1
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
2
|
Li X, Wei C, Jin Y, Zhang J, Zhong P, Zhang D, Huang X. Time-resolved map of serum metabolome profiling in D-galactose-induced aging rats with exercise intervention. iScience 2024; 27:108999. [PMID: 38362265 PMCID: PMC10867647 DOI: 10.1016/j.isci.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise, an intervention with wide-ranging effects on the whole body, has been shown to delay aging. Due to aging and exercise as modulator of metabolism, a picture of how exercise delayed D-galactose (D-gal)-induced aging in a time-resolved manner was presented in this paper. The mapping of molecular changes in response to exercise has become increasingly accessible with the development of omics techniques. To explore the dynamic changes during exercise, the serum of rats and D-gal-induced aging rats before, during, and after exercise was analyzed by untargeted metabolomics. The variation of metabolites was monitored to reveal the specific response to D-gal-induced senescence and exercise in multiple pathways, especially the basal amino acid metabolism, including glycine serine and threonine metabolism, cysteine and methionine metabolism, and tryptophan metabolism. The homeostasis was disturbed by D-gal and maintained by exercise. The paper was expected to provide a theoretical basis for the study of anti-aging exercise.
Collapse
Affiliation(s)
- Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Jinmei Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Pei Zhong
- iCarbonX Diagnostics (Zhuhai) Company Limited, Zhuhai, Guangdong Province 518110, China
| | - Deman Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| | - Xiaohan Huang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
3
|
Kiuchi Y, Doi T, Tsutsumimoto K, Nakakubo S, Kurita S, Nishimoto K, Makizako H, Shimada H. Association between dietary diversity and sarcopenia in community-dwelling older adults. Nutrition 2023; 106:111896. [PMID: 36470116 DOI: 10.1016/j.nut.2022.111896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The aim of this study was to examine whether dietary diversity is associated with sarcopenia in community-dwelling older Japanese adults. METHODS We used a cross-sectional large cohort data set from the National Center for Geriatrics and Gerontology-Study of Geriatric Syndromes. Data from 9080 older adults (mean age 74 ± 5.6 y; 44.4% were men) were included in this cross-sectional study. Sarcopenia was assessed using muscle mass, muscle strength, and physical performance represented by gait speed. We assessed 1-wk consumption frequency of food types, including meat, fish/shellfish, eggs, milk, soybean products, green and yellow vegetables, potatoes, fruits, seaweeds, fats, and oil. Consumption frequency was allotted to each category for the following responses: eat almost every day, eat 3 or 4 /wkd, eat 1 or 2 d/wk, and hardly ever eat. Poor dietary diversity was defined as those who responded hardly ever eat for any of the 10 foods. RESULTS This study revealed that 2647 participants (29.2%) had poor dietary diversity. Poor dietary diversity was associated with confirmed sarcopenia (odds ratio [OR], 1.46; 95% confidence interval [CI], 1.08-1.96) and severe sarcopenia (OR, 1.58; 95% CI, 1.08-2.39). Furthermore, poor dietary diversity of low-protein foods was significantly associated with sarcopenia (OR, 1.57; 95% CI, 1.13-2.20) as well as poor dietary diversity of high-protein foods (OR, 1.47; 95% CI, 1.12-1.92). CONCLUSIONS This cross-sectional study revealed that poor dietary diversity was associated with sarcopenia among older adults. Ingestion of low-protein foods and high-protein foods is infrequently associated with sarcopenia and ingestion of high-protein foods.
Collapse
Affiliation(s)
- Yuto Kiuchi
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Health Science, Graduate School of Health Sciences Kagoshima University, Sakuragaoka, Kagoshima, Japan.
| | - Takehiko Doi
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| | - Kota Tsutsumimoto
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| | - Sho Nakakubo
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| | - Satoshi Kurita
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| | - Kazuhei Nishimoto
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Medical Sciences, Medical Science Division, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Nagano, Japan.
| | - Hyuma Makizako
- Department of Physical Therapy, Faculty of Medicine, School of Health Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan.
| | - Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| |
Collapse
|
4
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
5
|
Cancer Cachexia: Signaling and Transcriptional Regulation of Muscle Catabolic Genes. Cancers (Basel) 2022; 14:cancers14174258. [PMID: 36077789 PMCID: PMC9454911 DOI: 10.3390/cancers14174258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary An uncontrollable loss in the skeletal muscle of cancer patients which leads to a significant reduction in body weight is clinically referred to as cancer cachexia (CC). While factors derived from the tumor environment which trigger various signaling pathways have been identified, not much progress has been made clinically to effectively prevent muscle loss. Deeper insights into the transcriptional and epigenetic regulation of muscle catabolic genes may shed light on key regulators which can be targeted to develop new therapeutic avenues. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterized by a significant reduction in body weight that is predominantly caused by the loss of skeletal muscle and adipose tissue. Although the ill effects of cachexia are well known, the condition has been largely overlooked, in part due to its complex etiology, heterogeneity in mediators, and the involvement of diverse signaling pathways. For a long time, inflammatory factors have been the focus when developing therapeutics for the treatment of CC. Despite promising pre-clinical results, they have not yet advanced to the clinic. Developing new therapies requires a comprehensive understanding of how deregulated signaling leads to catabolic gene expression that underlies muscle wasting. Here, we review CC-associated signaling pathways and the transcriptional cascade triggered by inflammatory cytokines. Further, we highlight epigenetic factors involved in the transcription of catabolic genes in muscle wasting. We conclude with reflections on the directions that might pave the way for new therapeutic approaches to treat CC.
