatives, and kaempferol derivatives represented core metabolites that are responsive to salinity stress. Glycolysis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis were considered as the most important pathways responsible for salt stress response by increasing the osmotic tolerance and antioxidant activities. The high accumulation of some saccharides, flavonoids, and phenolic acids under 50 mM NaCl compared with 300 mM NaCl might contribute to the improved salt tolerance under the 50 mM NaCl treatment. Furthermore, quercetin, quercetin derivatives, and kaempferol derivatives showed varied change patterns in the roots and shoots, while coumaric, caffeic, and ferulic acids increased significantly in the roots, implying that the coping strategies in the shoots and roots varied under salinity stress. These findings lay the foundation for further analysis of the mechanism underlying the response of S. europaea to salinity.
Collapse
Affiliation(s)
- Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Fuping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuan Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu Hu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
16
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Jayapal PK, Joshi R, Sathasivam R, Van Nguyen B, Faqeerzada MA, Park SU, Sandanam D, Cho BK. Non-destructive measurement of total phenolic compounds in Arabidopsis under various stress conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:982247. [PMID: 36119609 PMCID: PMC9478847 DOI: 10.3389/fpls.2022.982247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Quantifying the phenolic compounds in plants is essential for maintaining the beneficial effects of plants on human health. Existing measurement methods are destructive and/or time consuming. To overcome these issues, research was conducted to develop a non-destructive and rapid measurement of phenolic compounds using hyperspectral imaging (HSI) and machine learning. In this study, the Arabidopsis was used since it is a model plant. They were grown in controlled and various stress conditions (LED lights and drought). Images were captured using HSI in the range of 400-1,000 nm (VIS/NIR) and 900-2,500 nm (SWIR). Initially, the plant region was segmented, and the spectra were extracted from the segmented region. These spectra were synchronized with plants' total phenolic content reference value, which was obtained from high-performance liquid chromatography (HPLC). The partial least square regression (PLSR) model was applied for total phenolic compound prediction. The best prediction values were achieved with SWIR spectra in comparison with VIS/NIR. Hence, SWIR spectra were further used. Spectral dimensionality reduction was performed based on discrete cosine transform (DCT) coefficients and the prediction was performed. The results were better than that of obtained with original spectra. The proposed model performance yielded R 2-values of 0.97 and 0.96 for calibration and validation, respectively. The lowest standard errors of predictions (SEP) were 0.05 and 0.07 mg/g. The proposed model out-performed different state-of-the-art methods. These demonstrate the efficiency of the model in quantifying the total phenolic compounds that are present in plants and opens a way to develop a rapid measurement system.
Collapse
Affiliation(s)
- Praveen Kumar Jayapal
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
- Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Rahul Joshi
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Bao Van Nguyen
- Department of Crop Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Mohammad Akbar Faqeerzada
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Sang Un Park
- Department of Crop Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, South Korea
| | - Domnic Sandanam
- Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
18
|
Xiao X, Li J, Lyu J, Hu L, Wu Y, Tang Z, Yu J, Calderón-Urrea A. Grafting-enhanced tolerance of cucumber to toxic stress is associated with regulation of phenolic and other aromatic acids metabolism. PeerJ 2022; 10:e13521. [PMID: 35669966 PMCID: PMC9166682 DOI: 10.7717/peerj.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Toxic stress caused by autotoxins is a common phenomenon for cucumber under monoculture condition. A previous study demonstrated that grafting could enhance the resistance of cucumber to cinnamic acid (CA) stress, but the underlying mechanism behind this enhanced resistance is still unclear. In the present study, we reconfirmed the stronger resistance of grafted rootstock (RG) compared to the non-grafted (NG) cucumber as measured though plant biomass accumulation. In addition, we focused on the phenolic and other aromatic acids metabolism in hydroponic culture model system using a combination of qRT-PCR (to measure gene expression of relevant genes) and HPLC (to detect the presence of phenolic and other aromatic acids). The results showed that the exogenous CA lead to the expression of four enzymes involved in phenolic and other aromatic acids biosynthesis, and a larger increase was observed in grafted rootstock (RG). Specifically, expression of six genes, involved in phenolic and other aromatic acids biosynthesis (PAL, PAL1, C4H, 4CL1, 4CL2 and COMT), with the exception of 4CL2, were significantly up-regulated in RG but down-regulated in NG when exposed to CA. Furthermore, six kinds of phenolic and other aromatic acids were detected in leaves and roots of NG and RG cucumber, while only benzoic acid and cinnamic acid were detected in root exudate of all samples. The CA treatment resulted in an increase of p-hydroxybenzonic acid, benzoic acid and cinnamic acid contents in RG cucumber, but decrease of p-coumaric acid and sinapic acid contents in NG cucumber. Surprisingly, the type and amount of phenolic and other aromatic acids in root exudate was improved by exogenous CA, particularly for RG cucumber. These results suggest that a possible mechanism for the stronger resistance to CA of RG than NG cucumber could involve the up-regulation of key genes involved in phenolic and other aromatic acids metabolism, and that the excessive phenolic compounds released to surroundings is a result of the accumulation of phenolic compounds in a short time by the plant under stress.
