1
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
2
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Vaitaitis GM, Wagner DH. Modulating CD40 and integrin signaling in the proinflammatory nexus using a 15-amino-acid peptide, KGYY 15. J Biol Chem 2023; 299:104625. [PMID: 36944397 PMCID: PMC10141526 DOI: 10.1016/j.jbc.2023.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
CD40 signaling has long been a target in autoimmunity. Attempts to block signaling between CD40 and CD154 during clinical trials using monoclonal antibodies suffered severe adverse events. Previously, we developed a peptide, KGYY15, that targets CD40 and, in preclinical trials, prevents type 1 diabetes in >90% of cases and reverses new-onset hyperglycemia in 56% of cases. It did so by establishing normal effector T-cell levels rather than ablating the cells and causing immunosuppression. However, the relationship between KGYY15 and other elements of the complex signaling network of CD40 is not clear. Studying interactions between proteins from autoimmune and nonautoimmune mice, we demonstrate interactions between CD40 and integrin CD11a/CD18, which complicates the understanding of the inflammatory nexus and how to prevent autoinflammation. In addition to interacting with CD40, KGYY15 interacts with the integrins CD11a/CD18 and CD11b/CD18. We argue that modulation of CD40-CD154 signaling may be more advantageous than complete inhibition because it may preserve normal immunity to pathogens.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Bojadzic D, Alcazar O, Chen J, Chuang ST, Capcha JMC, Shehadeh LA, Buchwald P. Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2. ACS Infect Dis 2021; 7:1519-1534. [PMID: 33979123 PMCID: PMC8130611 DOI: 10.1021/acsinfecdis.1c00070] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Oscar Alcazar
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Jinshui Chen
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Sung-Ting Chuang
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Jose M. Condor Capcha
- Division of Cardiology, University of Miami, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
| | - Lina A. Shehadeh
- Division of Cardiology, University of Miami, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
5
|
Bojadzic D, Alcazar O, Buchwald P. Methylene Blue Inhibits the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction-a Mechanism that can Contribute to its Antiviral Activity Against COVID-19. Front Pharmacol 2021; 11:600372. [PMID: 33519460 PMCID: PMC7838506 DOI: 10.3389/fphar.2020.600372] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Due to our interest in the chemical space of organic dyes to identify potential small-molecule inhibitors (SMIs) for protein-protein interactions (PPIs), we initiated a screen of such compounds to assess their inhibitory activity against the interaction between SARS-CoV-2 spike protein and its cognate receptor ACE2, which is the first critical step initiating the viral attachment and entry of this coronavirus responsible for the ongoing COVID-19 pandemic. As part of this, we found that methylene blue, a tricyclic phenothiazine compound approved by the FDA for the treatment of methemoglobinemia and used for other medical applications (including the inactivation of viruses in blood products prior to transfusion when activated by light), inhibits this interaction. We confirmed that it does so in a concentration-dependent manner with a low micromolar half-maximal inhibitory concentration (IC50 = 3 μM) in our protein-based ELISA-type setup, while chloroquine, siramesine, and suramin showed no inhibitory activity in this assay. Erythrosine B, which we have shown before to be a promiscuous SMI of PPIs, also inhibited this interaction. Methylene blue inhibited the entry of a SARS-CoV-2 spike bearing pseudovirus into ACE2-expressing cells with similar IC50 (3.5 μM). Hence, this PPI inhibitory activity could contribute to its antiviral activity against SARS-CoV-2 even in the absence of light by blocking its attachment to ACE2-expressing cells and making this inexpensive and widely available drug potentially useful in the prevention and treatment of COVID-19 as an oral or inhaled medication.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 2020; 5:213. [PMID: 32968059 PMCID: PMC7511340 DOI: 10.1038/s41392-020-00315-3] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.
