1
|
Pham DL, Cox K, Ko ML, Ko GYP. Peptide Lv and Angiogenesis: A Newly Discovered Angiogenic Peptide. Biomedicines 2024; 12:2851. [PMID: 39767758 PMCID: PMC11672992 DOI: 10.3390/biomedicines12122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance KCa channels (KCa3.1) in vascular endothelial cells. Peptide Lv is upregulated in the retinas of patients with early proliferative diabetic retinopathy, a disease involving pathological angiogenesis. This review will provide an overview of peptide Lv, its known bioactivities in vitro and in vivo, and its clinical relevance, with a focus on its role in angiogenesis. As there is more about peptide Lv to be explored, this article serves as a foundation for possible future developments of peptide Lv-related therapeutics to treat or prevent diseases.
Collapse
Affiliation(s)
- Dylan L. Pham
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Kelsey Cox
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, TX 77802, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Formica ML, Pernochi Scerbo JM, Awde Alfonso HG, Palmieri PT, Ribotta J, Palma SD. Nanotechnological approaches to improve corticosteroids ocular therapy. Methods 2024; 234:152-177. [PMID: 39675541 DOI: 10.1016/j.ymeth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The administration of corticosteroids is the first-line treatment of the clinical conditions with ocular inflammation. Nonetheless, ocular physiological mechanisms, anatomical barriers and corticosteroid properties prevent it from reaching the target site. Thus, frequent topical administered doses or ocular injections are required, leading to a higher risk of adverse events and poor patient compliance. Designing novel drug delivery systems based on nanotechnological tools is a useful approach to overcome disadvantages associated with the ocular delivery of corticosteroids. Nanoparticle-based drug delivery systems represent an alternative to the current dosage forms for the ocular administration of corticosteroids, since due to their particle size and the properties of their materials, they can increase their solubility, improve ocular permeability, control their release and increase bioavailability after their ocular administration. In this way, lipid and polymer-based nanoparticles have been the main strategies developed, giving rise to novel patent applications to protect these innovative drug delivery systems as a product, its preparation or administration method. Additionally, it should be noted that at least 10 clinical trials are being carried out to evaluate the ocular application of different pharmaceutical formulations based on corticosteroid-loaded nanoparticles. Through a comprehensive and extensive analysis, this review highlights the impact of nanotechnology applications in ocular inflammation therapy with corticosteroids.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Juan Matías Pernochi Scerbo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pablo Tomás Palmieri
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Julieta Ribotta
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
3
|
Wang L, Wang C, Li L, Zhou X, Hua X, Yuan X. Analysis of the Molecular Mechanism of Xueshuantong in the Treatment of Wet Age-Related Macular Degeneration (AMD) Using GEO Datasets, Network Pharmacology, and Molecular Docking. Biochem Genet 2024; 62:5004-5021. [PMID: 38383835 DOI: 10.1007/s10528-023-10654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/23/2024]
Abstract
At present, the main treatment method for wet AMD is single anti-VEGF therapy, which can require multiple injections, is costly and may have poor efficacy. Studies and clinical experiments have shown that the oral Chinese medicine Xueshuantong combined with anti-VEGF therapy is more effective, and this study aims to explore the molecular mechanism. The TCMSP database was used to identify the main Xueshuantong components. The PubChem database and SWISS Target Prediction data were used to find the SMILES molecular formulas of compounds and corresponding target genes and disease-related genes were searched using the GEO, DisGeNET, and GeneCards databases. Venny was used to identify the intersecting wet AMD-related genes and Xueshuantong targets and Cytoscape software was used to construct direct links between the drug components and disease targets. Then, PPI networks were constructed using the STRING website. R software was used for GO and KEGG enrichment analyses. Cytoscape software was used for topological analyses, and AutoDock Vina v.1.1.2 software was used for molecular docking. 64 compounds corresponding to four drugs were found by the TCMSP database, 1001 total drug targets were found by the PubChem database, 607 wet AMD target genes were found by the GEO, DisGeNET, and GeneCards databases, and 87 Xueshuantong target genes for wet AMD were obtained. Then, by constructing the drug component and disease target network and PPI network, we found that the components closely interacted with VEGF, TNF, caspase 3, CXCL8, and AKT1, which suggested that the therapeutic effects might be related to the inhibition of neovascularization, inflammation, and AKT pathway. Then, GO enrichment analysis showed that the biological processes response to hypoxia, positive regulation of angiogenesis, and inflammatory response were enriched. KEGG enrichment results showed that the HIF-1 and pi3k-akt pathways may mediate the inhibition of wet AMD by Xueshuantong. Topological analysis results identified 10 key proteins, including VEGF, TNF, AKT1, and TLR4. The results of molecular docking also confirmed their strong binding to their respective compounds. In this study, it was confirmed that Xueshuantong could inhibit wet AMD by targeting VEGF, TNF, TLR4, and AKT1, multichannel HIF-1, and the PI3K-AKT pathway, which further proved the therapeutic effects of Xueshuantong combined with single anti-VEGF therapy on wet AMD and provided new insights into the study of novel molecular drug targets for the treatment of wet AMD.
Collapse
Affiliation(s)
- Ling Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Chaoyu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300052, China
| | - Liangpin Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xueyan Zhou
- Department of Ophthalmology, The First People's Hospital of Xianyang City, Xianyang, 712000, China
| | - Xia Hua
- Aier Eye Institute, Changsha, 410015, China.
- Tianjin Aier Eye Hospital, Tianjin, 300190, China.
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China.
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
4
|
An X, Paoloni J, Oh Y, Spangler JB. Engineering growth factor ligands and receptors for therapeutic innovation. Trends Cancer 2024; 10:1131-1146. [PMID: 39389907 PMCID: PMC11631651 DOI: 10.1016/j.trecan.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
Growth factors signal through engagement and activation of their respective cell surface receptors to choreograph an array of cellular functions, including proliferation, growth, repair, migration, differentiation, and survival. Because of their vital role in determining cell fate and maintaining homeostasis, dysregulation of growth factor pathways leads to the development and/or progression of disease, particularly in the context of cancer. Exciting advances in protein engineering technologies have enabled innovative strategies to redesign naturally occurring growth factor ligands and receptors as targeted therapeutics. We review growth factor protein engineering efforts, including affinity modulation, molecular fusion, the design of decoy receptors, dual specificity constructs, and vaccines. Collectively, these approaches are catapulting next-generation drugs to treat cancer and a host of other conditions.
Collapse
Affiliation(s)
- Xinran An
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Paoloni
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuseong Oh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Zhang M, Lu X, Luo L, Dou J, Zhang J, Li G, Zhao L, Sun F. Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization. J Nanobiotechnology 2024; 22:703. [PMID: 39533430 PMCID: PMC11559141 DOI: 10.1186/s12951-024-02943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Choroidal neovascularization (CNV) is a leading cause of visual impairment in wet age-related macular degeneration (wAMD). Recent investigations have validated the potential of reducing glutamine synthetase (GS) to inhibit neovascularization formation, offering prospects for treating various neovascularization-related diseases. In this study, we devised a CRISPR/Cas9 delivery system employing the nucleic acid aptamer AS1411 as a targeting moiety and exosome-liposome hybrid nanoparticles as carriers (CAELN). Exploiting the binding affinity between AS1411 and nucleolin on endothelial cell surfaces, the delivery system was engineered to specifically target the glutamine synthetase gene (GLUL), thereby attenuating GS levels and continuously suppressing CNV. CAELN exhibited spherical and uniform dispersion. In vitro cellular investigations demonstrated gene editing efficiencies of CAELN ranging from 42.05 to 55.02% and its capacity to inhibit neovascularization in HUVEC cells. Moreover, in vivo pharmacodynamic studies conducted in CNV rabbits revealed efficacy of CAELN in restoring the thickness of intra- and extranuclear tissues. The findings suggest that GS is a novel target for the inhibition of pathological CNV, while the development of AS1411-modified exosome-liposome hybrid nanoparticles represents a novel delivery method for the treatment of neovascular-related diseases.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyue Lu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Jinqiu Dou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingbo Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ge Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Li Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Hu XT, Wu XF, Xu JY, Xu X. Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J Adv Res 2024:S2090-1232(24)00529-0. [PMID: 39522689 DOI: 10.1016/j.jare.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lactate was once considered as metabolic waste for a long time. In 2019, Professor Zhao Yingming's team from the University of Chicago found that lactate could also be used as a substrate to induce histone lactylation and regulate gene expression. Since then, researchers have discovered that lactate-mediated lactylation play important regulatory roles in various physiological and pathological processes. AIM OF REVIEW In this review, we aim to discuss the roles and mechanisms of lactylation in human health and diseases, as well as the effects of lactylation on proteins and metabolic modulators targeting lactylation. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we emphasize the crucial regulatory roles of lactylation in the development of numerous physiological and pathological processes. Of relevance, we discuss the current issues and challenges pertaining to lactylation. This review provides directions and a theoretical basis for future research and clinical translation of lactylation.