Collapse
Affiliation(s)
- Xuemei Xiao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China,Department of Biology, College of Science and Mathematics, California State University, Fresno, CA, USA
| |
Collapse
|
19
|
Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Sci Rep 2022; 12:6308. [PMID: 35428824 PMCID: PMC9012755 DOI: 10.1038/s41598-022-10106-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage ‘Xiao Baojian’ grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources.
Collapse
|
20
|
Jańczak-Pieniążek M, Migut D, Piechowiak T, Balawejder M. Assessment of the Impact of the Application of a Quercetin-Copper Complex on the Course of Physiological and Biochemical Processes in Wheat Plants ( Triticum aestivum L.) Growing under Saline Conditions. Cells 2022; 11:cells11071141. [PMID: 35406704 PMCID: PMC8997712 DOI: 10.3390/cells11071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin–copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L−1 [Q1], 500 mg∙L−1 [Q2] and 1000 mg∙L−1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.
Collapse
Affiliation(s)
- Marta Jańczak-Pieniążek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Piechowiak
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|
21
|
Faiz S, Shah AA, Naveed NH, Nijabat A, Yasin NA, Batool AI, Ali HM, Javed T, Simon PW, Ali A. Synergistic application of silver nanoparticles and indole acetic acid alleviate cadmium induced stress and improve growth of Daucus carota L. CHEMOSPHERE 2022; 290:133200. [PMID: 34914957 DOI: 10.1016/j.chemosphere.2021.133200] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 12/05/2021] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) is one of the major hazardous elements that is very toxic to the health of both human and plants. The toxicity of Cd causes plants to suffer by disabling their overall physiological mechanisms. Therefore, present study was intended to investigate the synergistic role of AgNPs and IAA in improving the resilience against Cd toxicity and underlaying physiological and biochemical mechanisms in carrot (Daucus carota L.) plants. Also, the existence of genotypic variation for Cd tolerance in D. carota was also studied. The results revealed that Cd stress decreased plant growth attributes like root diameter, root length, root weight, shoot weight, shoot length, leaves fresh weight and leaves dry weight. Nonetheless, AgNPs and IAA mitigated Cd stress by detoxifying reactive oxygen species (ROS). Additionally, the application of AgNPs and IAA boosted plant growth through reducing the level of malondialdehyde (MDA). Enhancement in the activity of phenol synthesizing and oxidizing enzymes including peroxidase, polyphenol oxidase and phenylalanine ammonia-lyase was also observed by application of AgNPs and IAA. The increased activities of antioxidant enzymes including POX, PPO and PAL by the combined application of AgNPs and IAA advocate stress ameliorative role against Cd stress in plants. The enhanced Cd content was detected in the roots as compared to shoots of treated plants. Pre breed 22 was found as a Cd tolerant genotype.
Collapse
Affiliation(s)
- Samia Faiz
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | | | - Anila Nijabat
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Nasim Ahmad Yasin
- S.S.G., RO-II Department, University of the Punjab, Lahore, Pakistan.