Collapse
Affiliation(s)
- Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jun He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Sichuan, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Cheng Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| |
Collapse
|
7
|
Vaitaitis GM, Yussman MG, Wagner DH. A CD40 targeting peptide prevents severe symptoms in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 332:8-15. [PMID: 30925295 PMCID: PMC6535109 DOI: 10.1016/j.jneuroim.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
CD40/CD154-interaction is critical in the development of Experimental Autoimmune Encephalomyelitis (EAE; mouse model of Multiple Sclerosis). Culprit CD4+CD40+ T cells drive a more severe form of EAE than conventional CD4 T cells. Blocking CD40/CD154-interaction with CD154-antibody prevents or ameliorates disease but had thrombotic complications in clinical trials. We targeted CD40 using a CD154-sequence based peptide. Peptides in human therapeutics demonstrate good safety. A small peptide, KGYY6, ameliorates EAE when given as pretreatment or at first symptoms. KGYY6 binds Th40 and memory T cells, affecting expression of CD69 and IL-10 in the CD4 T cell compartment, ultimately hampering disease development.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Martin G Yussman
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv Drug Deliv Rev 2019; 141:92-103. [PMID: 30552917 DOI: 10.1016/j.addr.2018.12.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
CD40 is a TNF receptor superfamily member expressed on both immune and non-immune cells. Interactions between B cell-expressed CD40 and its binding partner, CD40L, predominantly expressed on activated CD4+ T cells, play a critical role in promoting germinal center formation and the production of class-switched antibodies. Non-hematopoietic cells expressing CD40 can also engage CD40L and trigger a pro-inflammatory response. This article will highlight what is known about the biology of the CD40-CD40L axis in humans and describe the potential contribution of CD40 signaling on both hematopoietic and non-hematopoietic cells to autoimmune disease pathogenesis. Additionally, novel therapeutic approaches to target this pathway, currently being evaluated in clinical trials, are discussed.
Collapse
|
9
|
Bojadzic D, Chen J, Alcazar O, Buchwald P. Design, Synthesis, and Evaluation of Novel Immunomodulatory Small Molecules Targeting the CD40⁻CD154 Costimulatory Protein-Protein Interaction. Molecules 2018; 23:E1153. [PMID: 29751636 PMCID: PMC5978685 DOI: 10.3390/molecules23051153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
We report the design, synthesis, and testing of novel small-molecule compounds targeting the CD40⁻CD154 (CD40L) costimulatory interaction for immunomodulatory purposes. This protein-protein interaction (PPI) is a TNF-superfamily (TNFSF) costimulatory interaction that is an important therapeutic target since it plays crucial roles in the activation of T cell responses, and there is resurgent interest in its modulation with several biologics in development. However, this interaction, just as all other PPIs, is difficult to target by small molecules. Following up on our previous work, we have now identified novel compounds such as DRI-C21091 or DRI-C21095 that show activity (IC50) in the high nanomolar to low micromolar range in the binding inhibition assay and more than thirty-fold selectivity versus other TNFSF PPIs including OX40⁻OX40L, BAFFR-BAFF, and TNF-R1-TNFα. Protein thermal shift (differential scanning fluorimetry) assays indicate CD154 and not CD40 as the binding partner. Activity has also been confirmed in cell assays and in a mouse model (alloantigen-induced T cell expansion in a draining lymph node). Our results expand the chemical space of identified small-molecule CD40⁻CD154 costimulatory inhibitors and provide lead structures that have the potential to be developed as orally bioavailable immunomodulatory therapeutics that are safer and less immunogenic than corresponding biologics.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Jinshui Chen
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
11
|
Chen J, Song Y, Bojadzic D, Tamayo-Garcia A, Landin AM, Blomberg BB, Buchwald P. Small-Molecule Inhibitors of the CD40-CD40L Costimulatory Protein-Protein Interaction. J Med Chem 2017; 60:8906-8922. [PMID: 29024591 PMCID: PMC5823691 DOI: 10.1021/acs.jmedchem.7b01154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Costimulatory interactions are required for T cell activation and development of an effective immune response; hence, they are valuable therapeutic targets for immunomodulation. However, they, as all other protein-protein interactions, are difficult to target by small molecules. Here, we report the identification of novel small-molecule inhibitors of the CD40-CD40L interaction designed starting from the chemical space of organic dyes. For the most promising compounds such as DRI-C21045, activity (IC50) in the low micromolar range has been confirmed in cell assays including inhibition of CD40L-induced activation in NF-κB sensor cells, THP-1 myeloid cells, and primary human B cells as well as in murine allogeneic skin transplant and alloantigen-induced T cell expansion in draining lymph node experiments. Specificity versus other TNF-superfamily interactions (TNF-R1-TNF-α) and lack of cytotoxicity have also been confirmed at these concentrations. These novel compounds provide proof-of-principle evidence for the possibility of small-molecule inhibition of costimulatory protein-protein interactions, establish the structural requirements needed for efficient CD40-CD40L inhibition, and serve to guide the search for such immune therapeutics.