Collapse
Affiliation(s)
- Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Yi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
7
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
8
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
9
|
Deissler HL, Rehak M, Lytvynchuk L. VEGF-A 165a and angiopoietin-2 differently affect the barrier formed by retinal endothelial cells. Exp Eye Res 2024; 247:110062. [PMID: 39187056 DOI: 10.1016/j.exer.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| | - Matus Rehak
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany; Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
10
|
Zhou L, Li J, Wang J, Niu X, Li J, Zhang K. Pathogenic role of PFKFB3 in endothelial inflammatory diseases. Front Mol Biosci 2024; 11:1454456. [PMID: 39318551 PMCID: PMC11419998 DOI: 10.3389/fmolb.2024.1454456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
The differentiation of vascular endothelial cells and the formation of new blood vessels are inseparable from the energy supply and regulation of metabolism. The budding of blood vessels is a starting point of glycolysis pathway in angiogenesis. Phosphofructokinase-2/fructose 2,6-biophosphatase 3 (PFKFB3), a key rate-limiting enzyme in glycolysis, exhibits strong kinase activity. Inhibition of PFKFB3 can reduce the rate of glycolysis, thereby inhibiting the budding of blood vessels, resulting in inhibition of pathological angiogenesis. In this review, the role of PFKFB3 in the angiogenesis of inflammatory diseases was summarized, and the endothelial inflammatory diseases associated with PFKFB3 were reviewed.
Collapse
Affiliation(s)
- Ling Zhou
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, China
| | - Juan Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, China
| | - Juanjuan Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, China
| | - Xuping Niu
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, China
| |
Collapse
|
11
|
Alshaikh RA, Chullipalliyalil K, Waeber C, Ryan KB. Extended siponimod release via low-porosity PLGA fibres: a comprehensive three-month in vitro evaluation for neovascular ocular diseases. Biomater Sci 2024; 12:4823-4844. [PMID: 39157879 DOI: 10.1039/d4bm00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Neovascular ocular diseases are among the most common causes of preventable or treatable vision loss. Their management involves lifelong, intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapeutics to inhibit neovascularization, the key pathological step in these diseases. Anti-VEGF products approved for ocular administration are expensive biological agents with limited stability and short half-life. Additionally, their therapeutic advantages are hindered by high treatment resistance, poor patient compliance and the need for frequent, invasive administration. Herein, we used electrospinning to develop a unique, non-porous, PLGA implant for the ocular delivery of siponimod to improve ocular neovascular disease management. Siponimod is an FDA-approved drug for multiple sclerosis with a novel indication as a potential ocular angiogenesis inhibitor. The electrospinning conditions were optimised to produce a microfibrous, PLGA matte that was cut and rolled into the desired implant size. Physical characterisation techniques (Raman, PXRD, DSC and FTIR) indicated siponimod was distributed uniformly within the electrospun fibres as a stabilised, amorphous, solid dispersion with a character modifying drug-polymer interaction. Siponimod dispersion and drug-polymer interactions contributed to the formation of smooth fibres, with reduced porous structures. The apparent reduced porosity, coupled with the drug's hydrophobic dispersion, afforded resistance to water penetration. This led to a slow, controlled, Higuchi-type drug diffusion, with ∼30% of the siponimod load released over 90 days. The released drug inhibited human retinal microvascular endothelial cell migration and did not affect the cells' metabolic activity at different time points. The electrospun implant was physically stable after incubation under stress conditions for three months. This novel siponimod intravitreal implant broadens the therapeutic possibilities for neovascular ocular diseases, representing a potential alternative to biological, anti-VEGF treatments due to lower financial and stability burdens. Additionally, siponimod interaction with PLGA provides a unique opportunity to sustain the drug release from the electrospun fibres, thereby reducing the frequency of intravitreal injection and improving patient adherence.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- School of Pharmacy, University College Cork, Cork, Ireland.
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland.
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland.
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Tai ST, Li PH. Persistent Visual Loss in a 1-Eyed Patient After Intravenous Thrombolytic Therapy for Acute Ischemic Stroke. J Neuroophthalmol 2024; 44:e309-e310. [PMID: 37223995 DOI: 10.1097/wno.0000000000001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Shao-Ting Tai
- School of Medicine (S-TT), College of Medicine, National Taiwan University, Taipei, Taiwan; and Department of Ophthalmology (P-HL), Taipei City Hospital Renai Branch, Taipei, Taiwan
| | | |
Collapse
|
13
|
Brandhorst E, Xu L, Klimezak M, Goegan B, Hong H, Hammes HP, Specht A, Cambridge S. In Vivo Optogenetic Manipulation of Transgene Expression in Retinal Neurovasculature. JACS AU 2024; 4:2818-2825. [PMID: 39211617 PMCID: PMC11350597 DOI: 10.1021/jacsau.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024]
Abstract
The retina is prone to developing pathological neovascularization, a leading cause of blindness in humans. Because excess neovascularization does not affect the entire retina, global inhibition treatment of angiogenesis critically interferes with healthy, unaffected retinal tissue. We therefore established an in vivo photoactivated gene expression paradigm which would allow light-mediated targeting of antiangiogenic genetic treatment only to affected retinal regions. We synthesized a "caged" (i.e., reversibly inhibited) photosensitive 4-hydroxytamoxifen analog. Molecular docking analyses validated its reduced transcriptional activity. Caged 4-hydroxytamoxifen was intravitreally injected into mice harboring the inducible Cre/lox system, with CreERT2 being expressed via the Tie2 promoter in the neurovasculature. Subsequent in vivo irradiation of eyes significantly induced retinal expression of a Cre-dependent transgene in retinal blood vessels. Using GFAP-CreERT2 mice, successful photoactivation was also achieved in eyes and also in ex vivo brain slices for validation of the approach. This highlights the possibility of light-mediated gene therapies specific for the retina, a key first step in personalized medicine.
Collapse
Affiliation(s)
- Eric Brandhorst
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Liang Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Maxime Klimezak
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique, Equipe Nanoparticule Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, F-67000 Strasbourg, France
| | - Bastien Goegan
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique, Equipe Nanoparticule Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, F-67000 Strasbourg, France
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Alexandre Specht
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique, Equipe Nanoparticule Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, F-67000 Strasbourg, France
| | - Sidney Cambridge
- Dr. Senckenberg Anatomy, Anatomy II, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- Department of Medicine, Health and Medical University Potsdam, 14471 Potsdam, Germany
| |
Collapse
|
14
|
Yang R, Tang S, Xie X, Jin C, Tong Y, Huang W, Zan X. Enhanced Ocular Delivery of Beva via Ultra-Small Polymeric Micelles for Noninvasive Anti-VEGF Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314126. [PMID: 38819852 DOI: 10.1002/adma.202314126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Pathological ocular neovascularization resulting from retinal ischemia constitutes a major cause of vision loss. Current anti-VEGF therapies rely on burdensome intravitreal injections of Bevacizumab (Beva). Herein ultrasmall polymeric micelles encapsulating Beva (P@Beva) are developed for noninvasive topical delivery to posterior eye tissues. Beva is efficiently loaded into 11 nm micelles fabricated via self-assembly of hyperbranched amphiphilic copolymers. The neutral, brush-like micelles demonstrate excellent drug encapsulation and colloidal stability. In vitro, P@Beva enhances intracellular delivery of Beva in ocular cells versus free drug. Ex vivo corneal and conjunctival-sclera-choroidal tissues transport after eye drops are improved 23-fold and 7.9-fold, respectively. Anti-angiogenic bioactivity is retained with P@Beva eliciting greater inhibition of endothelial tube formation and choroid sprouting over Beva alone. Remarkably, in an oxygen-induced retinopathy (OIR) model, topical P@Beva matching efficacy of intravitreal Beva injection, is the clinical standard. Comprehensive biocompatibility verifies safety. Overall, this pioneering protein delivery platform holds promise to shift paradigms from invasive intravitreal injections toward simplified, noninvasive administration of biotherapeutics targeting posterior eye diseases.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Chaofan Jin
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Yuhua Tong
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, 324000, China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| |
Collapse
|
15
|
da Silva Costa SM, Ito MT, da Cruz PRS, De Souza BB, Rios VM, Bertozzo VDHE, Camargo ACL, Viturino MGM, Lanaro C, de Albuquerque DM, do Canto AM, Saad STO, Ospina-Prieto S, Ozelo MC, Costa FF, de Melo MB. The molecular mechanism responsible for HbSC retinopathy may depend on the action of the angiogenesis-related genes ROBO1 and SLC38A5. Exp Biol Med (Maywood) 2024; 249:10070. [PMID: 39114443 PMCID: PMC11303203 DOI: 10.3389/ebm.2024.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
HbSC disease, a less severe form of sickle cell disease, affects the retina more frequently and patients have higher rates of proliferative retinopathy that can progress to vision loss. This study aimed to identify differences in the expression of endothelial cell-derived molecules associated with the pathophysiology of proliferative sickle cell retinopathy (PSCR). RNAseq was used to compare the gene expression profile of circulating endothelial colony-forming cells from patients with SC hemoglobinopathy and proliferative retinopathy (n = 5), versus SC patients without retinopathy (n = 3). Real-time polymerase chain reaction (qRT-PCR) was used to validate the RNAseq results. A total of 134 differentially expressed genes (DEGs) were found. DEGs were mainly associated with vasodilatation, type I interferon signaling, innate immunity and angiogenesis. Among the DEGs identified, we highlight the most up-regulated genes ROBO1 (log2FoldChange = 4.32, FDR = 1.35E-11) and SLC38A5 (log2FoldChange = 3.36 FDR = 1.59E-07). ROBO1, an axon-guided receptor, promotes endothelial cell migration and contributes to the development of retinal angiogenesis and pathological ocular neovascularization. Endothelial SLC38A5, an amino acid (AA) transporter, regulates developmental and pathological retinal angiogenesis by controlling the uptake of AA nutrient, which may serve as metabolic fuel for the proliferation of endothelial cells (ECs) and consequent promotion of angiogenesis. Our data provide an important step towards elucidating the molecular pathophysiology of PSCR that may explain the differences in ocular manifestations between individuals with hemoglobinopathies and afford insights for new alternative strategies to inhibit pathological angiogenesis.