Collapse
|
6
|
Bradlow RCJ, Berk M, Kalivas PW, Back SE, Kanaan RA. The Potential of N-Acetyl-L-Cysteine (NAC) in the Treatment of Psychiatric Disorders. CNS Drugs 2022; 36:451-482. [PMID: 35316513 PMCID: PMC9095537 DOI: 10.1007/s40263-022-00907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
N-acetyl-L-cysteine (NAC) is a compound of increasing interest in the treatment of psychiatric disorders. Primarily through its antioxidant, anti-inflammatory, and glutamate modulation activity, NAC has been investigated in the treatment of neurodevelopmental disorders, schizophrenia spectrum disorders, bipolar-related disorders, depressive disorders, anxiety disorders, obsessive compulsive-related disorders, substance-use disorders, neurocognitive disorders, and chronic pain. Whilst there is ample preclinical evidence and theoretical justification for the use of NAC in the treatment of multiple psychiatric disorders, clinical trials in most disorders have yielded mixed results. However, most studies have been underpowered and perhaps too brief, with some evidence of benefit only after months of treatment with NAC. Currently NAC has the most evidence of having a beneficial effect as an adjuvant agent in the negative symptoms of schizophrenia, severe autism, depression, and obsessive compulsive and related disorders. Future research with well-powered studies that are of sufficient length will be critical to better understand the utility of NAC in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Michael Berk
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC Australia ,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Melbourne, VIC Australia ,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC Australia ,Department of Psychiatry, University of Melbourne, Parkville, VIC Australia
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC USA
| | - Sudie E. Back
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC USA ,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC USA
| | - Richard A. Kanaan
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC Australia ,Department of Psychiatry, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
7
|
ApoE Genotype-Dependent Response to Antioxidant and Exercise Interventions on Brain Function. Antioxidants (Basel) 2020; 9:antiox9060553. [PMID: 32630431 PMCID: PMC7346214 DOI: 10.3390/antiox9060553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
This study determined whether antioxidant supplementation is a viable complement to exercise regimens in improving cognitive and motor performance in a mouse model of Alzheimer’s disease risk. Starting at 12 months of age, separate groups of male and female mice expressing human Apolipoprotein E3 (GFAP-ApoE3) or E4 (GFAP-ApoE4) were fed either a control diet or a diet supplemented with vitamins E and C. The mice were further separated into a sedentary group or a group that followed a daily exercise regimen. After 8 weeks on the treatments, the mice were administered a battery of functional tests including tests to measure reflex and motor, cognitive, and affective function while remaining on their treatment. Subsequently, plasma inflammatory markers and catalase activity in brain regions were measured. Overall, the GFAP-ApoE4 mice exhibited poorer motor function and spatial learning and memory. The treatments improved balance, learning, and cognitive flexibility in the GFAP-ApoE3 mice and overall the GFAP-ApoE4 mice were not responsive. The addition of antioxidants to supplement a training regimen only provided further benefits to the active avoidance task, and there was no antagonistic interaction between the two interventions. These outcomes are indicative that there is a window of opportunity for treatment and that genotype plays an important role in response to interventions.
Collapse
|
8
|
El Assar M, Angulo J, Rodríguez-Mañas L. Frailty as a phenotypic manifestation of underlying oxidative stress. Free Radic Biol Med 2020; 149:72-77. [PMID: 31422077 DOI: 10.1016/j.freeradbiomed.2019.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 02/08/2023]
Abstract
Oxidative stress plays a key role in the aging process. Lifestyle behaviours including low physical activity and inadequate nutritional habits in addition to genetic susceptibility and some chronic diseases compromise physiological response to free radicals and promote oxidative damage. Reduced resilience (referred to the ability to respond to stressors or adverse conditions) or functional reserve in isolated organs or systems determines clinical manifestations as the age-related chronic diseases while multisystemic dysfunction results in the frailty phenotype. In older adults, frailty, but not age, is associated with elevation of oxidative stress markers and reduction of antioxidant parameters. Mitochondrial dysfunction related to oxidative stress plays a prominent role in this process affecting not only skeletal muscle but also other potential tissues and organs. Increasing endogenous antioxidant capacity in different systems by exercise outstand among therapeutic interventions with potential ability to prevent or delay frailty phenotype and to promote healthy aging.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
9
|
Zhang X, Liu C, Chen Y, Cai X, Sheng W, Zhu H, Jia P, Li Z, Huang S, Zhu B. Visualization of the cysteine level during Golgi stress using a novel Golgi-targeting highly specific fluorescent probe. Chem Commun (Camb) 2020; 56:1807-1810. [DOI: 10.1039/c9cc08796f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel Golgi-targeting highly specific fluorescent probe was developed to visualize the level of cysteine during Golgi stress.
