1
|
Zhong X, Xu Y, Yang S, Liao J, Hong Z, Zhang X, Wu Z, Tu C, Zuo Q. Molecular mechanisms of transmitted endoplasmic reticulum stress mediating immune escape of gastric cancer via PVR overexpression in TAMs. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167560. [PMID: 39486660 DOI: 10.1016/j.bbadis.2024.167560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death worldwide. Due to the complex tumor microenvironment (TME), the efficacy of immunotherapy in GC has not met expectations. Malignant changes in the TME induce endoplasmic reticulum stress (ERS). ERS can be transmitted between tumor cells and tumor-associated macrophages (TAMs), promoting tumor immune escape, but the specific mechanism in GC remains unclear. We established a TAM model of transmitted ERS (TERS), and iTRAQ proteomic analysis identified overexpressed proteins. The overexpression of poliovirus receptor (PVR) was screened while flow cytometry and ELISA showed that PVR mediated the immunosuppressive function of TAMs by downregulating the proliferative activity and cytotoxicity of cocultured CD8+ T lymphocytes. With EMSA and dual-luciferase reporter assays, we confirmed that erythropoietin-producing hepatocellular receptor A2 (EphA2) affected PVR expression by increasing the transcriptional activity of activator protein-1 (AP-1). MFC cells were mixed with EphA2 knockdown or control RAW264.7 cells to establish subcutaneous tumor models with or without tunicamycin treatment in vivo. The vivo experiments revealed that ERS promoted subcutaneous xenograft growth, which was reversed by EphA2 knockdown. Clinically, GC patients with high expression of PVR and EphA2 tended to have an immunosuppressive TME, which were determined by immunohistochemical and immunofluorescence analyses. In conclusion, the transcriptional activity of AP-1 is upregulated in ERS-transmitted TAMs through EphA2 to increase PVR expression, which promotes immune escape in GC. Our study provides a new perspective on the role of ERS in tumor immunity.
Collapse
Affiliation(s)
- Xuxian Zhong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Youqin Xu
- The fifth clinical school, Guangzhou Medical University, Guangzhou, Guangdong Province 511436, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengnan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jiaqi Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Ziyang Hong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xingyu Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Ziqing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
2
|
Ezelarab HAA, Abd El-Hafeez AA, Ali TFS, Sayed AM, Hassan HA, Beshr EAM, Abbas SH. New 2-oxoindole derivatives as multiple PDGFRα/ß and VEGFR-2 tyrosine kinase inhibitors. Bioorg Chem 2024; 145:107234. [PMID: 38412650 DOI: 10.1016/j.bioorg.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRβ, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRβ active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
3
|
Wang C, Lei L, Xu Y, Li Y, Zhang J, Xu Y, Si S. Trichostatin C Synergistically Interacts with DNMT Inhibitor to Induce Antineoplastic Effect via Inhibition of Axl in Bladder and Lung Cancer Cells. Pharmaceuticals (Basel) 2024; 17:425. [PMID: 38675387 PMCID: PMC11053535 DOI: 10.3390/ph17040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Aberrant epigenetic modifications are fundamental contributors to the pathogenesis of various cancers. Consequently, targeting these aberrations with small molecules, such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors, presents a viable strategy for cancer therapy. The objective of this study is to assess the anti-cancer efficacy of trichostatin C (TSC), an analogue of trichostatin A sourced from the fermentation of Streptomyces sp. CPCC 203909. Our investigations reveal that TSC demonstrates potent activity against both human lung cancer and urothelial bladder cancer cell lines, with IC50 values in the low micromolar range. Moreover, TSC induces apoptosis mediated by caspase 3/7 and arrests the cell cycle at the G2/M phase. When combined with the DNMT inhibitor decitabine, TSC exhibits a synergistic anti-cancer effect. Additionally, protein analysis elucidates a significant reduction in the expression of the tyrosine kinase receptor Axl. Notably, elevated concentrations of TSC correlate with the up-regulation of the transcription factor forkhead box class O1 (FoxO1) and increased levels of the proapoptotic proteins Bim and p21. In conclusion, our findings suggest TSC as a promising anti-cancer agent with HDAC inhibitory activity. Furthermore, our results highlight the potential utility of TSC in combination with DNMT inhibitors for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100050, China; (C.W.); (L.L.)