Collapse
Affiliation(s)
| | - Mirta Tomie Ito
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Bruno Batista De Souza
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Vinicius Mandolesi Rios
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Victor de Haidar e Bertozzo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Ana Carolina Lima Camargo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Carolina Lanaro
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Amanda Morato do Canto
- Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Stephanie Ospina-Prieto
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Margareth Castro Ozelo
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Fernando Ferreira Costa
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| |
Collapse
|
16
|
Modrzejewska M, Zdanowska O, Połubiński P. The Role of HIF-1α in Retinopathy of Prematurity: A Review of Current Literature. J Clin Med 2024; 13:4034. [PMID: 39064074 PMCID: PMC11277540 DOI: 10.3390/jcm13144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hypoxia-inducible factor (HIF) plays a crucial role in regulating oxygen sensing and adaptation at the cellular level, overseeing cellular oxygen homeostasis, erythrocyte production, angiogenesis, and mitochondrial metabolism. The hypoxia-sensitive HIF-1α subunit facilitates tissue adaptation to hypoxic conditions, including the stimulation of proangiogenic factors. Retinopathy of prematurity (ROP) is a proliferative vascular disease of the retina that poses a significant risk to prematurely born children. If untreated, ROP can lead to retinal detachment, severe visual impairment, and even blindness. The pathogenesis of ROP is not fully understood; however, reports suggest that premature birth leads to the exposure of immature ocular tissues to high levels of exogenous oxygen and hyperoxia, which increase the synthesis of reactive oxygen species and inhibit HIF expression. During the ischemic phase, HIF-1α expression is stimulated in the hypoxia-sensitive retina, causing an overproduction of proangiogenic factors and the development of pathological neovascularization. Given the significant role of HIF-1α in the development of ROP, considering it as a potential molecular target for therapeutic strategies appears justified. This review synthesizes information from the last six years (2018-2024) using databases such as PubMed, Google Scholar, and BASE, focusing on the role of HIF-1α in the pathogenesis of ROP and its potential as a target for new therapies.
Collapse
Affiliation(s)
- Monika Modrzejewska
- 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Oliwia Zdanowska
- K. Marcinkowski University Hospital in Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Połubiński
- Scientific Association of Students, 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
17
|
Xu X, Ding X, Wang Z, Ye S, Xu J, Liang Z, Luo R, Xu J, Li X, Ren Z. GBP2 inhibits pathological angiogenesis in the retina via the AKT/mTOR/VEGFA axis. Microvasc Res 2024; 154:104689. [PMID: 38636926 DOI: 10.1016/j.mvr.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pathological retinal angiogenesis is not only the hallmark of retinopathies, but also a major cause of blindness. Guanylate binding protein 2 (GBP2) has been reported to be associated with retinal diseases such as diabetic retinopathy and hypoxic retinopathy. However, GBP2-mediated pathological retinal angiogenesis remains largely unknown. The present study aimed to investigate the role of GBP2 in pathological retinal angiogenesis and its underlying molecular mechanism. In this study, we established oxygen-induced retinopathy (OIR) mice model for in vivo study and hypoxia-induced angiogenesis in ARPE-19 cells for in vitro study. We demonstrated that GBP2 expression was markedly downregulated in the retina of mice with OIR and ARPE-19 cells treated with hypoxia, which was associated with pathological retinal angiogenesis. The regulatory mechanism of GBP2 in ARPE-19 cells was studied by GBP2 silencing and overexpression. The regulatory mechanism of GBP2 in the retina was investigated by overexpressing GBP2 in the retina of OIR mice. Mechanistically, GBP2 downregulated the expression and secretion of vascular endothelial growth factor (VEGFA) in ARPE-19 cells and retina of OIR mice. Interestingly, overexpression of GBP2 significantly inhibited neovascularization in OIR mice, conditioned medium of GBP2 overexpressing ARPE-19 cells inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, we confirmed that GBP2 downregulated VEGFA expression and angiogenesis by inhibiting the AKT/mTOR signaling pathway. Taken together, we concluded that GBP2 inhibited pathological retinal angiogenesis via the AKT/mTOR/VEGFA axis, thereby suggesting that GBP2 may be a therapeutic target for pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xihui Ding
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zizhuo Wang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, China; Anhui Public Health Clinical Center, Hefei, Anhui 230012, China
| | - Jianguang Xu
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zugang Liang
- Hefei Huaxia Mingren Eye Hospital, Hefei, Anhui 230032, China
| | - Renfei Luo
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyong Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaohui Li
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China; College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
18
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
19
|
Xu L, Prentice JR, Velez-Montoya R, Sinha A, Barakat MR, Gupta A, Lowenthal R, Khanani AM, Kaiser PK, Heier JS, Jones A, Morgenstern JL, Strong Caldwell A, Mueller N, Quiroz-Mercado H, Huvard M, Olson JL, Bhatt R, Bhandari R. Bispecific VEGF-A and Angiopoietin-2 Antagonist RO-101 Preclinical Efficacy in Model of Neovascular Eye Disease. OPHTHALMOLOGY SCIENCE 2024; 4:100467. [PMID: 38591047 PMCID: PMC11000112 DOI: 10.1016/j.xops.2024.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 04/10/2024]
Abstract
Objective To investigate preclinical data regarding the efficacy and biocompatibility of a bispecific protein, RO-101, with effects on VEGF-A and angiopoietin-2 (Ang-2) for use in retinal diseases. Design Experimental study. Subjects Brown Norway rats and New Zealand White Cross rabbits. Methods Preclinical study data of RO-101 in terms of target-specific enzyme-linked immunosorbent assay binding affinity to VEGF-A and Ang-2, vitreous half-life, inhibition of target-receptor interaction, laser choroidal neovascular membrane animal model, human umbilical vein endothelial cell migration, and biocompatibility was obtained. Where applicable, study data were compared with other anti-VEGF agents. Main Outcome Measures Binding affinity, half-life, biocompatibility, and efficacy of RO-101. Neovascularization prevention by RO-101. Results RO-101 demonstrated a strong binding affinity for VEGF-A and Ang-2 and in vitro was able to inhibit binding to the receptor with higher affinity than faricimab. The half-life of RO-101 is comparable to or longer than current VEGF inhibitors used in retinal disease. RO-101 was found to be biocompatible with retinal tissue in Brown Norway rats. RO-101 was as effective or more effective than current anti-VEGF therapeutics in causing regression of neovascular growth in vivo. Conclusions RO-101 is a promising candidate for use in retinal diseases. In preclinical models, RO-101 demonstrated similar or higher regression of neovascular growth to current anti-VEGF therapeutics with comparable or longer half-life. It also demonstrates a strong binding affinity for VEGF-A and Ang-2. It also was shown to be biocompatible with retinal tissue in animal studies, indicating potential compatibility for use in humans. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Li Xu
- Independent Research Consultant, Contrator for RevOpsis Therapeutics, Inc., San Carlos, California
| | | | - Raul Velez-Montoya
- Retina Department. Asociacion para Evitar la Ceguera en Mexico IAP, Mexico City, Mexico
| | - Alina Sinha
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Mark R. Barakat
- Retinal Consultants of Arizona, and University of Arizona College of Medicine, Phoenix, Arizona
| | - Ashwin Gupta
- Vanderbilt School of Medicine, Nashville, Tennessee
| | | | - Arshad M. Khanani
- Sierra Eye Associates, and University of Nevada, Reno School of Medicine, Reno, Nevada
| | | | | | - Anthony Jones
- Sue Anschutz Rodgers Eye Center, University of Colorado, Aurora, Colorado
| | | | | | - Niklaus Mueller
- Sue Anschutz Rodgers Eye Center, University of Colorado, Aurora, Colorado
| | - Hugo Quiroz-Mercado
- Retina Department. Asociacion para Evitar la Ceguera en Mexico IAP, Mexico City, Mexico
| | - Michael Huvard
- University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | - Jeffrey L. Olson
- Sue Anschutz Rodgers Eye Center, University of Colorado, Aurora, Colorado
| | - Ramesh Bhatt
- Independent Research Consultant, Contrator for RevOpsis Therapeutics, Inc., San Carlos, California
| | | |
Collapse
|
20
|
Xu X, Han N, Zhao F, Fan R, Guo Q, Han X, Liu Y, Luo G. Inefficacy of anti-VEGF therapy reflected in VEGF-mediated photoreceptor degeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102176. [PMID: 38689803 PMCID: PMC11059333 DOI: 10.1016/j.omtn.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Retinal neovascularization (RNV) is primarily driven by vascular endothelial growth factor (VEGF). However, current anti-VEGF therapies are limited by short half-lives and repeated injections, which reduce patient quality of life and increase medical risks. Additionally, not all patients benefit from anti-VEGF monotherapy, and some problems, such as unsatisfactory vision recovery, persist after long-term treatment. In this study, we constructed a recombinant adeno-associated virus (AAV), AAV2-SPLTH, which encodes an anti-VEGF antibody similar to bevacizumab, and assessed its effects in a doxycycline-induced Tet-opsin-VEGFA mouse model of RNV. AAV2-SPLTH effectively inhibited retinal leakage, RNV progression, and photoreceptor apoptosis in a Tet-opsin-VEGF mouse model. However, proteomic sequencing showed that AAV2-SPLTH failed to rescue the expression of phototransduction-related genes, which corresponded to reduced photoreceptor cell numbers. This study suggests that anti-VEGF monotherapy can significantly inhibit RNV to some extent but may not be enough to save visual function in the long term.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Ruoyue Fan
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| | - Qingguo Guo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Xuefei Han
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| |
Collapse
|
21
|
Titz B, Siebourg-Polster J, Bartolo F, Lavergne V, Jiang Z, Gayan J, Altay L, Enders P, Schmelzeisen C, Ippisch QT, Koss MJ, Ansari-Shahrezaei S, Garweg JG, Fauser S, Dieckmann A. Implications of Ocular Confounding Factors for Aqueous Humor Proteomic and Metabolomic Analyses in Retinal Diseases. Transl Vis Sci Technol 2024; 13:17. [PMID: 38913008 PMCID: PMC11205237 DOI: 10.1167/tvst.13.6.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To assess the impact of ocular confounding factors on aqueous humor (AH) proteomic and metabolomic analyses for retinal disease characterization. Methods This study recruited 138 subjects (eyes): 102 with neovascular age-related macular degeneration (nAMD), 18 with diabetic macular edema (DME), and 18 with cataract (control group). AH samples underwent analysis using Olink Target 96 proteomics and Metabolon's metabolomics platform Data analysis included correlation, differential abundance, and gene-set analysis. Results In total, 756 proteins and 408 metabolites were quantified in AH. Total AH protein concentration was notably higher in nAMD (3.2-fold) and DME (4.1-fold) compared to controls. Pseudophakic eyes showed higher total AH protein concentrations than phakic eyes (e.g., 1.6-fold in nAMD) and a specific protein signature indicative of matrix remodeling. Unexpectedly, pupil-dilating drugs containing phenylephrine/tropicamide increased several AH proteins, notably interleukin-6 (5.4-fold in nAMD). Correcting for these factors revealed functionally relevant protein correlation clusters and disease-relevant, differentially abundant proteins across the groups. Metabolomics analysis, for which the relevance of confounder adjustment was less apparent, suggested insufficiently controlled diabetes and chronic hyperglycemia in the DME group. Conclusions AH protein concentration, pseudophakia, and pupil dilation with phenylephrine/tropicamide are important confounding factors for AH protein analyses. When these factors are considered, AH analyses can more clearly reveal disease-relevant factors. Translational Relevance Considering AH protein concentration, lens status, and phenylephrine/tropicamide administration as confounders is crucial for accurate interpretation of AH protein data.