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
22
|
Guo Q, Han J, Li C, Hou X, Zhao C, Wang Q, Wu J, Mur LAJ. Defining key metabolic roles in osmotic adjustment and ROS homeostasis in the recretohalophyte Karelinia caspia under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13663. [PMID: 35249230 PMCID: PMC9311275 DOI: 10.1111/ppl.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The recretohalophyte Karelinia caspia is of forage and medical value and can remediate saline soils. We here assess the contribution of primary/secondary metabolism to osmotic adjustment and ROS homeostasis in Karelinia caspia under salt stress using multi-omic approaches. Computerized phenomic assessments, tests for cellular osmotic changes and lipid peroxidation indicated that salt treatment had no detectable physical effect on K. caspia. Metabolomic analysis indicated that amino acids, saccharides, organic acids, polyamine, phenolic acids, and vitamins accumulated significantly with salt treatment. Transcriptomic assessment identified differentially expressed genes closely linked to the changes in above primary/secondary metabolites under salt stress. In particular, shifts in carbohydrate metabolism (TCA cycle, starch and sucrose metabolism, glycolysis) as well as arginine and proline metabolism were observed to maintain a low osmotic potential. Chlorogenic acid/vitamin E biosynthesis was also enhanced, which would aid in ROS scavenging in the response of K. caspia to salt. Overall, our findings define key changes in primary/secondary metabolism that are coordinated to modulate the osmotic balance and ROS homeostasis to contribute to the salt tolerance of K. caspia.
Collapse
Affiliation(s)
- Qiang Guo
- Institute of Grassland, Flowers, and EcologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiwan Han
- College of SoftwareShanxi Agricultural UniversityTaiguChina
| | - Cui Li
- Institute of Grassland, Flowers, and EcologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xincun Hou
- Institute of Grassland, Flowers, and EcologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Chunqiao Zhao
- Institute of Grassland, Flowers, and EcologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qinghai Wang
- Institute of Grassland, Flowers, and EcologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Juying Wu
- Institute of Grassland, Flowers, and EcologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Luis A. J. Mur
- College of SoftwareShanxi Agricultural UniversityTaiguChina
- Institute of Biological, Environmental, and Rural SciencesAberystwyth UniversityAberystwythUK
| |
Collapse
|
23
|
Ma TL, Li WJ, Hong YS, Zhou YM, Tian L, Zhang XG, Liu FL, Liu P. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. J Proteomics 2021; 253:104457. [PMID: 34933133 DOI: 10.1016/j.jprot.2021.104457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Salt stress is the major abiotic stress worldwide, adversely affecting crop yield and quality. Utilizing salt tolerance genes for the genetic breeding of crops is one of the most effective measures to withstand salinization. Sophora alopecuroides is a well-known saline-alkaline and drought-tolerant medicinal plant. Understanding the underlying molecular mechanism for Sophora alopecuroides salt tolerance is crucial to identifying the salt-tolerant genes. In this study, we performed tandem mass tag (TMT) based proteomic profiling of S. alopecuroides leaves under 150 mM NaCl induced salt stress condition for 3 d and 7 d. Data are available on ProteomeXchange (PXD027627). Furthermore, the proteomic findings were validated through parallel reaction monitoring (PRM). We observed that the expression levels of several transporter proteins related to the secondary messenger signaling pathway were altered under salt stress conditions induced for 3 d. However, the expression of the certain transferase, oxidoreductase, dehydrogenase, which are involved in the biosynthesis of flavonoids, alkaloids, phenylpropanoids, and amino acid metabolism, were mainly alerted after 7 d post-salt-stress induction. Several potential genes that might be involved in salt stress conditions were identified; however, it demands further investigation. Although salt stress affects the level of secondary metabolites, their correlation needs to be investigated further. SIGNIFICANCE: Salinization is the most severe abiotic adversity, which has had a significant negative effect on world food security over the time. Excavating salt-tolerant genes from halophytes or medicinal plants is one of the important measures to cope with salt stress. S. alopecuroides is a well-known medicinal plant with anti-tumor, anti-inflammatory, and antibacterial effects, anti-saline properties, and resistance to drought stress. Currently, only a few studies have explored the S. alopecuroides' gene function, and regulation and these studies are mostly related to the unpublished genome sequence information of S. alopecuroides. Recently, transcriptomics and metabolomics studies have been carried on the abiotic stress in S. alopecuroides roots. Multiple studies have shown that altered gene expression at the transcript level and altered metabolite levels do not correspond to the altered protein levels. In this study, TMT and PRM based proteomic analyses of S. alopecuroides leaves under salt stress condition induced using 150 mM NaCl for 3 d and 7 d was performed. These analyses elucidated the activation of different mechanisms in response to salt stress. A total of 434 differentially abundant proteins (DAPs) in salt stress conditions were identified and analyzed. For the first time, this study utilized proteomics technology to dig out plentiful underlying salt-tolerant genes from the medicinal plant, S. alopecuroides. We believe that this study will be of great significance to crop genetics and breeding.