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100050, China; (C.W.); (L.L.)
| |
Collapse
|
4
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Androutsopoulos G, Styliara I, Zarogianni E, Lazurko N, Valasoulis G, Michail G, Adonakis G. The ErbB Signaling Network and Its Potential Role in Endometrial Cancer. EPIGENOMES 2023; 7:24. [PMID: 37873809 PMCID: PMC10594534 DOI: 10.3390/epigenomes7040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Endometrial cancer (EC) is the second most common malignancy of the female reproductive system worldwide. The updated EC classification emphasizes the significant role of various signaling pathways such as PIK3CA-PIK3R1-PTEN and RTK/RAS/β-catenin in EC pathogenesis. Some of these pathways are part of the EGF system signaling network, which becomes hyperactivated by various mechanisms and participates in cancer pathogenesis. In EC, the expression of ErbB receptors is significantly different, compared with the premenopausal and postmenopausal endometrium, mainly because of the increased transcriptional activity of ErbB encoding genes in EC cells. Moreover, there are some differences in ErbB-2 receptor profile among EC subgroups that could be explained by the alterations in pathophysiology and clinical behavior of various EC histologic subtypes. The fact that ErbB-2 receptor expression is more common in aggressive EC histologic subtypes (papillary serous and clear cell) could indicate a future role of ErbB-targeted therapies in well-defined EC subgroups with overexpression of ErbB receptors.
Collapse
Affiliation(s)
- Georgios Androutsopoulos
- Gynaecological Oncology Unit, Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Ioanna Styliara
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Evgenia Zarogianni
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Nadia Lazurko
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - George Valasoulis
- Department of Obstetrics and Gynaecology, Medical School, University of Thessaly, 41334 Larisa, Greece;
- Hellenic National Public Health Organization—ECDC, 15123 Athens, Greece
| | - Georgios Michail
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Georgios Adonakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| |
Collapse
|
6
|
Yin Y, Liu S, Liu H, Wu W. Nintedanib inhibits normal human vitreous-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells. Biomed Pharmacother 2023; 166:115403. [PMID: 37659204 DOI: 10.1016/j.biopha.2023.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
PURPOSE In this study, we aim to investigate the potential of nintedanib as a therapeutic approach to proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal detachment repair. PVR is characterized by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, and understanding the effects of nintedanib on EMT in the normal human vitreous (HV)-induced RPE cells is crucial. METHODS Our research focuses on assessing the impact of nintedanib on HV-induced EMT in human retinal pigment epithelial (ARPE-19) cells in vitro. We employed various techniques, including quantitative real-time PCR (qPCR), western blot analysis, and immunofluorescence staining, to evaluate the mRNA and protein expression of EMT biomarkers in HV-induced ARPE-19 cells. Additionally, we measured the proliferation of RPE cells using cell counting, CCK-8, and Ki-67 assays. Migration was assessed through wound healing and transwell migration assays, while contraction was determined using a collagen gel contraction assay. Morphological changes were examined using phase-contrast microscopy. RESULTS Our results demonstrate that nintedanib selectively attenuates the upregulation of mesenchymal markers in HV-induced ARPE-19 cells, at both the mRNA and protein levels. Furthermore, nintedanib effectively suppresses the HV-induced proliferation, migration, and contraction of ARPE-19 cells, while maintaining the cells' basal activity. These findings strongly suggest that nintedanib exhibits protective effects against EMT in ARPE-19 cells and could be a promising therapeutic option for PVR. CONCLUSIONS By elucidating the anti-EMT effects of nintedanib in HV-induced RPE cells, our study highlights the potential of this oral triple tyrosine kinase inhibitor in the treatment of PVR. These findings contribute to the growing body of research aimed at developing novel strategies to prevent and manage PVR, ultimately improving the success rates of retinal detachment repair.