Collapse
Affiliation(s)
- Jinshui Chen
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Yun Song
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Alejandro Tamayo-Garcia
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Ana Marie Landin
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Bonnie B. Blomberg
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| |
Collapse
|
12
|
Haller ST, Kumarasamy S, Folt DA, Wuescher LM, Stepkowski S, Karamchandani M, Waghulde H, Mell B, Chaudhry M, Maxwell K, Upadhyaya S, Drummond CA, Tian J, Filipiak WE, Saunders TL, Shapiro JI, Joe B, Cooper CJ. Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney Int 2017; 91:365-374. [PMID: 27692815 PMCID: PMC5237403 DOI: 10.1016/j.kint.2016.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
High blood pressure is a common cause of chronic kidney disease. Because CD40, a member of the tumor necrosis factor receptor family, has been linked to the progression of kidney disease in ischemic nephropathy, we studied the role of Cd40 in the development of hypertensive renal disease. The Cd40 gene was mutated in the Dahl S genetically hypertensive rat with renal disease by targeted-gene disruption using zinc-finger nuclease technology. These rats were then given low (0.3%) and high (2%) salt diets and compared. The resultant Cd40 mutants had significantly reduced levels of both urinary protein excretion (41.8 ± 3.1 mg/24 h vs. 103.7 ± 4.3 mg/24 h) and plasma creatinine (0.36 ± 0.05 mg/dl vs. 1.15 ± 0.19 mg/dl), with significantly higher creatinine clearance compared with the control S rats (3.04 ± 0.48 ml/min vs. 0.93 ± 0.15 ml/min), indicating renoprotection was conferred by mutation of the Cd40 locus. Furthermore, the Cd40 mutants had a significant attenuation in renal fibrosis, which persisted on the high salt diet. However, there was no difference in systolic blood pressure between the control and Cd40 mutant rats. Thus, these data serve as the first evidence for a direct link between Cd40 and hypertensive nephropathy. Hence, renal fibrosis is one of the underlying mechanisms by which Cd40 plays a crucial role in the development of hypertensive renal disease.
Collapse
Affiliation(s)
- Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - David A Folt
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Manish Karamchandani
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Muhammad Chaudhry
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Kyle Maxwell
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Siddhi Upadhyaya
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher A Drummond
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Wanda E Filipiak
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joseph I Shapiro
- Department of Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
13
|
Ye X, Chan KC, Waters AM, Bess M, Harned A, Wei BR, Loncarek J, Luke BT, Orsburn BC, Hollinger BD, Stephens RM, Bagni R, Martinko A, Wells JA, Nissley DV, McCormick F, Whiteley G, Blonder J. Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface. Oncotarget 2016; 7:86948-86971. [PMID: 27894102 PMCID: PMC5341332 DOI: 10.18632/oncotarget.13566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Oncogenic Ras mutants play a major role in the etiology of most aggressive and deadly carcinomas in humans. In spite of continuous efforts, effective pharmacological treatments targeting oncogenic Ras isoforms have not been developed. Cell-surface proteins represent top therapeutic targets primarily due to their accessibility and susceptibility to different modes of cancer therapy. To expand the treatment options of cancers driven by oncogenic Ras, new targets need to be identified and characterized at the surface of cancer cells expressing oncogenic Ras mutants. Here, we describe a mass spectrometry-based method for molecular profiling of the cell surface using KRasG12V transfected MCF10A (MCF10A-KRasG12V) as a model cell line of constitutively activated KRas and native MCF10A cells transduced with an empty vector (EV) as control. An extensive molecular map of the KRas surface was achieved by applying, in parallel, targeted hydrazide-based cell-surface capturing technology and global shotgun membrane proteomics to identify the proteins on the KRasG12V surface. This method allowed for integrated proteomic analysis that identified more than 500 cell-surface proteins found unique or upregulated on the surface of MCF10A-KRasG12V cells. Multistep bioinformatic processing was employed to elucidate and prioritize targets for cross-validation. Scanning electron microscopy and phenotypic cancer cell assays revealed changes at the cell surface consistent with malignant epithelial-to-mesenchymal transformation secondary to KRasG12V activation. Taken together, this dataset significantly expands the map of the KRasG12V surface and uncovers potential targets involved primarily in cell motility, cellular protrusion formation, and metastasis.