Collapse
Affiliation(s)
- Tian-Li Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China.
| | - Wen-Juan Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Yuan-Shu Hong
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Yu-Mei Zhou
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Lei Tian
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Xiao-Gang Zhang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Feng-Lou Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Ping Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
24
|
Kiiskila JD, Sarkar D, Datta R. Differential protein abundance of vetiver grass in response to acid mine drainage. PHYSIOLOGIA PLANTARUM 2021; 173:829-842. [PMID: 34109636 DOI: 10.1111/ppl.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainage (AMD) is an acidic and metalliferous discharge that imposes oxidative stress on living things through bioaccumulation and physical exposure. The abandoned Tab-Simco mining site of Southern Illinois generates highly acidic AMD with elevated sulfate (SO4 2- ) and various metals. Vetiver grass (Chrysopogon zizanioides) is effective for the remediation of Tab-Simco AMD at both mesocosm and microcosm levels over extended periods. In this study, we conducted a proteomic investigation of vetiver shoots under short and long-term exposure to AMD. Our objective was to decipher the physiological responses of vetiver to the combined abiotic stresses of AMD (metal and low pH). Differential regulation was observed for longer-term (56 days) exposure to AMD, which resulted in 17 upregulated and nine downregulated proteins, whereas shorter-term (7 days) exposure led to 14 upregulated and 14 downregulated proteins. There were significant changes to photosynthesis, including upregulation of electron transport chain proteins for light-dependent reactions after 56 days, whereas differential regulation of enzymes relating to C4 carbon fixation was observed after 7 days. Significant changes in amino acid and nitrogen metabolism, including upregulation of ethylene and flavonoid biosynthesis, along with plant response to nitrogen starvation, were observed. Short-term changes also included upregulation of glutathione reductase and methionine sulfoxide reductase, whereas longer-term changes included changes in protein misfolding and ER-associated protein degradation for stress management and acclimation.
Collapse
Affiliation(s)
- Jeffrey D Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
- Department of Natural Sciences, Chadron State College, Chadron, Nebraska, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
25
|
Homayoonzadeh M, Hosseininaveh V, Haghighi SR, Talebi K, Roessner U, Maali-Amiri R. Evaluation of physiological and biochemical responses of pistachio plants (Pistacia vera L.) exposed to pesticides. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1084-1097. [PMID: 34101048 DOI: 10.1007/s10646-021-02434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Pesticides may manipulate plant physiology as non-target organisms. In this study, we examined biochemical responses of pistachio plants (Pistacia vera L.) to imidacloprid and phosalone as common pesticides used to control pistachio psyllids. Enzymatic characterization in treated plants with pesticides showed greater specific activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, phenylalanine ammonia-lyase, glutathione reductase, and glutathione S-transferase compared with untreated plants during 14 days after treatment. Further experiments displayed elevated levels of total phenols and total proteins coupled with significant increases in proline and total soluble carbohydrate contents in treated plants in comparison to untreated plants. Moreover, pesticide treatment leads to a significant decrease in polyphenol oxidase activity. Nevertheless, no significant changes in contents of hydrogen peroxide, malondialdehyde, total chlorophyll, and electrolyte leakage index were obtained in treated plants. Pesticides' impacts on host plant physiology resulted in similar responses between two pesticides with differences in peak days. Overall, the findings of this study provide an insight into the side effects of phosalone and imidacloprid, chemicals with no specific target site in plants, on the physiology and biochemistry of pistachio plants at recommended rates.