Collapse
Affiliation(s)
- Björn Titz
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Juliane Siebourg-Polster
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Francois Bartolo
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- EFOR-CVO et Soladis, Champagne-au-Mont-d'Or, France
| | - Vincent Lavergne
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- EFOR-CVO et Soladis, Basel, Switzerland
| | - Zhiwen Jiang
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Javier Gayan
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lebriz Altay
- Department of Ophthalmology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | - Justus Gerhard Garweg
- Berner Augenklinik, Bern, Switzerland
- Department of Ophthalmology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sascha Fauser
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Andreas Dieckmann
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
22
|
Han XY, Kong LJ, Li D, Tong M, Li XM, Zhao C, Jiang Q, Yan B. Targeting endothelial glycolytic reprogramming by tsRNA-1599 for ocular anti-angiogenesis therapy. Theranostics 2024; 14:3509-3525. [PMID: 38948065 PMCID: PMC11209708 DOI: 10.7150/thno.96946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Current treatments for ocular angiogenesis primarily focus on blocking the activity of vascular endothelial growth factor (VEGF), but unfavorable side effects and unsatisfactory efficacy remain issues. The identification of novel targets for anti-angiogenic treatment is still needed. Methods: We investigated the role of tsRNA-1599 in ocular angiogenesis using endothelial cells, a streptozotocin (STZ)-induced diabetic model, a laser-induced choroidal neovascularization model, and an oxygen-induced retinopathy model. CCK-8 assays, EdU assays, transwell assays, and matrigel assays were performed to assess the role of tsRNA-1599 in endothelial cells. Retinal digestion assays, Isolectin B4 (IB4) staining, and choroidal sprouting assays were conducted to evaluate the role of tsRNA-1599 in ocular angiogenesis. Transcriptomic analysis, metabolic analysis, RNA pull-down assays, and mass spectrometry were utilized to elucidate the mechanism underlying angiogenic effects mediated by tsRNA-1599. Results: tsRNA-1599 expression was up-regulated in experimental ocular angiogenesis models and endothelial cells in response to angiogenic stress. Silencing of tsRNA-1599 suppressed angiogenic effects in endothelial cells in vitro and inhibited pathological ocular angiogenesis in vivo. Mechanistically, tsRNA-1599 exhibited little effect on VEGF signaling but could cause reduced glycolysis and NAD+/NADH production in endothelial cells by regulating the expression of HK2 gene through interacting with YBX1, thus affecting endothelial effects. Conclusions: Targeting glycolytic reprogramming of endothelial cells by a tRNA-derived small RNA represents an exploitable therapeutic approach for ocular neovascular diseases.
Collapse
Affiliation(s)
- Xiao-yan Han
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ling-jie Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Duo Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Ming Tong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xiu-miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
23
|
Cao X, Su L, Chen H. A potent bioreducible ionizable lipid nanoparticle enables siRNA delivery for retinal neovascularization inhibition. Eur J Pharm Biopharm 2024; 199:114296. [PMID: 38636882 DOI: 10.1016/j.ejpb.2024.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Small interfering RNA (siRNA) is emerging as a promising treatment for retinal neovascularization due to its specific inhibition of the expression of target genes. However, the clinical translation of siRNA drugs is hindered by the efficiency and safety of delivery vectors. Here, we describe the properties of a new bioreducible ionizable lipid nanoparticle (LNP) 2N12H, which is based on a rationally designed novel ionizable lipid called 2N12B. 2N12H exhibited degradation in response to the mimic cytoplasmic glutathione condition and ionization with a pKa value of 6.5, which remaining neutral at pH 7.4. At a nitrogen to phosphorus ratio of 5, 2N12H efficiently encapsulated and protected siRNA from degradation. Compared to the commercial vehicle Lipofectamine 2000, 2N12H demonstrated similar silencing efficiency and improved safety in the in vitro cell experiments. 2N12H/siVEGFA reduced the expression of VEGFA in retinal pigment epithelium cells and mouse retina, consequently suppressing cell migration and retinal neovascularization. In the mouse model, the therapeutic effect of 2N12H/siVEGFA was comparable to that of the clinical drug ranibizumab. Together, these results suggest the potential of this novel ionizable LNP to facilitate the development of nonviral ocular gene delivery systems.
Collapse
Affiliation(s)
- Xiaowen Cao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lili Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
24
|
Lin P, Cao W, Chen X, Zhang N, Xing Y, Yang N. Role of mRNA-binding proteins in retinal neovascularization. Exp Eye Res 2024; 242:109870. [PMID: 38514023 DOI: 10.1016/j.exer.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Retinal neovascularization (RNV) is a pathological process that primarily occurs in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. It is a common yet debilitating clinical condition that culminates in blindness. Urgent efforts are required to explore more efficient and less limiting therapeutic strategies. Key RNA-binding proteins (RBPs), crucial for post-transcriptional regulation of gene expression by binding to RNAs, are closely correlated with RNV development. RBP-RNA interactions are altered during RNV. Here, we briefly review the characteristics and functions of RBPs, and the mechanism of RNV. Then, we present insights into the role of the regulatory network of RBPs in RNV. HuR, eIF4E, LIN28B, SRSF1, METTL3, YTHDF1, Gal-1, HIWI1, and ZFR accelerate RNV progression, whereas YTHDF2 and hnRNPA2B1 hinder it. The mechanisms elucidated in this review provide a reference to guide the design of therapeutic strategies to reverse abnormal processes.
Collapse
Affiliation(s)
- Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China; Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
25
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
26
|
Nakamura S, Yamamoto R, Matsuda T, Yasuda H, Nishinaka A, Takahashi K, Inoue Y, Kuromitsu S, Shimazawa M, Goto M, Narumiya S, Hara H. Sphingosine-1-phosphate receptor 1/5 selective agonist alleviates ocular vascular pathologies. Sci Rep 2024; 14:9700. [PMID: 38678148 PMCID: PMC11055896 DOI: 10.1038/s41598-024-60540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Rie Yamamoto
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaya Matsuda
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Hiroto Yasuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kei Takahashi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yuki Inoue
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Sadao Kuromitsu
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masahide Goto
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
27
|
Bilgin B, Bilak S, Özay Y. Comparison of HIF-1α and survivin levels in patients with diabetes and retinopathy of varying severity. Arq Bras Oftalmol 2024; 87:e2023. [PMID: 38656026 PMCID: PMC11622444 DOI: 10.5935/0004-2749.2023-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 04/26/2024] Open
Abstract
PURPOSE This study measured serum hypoxia--inducible factor-1 (HIF-1α) and survivin levels in patients with diabetes and investigated their association with the severity of retinopathy. METHODS This study included 88 patients with type 2 diabetes mellitus who underwent routine eye examinations. Three groups were created. Group 1 consisted of patients without diabetic retinopathy. Group 2 included patients with non-proliferative diabetic retinopathy. Group 3 included patients with proliferative diabetic retinopathy. To measure serum HIF-1α and survivin levels, venous blood samples were collected from patients. RESULTS The mean HIF-1α levels in groups 1, 2, and 3 were 17.30 ± 2.19, 17.79 ± 2.34, and 14.19 ± 2.94 pg/ml, respectively. Significant differences were detected between groups 1 and 3 (p=0.01) and between groups 2 and 3 (p=0.01). The mean survivin levels in groups 1, 2, and 3 were 42.65 ± 5.37, 54.92 ± 5.55, and 37.46 ± 8.09 pg/ml, respectively. A significant difference was only detected between groups 2 and 3 (p=0.002). CONCLUSION The present study revealed that serum HIF-1α and survivin levels are increased in patients with non-proliferative diabetic retinopathy compared to those in patients without diabetic retinopathy.