Collapse
Affiliation(s)
- Yiwei Yin
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China; Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shikun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hanhan Liu
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
7
|
Pedicona F, Casado P, Hijazi M, Gribben JG, Rouault-Pierre K, Cutillas PR. Targeting the lysine-specific demethylase 1 rewires kinase networks and primes leukemia cells for kinase inhibitor treatment. Sci Signal 2022; 15:eabl7989. [PMID: 35439021 DOI: 10.1126/scisignal.abl7989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most tumor types either fail to respond or become resistant to kinase inhibitors, often because of compensatory prosurvival pathways in the cancer cell's broader signaling circuitry. Here, we found that intrinsic resistance to kinase inhibitors in cultured primary acute myeloid leukemia (AML) cells may be overcome by reshaping kinase networks into topologies that confer drug sensitivity. We identified several antagonists of chromatin-modifying enzymes that sensitized AML cell lines to kinase inhibitors. Of these, we confirmed that inhibitors of the lysine-specific demethylase (LSD1; also known as KDM1A) rewired kinase signaling in AML cells in a way that increased the activity of the kinase MEK and that broadly suppressed the activity of other kinases and feedback loops. As a result, AML cell lines and about half of primary human AML samples were primed for sensitivity to the MEK inhibitor trametinib. Primary human cells with KRAS mutations and those with high MEK pathway activity were the best responders to sequential treatment with LSD1 inhibitors then trametinib, whereas those with NRAS mutations and high mTOR activity were poor responders. Overall, our study reveals the MEK pathway as a mechanism of resistance to LSD1 inhibitors in AML and shows a way to modulate kinase network circuitry to potentially overcome therapeutic resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Federico Pedicona
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Casado
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Maruan Hijazi
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
- Alan Turing Institute, British Library, 2QR, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
8
|
Singh S, Lamichhane A, Rafsanjani Nejad P, Heiss J, Baumann H, Gudneppanavar R, Leipzig ND, Konopka M, Luker GD, Tavana H. Therapeutic Targeting of Stromal-Tumor HGF-cMET Signaling in an Organotypic Triple Negative Breast Tumor Model. Mol Cancer Res 2022; 20:1166-1177. [PMID: 35348758 DOI: 10.1158/1541-7786.mcr-21-0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor-stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional (3D) organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAFs) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor-stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit pro-metastatic functions of TNBC cells. Our study also showed that HGF-MET from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor-stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. Implications: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target.
Collapse
Affiliation(s)
- Sunil Singh
- University of Akron, Akron, OH, United States
| | | | | | - Jacob Heiss
- University of Akron, Akron, OH, United States
| | | | | | | | | | - Gary D Luker
- University of Michigan Medical School, Ann Arbor, MI, United States
| | | |
Collapse
|
9
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
10
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
11
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 556] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Vagapova E, Kozlov M, Lebedev T, Ivanenko K, Leonova O, Popenko V, Spirin P, Kochetkov S, Prassolov V. Selective Inhibition of HDAC Class I Sensitizes Leukemia and Neuroblastoma Cells to Anticancer Drugs. Biomedicines 2021; 9:1846. [PMID: 34944663 PMCID: PMC8698907 DOI: 10.3390/biomedicines9121846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
The acquired resistance of neuroblastoma (NB) and leukemia cells to anticancer therapy remains the major challenge in the treatment of patients with these diseases. Although targeted therapy, such as receptor tyrosine kinase (RTK) inhibitors, has been introduced into clinical practice, its efficacy is limited to patients harboring mutant kinases. Through the analysis of transcriptomic data of 701 leukemia and NB patient samples and cell lines, we revealed that the expression of RTK, such as KIT, FLT3, AXL, FGFR3, and NTRK1, is linked with HDAC class I. Although HDAC inhibitors have antitumor activity, they also have high whole-body toxicity. We developed a novel belinostat derivative named hydrazostat, which targets HDAC class I with limited off-target effects. We compared the toxicity of these drugs within the panel of leukemia and NB cell lines. Next, we revealed that HDAC inhibition with hydrazostat reactivates NTRK1, FGFR3, ROR2, KIT, and FLT3 expression. Based on this finding, we tested the efficacy of hydrazostat in combination with RTK inhibitor imatinib. Additionally, we show the ability of hydrazostat to enhance venetoclax-induced apoptosis. Thus, we reveal the connection between HDACs and RTK and describe a useful strategy to overcome the complications of single-agent therapies.