Collapse
Affiliation(s)
- Xiaoying Ye
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - King C. Chan
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Andrew M. Waters
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Matthew Bess
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Adam Harned
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | - Bradley D. Hollinger
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Robert M. Stephens
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Rachel Bagni
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Alex Martinko
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | - Dwight V. Nissley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158-9001, USA
| | - Gordon Whiteley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Josip Blonder
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| |
Collapse
|
14
|
Song Y, Margolles-Clark E, Bayer A, Buchwald P. Small-molecule modulators of the OX40-OX40 ligand co-stimulatory protein-protein interaction. Br J Pharmacol 2015; 171:4955-69. [PMID: 24930776 DOI: 10.1111/bph.12819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2013] [Revised: 04/22/2014] [Accepted: 06/07/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The OX40-OX40L protein-protein interaction (PPI) is an important cell-surface signalling co-stimulatory regulator within the TNFR superfamily (TNFRSF) and a promising therapeutic target for immunomodulation. PPIs are difficult to modulate using small-molecules. Here, we describe the identification of a small-molecule OX40 modulator and confirm its partial agonist character. EXPERIMENTAL APPROACH Cell-free screening assays were developed and used to identify OX40-OX40L inhibitors. Modified versions of this assay were used to elucidate the binding partner and the binding nature of active compounds. OX40-transfected sensor cells with NF-κB reporters were constructed and used to confirm and characterize activity and specificity. Immunomodulatory activity and partial agonist nature were further confirmed by ex vivo T-cell polarization assays. KEY RESULTS Several compounds that concentration-dependently affected OX40-OX40L were identified. Cell assays indicated that they were partial agonists with low micromolar potency and adequate selectivity. Under polarizing conditions based on TGF-β, the most promising compound mimicked the effect of an agonistic anti-OX40 antibody in suppressing regulatory T-cell generation and diverting CD4(+) CD62L(+) Foxp3(-) cells to TH 9 phenotype in vitro. CONCLUSIONS AND IMPLICATIONS We identified, to our knowledge, the first small-molecule compounds able to interfere with OX40-OX40L binding and, more importantly, to act as partial agonists of OX40. This is particularly interesting, as small-molecule agonism or activation of PPIs is considered unusually challenging and there are only few known examples. These results provide proof-of-principle evidence for the feasibility of small-molecule modulation of the OX40-OX40L interaction and for the existence of partial agonists for TNFRSF-PPIs.
Collapse
Affiliation(s)
- Yun Song
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | | | | | | |
Collapse
|
15
|
Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets 2015; 16:393-408. [PMID: 25706111 PMCID: PMC4408546 DOI: 10.2174/1389450116666150223115628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates.
Collapse
Affiliation(s)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA.