Collapse
Affiliation(s)
- Burak Bilgin
- Department of Ophthalmology, Faculty of Medicine, Kahramanmaras
Sutcu Imam University, Kahramanmaras, Turkey
| | - Semsettin Bilak
- Department of Ophthalmology, Faculty of Medicine, Adıyaman
University, Adıyaman, Turkey
| | - Yusuf Özay
- Department of Medical Biology, Faculty of Medicine, Adıyaman
University, Adıyaman, Turkey
| |
Collapse
|
28
|
Sendecki A, Ledwoń D, Tuszy A, Nycz J, Wąsowska A, Boguszewska-Chachulska A, Wylęgała A, Mitas AW, Wylęgała E, Teper S. Association of Genetic Risk for Age-Related Macular Degeneration with Morphological Features of the Retinal Microvascular Network. Diagnostics (Basel) 2024; 14:770. [PMID: 38611684 PMCID: PMC11011905 DOI: 10.3390/diagnostics14070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a multifactorial disease encompassing a complex interaction between aging, environmental risk factors, and genetic susceptibility. The study aimed to determine whether there is a relationship between the polygenic risk score (PRS) in patients with AMD and the characteristics of the retinal vascular network visualized by optical coherence tomography angiography (OCTA). METHODS 235 patients with AMD and 97 healthy controls were included. We used data from a previous AMD PRS study with the same group. The vascular features from different retina layers were compared between the control group and the patients with AMD. The association between features and PRS was then analyzed using univariate and multivariate approaches. RESULTS Significant differences between the control group and AMD patients were found in the vessel diameter distribution (variance: p = 0.0193, skewness: p = 0.0457) and fractal dimension distribution (mean: p = 0.0024, variance: p = 0.0123). Both univariate and multivariate analyses showed no direct and significant association between the characteristics of the vascular network and AMD PRS. CONCLUSIONS The vascular features of the retina do not constitute a biomarker of the risk of AMD. We have not identified a genotype-phenotype relationship, and the expression of AMD-related genes is perhaps not associated with the characteristics of the retinal vascular network.
Collapse
Affiliation(s)
- Adam Sendecki
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (A.W.); (A.W.); (E.W.); (S.T.)
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (A.T.); (A.W.M.)
| | - Aleksandra Tuszy
- Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (A.T.); (A.W.M.)
| | - Julia Nycz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Anna Wąsowska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (A.W.); (A.W.); (E.W.); (S.T.)
- Genomed S.A., 02-971 Warszawa, Poland;
| | | | - Adam Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (A.W.); (A.W.); (E.W.); (S.T.)
| | - Andrzej W. Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (A.T.); (A.W.M.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (A.W.); (A.W.); (E.W.); (S.T.)
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland; (A.S.); (A.W.); (A.W.); (E.W.); (S.T.)
| |
Collapse
|
29
|
Huang H, Zeng J, Kuang X, He F, Yan J, Li B, Liu W, Shen H. Transcriptional patterns of human retinal pigment epithelial cells under protracted high glucose. Mol Biol Rep 2024; 51:477. [PMID: 38573426 DOI: 10.1007/s11033-024-09479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The retinal pigment epithelium (RPE) is essential for retinal homeostasis. Comprehensively exploring the transcriptional patterns of diabetic human RPE promotes the understanding of diabetic retinopathy (DR). METHODS AND RESULTS A total of 4125 differentially expressed genes (DEGs) were screened out from the human primary RPE cells subjected to prolonged high glucose (HG). The subsequent bioinformatics analysis is divided into 3 steps. In Step 1, 21 genes were revealed by intersecting the enriched genes from the KEGG, WIKI, and Reactome databases. In Step 2, WGCNA was applied and intersected with the DEGs. Further intersection based on the enrichments with the GO biological processes, GO cellular components, and GO molecular functions databases screened out 12 candidate genes. In Step 3, 13 genes were found to be simultaneously up-regulated in the DEGs and a GEO dataset involving human diabetic retinal tissues. VEGFA and ERN1 were the 2 starred genes finally screened out by overlapping the 3 Steps. CONCLUSION In this study, multiple genes were identified as crucial in the pathological process of RPE under protracted HG, providing potential candidates for future researches on DR. The current study highlights the importance of RPE in DR pathogenesis.
Collapse
Affiliation(s)
- Hao Huang
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510000, China
| | - Fan He
- Amass Ophthalmology, Guangzhou, 510000, China
| | - Jianjun Yan
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wei Liu
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China.
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510000, China.
| |
Collapse
|
30
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
31
|
Tsuboi K, Mazloumi M, Guo Y, Wang J, Flaxel CJ, Bailey ST, Wilson DJ, Huang D, Jia Y, Hwang TS. Early Sign of Retinal Neovascularization Evolution in Diabetic Retinopathy: A Longitudinal OCT Angiography Study. OPHTHALMOLOGY SCIENCE 2024; 4:100382. [PMID: 37868804 PMCID: PMC10587637 DOI: 10.1016/j.xops.2023.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Purpose To assess whether the combination of en face OCT and OCT angiography (OCTA) can capture observable, but subtle, structural changes that precede clinically evident retinal neovascularization (RNV) in eyes with diabetic retinopathy (DR). Design Retrospective, longitudinal study. Participants Patients with DR that had at least 2 visits. Methods We obtained wide-field OCTA scans of 1 eye from each participant and generated en face OCT, en face OCTA, and cross-sectional OCTA. We identified eyes with RNV sprouts, defined as epiretinal hyperreflective materials on en face OCT with flow signals breaching the internal limiting membrane on the cross-sectional OCTA without recognizable RNV on en face OCTA and RNV fronds, defined as recognizable abnormal vascular structures on the en face OCTA. We examined the corresponding location from follow-up or previous visits for the presence or progression of the RNV. Main Outcome Measures The characteristics and longitudinal observation of early signs of RNV. Results From 71 eyes, we identified RNV in 20 eyes with the combination of OCT and OCTA, of which 13 (65%) were photographically graded as proliferative DR, 6 (30%) severe nonproliferative DR, and 1 (5%) moderate nonproliferative diabetic retinopathy. From these eyes, we identified 38 RNV sprouts and 26 RNV fronds at the baseline. Thirty-four RNVs (53%) originated from veins, 24 (38%) were from intraretinal microabnormalities, and 6 (9%) were from a nondilated capillary bed. At the final visit, 53 RNV sprouts and 30 RNV fronds were detected. Ten eyes (50%) showed progression, defined as having a new RNV lesion or the development of an RNV frond from an RNV sprout. Four (11%) RNV sprouts developed into RNV fronds with a mean interval of 7.0 months. Nineteen new RNV sprouts developed during the follow-up, whereas no new RNV frond was observed outside an identified RNV sprout. The eyes with progression were of younger age (P = 0.014) and tended to be treatment naive (P = 0.07) compared with eyes without progression. Conclusions Longitudinal observation demonstrated that a combination of en face OCT and cross-sectional OCTA can identify an earlier form of RNV before it can be recognized on en face OCTA. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kotaro Tsuboi
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
- Department of Ophthalmology, Aichi Medical University, 1-1, Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Mehdi Mazloumi
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Yukun Guo
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Jie Wang
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | | | - Steven T. Bailey
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - David J. Wilson
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - David Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Yali Jia
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Thomas S. Hwang
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
32
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
33
|
Venkatesh R, Mangla R, Handa A, Parmar Y, Sangoram R, Chhablani J. Epiretinal membrane formation and optic disc vascularisation in type 2A macular telangiectasia (MacTel). Eur J Ophthalmol 2024; 34:NP78-NP82. [PMID: 37644815 DOI: 10.1177/11206721231198888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE To describe a rare clinical finding of epiretinal membrane (ERM) and abnormal optic disc vascularisation in type 2A macular telangiectasia (MacTel). CASE DESCRIPTION A 52-year-old asymptomatic healthy male was examined in the retina clinic. In both eyes, corrected visual acuity was 20/20, N6. Anterior segment examination and intraocular pressure were both normal in both eyes. RESULTS The right eye's dilated fundus examination revealed loss of retinal transparency and superficial intraretinal crystals. A thick ERM extending from the optic disc to the macula obscured the details of the underlying perifoveal region in the left eye fundus. The diagnosis of bilateral type 2 MacTel was confirmed by confocal blue reflectance imaging, fluorescein angiography (FA), and macular optical coherence tomography (OCT). The left eye macular OCT scan also revealed a thick ERM without causing significant retinal traction. Furthermore, FA of the left eye revealed early hyperfluorescence with intense late leakage at the inferior aspect of the optic disc, giving the impression of abnormal optic disc vascularisation. No other cause for the disc vascularisation could be identified. OCT scan through the area with the optic disc leakage revealed a tuft of irregular hyperreflective tissue lying over the ERM. OCT angiography imaging confirmed the vascularity within the tuft of hyperreflective tissue over the ERM. Over a two-year period, no changes in clinical or imaging features were observed. CONCLUSION In type 2A MacTel eyes, ERM formation and abnormal disc vascularisation are uncommon findings. More histopathologic research is needed to characterise these membranes.