Collapse
Affiliation(s)
- Mohammad Homayoonzadeh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Vahid Hosseininaveh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Sajjad Reyhani Haghighi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| |
Collapse
|
26
|
Singh M, Tiwari N. Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense. Commun Integr Biol 2021; 14:136-150. [PMID: 34239684 PMCID: PMC8237971 DOI: 10.1080/19420889.2021.1937839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
An experiment was conducted to investigate the potential of Piriformospora indica and plant growth-promoting bacteria (PGPB) to ameliorate salinity stress in HD 2967 wheat cultivar. Plants were treated with four different levels of salinity viz. 0, 50, 100 and 200 mM NaCl (electrical conductivity value 0.01, 5.84, 11.50 and 21.4 mS cm-1, respectively) under greenhouse conditions, using a completely randomized design experiment. Plants inoculated with PGPB and P. indica showed decrease in lipid peroxidation, relative membrane permeability and lipoxygenase enzyme (LOX) activity as compared to uninoculated plants. The result of this study showed that PGPB and P. indica inoculated HD 2967 wheat plants accumulated higher content of proline, α-tocopherol and carotenoid as compared to uninoculated plants. The HD 2967 wheat plants either inoculated with PGPB or P. indica showed significantly higher activities of antioxidant enzymes viz. superoxide dismutase, catalase and ascorbate peroxidase than that of the uninoculated plants. Moreover, PGPB inoculated plants showed greater activity of antioxidant enzymes than the plants inoculated with P. indica. Salinity stress tolerance was more pronounced in the PGPB inoculated than P. indica inoculated plants. This study revealed the potentiality of PGPB and P. indica as bio-ameliorator under salinity stress, and suggests that this plant microbial association could be a promising biotechnological tool to combat the deleterious effects of salinity stress.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Botany, SSN College, University of Delhi, Delhi, India
| | - Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
27
|
Kiani R, Arzani A, Mirmohammady Maibody SAM. Polyphenols, Flavonoids, and Antioxidant Activity Involved in Salt Tolerance in Wheat, Aegilops cylindrica and Their Amphidiploids. FRONTIERS IN PLANT SCIENCE 2021; 12:646221. [PMID: 33841475 PMCID: PMC8027307 DOI: 10.3389/fpls.2021.646221] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/04/2021] [Indexed: 05/25/2023]
Abstract
Aegilops spp. is the closest genus to wheat (Triticum spp.), which makes Aegilops great candidates to exhibit precursors of wheat features. Aegilops cylindrica Host displays excellent salt tolerance. In the current study, biochemical and phytochemical compounds in the leaves of two wheat cultivars, one hyper-salt tolerant Ae. cylindrica genotype and their amphidiploids (derived from "Chinese Spring" × Ae. cilindrica and "Roshan" × Ae. cylindrica), grown under control and saline field conditions, were assessed. These compounds included total protein content, proline content, electrolyte leakage, total flavonoid content, total phenolic content, DPPH radical scavenging activity, and reducing power. In addition, phenolic components were also identified using HPLC analysis. Chlorogenic acid, ellagic acid, ferulic acid, syringic acid, vanillic acid, p-coumaric acid, caffeic acid, and gallic acid were the most abundant phenolic acids. Luteolin, apigenin, and rutin were the most abundant flavonoids in the leaves. Salt stress significantly increased all biochemical variables, with the exceptions of reducing power and p-coumaric acid. Interestingly, amphidiploid genotypes exhibited intermediate levels of most of the detected phenolic compounds between the two parental species. As demonstrated by bivariate correlations luteolin, chlorogenic acid, caffeic acid and apigenin could predict inhibition percentage by DPPH assay, suggesting a possible role in the cellular defense against oxidative stress in wheat. The amphidiploids and their wild parent performed significantly better than wheat cultivars on phenolic constituents, flavonoids, and maintaining redox homeostasis under salt stress conditions.
Collapse
Affiliation(s)
| | - Ahmad Arzani
- *Correspondence: Ahmad Arzani, ; orcid.org/0000-0001-5297-6724
| | | |
Collapse
|
28
|
Sytar O, Zivcak M, Neugart S, Brestic M. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:429-438. [PMID: 32912483 DOI: 10.1016/j.plaphy.2020.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/20/2023]
Abstract
Hyperspectral analysis represents a powerful technique for diagnostics of morphological and chemical information from aboveground parts of the plants, but the real potential of the method in pre-screening of phenolics in leaves is still insufficiently explored. In this study, assessment of the sensitivity and reliability of non-invasive methods of various phenolic compounds, also analyzed by HPLC in chicory plants (Cichorium intybus L.) exposed to various color light pretreatments was done. The hyperspectral records in visible and near infrared (VNIR) spectra were recorded using a handheld spectrometer and relationships between the specific hyperspectral parameters and the contents of tested phenolic compounds in chicory leaves were analyzed. Moreover, the correlations between the hyperspectral parameters and related parameters derived from the multispectral fluorescence records were assessed to compare the sensitivity of both techniques. The results indicated a relatively