| |
Collapse
|
16
|
Gul S, Hadian K. Protein–protein interaction modulator drug discovery: past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Expert Opin Drug Discov 2014; 9:1393-404. [DOI: 10.1517/17460441.2014.954544] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
|
17
|
Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia 2014; 57:2366-73. [PMID: 25104468 PMCID: PMC4183717 DOI: 10.1007/s00125-014-3342-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The CD40-CD154 interaction directs autoimmune inflammation. Therefore, a long-standing goal in the treatment of autoimmune disease has been to control the formation of that interaction and thereby prevent destructive inflammation. Antibodies blocking CD154 are successful in mouse models of autoimmune disease but, while promising when used in humans, unfortunate thrombotic events have occurred, forcing the termination of those studies. METHODS To address the clinical problem of thrombotic events caused by anti-CD154 antibody treatment, we created a series of small peptides based on the CD154 domain that interacts with CD40 and tested the ability of these peptides to target CD40 and prevent type 1 diabetes in NOD mice. RESULTS We identified a lead candidate, the 15-mer KGYY15 peptide, which specifically targets CD40-positive cells in a size- and sequence-dependent manner. It is highly efficient in preventing hyperglycaemia in NOD mice that spontaneously develop type 1 diabetes. Importantly, KGYY15 can also reverse new-onset hyperglycaemia. KGYY15 is well tolerated and functions to control the cytokine profile of culprit Th40 effector T cells. The KGYY15 peptide is 87% homologous to the human sequence, suggesting that it is an important candidate for translational studies. CONCLUSIONS/INTERPRETATION Peptide KGYY15 constitutes a viable therapeutic option to antibody therapy in targeting the CD40-CD154 interaction in type 1 diabetes. Given the involvement of CD40 in autoimmunity in general, it will also be important to evaluate KGYY15 in the treatment of other autoimmune diseases. This alternative therapeutic approach opens new avenues of exploration in targeting receptor-ligand interactions.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Dan M. Waid
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Jessica R. Carter
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - David H. Wagner
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
18
|
Vogel IT, Gool SWV, Ceuppens JL. CD28/CTLA-4/B7 and CD40/CD40L costimulation and activation of regulatory T cells. World J Immunol 2014; 4:63-77. [DOI: 10.5411/wji.v4.i2.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2014] [Revised: 05/12/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Costimulatory signals are crucial for T cell activation. Attempts to block costimulatory pathways have been effective in preventing unwanted immune reactions. In particular, blocking the CD28/cytotoxic T lymphocyte antigen (CTLA)-4/B7 interaction (using CTLA-4Ig) and the CD40/CD40L interaction (using anti-CD40L antibodies) prevents T cell mediated autoimmune diseases, transplant rejection and graft vs host disease in experimental models. Moreover, CTLA-4Ig is in clinical use to treat rheumatoid arthritis (abatacept) and to prevent rejection of renal transplants (belatacept). Under certain experimental conditions, this treatment can even result in tolerance. Surprisingly, the underlying mechanisms of immune modulation are still not completely understood. We here discuss the evidence that costimulation blockade differentially affects effector T cells (Teff) and regulatory T cells (Treg). The latter are required to control inappropriate and unwanted immune responses, and their activity often contributes to tolerance induction and maintenance. Unfortunately, our knowledge on the costimulatory requirements of Treg cells is very limited. We therefore summarize the current understanding of the costimulatory requirements of Treg cells, and elaborate on the effect of anti-CD40L antibody and CTLA-4Ig treatment on Treg cell activity. In this context, we point out that the outcome of a treatment aiming at blocking the CD28/CTLA-4/B7 costimulatory interaction can vary with dosing, timing and underlying immunopathology.
Collapse
|
19
|
Cechin SR, Buchwald P. Effects of representative glucocorticoids on TNFα- and CD40L-induced NF-κB activation in sensor cells. Steroids 2014; 85:36-43. [PMID: 24747770 PMCID: PMC4049353 DOI: 10.1016/j.steroids.2014.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/21/2013] [Revised: 03/15/2014] [Accepted: 04/03/2014] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are an important class of anti-inflammatory/immunosuppressive drugs. A crucial part of their anti-inflammatory action results from their ability to repress proinflammatory transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) upon binding to the glucocorticoid receptor (GR). Accordingly, sensor cells quantifying their effect on inflammatory signal-induced NF-κB activation can provide useful information regarding their potencies as well as their transrepression abilities. Here, we report results obtained on their effect in suppressing both the TNFα- and the CD40L-induced activation of NF-κB in sensor cells that contain an NF-κB-inducible SEAP construct. In these cells, we confirmed concentration-dependent NF-κB activation for both TNFα and CD40L at low nanomolar concentrations (EC50). Glucocorticoids tested included hydrocortisone, prednisolone, dexamethasone, loteprednol etabonate, triamcinolone acetonide, beclomethasone dipropionate, and clobetasol propionate. They all caused significant, but only partial inhibition of these activations in concentration-dependent manners that could be well described by sigmoid response-functions. Despite the limitations of only partial maximum inhibitions, this cell-based assay could be used to quantitate the suppressing ability of glucocorticoids (transrepression potency) on the expression of proinflammatory transcription factors caused by two different cytokines in parallel both in a detailed, full dose-response format as well as in a simpler single-dose format. Whereas inhibitory potencies obtained in the TNF assay correlated well with consensus glucocorticoid potencies (receptor-binding affinities, Kd, RBA, at the GR) for all compounds, the non-halogenated steroids (hydrocortisone, prednisolone, and loteprednol etabonate) were about an order of magnitude more potent than expected in the CD40 assay in this system.