Collapse
Affiliation(s)
- Xue Zhang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Caiyun Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Yanan Chen
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Xinyu Cai
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Wenlong Sheng
- Biology Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250103
- China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Pan Jia
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Zilu Li
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Baocun Zhu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
10
|
Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease. THE THERAPEUTIC USE OF N-ACETYLCYSTEINE (NAC) IN MEDICINE 2019. [PMCID: PMC7120747 DOI: 10.1007/978-981-10-5311-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutathione (GSH) deficiency may play a pivotal role in a variety of apparently unrelated clinical conditions and diseases. Orally administered N-acetylcysteine (NAC), which replenishes the cysteine required for GSH synthesis, has been tested in a large number of randomized placebo-controlled trials involving these diseases and conditions. This chapter focused on developing a base of evidence suggesting that NAC administration improves disease by increasing cysteine and/or GSH in a variety of diseases, thereby implying a significant role for GSH deficiency in the clinical basis of many diseases. To develop this base of evidence, we systematically selected studies which considered the hypothesis that the therapeutic efficacy for NAC is an indication that cysteine and/or GSH deficiency is a pathophysiological part of the diseases studied. In this manner we focus this chapter on explaining the biological mechanisms of NAC therapy in a wide variety of disorders and demonstrate its ubiquitous role in improving disease that involves disrupted GSH and/or cysteine metabolism.
Collapse
|
11
|
Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease. Proc Natl Acad Sci U S A 2018; 115:780-785. [PMID: 29317536 DOI: 10.1073/pnas.1717877115] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Golgi stress response is emerging as a physiologic process of comparable importance to endoplasmic reticulum (ER) and mitochondrial stress responses. However, unlike ER stress, the identity of the signal transduction pathway involved in the Golgi stress response has been elusive. We show that the Golgi stressor monensin acts via the PKR-like ER kinase/Activating Transcription Factor 4 pathway. ATF4 is the master regulator of amino acid metabolism, which is induced during amino acid depletion and other forms of stress. One of the genes regulated by ATF4 is the biosynthetic enzyme for cysteine, cystathionine γ-lyase (CSE), which also plays central roles in maintenance of redox homeostasis. Huntington's disease (HD), a neurodegenerative disorder, is associated with disrupted cysteine metabolism caused by depletion of CSE leading to abnormal redox balance and stress response. Thus, restoring CSE function and cysteine disposition may be beneficial in HD. Accordingly, we harnessed the monensin-ATF4-signaling cascade to stimulate CSE expression by preconditioning cells with monensin, which restores cysteine metabolism and an optimal stress response in HD. These findings have implications for treatment of HD and other diseases associated with redox imbalance and dysregulated ATF4 signaling.
Collapse
|
12
|
Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, Fernandes BS, Berk M, Marriott A. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review. Neurosci Biobehav Rev 2017; 78:44-56. [PMID: 28438466 DOI: 10.1016/j.neubiorev.2017.04.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress, neuroinflammation and neurogenesis are commonly implicated as cognitive modulators across a range of disorders. N-acetylcysteine (NAC) is a glutathione precursor with potent antioxidant, pro-neurogenesis and anti-inflammatory properties and a favourable safety profile. A systematic review of the literature specifically examining the effect of NAC administration on human cognition revealed twelve suitable articles for inclusion: four examining Alzheimer's disease; three examining healthy participants; two examining physical trauma; one examining bipolar disorder, one examining schizophrenia, and one examining ketamine-induced psychosis. Heterogeneity of studies, insufficiently powered studies, infrequency of cognition as a primary outcome, heterogeneous methodologies, formulations, co-administered treatments, administration regimes, and assessment confounded the drawing of firm conclusions. The available data suggested statistically significant cognitive improvements following NAC treatment, though the paucity of NAC-specific research makes it difficult to determine if this effect is meaningful. While NAC may have a positive cognitive effect in a variety of contexts; larger, targeted studies are warranted, specifically evaluating its role in other clinical disorders with cognitive sequelae resulting from oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia
| | - Stephen Lane
- Deakin University, School of Medicine, Geelong, Australia; Biostatistics Unit, Barwon Health, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Brisa S Fernandes
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
13
|
McCarty MF, DiNicolantonio JJ. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. AGE (DORDRECHT, NETHERLANDS) 2015; 37:96. [PMID: 26362762 PMCID: PMC5005830 DOI: 10.1007/s11357-015-9823-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