Collapse
Affiliation(s)
- Elmira Vagapova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Maxim Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Karina Ivanenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Olga Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Vladimir Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.K.); (T.L.); (K.I.); (O.L.); (V.P.); (P.S.); (S.K.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| |
Collapse
|
13
|
Kanwore K, Kambey PA, Guo XX, Abiola AA, Xia Y, Gao D. Extracellular and Intracellular Factors in Brain Cancer. Front Cell Dev Biol 2021; 9:699103. [PMID: 34513834 PMCID: PMC8429835 DOI: 10.3389/fcell.2021.699103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
The external and internal factors of the cell are critical to glioma initiation. Several factors and molecules have been reported to be implicated in the initiation and progression of brain cancer. However, the exact sequence of events responsible for glioma initiation is still unknown. Existing reports indicate that glioma stem cells are the cell of glioma origin. During cell division, chromosome breakage, DNA alteration increases the chance of cell genome modifications and oncogene overexpression. Although there is a high risk of gene alteration and oncogene overexpression, not everyone develops cancer. During embryogenesis, the same oncogenes that promote cancers have also been reported to be highly expressed, but this high expression which does not lead to carcinogenesis raises questions about the role of oncogenes in carcinogenesis. The resistance of cancer cells to drugs, apoptosis, and immune cells does not rely solely on oncogene overexpression but also on the defect in cell organelle machinery (mitochondria, endoplasmic reticulum, and cytoskeleton). This review discusses factors contributing to cancer; we report the dysfunction of the cell organelles and their contribution to carcinogenesis, while oncogene overexpression promotes tumorigenesis, maintenance, and progression through cell adhesion. All these factors together represent a fundamental requirement for cancer and its development.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ayanlaja Abdulrahman Abiola
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
RTK25: A Comprehensive Molecular Profiling Strategy in Cholangiocarcinoma Using an Integrated Bioinformatics Approach. Pharmaceuticals (Basel) 2021; 14:ph14090898. [PMID: 34577598 PMCID: PMC8469883 DOI: 10.3390/ph14090898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that primarily originate from the bile duct. Tumor heterogeneity is a prime characteristic of CCA and considering the scarcity of approved targeted therapy drugs, this makes precision oncology impractical in CCA. Stratifying patients based on their molecular signature and biomarker-guided therapy may offer a conducive solution. Receptors tyrosine kinases (RTK) are potential targets for novel therapeutic strategies in CCA as RTK signaling is dysregulated in CCA. This study aims to identify targetable RTK profile in CCA using a bioinformatic approach. We discovered that CCA samples could be grouped into molecular subtypes based on the gene expression profile of selected RTKs (RTK25). Using the RTK25 gene list, we discovered five distinct molecular subtypes of CCA in this cohort. Tyrosine kinase inhibitors that target each RTK profile and their subsequent molecular signatures were also discovered. These results suggest that certain RTKs correlate with each other, indicating that tailored dual inhibition of RTKs may be more favorable than monotherapy. The results from this study can direct future investigative attention towards validating this concept in in vivo and in vitro systems. Ultimately, this will facilitate biomarker-guided clinical trials for the successful approval of novel therapeutic options in CCA.
Collapse
|
15
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
In Vitro and In Silico Evaluation of Anticancer Activity of New Indole-Based 1,3,4-Oxadiazoles as EGFR and COX-2 Inhibitors. Molecules 2020; 25:molecules25215190. [PMID: 33171861 PMCID: PMC7664637 DOI: 10.3390/molecules25215190] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are crucial targetable enzymes in cancer management. Therefore, herein, new 2-[(5-((1H-indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(thiazol/benzothiazol-2-yl)acetamides (2a-i) were designed and synthesized as EGFR and COX-2 inhibitors. The cytotoxic effects of compounds 2a-i on HCT116 human colorectal carcinoma, A549 human lung adenocarcinoma, and A375 human melanoma cell lines were determined using MTT assay. 2-[(5-((1H-Indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(6-ethoxybenzothiazol-2-yl)acetamide (2e) exhibited the most significant anticancer activity against HCT116, A549, and A375 cell lines with IC50 values of 6.43 ± 0.72 μM, 9.62 ± 1.14 μM, and 8.07 ± 1.36 μM, respectively, when compared with erlotinib (IC50 = 17.86 ± 3.22 μM, 19.41 ± 2.38 μM, and 23.81 ± 4.17 μM, respectively). Further mechanistic assays demonstrated that compound 2e enhanced apoptosis (28.35%) in HCT116 cells more significantly than erlotinib (7.42%) and caused notable EGFR inhibition with an IC50 value of 2.80 ± 0.52 μM when compared with erlotinib (IC50 = 0.04 ± 0.01 μM). However, compound 2e did not cause any significant COX-2 inhibition, indicating that this compound showed COX-independent anticancer activity. The molecular docking study of compound 2e emphasized that the benzothiazole ring of this compound occupied the allosteric pocket in the EGFR active site. In conclusion, compound 2e is a promising EGFR inhibitor that warrants further clinical investigations.
Collapse
|
17
|
Ras assemblies and signaling at the membrane. Curr Opin Struct Biol 2020; 62:140-148. [DOI: 10.1016/j.sbi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
18
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
19
|
Haddadi N, Lin Y, Travis G, Simpson AM, McGowan EM, Nassif NT. PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer 2018; 17:37. [PMID: 29455665 PMCID: PMC5817727 DOI: 10.1186/s12943-018-0803-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Nahal Haddadi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Yiguang Lin
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Glena Travis
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Ann M. Simpson
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Eileen M. McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Najah T. Nassif
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| |
Collapse
|
20
|
Next-gen cancer research. J Mol Med (Berl) 2017; 95:789. [PMID: 28707082 DOI: 10.1007/s00109-017-1567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|