Collapse
Affiliation(s)
- Sirlene R Cechin
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA; Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1600 NW 10 Ave (R-189), Miami, FL 33136, USA.
| |
Collapse
|
20
|
Ganesan L, Buchwald P. The promiscuous protein binding ability of erythrosine B studied by metachromasy (metachromasia). J Mol Recognit 2013; 26:181-9. [PMID: 23456742 DOI: 10.1002/jmr.2263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 11/06/2022]
Abstract
The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein-protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50 ) in the 5- to 30-μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd ) and stoichiometry (nb ) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5-6 and 8-9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding.
Collapse
Affiliation(s)
- Lakshmi Ganesan
- Department of Molecular and Cellular Pharmacology and Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
21
|
Abstract
The past decade has witnessed a surge in the development of immunomodulatory approaches to combat a broad range of human diseases, including cancer, viral infections, autoimmunity and inflammation as well as in the prevention of transplant rejection. Immunomodulatory approaches mostly involve the use of monoclonal antibodies or recombinant fusion proteins that target cell surface signalling molecules on immune cells to drive immune responses towards the desired direction. Advances in our understanding of the human immune system, along with valuable lessons learned from the first generation of therapeutic biologics, are aiding the design of the next generation of immunomodulatory biologics with better therapeutic efficacy, minimized adverse effects and long-lasting clinical benefit. The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD1) and B7 homolog 1 (B7H1; also known as PDL1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, 300 George Street, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
22
|
Vaitaitis GM, Wagner DH. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One 2012; 7:e38708. [PMID: 22685601 PMCID: PMC3369903 DOI: 10.1371/journal.pone.0038708] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
While it has long been understood that CD40 plays a critical role in the etiology of autoimmunity, glycobiology is emerging as an important contributor. CD40 signaling is also gaining further interest in transplantation and cancer therapies. Work on CD40 signaling has focused on signaling outcomes and blocking of its ligand, CD154, while little is known about the actual receptor itself and its control. We demonstrated that CD40 is in fact several receptors occurring as constellations of differentially glycosylated forms of the protein that can sometimes form hybrid receptors with other proteins. An enticing area of autoimmunity is differential glycosylation of immune molecules leading to altered signaling. Galectins interact with carbohydrates on proteins to effect such signaling alterations. Studying autoimmune prone NOD and non-autoimmune BALB/c mice, here we reveal that in-vivo CD40 signals alter the glycosylation status of non-autoimmune derived CD4 T cells to resemble that of autoimmune derived CD4 T cells. Galectin-9 interacts with CD40 and, at higher concentrations, prevents CD40 induced proliferative responses of CD4loCD40+ effector T cells and induces cell death through a Tim-3 independent mechanism. Interestingly, galectin-9, at lower concentrations, alters the surface expression of CD3, CD4, and TCR, regulating access to those molecules and thereby redirects the inflammatory cytokine phenotype and CD3 induced proliferation of autoimmune CD4loCD40+ T cells. Understanding the dynamics of the CD40 receptor(s) and the impact of glycosylation status in immunity will gain insight into how to maintain useful CD40 signals while shutting down detrimental ones.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Department of Medicine and Webb-Waring Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David H. Wagner
- Department of Medicine and Webb-Waring Center, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Recent success stories concerning the targeting of protein-protein interactions (PPIs) have led to an increased focus on this challenging target class for drug discovery. This article explores various avenues to assess the druggability of PPIs and describes a druggability decision flow chart, which can be applied to any PPI target. This flow chart not only covers small molecules but also peptidomimetics, peptides and conformationally restricted peptides as potential modalities for targeting PPIs. Additionally, a retrospective analysis of PPI druggability using various computational tools is summarized. The application of a systematic approach as presented in this paper will increase confidence that modulators (e.g., small organic molecules or peptides) can ultimately be identified for a particular target before a decision is made to commit significant discovery resources.