Restricted dietary intakes of protein or essential amino acids tend to slow aging and boost lifespan in rodents, presumably because they downregulate IGF-I/Akt/mTORC1 signaling that acts as a pacesetter for aging and promotes cancer induction. A recent analysis of the National Health and Nutrition Examination Survey (NHANES) III cohort has revealed that relatively low protein intakes in mid-life (under 10 % of calories) are indeed associated with decreased subsequent risk for mortality. However, in those over 65 at baseline, such low protein intakes were associated with increased risk for mortality. This finding accords well with other epidemiology correlating relatively high protein intakes with lower risk for loss of lean mass and bone density in the elderly. Increased efficiency of protein translation reflecting increased leucine intake and consequent greater mTORC1 activity may play a role in this effect; however, at present there is little solid evidence that leucine supplementation provides important long-term benefits to the elderly. Aside from its potential pro-anabolic impact, higher dietary protein intakes may protect the elderly in another way-by providing increased amino acid substrate for synthesis of key protective factors. There is growing evidence, in both rodents and humans, that glutathione synthesis declines with increasing age, likely reflecting diminished function of Nrf2-dependent inductive mechanisms that boost expression of glutamate cysteine ligase (GCL), rate-limiting for glutathione synthesis. Intracellular glutathione blunts the negative impact of reactive oxygen species (ROS) on cell health and functions both by acting as an oxidant scavenger and by opposing the pro-inflammatory influence of hydrogen peroxide on cell signaling. Fortunately, since GCL's K m for cysteine is close to intracellular cysteine levels, increased intakes of cysteine-achieved from whole proteins or via supplementation with N-acetylcysteine (NAC)-can achieve a compensatory increase in glutathione synthesis, such that more youthful tissue levels of this compound can be restored. Supplementation with phase 2 inducers-such as lipoic acid-can likewise increase glutathione levels by promoting increased GCL expression. In aging humans and/or rodents, NAC supplementation has exerted favorable effects on vascular health, muscle strength, bone density, cell-mediated immunity, markers of systemic inflammation, preservation of cognitive function, progression of neurodegeneration, and the clinical course of influenza-effects which could be expected to lessen mortality and stave off frailty. Hence, greater cysteine availability may explain much of the favorable impact of higher protein intakes on mortality and frailty risk in the elderly, and joint supplementation with NAC and lipoic acid could be notably protective in the elderly, particularly in those who follow plant-based diets relatively low in protein. It is less clear whether the lower arginine intake associated with low-protein diets has an adverse impact on vascular health.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA, 92009, USA.
| | - James J DiNicolantonio
- Preventive Cardiology Department, St. Luke's Mid America Heart Institute, Kansas City, MO, USA.
| |
Collapse
|
14
|
Wu PT, Fitschen PJ, Kistler BM, Jeong JH, Chung HR, Aviram M, Phillips SA, Fernhall B, Wilund KR. Effects of Pomegranate Extract Supplementation on Cardiovascular Risk Factors and Physical Function in Hemodialysis Patients. J Med Food 2015; 18:941-9. [PMID: 25826143 DOI: 10.1089/jmf.2014.0103] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to evaluate the effects of oral supplementation with pomegranate extract on cardiovascular risk, physical function, oxidative stress, and inflammation in hemodialysis (HD) patients. Thirty-three HD subjects were randomized to the pomegranate (POM) or placebo (CON) group. Patients in POM ingested a 1000 mg capsule of a purified pomegranate polyphenol extract 7 days/week for 6 months. Individuals in CON ingested a noncaloric placebo capsule using the same protocol. Measurements were conducted at baseline and repeated 6 months following the start of the intervention. Brachial blood pressure (BP) was obtained using an automatic digital BP monitor. Cardiovascular risk was assessed using ultrasound and arterial tonometry. Blood samples were collected for the measurements of circulating markers of inflammation, oxidative stress, and antioxidant capacity. Muscle strength and physical function were assessed by isokinetic dynamometry, a validated shuttle walk test, and a battery of tests to assess functional fitness. Systolic blood pressure and diastolic blood pressure were reduced by 24 ± 13.7 and 10 ± 5.3 mmHg, respectively, in POM (P < .05). However, the BP differences in POM were no longer significant after controlling for baseline BP. The paraoxonase-1 activity increased by 26.6% (P < .05) in POM, compared to no significant change in CON. However, pomegranate supplementation had no effect on other markers of cardiovascular disease risk, inflammation and oxidative stress, or measures of physical function and muscle strength. While pomegranate extract supplementation may reduce BP and increase the antioxidant activity in HD patients, it does not improve other markers of cardiovascular risk, physical function, or muscle strength.
Collapse
Affiliation(s)
- Pei-Tzu Wu
- 1 School of Nursing, University of California-Los Angeles , Los Angeles, California, USA .,3 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| | - Peter J Fitschen
- 2 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| | - Brandon M Kistler
- 3 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| | - Jin Hee Jeong
- 3 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| | - Hae Ryong Chung
- 3 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| | - Michael Aviram
- 4 Technion Rappaport Faculty of Medicine, Rambam Medical Center , Haifa, Israel
| | - Shane A Phillips
- 5 Department of Physical Therapy, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Bo Fernhall
- 6 Department of Kinesiology and Nutrition, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Kenneth R Wilund
- 2 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA .,3 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois, USA
| |
Collapse
|
15
|
Okutsu M, Call JA, Lira VA, Zhang M, Donet JA, French BA, Martin KS, Peirce-Cottler SM, Rembold CM, Annex BH, Yan Z. Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circ Heart Fail 2014; 7:519-30. [PMID: 24523418 DOI: 10.1161/circheartfailure.113.000841] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of nitric oxide-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. METHODS AND RESULTS We demonstrated that systemic administration of endogenous nitric oxide donor S-nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, as well as the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis (muscle creatine kinase [MCK]-EcSOD) in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF (α-myosin heavy chain-calsequestrin), MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced HF. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria, and vascular rarefaction in skeletal muscle. CONCLUSIONS EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF.