Collapse
Affiliation(s)
- Ramesh Venkatesh
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru 560010, Karnataka, India
| | - Rubble Mangla
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru 560010, Karnataka, India
| | - Ashit Handa
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru 560010, Karnataka, India
| | - Yash Parmar
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru 560010, Karnataka, India
| | - Rohini Sangoram
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru 560010, Karnataka, India
| | - Jay Chhablani
- Department of Retina and Vitreous, University of Pittsburgh School of Medicine, Medical Retina and Vitreoretinal Surgery, 203 Lothrop Street, Suite 800, Pittsburg 15213, PA, USA
| |
Collapse
|
34
|
Chan PS, Ting GSS, Krishnalingam MV, Ng DCE. Rubeosis iridis in a premature infant. BMJ Case Rep 2024; 17:e258702. [PMID: 38272509 PMCID: PMC10826493 DOI: 10.1136/bcr-2023-258702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Affiliation(s)
- Pei Sing Chan
- Pediatrics, Hospital Tuanku Ja'afar Seremban, Seremban, Negeri Sembilan, Malaysia
| | | | | | - David Chun-Ern Ng
- Pediatrics, Hospital Tuanku Ja'afar Seremban, Seremban, Negeri Sembilan, Malaysia
| |
Collapse
|
35
|
Wang F, Guo Z, Yang G, Yang F, Zhou Q, Lv H. Lnc-216 regulates the miR-143-5p /MMP2 signaling axis aggravates retinal endothelial cell dysfunction. Clin Hemorheol Microcirc 2024; 88:429-442. [PMID: 38943385 DOI: 10.3233/ch-242163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is a serious retinal vascular disease that affects many individuals in their prime working years. The present research aimed at whether and how LOC681216 (LNC-216) is involved in retinal vascular dysfunction under diabetic conditions. METHODS Rat retinal microvascular endothelial cells (RRMECs) treated with high glucose (HG) were used for functional analysis. Gene expression analysis was conducted using the Clariom D Affymetrix platform. The wound healing, transwell, and vascular tube formation assays were used to identify the migration, invasion, and tube formation capability of RRMECs. The dual-luciferase reporter confirmed the binding interaction between miR-143-5p and LNC-216 or matrix metallopeptidase 2 (MMP2). RESULTS Lnc-216 was upregulated in RRMECs treated with HG. Lnc-216 knockdown markedly suppressed the tube formation, cell migration, and wound healing of cultured RRMECs under HG conditions. Mechanistically, Lnc-216 acted as a miR-143-5p sponge to affect the biological activity of miR-143-5p, which led to increased expression of matrix metallopeptidase 2 (MMP2). CONCLUSIONS Lnc-216 attenuates diabetic retinal vascular dysfunction through the miR-143-5p/MMP2 axis, providing a potential therapeutic strategy for DR.
Collapse
Affiliation(s)
- Fang Wang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangmei Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guiqi Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fan Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qi Zhou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
36
|
Pauleikhoff L, Boneva S, Boeck M, Schlecht A, Schlunck G, Agostini H, Lange C, Wolf J. Transcriptional Comparison of Human and Murine Retinal Neovascularization. Invest Ophthalmol Vis Sci 2023; 64:46. [PMID: 38153746 PMCID: PMC10756240 DOI: 10.1167/iovs.64.15.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose Retinal neovascularization (RNV) is the leading cause of vision loss in diseases like proliferative diabetic retinopathy (PDR). A significant failure rate of current treatments indicates the need for novel treatment targets. Animal models are crucial in this process, but current diabetic retinopathy models do not develop RNV. Although the nondiabetic oxygen-induced retinopathy (OIR) mouse model is used to study RNV development, it is largely unknown how closely it resembles human PDR. Methods We therefore performed RNA sequencing on murine (C57BL/6J) OIR retinas (n = 14) and human PDR RNV membranes (n = 7) extracted during vitrectomy, each with reference to control tissue (n=13/10). Differentially expressed genes (DEG) and associated biological processes were analyzed and compared between human and murine RNV to assess molecular overlap and identify phylogenetically conserved factors. Results In total, 213 murine- and 1223 human-specific factors were upregulated with a small overlap of 94 DEG (7% of human DEG), although similar biological processes such as angiogenesis, regulation of immune response, and extracellular matrix organization were activated in both species. Phylogenetically conserved mediators included ANGPT2, S100A8, MCAM, EDNRA, and CCR7. Conclusions Even though few individual genes were upregulated simultaneously in both species, similar biological processes appeared to be activated. These findings demonstrate the potential and limitations of the OIR model to study human PDR and identify phylogenetically conserved potential treatment targets for PDR.
Collapse
Affiliation(s)
- Laurenz Pauleikhoff
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stefaniya Boneva
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Myriam Boeck
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center at St. Franziskus Hospital, Münster, Germany
| | - Julian Wolf
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Molecular Surgery Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| |
Collapse
|
37
|
Choubey M, Tirumalasetty MB, Bora NS, Bora PS. Linking Adiponectin and Its Receptors to Age-Related Macular Degeneration (AMD). Biomedicines 2023; 11:3044. [PMID: 38002042 PMCID: PMC10668948 DOI: 10.3390/biomedicines11113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged as a fascinating frontier in medical research. This review article delves into this connection, illuminating the hidden influence of APN on retinal health. This comprehensive review critically examines the latest findings and breakthroughs that underscore the pivotal roles of APN/AdipoRs signaling in maintaining ocular homeostasis and protecting against eye ailments. Here, we meticulously explore the intriguing mechanisms by which APN protein influences retinal function and overall visual acuity. Drawing from an extensive array of cutting-edge studies, the article highlights APN's multifaceted functions, ranging from anti-inflammatory properties and oxidative stress reduction to angiogenic regulation within retinal and macula tissues. The involvement of APN/AdipoRs in mediating these effects opens up novel avenues for potential therapeutic interventions targeting prevalent aging eye conditions. Moreover, this review unravels the interplay between APN signaling pathways and age-related macular degeneration (AMD). The single-cell RNA-seq results validate the expression of both the receptor isoforms (AdipoR1/R2) in retinal cells. The transcriptomic analysis showed lower expression of AdipoR1/2 in dry AMD pathogenesis compared to healthy subjects. The inhibitory adiponectin peptide (APN1) demonstrated over 75% suppression of CNV, whereas the control peptide did not exert any inhibitory effect on choroidal neovascularization (CNV). The elucidation of these relationships fosters a deeper understanding of adipose tissue's profound influence on ocular health, presenting new prospects for personalized treatments and preventative measures. Because APN1 inhibits CNV and leakage, it can be used to treat human AMD, although the possibility to treat human AMD is in the early stage and more clinical research is needed. In conclusion, this review provides a captivating journey into the enthralling world of APN, intertwining the realms of adipose biology and ophthalmology in aging.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Munichandra B. Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Nalini S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
38
|
Tun YZ, Aimmanee P. A Complete Review of Automatic Detection, Segmentation, and Quantification of Neovascularization in Optical Coherence Tomography Angiography Images. Diagnostics (Basel) 2023; 13:3407. [PMID: 37998544 PMCID: PMC10670378 DOI: 10.3390/diagnostics13223407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Optical coherence tomography (OCT) is revolutionizing the way we assess eye complications such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). With its ability to provide layer-by-layer information on the retina, OCT enables the early detection of abnormalities emerging underneath the retinal surface. The latest advancement in this field, OCT angiography (OCTA), takes this to the next level by providing detailed vascular information without requiring dye injections. One of the most significant indicators of DR and AMD is neovascularization, the abnormal growth of unhealthy vessels. In this work, the techniques and algorithms used for the automatic detection, classification, and segmentation of neovascularization in OCTA images are explored. From image processing to machine learning and deep learning, works related to automated image analysis of neovascularization are summarized from different points of view. The problems and future work of each method are also discussed.
Collapse
Affiliation(s)
| | - Pakinee Aimmanee
- School of Information, Computer and Communication Technology (ICT), Sirindhorn International Institute of Technology (SIIT), Thammasat University, Muang, Pathum Thani 12000, Thailand;
| |
Collapse
|
39
|
Wu T, Liu C, Kannan RM. Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration. Pharmaceutics 2023; 15:2428. [PMID: 37896188 PMCID: PMC10609940 DOI: 10.3390/pharmaceutics15102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries. Successful systemic delivery of peptide-based therapeutics must overcome obstacles such as degradation by proteinases in circulation and off-target binding. In this work, we present a novel dendrimer-integrin-binding peptide (D-ALG) synthesized with a noncleavable, "clickable" linker. In vitro, D-ALG protected the peptide payload from enzymatic degradation for up to 1.5 h (~90% of the compound remained intact) in a high concentration of proteinase (2 mg/mL) whereas ~90% of free ALG-1001 was degraded in the same period. Further, dendrimer conjugation preserved the antiangiogenic activity of ALG-1001 in vitro with significant reductions in endothelial vessel network formation compared to untreated controls. In vivo, direct intravitreal injections of ALG-1001 and D-ALG produced reductions in the CNV lesion area but in systemically dosed animals, only D-ALG produced significant reductions of CNV lesion area at 14 days. Imaging data suggested that the difference in efficacy may be due to more D-ALG remaining in the target area than ALG-1001 after administration. The results presented here offer a clinically relevant route for peptide therapeutics by addressing the major obstacles that these therapies face in delivery.