Collapse
|
24
|
Baker RL, Mallevaey T, Gapin L, Haskins K. T cells interact with T cells via CD40-CD154 to promote autoimmunity in type 1 diabetes. Eur J Immunol 2012; 42:672-80. [PMID: 22488364 PMCID: PMC3697870 DOI: 10.1002/eji.201142071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
We have investigated the role of CD40 signaling in islet-reactive, diabetogenic CD4(+) Th1 T-cell clones. Using multispectral flow cytometry, we showed that CD40 and CD154 are co-expressed and form complexes on the surface of activated T cells. We also demonstrate that activated Tcells can transactivate CD4(+) CD40(+) T cells through the CD40-CD154 pathway. To investigate the role of CD40 signaling on Th1 cells, we used the diabetogenic clone BDC-5.2.9 retrovirally transduced with a truncated form of the CD40 molecule to produce a CD40 dominant-negative T-cell clone. Upon challenge with antigen in vitro, the production of IFN-γ by BDC-5.2.9 CD40DN was greatly reduced and, in vivo, the dominant-negative variant was unable to induce diabetes. Transduction with the CD40DN vector was also effective in preventing transfer of disease by primary NOD CD4(+) T cells. Ex vivo analysis of pancreatic infiltrates after transfer of BDC-5.2.9 CD40DN cells revealed an overall reduction of cell numbers and cytokine production by both T cells and macrophages. These data indicate that CD40 is an important signaling molecule on autoreactive CD4(+) T cells and contributes to their pathogenic effector function.
Collapse
Affiliation(s)
- Rocky L Baker
- Integrated Department of Immunology, University of Colorado at Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
25
|
Fang C, Corrigan CJ, Ying S. Identifying and testing potential new anti-asthma agents. Expert Opin Drug Discov 2011; 6:1027-44. [PMID: 22646862 DOI: 10.1517/17460441.2011.608659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Inhaled corticosteroids alone or with long-acting beta-2 agonists (LABA) are the basic treatment for stable asthma. While the majority of patients are controllable, some patients retain chronic severe disease and develop permanent alterations in airway function. For patients such as these it is important to better understand the mechanisms of asthma so that alternative approaches can be developed. AREA COVERED Based on data from in vitro cell culture, animal models and clinical trials, this review discusses potential agents targeting either key effector cells, mediators and their receptors in asthma pathogenesis or their signaling cascade molecules. EXPERT OPINION As targeting single Th2 cytokines and their receptors has been shown to have limited clinical benefit, it is important to identify and test potential new therapeutic agents. Recent studies suggest that blockade of IgE synthesis, its interaction with its receptors and downstream signaling, identification of molecular targets in innate immune and airways structural cells, and fresh anti-neutrophil strategies should be prominent among these. Further studies are required to clarify the relationship between airways remodeling and asthma severity so that appropriate patients may be targeted.
Collapse
Affiliation(s)
- Cailong Fang
- Guy's Hospital, King's College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma , Department of Asthma , Allergy and Respiratory Science, 5th Floor, Tower Wing, London SE1 9RT , UK +44 207 188 3392 ;
| | | | | |
Collapse
|
26
|
Silvian LF, Friedman JE, Strauch K, Cachero TG, Day ES, Qian F, Cunningham B, Fung A, Sun L, Shipps GW, Su L, Zheng Z, Kumaravel G, Whitty A. Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem Biol 2011; 6:636-47. [PMID: 21417339 PMCID: PMC3415792 DOI: 10.1021/cb2000346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 μM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.