Collapse
Affiliation(s)
- Mitsuharu Okutsu
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Jarrod A Call
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Vitor A Lira
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Mei Zhang
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Jean A Donet
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Brent A French
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Kyle S Martin
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Shayn M Peirce-Cottler
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Christopher M Rembold
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Brian H Annex
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Zhen Yan
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.).
| |
Collapse
|
16
|
Vidal K, Breuillé D, Serrant P, Denis P, Glomot F, Béchereau F, Papet I. Long-term cysteine fortification impacts cysteine/glutathione homeostasis and food intake in ageing rats. Eur J Nutr 2013; 53:963-71. [DOI: 10.1007/s00394-013-0600-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
|
17
|
Factors contributing to the variability in muscle ageing. Maturitas 2012; 73:197-201. [DOI: 10.1016/j.maturitas.2012.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/29/2012] [Indexed: 12/25/2022]
|
18
|
Magalhães PV, Dean OM, Bush AI, Copolov DL, Weisinger D, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M. Systemic illness moderates the impact of N-acetyl cysteine in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:132-5. [PMID: 22212173 DOI: 10.1016/j.pnpbp.2011.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is intricately associated with chronic clinical conditions. Medical comorbidity is not only more prevalent in mood disorders, but is associated with increased costs, cognitive impairment and, ultimately, premature mortality. Oxidative stress and inflammation may mediate part of this association. To further investigate the association between medical comorbidity status and clinical improvement with adjuvant N acetyl cysteine (NAC) in the context of a placebo-controlled trial. METHODS Placebo-controlled randomized clinical trial assessing the effect of NAC over 24 weeks. Symptomatic and functional outcomes were collected over the study period. Medical comorbidities were self-reported, and we took special interest in cardiovascular and endocrine conditions. We evaluated change from baseline to endpoint and the interaction between change and reported medical comorbidities. RESULTS Fifty-one percent of patients reported have a cardiovascular or endocrine comorbidity. Although not found for depressive symptoms or quality of life, a significant interaction between medical comorbidity and change scores was consistently found for all functional outcomes. This indicated an advantage of NAC over placebo in those with a clinical comorbidity. CONCLUSION Systemic illness moderated only the effect of NAC on functioning, not on depression. Demonstrating an improvement in functional outcomes with an agent that modulates redox and inflammatory pathways, this study lends empirical support to the idea that medical and psychiatric comorbidity are additive in contributing to allostatic states. One intriguing possibility is that comorbid clinical illness could be a marker for more severe oxidative stress states--and thus guide antioxidant use--in BD.
Collapse
Affiliation(s)
- P V Magalhães
- National Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kinscherf R. Redox pioneer: Professor Wulf Dröge. Antioxid Redox Signal 2011; 14:2319-23. [PMID: 21175356 DOI: 10.1089/ars.2010.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dr. Wulf Dröge is recognized here as a redox pioneer because he has published as first author an article on antioxidant/redox biology that has been cited more than 2000 times and over 10 articles that have been cited more than 100 times. One of the key discoveries (1987) was the stimulatory effect of superoxide radicals and hydrogen peroxide on lymphocyte functions, which triggered a series of studies on the role of reactive oxygen species, glutathione, and its precursor cysteine in physiological and pathological processes. He discovered abnormally low cysteine and glutathione levels in human immunodeficiency virus-infected patients and the age-related decline in the postabsorptive plasma cysteine concentration, which is believed to cause age-related oxidative stress. He developed a theoretical concept of the mechanism of aging and death, which is outlined in his books Avoiding the First Cause of Death and Challenging the Limits of the Human Lifespan.
Collapse
Affiliation(s)
- Ralf Kinscherf
- Department of Medical Cell Biology University of Marburg, Marburg, Germany.
| |
Collapse
|
20
|
Open phase II study on efficacy and safety of an oral amino acid functional cluster supplementation in cancer cachexia. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2010. [DOI: 10.1007/s12349-010-0016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Degens H. The role of systemic inflammation in age-related muscle weakness and wasting. Scand J Med Sci Sports 2009; 20:28-38. [PMID: 19804579 DOI: 10.1111/j.1600-0838.2009.01018.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ageing is associated with a slow, but progressive muscle weakness, which is largely attributable to muscle wasting. A diminished function of satellite cells at old age may hamper preservation and repair from (contraction)-induced injury and contribute to the age-related muscle wasting. Satellite cell function may be affected by circulating factors, as muscle regeneration in old mice sharing the circulation of young mice is not impaired. Chronic low-grade systemic inflammation in old organisms may be that environmental factor. Indeed, the inflammatory cytokine tumor necrosis factor-alpha (TNFalpha) negatively affects the muscle regenerating capacity. TNFalpha destabilizes MyoD, a muscle-specific transcription factor involved in satellite cell proliferation and differentiation, and induces apoptosis of satellite cells, particularly at old age. Here it is proposed that some of these effects are mediated by TNFalpha-induced expression of inhibitors of differentiation proteins. Yet, the increase in TNFalpha during the normal inflammatory response helps, rather than impairs, the repair process. This apparent contradiction may be resolved by the fact that the effects of TNFalpha are concentration and time dependent. Thus, the negative effect of systemic inflammation on muscle strength at old age may only become apparent when it exceeds a certain threshold and persists for a prolonged period.