Collapse
Affiliation(s)
| | | | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (T.W.); (C.L.)
| |
Collapse
|
40
|
Lin Y, Luo G, Liu Q, Yang R, Sol Reinach P, Yan D. METTL3-Mediated RNA m6A Modification Regulates the Angiogenic Behaviors of Retinal Endothelial Cells by Methylating MMP2 and TIE2. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37819742 PMCID: PMC10573643 DOI: 10.1167/iovs.64.13.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) is a commonly occurring modification of mRNAs, catalyzed by a complex containing methyltransferase like 3 (METTL3). Our research aims to explore how METTL3-dependent m6A modification affects the functions of retinal endothelial cells (RECs). Methods An oxygen-induced retinopathy (OIR) mouse model was established, and RECs were isolated using magnetic beads method. Human retinal microvascular endothelial cells (HRMECs) were treated with normoxia (21% O2) or hypoxia (1% O2). Dot blot assay determined m6A modification levels. Quantitative RT-PCR and Western blot detected the mRNA and protein expression levels of the target candidates, respectively. Genes were knocked down by small interfering RNA transfection. Matrigel-based angiogenesis and transwell assays evaluated the abilities of endothelial tube formation and migration, respectively. Methylated RNA immunoprecipitation-qPCR determined the levels of m6A modification in the target genes. Results The m6A modification levels were significantly upregulated in the retinas and RECs of OIR mice. Exposure to hypoxia significantly elevated both METTL3 expression and m6A modification levels in HRMECs. METTL3 knockdown curtailed endothelial tube formation and migration in vitro under both normoxic and hypoxic conditions. Concurrently, this knockdown in HRMECs resulted in reduced m6A modification levels of MMP2 and TIE2 transcripts, subsequently leading to a decrease in their respective protein expressions. Notably, knockdown of MMP2 and TIE2 also markedly inhibited the angiogenic activities of HRMECs. Conclusions METTL3-mediated m6A modification promotes the angiogenic behaviors of RECs by targeting MMP2 and TIE2, suggesting its significance in retinal angiogenesis and METTL3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yong Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rusen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter Sol Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
D'Amico AG, Maugeri G, Magrì B, Lombardo C, Saccone S, Federico C, Cavallaro P, Giunta S, Bucolo C, D'Agata V. PACAP-ADNP axis prevents outer retinal barrier breakdown and choroidal neovascularization by interfering with VEGF secreted from retinal pigmented epitelium cells. Peptides 2023; 168:171065. [PMID: 37495040 DOI: 10.1016/j.peptides.2023.171065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
During diabetic retinopathy (DR) progression, the retina undergoes various metabolic changes, including hypoxia-signalling cascade induction in the cells of retinal pigmented epithelium (RPE). The overexpression of hypoxic inducible factors causes transcription of many target genes including vascular endothelial growth factor (VEGF). The RPE cells form the outer blood retinal barrier (oBRB), a specialized structure that regulates ions and metabolites flux into the retina to maintain a suitable quality of its extracellular microenvironment. VEGF worsens retinal condition since its secretion from the basolateral compartment of RPE cells compromises the barrier's integrity and induces choroidal neovascularization. In this work, we hypothesized that PACAP prevents the damage to oBRB and controls choroidal neovascularization through the induction of ADNP. Firstly, we demonstrated that ADNP is expressed in Streptozotocin (STZ)-induced diabetic animals. To validate our hypothesis, we cultured endothelial cells (H5V) forming vessels-like structures, in a conditioned medium (CM) derived from ARPE-19 cells exposed to hyperglycaemic/hypoxic insult, containing a known VEGF concentration. The involvement of PACAP-ADNP axis on oBRB integrity was evaluated through the measurement of trans-epithelial-electrical resistance and permeability assay performed on ARPE cell monolayer cultured in CM and by analysing the expression of two tight junction forming proteins, ZO1 and occludin. By culturing H5V in CM, we demonstrated that PACAP-ADNP axis counteracted vessels-like structures formation promoted by VEGF. In conclusion, the results suggested a primary role of PACAP/ADNP axis in preventing oBRB damage and in controlling aberrant choroidal neovascularization induced by VEGF secreted from RPE cells exposed to hyperglycaemia/hypoxic insult in DR.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, Section of System Biology, University of Catania, 95125 Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy
| | - Paola Cavallaro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
42
|
Tang F, Huang K, Peng B, Deng W, Su N, Xu F, Zhang M, Zhong H. RhoA/ROCK Signaling Is Involved in Pathological Retinal Neovascularization. J Vasc Res 2023; 60:183-192. [PMID: 37660689 PMCID: PMC10614457 DOI: 10.1159/000533321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro. METHODS C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls. Then, we evaluated the effect of Fasudil on pathological retinal NV. Whole-mount retinal staining was performed. The percentage of NV area, the number of neovascular tufts (NVT), and branch points (BP) were quantified. Finally, human umbilical vein endothelial cells (HUVECs) were used to investigate the effect of Fasudil on angiogenesis. RESULTS Real-time PCR and Western blotting showed that ROCK expression in retinal tissue was statistically upregulated in OIR. Furthermore, we found that Fasudil attenuated the percentage of NV area, the number of NVT, and BP significantly. In addition, Fasudil could suppress the proliferation and migration of HUVECs induced by VEGF. CONCLUSIONS RhoA/ROCK might be involved in the pathogenesis of OIR. And its inhibitor Fasudil could suppress retinal NV in vivo and angiogenesis in vitro. Fasudil may be a potential treatment strategy for retinal vascular diseases.
Collapse
Affiliation(s)
- Fen Tang
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Kongqian Huang
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Biyan Peng
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Wen Deng
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ning Su
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Fan Xu
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Mingyuan Zhang
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Haibin Zhong
- Department of Ophthalmology, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
43
|
Hattenbach LO, Abreu F, Arrisi P, Basu K, Danzig CJ, Guymer R, Haskova Z, Heier JS, Kotecha A, Liu Y, Loewenstein A, Seres A, Willis JR, Wykoff CC, Paris LP. BALATON and COMINO: Phase III Randomized Clinical Trials of Faricimab for Retinal Vein Occlusion: Study Design and Rationale. OPHTHALMOLOGY SCIENCE 2023; 3:100302. [PMID: 37810589 PMCID: PMC10556281 DOI: 10.1016/j.xops.2023.100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Purpose Dual inhibition of angiopoietin-2 and VEGF-A with faricimab (Vabysmo) offers excellent visual acuity gains with strong durability in patients with diabetic macular edema (ME) and neovascular age-related macular degeneration. The phase III BALATON/COMINO (NCT04740905/NCT04740931) trials will investigate the efficacy, safety, and durability of faricimab in patients with ME due to retinal vein occlusion (RVO). Design Two identically designed global, randomized, double-masked, active comparator-controlled studies. Participants Anti-VEGF treatment-naive patients with branch, central, or hemiretinal RVO. Methods Patients were randomized to 6 monthly injections of faricimab 6.0 mg or aflibercept 2.0 mg. From weeks 24 to 72, all patients received faricimab 6.0 mg administered in up to 16-week intervals using an automated treatment algorithm to generate a treat-and-extend-based personalized treatment interval dosing regimen. Personalized treatment interval adjustments were based on changes in central subfield thickness (CST) and best-corrected visual acuity (BCVA). Main Outcome Measures Primary end point was noninferiority of faricimab versus aflibercept in mean change from baseline in BCVA (week 24; noninferiority margin: 4 letters). Secondary end points (weeks 0-24) were mean change from baseline in BCVA, CST, and National Eye Institute Visual Function Questionnaire 25 composite score; proportion of patients gaining or avoiding loss of ≥ 15/≥ 10/≥ 5/> 0 letters. Secondary end points (weeks 24-72) were treatment durability (week 68); continuation of weeks 0 to 24 end points. Ocular/nonocular adverse events will be assessed. Results In total, 1282 patients across 22 countries were enrolled (BALATON, 553 patients, 149 centers; COMINO, 729 patients, 193 centers). Conclusions Using a novel automated interval algorithm, BALATON/COMINO will evaluate the efficacy and safety of faricimab for ME secondary to RVO and provide key insights into how to personalize treatment. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
| | | | | | - Karen Basu
- Roche Products (Ireland), Dublin, Ireland
| | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, Florida
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Robyn Guymer
- The Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Australia
| | | | | | | | - Ying Liu
- Genentech, Inc., South San Francisco, California
| | | | | | | | | | | |
Collapse
|
44
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
45
|
Wang Z, Tan W, Li B, Zou J, Li Y, Xiao Y, He Y, Yoshida S, Zhou Y. Exosomal non-coding RNAs in angiogenesis: Functions, mechanisms and potential clinical applications. Heliyon 2023; 9:e18626. [PMID: 37560684 PMCID: PMC10407155 DOI: 10.1016/j.heliyon.2023.e18626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Exosomes are extracellular vesicles that can be produced by most cells. Exosomes act as important intermediaries in intercellular communication, and participate in a variety of biological activities between cells. Non-coding RNAs (ncRNAs) usually refer to RNAs that do not encode proteins. Although ncRNAs have no protein-coding capacity, they are able to regulate gene expression at multiple levels. Angiogenesis is the formation of new blood vessels from pre-existing vessels, which is an important physiological process. However, abnormal angiogenesis could induce many diseases such as atherosclerosis, diabetic retinopathy and cancer. Many studies have shown that ncRNAs can stably exist in exosomes and play a wide range of physiological and pathological roles including regulation of angiogenesis. In brief, some specific ncRNAs can be enriched in exosomes secreted by cells and absorbed by recipient cells through the exosome pathway, thus activating relevant signaling pathways in target cells and playing a role in regulating angiogenesis. In this review, we describe the physiological and pathological functions of exosomal ncRNAs in angiogenesis, summarize their role in angiogenesis-related diseases, and illustrate potential clinical applications like novel drug therapy strategies and diagnostic markers in exosome research as inspiration for future investigations.