high correlation of anthocyanin-related parameters (ARI, mARI, mACI indices) with the content of some of tested phenolic compounds (quercetin-3-gluconuride, isorhamnetine-3-gluconuride, etc.), as well as with fluorescence ANTH index. Similar trends were observed in flavonoid parameter based on the near infra-red spectral bands (700, 760 nm), which expressed a high correlation with chlorogenic acid. On the other hand, the most frequently used flavonoid (FLAVI) indices based on UV-to-blue band reflectance showed very weak correlations with phenolic compounds, as well as with fluorescence FLAV index. The detailed analysis of the correlation between reflectance and fluorescence flavonoid parameters has shown that the parameters based on spectral reflectance are sensitive to increase of UV-absorbing compounds from low to moderate values, but, unlike the fluorescence parameter, they are not useful to recognize a further increase from middle to high or very high contents. Thus, our results outlined the possibilities, but also the limits of the use of hyperspectral analysis for rapid screening phenolic content, providing a practical evidence towards more efficient production of bioactive compounds for pharmaceutical or nutraceutical use.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic; Plant Physiology and Ecology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrskya Str., 64, Kyiv, 01033, Ukraine.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
29
|
Hou L, Wang L, Wu X, Gao W, Zhang J, Huang C. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiol 2019; 19:231. [PMID: 31655558 PMCID: PMC6815457 DOI: 10.1186/s12866-019-1594-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background Phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) is the first key enzyme in the phenylpropanoid pathway. The pal gene has been widely studied in plants and participates in plant growth, development and defense systems. However, in Pleurotus ostreatus, the biological functions of pal during organismal development and exposure to abiotic stress have not been reported. Results In this study, we cloned and characterized the pal1 (2232 bp) and pal2 (2244 bp) genes from the basidiomycete P. ostreatus CCMSSC 00389. The pal1 and pal2 genes are interrupted by 6 and 10 introns, respectively, and encode proteins of 743 and 747 amino acids, respectively. Furthermore, prokaryotic expression experiments showed that PAL enzymes catalyzed the conversion of L-phenylalanine to trans-cinnamic acid. The function of pal1 and pal2 was determined by constructing overexpression (OE) and RNA interference (RNAi) strains. The results showed that the two pal genes had similar expression patterns during different developmental stages. The expression of pal genes was higher in the reproductive growth stage than in the vegetative growth stage. And the interference of pal1 and pal2 delayed the formation of primordia. The results of heat stress assays showed that the RNAi-pal1 strains had enhanced mycelial tolerance to high temperature, while the RNAi-pal2 strains had enhanced mycelial resistance to H2O2. Conclusions These results indicate that two pal genes may play a similar role in the development of P. ostreatus fruiting bodies, but may alleviate stress through different regulatory pathways under heat stress.
Collapse
Affiliation(s)
- Ludan Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lining Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
30
|
Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, Valdés-Reyna J, Juárez-Maldonado A. Impact of Selenium and Copper Nanoparticles on Yield, Antioxidant System, and Fruit Quality of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E355. [PMID: 31546997 PMCID: PMC6843222 DOI: 10.3390/plants8100355] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022]
Abstract
The effects of nanoparticles (NPs) on plants are contrasting; these depend on the model plant, the synthesis of the nanoparticles (concentration, size, shape), and the forms of application (foliar, substrate, seeds). For this reason, the objective of this study was to report the impact of different concentrations of selenium (Se) and copper (Cu) NPs on yield, antioxidant capacity, and quality of tomato fruit. The different concentrations of Se and Cu NPs were applied to the substrate every 15 days (five applications). The yield was determined until day 102 after the transplant. Non-enzymatic and enzymatic antioxidant compounds were determined in the leaves and fruits as well as the fruit quality at harvest. The results indicate that tomato yield was increased by up to 21% with 10 mg L-1 of Se NPs. In leaves, Se and Cu NPs increased the content of chlorophyll, vitamin C, glutathione, 2,2'-azino-bis(3-ethylbenzthiazolin-6-sulfonic acid (ABTS), superoxide dismutase (SOD), glutathione peroxidase (GPX) and phenylalanine ammonia liasa (PAL). In fruits, they increased vitamin C, glutathione, flavonoids, firmness, total soluble solids, and titratable acidity. The combination of Se and Cu NPs at optimal concentrations could be a good alternative to improve tomato yield and quality, but more studies are needed to elucidate their effects more clearly.
Collapse
Affiliation(s)
| | - Tomasa Quiterio-Gutiérrez
- Maestría en Ciencias en Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico.
| | | | | | - Alma Delia Hernández-Fuentes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | | | - Jesús Valdés-Reyna
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico.
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico.
| |
Collapse
|