Collapse
Affiliation(s)
- H Degens
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester M1 5GD, UK.
| |
Collapse
|
22
|
Rizvi SI, Maurya PK. L-cysteine influx in erythrocytes as a function of human age. Rejuvenation Res 2008; 11:661-5. [PMID: 18593284 DOI: 10.1089/rej.2007.0652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In erythrocytes, although three amino acids are required for the synthesis of reduced glutathione (GSH), the rate of GSH synthesis is determined only by the availability of L-cysteine. Cysteine supplementation has been shown to ameliorate several parameters that are known to degenerate during human aging; this has led to an interesting hypothesis that aging could be a cysteine deficiency syndrome. In the present study, we measured L-cysteine influx in human erythrocytes by suspending cells in solution containing 10 mM L-cysteine. We show a significant decline in the influx of L-cysteine in erythrocytes during aging in humans. The decrease in cysteine influx correlates with the decrease in antioxidant potential of plasma measured in terms of FRAP (ferric-reducing ability of plasma) during aging. We conclude that a decreased influx of L-cysteine may be an important factor contributing to the development of oxidative stress in human erythrocytes during aging.
Collapse
|
23
|
Dröge W, Kinscherf R. Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 2008; 10:661-78. [PMID: 18162053 DOI: 10.1089/ars.2007.1953] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms leading to the increase in free radical-derived oxidative stress in "normal aging" remains obscure. Here we present our perspective on studies from different fields that reveal a previously unnoticed vicious cycle of oxidative stress. The plasma cysteine concentrations during starvation in the night and early morning hours (the postabsorptive state) decreases with age. This decrease is associated with a decrease in tissue concentrations of the cysteine derivative and quantitatively important antioxidant glutathione. The decrease in cysteine reflects changes in the autophagic protein catabolism that normally ensures free amino acid homeostasis during starvation. Autophagy is negatively regulated by the insulin receptor signaling cascade that is enhanced by oxidative stress in the absence of insulin. This synopsis of seemingly unrelated processes reveals a novel mechanism of progressive oxidative stress in which decreasing antioxidant concentrations and increasing basal (postabsorptive) insulin receptor signaling activity compromise not only the autophagic protein catabolism but also the activity of FOXO transcription factors (i.e., two functions that were found to have an impact on lifespan in several animal models of aging). In addition, the aging-related decrease in glutathione levels is likely to facilitate certain "secondary" disease-related mechanisms of oxidative stress. Studies on cysteine supplementation show therapeutic promise.
Collapse
Affiliation(s)
- Wulf Dröge
- Department of Research and Development, Immunotec Inc, Vaudreuil, Québec, Canada.
| | | |
Collapse
|
24
|
Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol (1985) 2008; 104:853-60. [DOI: 10.1152/japplphysiol.00953.2007] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.
Collapse
|
25
|
Adamy C, Mulder P, Khouzami L, Andrieu-abadie N, Defer N, Candiani G, Pavoine C, Caramelle P, Souktani R, Le Corvoisier P, Perier M, Kirsch M, Damy T, Berdeaux A, Levade T, Thuillez C, Hittinger L, Pecker F. Neutral sphingomyelinase inhibition participates to the benefits of N-acetylcysteine treatment in post-myocardial infarction failing heart rats. J Mol Cell Cardiol 2007; 43:344-53. [PMID: 17707397 DOI: 10.1016/j.yjmcc.2007.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/02/2007] [Accepted: 06/15/2007] [Indexed: 12/19/2022]
Abstract
Deficiency in cellular thiol tripeptide glutathione (L-gamma glutamyl-cysteinyl-glycine) determines the severity of several chronic and inflammatory human diseases that may be relieved by oral treatment with the glutathione precursor N-acetylcysteine (NAC). Here, we showed that the left ventricle (LV) of human failing heart was depleted in total glutathione by 54%. Similarly, 2-month post-myocardial infarction (MI) rats, with established chronic heart failure (CHF), displayed deficiency in LV glutathione. One-month oral NAC treatment normalized LV glutathione, improved LV contractile function and lessened adverse LV remodelling in 3-month post-MI rats. Biochemical studies at two time-points of NAC treatment, 3 days and 1 month, showed that inhibition of the neutral sphingomyelinase (N-SMase), Bcl-2 depletion and caspase-3 activation, were key, early and lasting events associated with glutathione repletion. Attenuation of oxidative stress, downregulation of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and its TNF-R1 receptor were significant after 1-month NAC treatment. These data indicate that, besides glutathione deficiency, N-SMase activation is associated with post-MI CHF progression, and that blockade of N-SMase activation participates to post-infarction failing heart recovery achieved by NAC treatment. NAC treatment in post-MI rats is a way to disrupt the vicious sTNF-alpha/TNF-R1/N-SMase cycle.