Collapse
Affiliation(s)
- Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yangyan Xiao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
46
|
Choubey M, Bora P. Emerging Role of Adiponectin/AdipoRs Signaling in Choroidal Neovascularization, Age-Related Macular Degeneration, and Diabetic Retinopathy. Biomolecules 2023; 13:982. [PMID: 37371562 DOI: 10.3390/biom13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of irreversible blindness in adults, may result in poor central vision, making it difficult to see, read, and drive. AMD is generally classified in either dry or wet types. Milder cases of dry AMD may progress to geographic atrophy (GA), leading to significant visual disability; wet, or neovascular AMD, which involves choroidal neovascularization (CNV), can lead to complete loss of central vision. Adiponectin (APN) discovery in the mid-1990's and, subsequently, its two cognate receptors (AdipoRs) in the early 2000s have led to a remarkable progress in better understanding metabolic disorders, as well as metabolism-associated ocular pathology. APN/AdipoRs signaling plays a central role in a variety of molecular and cellular physiological events, including glucose and lipid metabolism, whole-body energy regulation, immune and inflammation responses, insulin sensitivity and retinal cell biological functions. This review is an amalgamation of recent information related to APN/AdipoRs in the pathophysiology of retinal diseases and furthers its association with AMD and diabetic retinopathy. Additionally, we present our original research, where we designed control peptide and CNV inhibitory peptide from the globular region of APN to see the effect of these peptides on the mouse model of laser-induced CNV. The inhibitory peptide (APN1) inhibited CNV by more than 75% while the control peptide did not inhibit CNV.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Puran Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| |
Collapse
|
47
|
Canonica J, Foxton R, Garrido MG, Lin CM, Uhles S, Shanmugam S, Antonetti DA, Abcouwer SF, Westenskow PD. Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion. Front Cell Neurosci 2023; 17:1192464. [PMID: 37377777 PMCID: PMC10291265 DOI: 10.3389/fncel.2023.1192464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Clinical trials demonstrated that co-targeting angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF-A) with faricimab controls anatomic outcomes and maintains vision improvements, with strong durability, through 2 years in patients with neovascular age-related macular degeneration and diabetic macular edema. The mechanism(s) underlying these findings is incompletely understood and the specific role that Ang-2 inhibition plays requires further investigation. Methods We examined the effects of single and dual Ang-2/VEGF-A inhibition in diseased vasculatures of JR5558 mice with spontaneous choroidal neovascularization (CNV) and in mice with retinal ischemia/reperfusion (I/R) injuries. Results In JR5558 mice, Ang-2, VEGF-A, and dual Ang-2/VEGF-A inhibition reduced CNV area after 1 week; only dual Ang-2/VEGF-A inhibition decreased neovascular leakage. Only Ang-2 and dual Ang-2/VEGF-A inhibition maintained reductions after 5 weeks. Dual Ang-2/VEGF-A inhibition reduced macrophage/microglia accumulation around lesions after 1 week. Both Ang-2 and dual Ang-2/VEGF-A inhibition reduced macrophage/microglia accumulation around lesions after 5 weeks. In the retinal I/R injury model, dual Ang-2/VEGF-A inhibition was statistically significantly more effective than Ang-2 or VEGF-A inhibition alone in preventing retinal vascular leakage and neurodegeneration. Discussion These data highlight the role of Ang-2 in dual Ang-2/VEGF-A inhibition and indicate that dual inhibition has complementary anti-inflammatory and neuroprotective effects, suggesting a mechanism for the durability and efficacy of faricimab in clinical trials.
Collapse
Affiliation(s)
- Jérémie Canonica
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Richard Foxton
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Marina Garcia Garrido
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - Sabine Uhles
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - Peter D. Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
48
|
Busch C, Rau S, Sekulic A, Perie L, Huber C, Gehrke M, Joussen AM, Zipfel PF, Wildner G, Skerka C, Strauß O. Increased plasma level of terminal complement complex in AMD patients: potential functional consequences for RPE cells. Front Immunol 2023; 14:1200725. [PMID: 37359546 PMCID: PMC10287163 DOI: 10.3389/fimmu.2023.1200725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Polymorphisms in complement genes are risk-associated for age-related macular degeneration (AMD). Functional analysis revealed a common deficiency to control the alternative complement pathway by risk-associated gene polymorphisms. Thus, we investigated the levels of terminal complement complex (TCC) in the plasma of wet AMD patients with defined genotypes and the impact of the complement activation of their plasma on second-messenger signaling, gene expression, and cytokine/chemokine secretion in retinal pigment epithelium (RPE) cells. Design Collection of plasma from patients with wet AMD (n = 87: 62% female and 38% male; median age 77 years) and controls (n = 86: 39% female and 61% male; median age 58 years), grouped for risk factor smoking and genetic risk alleles CFH 402HH and ARMS2 rs3750846, determination of TCC levels in the plasma, in vitro analysis on RPE function during exposure to patients' or control plasma as a complement source. Methods Genotyping, measurement of TCC concentrations, ARPE-19 cell culture, Ca2+ imaging, gene expression by qPCR, secretion by multiplex bead analysis of cell culture supernatants. Main outcome measures TCC concentration in plasma, intracellular free Ca2+, relative mRNA levels, cytokine secretion. Results TCC levels in the plasma of AMD patients were five times higher than in non-AMD controls but did not differ in plasma from carriers of the two risk alleles. Complement-evoked Ca2+ elevations in RPE cells differed between patients and controls with a significant correlation between TCC levels and peak amplitudes. Comparing the Ca2+ signals, only between the plasma of smokers and non-smokers, as well as heterozygous (CFH 402YH) and CFH 402HH patients, revealed differences in the late phase. Pre-stimulation with complement patients' plasma led to sensitization for complement reactions by RPE cells. Gene expression for surface molecules protective against TCC and pro-inflammatory cytokines increased after exposure to patients' plasma. Patients' plasma stimulated the secretion of pro-inflammatory cytokines in the RPE. Conclusion TCC levels were higher in AMD patients but did not depend on genetic risk factors. The Ca2+ responses to patients' plasma as second-messenger represent a shift of RPE cells to a pro-inflammatory phenotype and protection against TCC. We conclude a substantial role of high TCC plasma levels in AMD pathology.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Saskia Rau
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Andjela Sekulic
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Luce Perie
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Christian Huber
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Miranda Gehrke
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Antonia M. Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| |
Collapse
|
49
|
Kaur G, Sharma D, Bisen S, Mukhopadhyay CS, Gurdziel K, Singh NK. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol 2023; 6:516. [PMID: 37179352 PMCID: PMC10183029 DOI: 10.1038/s42003-023-04905-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
50
|
Xia M, Jiao L, Wang XH, Tong M, Yao MD, Li XM, Yao J, Li D, Zhao PQ, Yan B. Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction. Theranostics 2023; 13:2515-2530. [PMID: 37215579 PMCID: PMC10196835 DOI: 10.7150/thno.83532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Capillary dysfunction has been implicated in a series of life- threatening vascular diseases characterized by pericyte and endothelial cell (EC) degeneration. However, the molecular profiles that govern the heterogeneity of pericytes have not been fully elucidated. Methods: Single-cell RNA sequencing was conducted on oxygen-induced proliferative retinopathy (OIR) model. Bioinformatics analysis was conducted to identify specific pericytes involved in capillary dysfunction. qRT-PCRs and western blots were conducted to detect Col1a1 expression pattern during capillary dysfunction. Matrigel co-culture assays, PI staining, and JC-1 staining was conducted to determine the role of Col1a1 in pericyte biology. IB4 and NG2 staining was conducted to determine the role of Col1a1 in capillary dysfunction. Results: We constructed an atlas of > 76,000 single-cell transcriptomes from 4 mouse retinas, which could be annotated to 10 distinct retinal cell types. Using the sub-clustering analysis, we further characterized retinal pericytes into 3 different subpopulations. Notably, GO and KEGG pathway analysis demonstrated that pericyte sub-population 2 was identified to be vulnerable to retinal capillary dysfunction. Based on the single-cell sequencing results, Col1a1 was identified as a marker gene of pericyte sub-population 2 and a promising therapeutic target for capillary dysfunction. Col1a1 was abundantly expressed in pericytes and its expression was obviously upregulated in OIR retinas. Col1a1 silencing could retard the recruitment of pericytes toward endothelial cells and aggravated hypoxia-induced pericyte apoptosis in vitro. Col1a1 silencing could reduce the size of neovascular area and avascular area in OIR retinas and suppressed pericyte-myofibroblast transition and endothelial-mesenchymal transition. Moreover, Col1a1 expression was up-regulated in the aqueous humor of the patients with proliferative diabetic retinopathy (PDR) or retinopathy of prematurity (ROP) and up-regulated in the proliferative membranes of PDR patients. Conclusions: These findings enhance the understanding of the complexity and heterogeneity of retinal cells and have important implications for future treatment of capillary dysfunction.
Collapse
Affiliation(s)
- Min Xia
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Lyu Jiao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiao-Han Wang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Min Tong
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Mu-Di Yao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Dan Li
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Pei-Quan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200030, China
| |
Collapse
|