Collapse
Affiliation(s)
- Laura F. Silvian
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
,To whom correspondence should be addressed: ,
| | - Jessica E. Friedman
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Kathy Strauch
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Teresa G. Cachero
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Eric S. Day
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Fang Qian
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Brian Cunningham
- Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080.
| | - Amy Fung
- Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080.
| | - Lihong Sun
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Gerald W. Shipps
- Neogenesis Pharmaceuticals Inc., 840 Memorial Dr., Cambridge, MA 02139
| | - Lihe Su
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Zhongli Zheng
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | | | - Adrian Whitty
- Boston University, Department of Chemistry, Metcalf Center for Science and Engineering, 590 Commonwealth Ave, Boston, MA 02215.
,To whom correspondence should be addressed: ,
| |
Collapse
|
27
|
Buchwald P. Small-molecule protein-protein interaction inhibitors: therapeutic potential in light of molecular size, chemical space, and ligand binding efficiency considerations. IUBMB Life 2011; 62:724-31. [PMID: 20979208 DOI: 10.1002/iub.383] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
As the ultimate function of proteins depends to a great extent on their binding partners, protein-protein interactions (PPIs) represent a treasure trove of possible new therapeutic targets. Unfortunately, interfaces involved in PPIs are not well-suited for effective small molecule binding. Nevertheless, successful examples of small-molecule PPI inhibitors (PPIIs) are beginning to accumulate, and the sheer number of PPIs that form the human interactome implies that, despite the relative unsuitability of PPIs to serve as "druggable" targets, small-molecule PPIIs can still provide novel pharmacological tools and new innovative drugs in at least some areas. Here, after some illustrative examples, accumulating information on the binding efficiency, molecular size, and chemical space requirements will be briefly reviewed. Therapeutic success can only be achieved if these considerations are incorporated into the search process and if careful medicinal chemistry approaches are used to address the absorption, distribution, metabolism, and excretion requirements of larger molecules that are often needed for this target class due to the lower efficiency of binding.
Collapse
Affiliation(s)
- Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
28
|
The food colorant erythrosine is a promiscuous protein–protein interaction inhibitor. Biochem Pharmacol 2011; 81:810-8. [DOI: 10.1016/j.bcp.2010.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/22/2022]
|
29
|
Margolles-Clark E, Kenyon NS, Ricordi C, Buchwald P. Effective and specific inhibition of the CD40-CD154 costimulatory interaction by a naphthalenesulphonic acid derivative. Chem Biol Drug Des 2010; 76:305-13. [PMID: 20636329 DOI: 10.1111/j.1747-0285.2010.01014.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Costimulatory interactions are important regulators of T-cell activation and, hence, promising therapeutic targets in autoimmune diseases as well as in transplant recipients. Following our recent identification of the first small-molecule inhibitors of the CD40-CD154 costimulatory protein-protein interaction (J Mol Med 87, 2009, 1133), we continued our search within the chemical space of organic dyes, and we now report the identification of the naphthalenesulphonic acid derivative mordant brown 1 as a more active, more effective, and more specific inhibitor. Flow cytometry experiments confirmed its ability to concentration-dependently inhibit the CD154(CD40L)-induced cellular responses in human THP-1 cells at concentrations well below cytotoxic levels. Binding experiments showed that it not only inhibits the CD40-CD154 interaction with sub-micromolar activity, but it also has considerably more than 100-fold selectivity toward this interaction even when compared to other members of the tumor necrosis factor superfamily pairs such as TNF-R1-TNF-α, BAFF-R(CD268)-BAFF(CD257/BLys), OX40(CD134)-OX40L(CD252), RANK(CD265)-RANKL(CD254/TRANCE), or 4-1BB(CD137)-4-1BBL. There is now sufficient structure-activity relationship information to serve as the basis of a drug discovery initiative targeting this important costimulatory interaction.
Collapse
Affiliation(s)
- Emilio Margolles-Clark
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | |
Collapse
|