Collapse
|
26
|
Abstract
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.
Collapse
Affiliation(s)
- Wulf Dröge
- Immunotec Research Ltd., 300 Joseph-Carrier, Vaudreuil-Dorion, Quebec, Canada J7V 5V5.
| | | |
Collapse
|
27
|
Abstract
In experimental studies, the old mucolytic agent N-acetylcysteine (NAC) has had beneficial effects in disorders supposedly linked to oxidative stress. Numerous, mainly small clinical trials with variable doses have yielded inconsistent results in a wide variety of diseases. NAC added to the conventional therapy of human immunodeficiency virus infection might be of benefit; in respect of chronic obstructive pulmonary disease, systematic reviews and meta-analyses suggested that prolonged treatment with NAC is efficacious, but a recent multicentre study has questioned this. In a large intervention trial on cancer recurrence, NAC was ineffective. NAC infusions have been widely used in acute hepatic failure but convincing evidence of its benefits is lacking. A preliminary study reported that NAC is effective in preventing radiocontrast-induced nephropathy but thereafter highly mixed results have been published, and even meta-analyses disagree on its efficacy. In intensive care NAC has mostly been a disappointment but recently it has 'given promises' in surgery with cardiopulmonary bypass. NAC therapy is routine only in paracetamol intoxication.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Muscle wasting as it typically occurs in old age and in certain diseases is poorly understood. This review summarizes recent findings suggesting a role for redox-sensitive signaling cascades in catabolic processes. RECENT FINDINGS The redox-sensitive transcription factors nuclear factor kappaB and activator protein 1 facilitate ubiquitin-proteasome-dependent proteolysis. Nuclear factor kappaB also plays a role in induced expression of tumor necrosis factor alpha and other inflammatory cytokines that have been implicated in catabolic processes. The activities of nuclear factor kappaB and activator protein 1 are stimulated not only by hydrogen peroxide, which is produced in tissues by regulated enzymatic processes, but also by an oxidative shift in thiol-disulfide redox status. The oxidative shift that is typically seen in old age and certain catabolic conditions may thus play a causative role in catabolic processes. Another prominent case in point is insulin-independent 'basal' insulin receptor kinase activity, which is strongly enhanced by hydrogen peroxide or by an oxidative shift in redox status. The insulin receptor signaling cascade induces anabolic and anticatabolic effects, but its abnormal upregulation under starving conditions potentially compromises glucose and amino acid homeostasis. In genetic animal studies, impairment of insulin receptor signaling was shown to increase life span. SUMMARY These findings may provide a rationale for cysteine supplementation in catabolic conditions.
Collapse
Affiliation(s)
- Wulf Dröge
- Immunotec Research Ltd, Vaudreuil-Dorion, Québec, Canada.
| |
Collapse
|
29
|
Cesari M, Kritchevsky SB, Leeuwenburgh C, Pahor M. Oxidative damage and platelet activation as new predictors of mobility disability and mortality in elders. Antioxid Redox Signal 2006; 8:609-19. [PMID: 16677104 DOI: 10.1089/ars.2006.8.609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mobility disability is an early phase of the disablement process in older adults, and represents a major risk factor for physical disability and mortality. Pathophysiological mechanisms responsible for the onset of mobility limitation are still largely unknown. Oxidative damage, responsible for the disruption of the equilibrium of biological systems by damaging major constituent molecules, might play an important role in the pathway leading to major health-related events. It has been suggested the existence of a vicious cycle involving oxidative damage, platelet activation, and inflammation as promoter of pathophysiological changes occurring with aging. This hypothesis is based on the following observations: (a) oxidative damage is associated with diseases and clinical conditions potentially leading to disability and mortality; (b) oxidative damage is associated with platelet activation, and a vicious cycle involving oxidative damage, platelet activation, and inflammation has been demonstrated in several metabolic disorders potentially leading to mobility disability; (c) the age-related physical decline may be associated to the oxidative damage due to the excess of free radicals; (d) antioxidant defense and behavioral factors (e.g., physical activity, dietary restriction, smoking cessation) play an important role in the reduction of oxidative damage levels and are associated with improved physical performance and muscle strength.
Collapse
Affiliation(s)
- Matteo Cesari
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida 36208, USA.
| | | | | | | |
Collapse
|
30
|
Dröge W. Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos Trans R Soc Lond B Biol Sci 2005; 360:2355-72. [PMID: 16321806 PMCID: PMC1569588 DOI: 10.1098/rstb.2005.1770] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) are constantly produced in biological tissues and play a role in various signalling pathways. Abnormally high ROS concentrations cause oxidative stress associated with tissue damage and dysregulation of physiological signals. There is growing evidence that oxidative stress increases with age. It has also been shown that the life span of worms, flies and mice can be significantly increased by mutations which impede the insulin receptor signalling cascade. Molecular studies revealed that the insulin-independent basal activity of the insulin receptor is increased by ROS and downregulated by certain antioxidants. Complementary clinical studies confirmed that supplementation of the glutathione precursor cysteine decreases insulin responsiveness in the fasted state. In several clinical trials, cysteine supplementation improved skeletal muscle functions, decreased the body fat/lean body mass ratio, decreased plasma levels of the inflammatory cytokine tumour necrosis factor alpha (TNF-alpha), improved immune functions, and increased plasma albumin levels. As all these parameters degenerate with age, these findings suggest: (i) that loss of youth, health and quality of life may be partly explained by a deficit in cysteine and (ii) that the dietary consumption of cysteine is generally suboptimal and everybody is likely to have a cysteine deficiency sooner or later.
Collapse
Affiliation(s)
- Wulf Dröge
- Division of Redox Physiology and Aging Research, Deutsches KrebsforschungszentrumIm Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Abstract
The life span of nematodes, fruit flies, and mice can be significantly increased (and aging-related changes decreased) by mutations affecting insulin receptor signaling. This effect involves several cellular functions which are negatively regulated by the insulin receptor and thus typically expressed under fasting conditions. This involvement raises the question of whether the insulin-independent basal receptor kinase activity in the postabsorptive state can be decreased without compromising the physiologically important response to insulin in the postprandial state. Recent studies have shown that (a) the basal human insulin receptor kinase activity is increased under oxidative conditions in the absence of insulin and (b) insulin signaling in the fasted state can be decreased by cysteine supplementation. Cysteine supplementation has also been shown to improve certain aging-related parameters, suggesting that the average dietary cysteine consumption in Western countries may be suboptimal. These findings provide a conceptual framework that extends the "free radical theory of aging."
Collapse
Affiliation(s)
- Wulf Dröge
- Professor of Immunology, Senior Vice-President, Research & Development, Immunotec Research Ltd., 300 Joseph Carrier, Vaudreuil-Dorion, Quebec, J7V 5V5, Canada
| |
Collapse
|
32
|
Abstract
Aging muscle and joint changes can have a tremendous impact on the functionality of elderly people with and without disabilities. Studies in animal models have shown some potentially beneficial interventions (eg, gene therapy). Further research is needed to ascertain their benefits in humans. A better understanding of mechanisms by which skeletal muscle and joint changes take place in a geriatric population will be helpful to find reasonable ways to prevent age-related change and improve disability. Although some agents have been reported to have significant positive effects, further studies are needed to determine long-term side effects. More information is needed with respect to the changes in muscles and joints in various disabilities.
Collapse
Affiliation(s)
- Mohamed S Ahmed
- Department of Rehabilitation Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, 1190 5th Avenue, New York, NY 10029, USA.
| | | | | |
Collapse
|
33
|
Lynch GS. Update on therapies for sarcopenia: novel approaches for age-related muscle wasting and weakness. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.9.1329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Bourraindeloup M, Adamy C, Candiani G, Cailleret M, Bourin MC, Badoual T, Su JB, Adubeiro S, Roudot-Thoraval F, Dubois-Rande JL, Hittinger L, Pecker F. N-acetylcysteine treatment normalizes serum tumor necrosis factor-alpha level and hinders the progression of cardiac injury in hypertensive rats. Circulation 2004; 110:2003-9. [PMID: 15451797 DOI: 10.1161/01.cir.0000143630.14515.7c] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Studies in isolated cardiomyocytes showed that replenishment in cellular glutathione, achieved with the glutathione precursor N-acetylcysteine (NAC), abrogated deleterious effects of tumor necrosis factor-alpha (TNF-alpha). METHODS AND RESULTS We examined the ability of NAC to limit the progression of cardiac injury in the rat model of hypertension, induced by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (50 mg/kg per day SC) and high-salt diet (HS) (8% NaCl). Four-week HS/L-NAME administration induced hypertension (193+/-8 versus 122+/-4 mm Hg for low-salt diet [LS] group) and left ventricular (LV) dysfunction, revealed by echocardiography and characterized by decreased LV shortening fraction (38+/-2% versus 49+/-4% for LS group; P<0.05) and decreased LV posterior wall thickening (49+/-3% versus 70+/-4% for LS group; P<0.05). LV dysfunction worsened further after 6-week HS/L-NAME administration. Importantly, increase in serum TNF-alpha level was strongly correlated with shortening fraction decrease and cardiac glutathione depletion. NAC (75 mg/d) was given as a therapeutic treatment in a subgroup of HS/L-NAME animals during weeks 5 and 6 of HS/L-NAME administration. NAC treatment, which replenished cardiac glutathione, had no effect on hypertension but reduced LV remodeling and dysfunction, normalized serum TNF-alpha level, and limited activation of matrix metalloproteinases -2 and -9 and collagen deposition in LV tissues. CONCLUSIONS These findings suggest that glutathione status determines the adverse effects of TNF-alpha in cardiac failure and that TNF-alpha antagonism may be achieved by glutathione supplementation.
Collapse
|