1
|
Lemay SE, Mougin M, Sauvaget M, El Kabbout R, Valasarajan C, Yamamoto K, Martineau S, Pelletier A, Bilodeau C, Grobs Y, Bourgeois A, Romanet C, Breuils-Bonnet S, Montesinos MS, Lu M, Chen H, Gilbert M, Théberge C, Potus F, Pullamsetti S, Provencher S, Bonnet S, Boucherat O. Unraveling AURKB as a potential therapeutic target in pulmonary hypertension using integrated transcriptomic analysis and pre-clinical studies. Cell Rep Med 2025; 6:101964. [PMID: 39933527 DOI: 10.1016/j.xcrm.2025.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/29/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Despite advances in treatment, the prognosis for patients with pulmonary arterial hypertension (PAH) remains dismal, highlighting the need for further therapeutic advances. By using RNA sequencing on pulmonary artery smooth muscle cells (PASMCs), functional enrichment, and connectivity map analyses, we identify Aurora kinase B (AURKB) as a candidate therapeutic target. We show that AURKB inhibition blocks cell cycle progression and reverses the gene signature of PAH-PASMCs. We also report that PAH-PASMCs that escape apoptosis acquire a senescence-associated secretory phenotype. In vivo, AURKB inhibition using barasertib improves hemodynamics in two preclinical models of established PAH by attenuating pulmonary vascular remodeling. A therapeutic effect is also observed in human precision-cut lung slices. Finally, we demonstrate that the combination of barasertib with a p21 attenuator is more effective in reducing vascular remodeling than either drug alone. These findings provide insight into strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Manon Mougin
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Mélanie Sauvaget
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Reem El Kabbout
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Keiko Yamamoto
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Andréanne Pelletier
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Coralie Bilodeau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | | | - Min Lu
- Morphic Therapeutic, Inc, Waltham, MA, USA
| | | | - Mégan Gilbert
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Charlie Théberge
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada
| | - Soni Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Bad Nauheim, Germany; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Justus Liebig University, member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada.
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada.
| |
Collapse
|
2
|
Grobs Y, Romanet C, Lemay SE, Bourgeois A, Voisine P, Theberge C, Sauvaget M, Breuils-Bonnet S, Martineau S, El Kabbout R, Valasarajan C, Chelladurai P, Pelletier A, Mougin M, Dumais E, Perron J, Flamand N, Potus F, Provencher S, Pullamsetti SS, Boucherat O, Bonnet S. ATP citrate lyase drives vascular remodeling in systemic and pulmonary vascular diseases through metabolic and epigenetic changes. Sci Transl Med 2024; 16:eado7824. [PMID: 39661707 DOI: 10.1126/scitranslmed.ado7824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
ATP citrate lyase (ACLY), a crucial enzyme in de novo lipid synthesis and histone acetylation, plays a key role in regulating vascular smooth muscle cell (VSMC) proliferation and survival. We found that human coronary and pulmonary artery tissues had up-regulated ACLY expression during vascular remodeling in coronary artery disease and pulmonary arterial hypertension. Pharmacological and genetic inhibition of ACLY in human primary cultured VSMCs isolated from the coronary arteries of patients with coronary artery diseases and from the distal pulmonary arteries of patients with pulmonary arterial hypertension resulted in reduced cellular proliferation and migration and increased susceptibility to apoptosis. These cellular changes were linked to diminished glycolysis, reduced lipid synthesis, impairment in general control nonrepressed protein 5 (GCN5)-dependent histone acetylation and suppression of the transcription factor FOXM1. In vivo studies using a pharmacological inhibitor and VSMC-specific Acly knockout mice showed that ACLY inhibition alleviated vascular remodeling. ACLY inhibition alleviated remodeling in carotid injury and ligation models in rodents and attenuated pulmonary arterial hypertension in Sugen/hypoxia rat and mouse models. Moreover, ACLY inhibition showed improvements in vascular remodeling in human ex vivo models, which included cultured human coronary artery and saphenous vein rings as well as precision-cut lung slices. Our results propose ACLY as a novel therapeutic target for treating complex vascular diseases, offering promising avenues for future clinical intervention.
Collapse
Affiliation(s)
- Yann Grobs
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Pierre Voisine
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Charlie Theberge
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Melanie Sauvaget
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Reem El Kabbout
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Chanil Valasarajan
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Prakash Chelladurai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Andreanne Pelletier
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Manon Mougin
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Elizabeth Dumais
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec Heart and Lung Institute Research Centre (G1V 4G5), Department of Medicine, Faculty of Medicine, Québec City, QC G1V 0A6, Canada
| | - Jean Perron
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Nicolas Flamand
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec Heart and Lung Institute Research Centre (G1V 4G5), Department of Medicine, Faculty of Medicine, Québec City, QC G1V 0A6, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Soni Savai Pullamsetti
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC G1V 4G5, Canada
| |
Collapse
|
3
|
Chen T, Ni M, Wang H, Xue F, Jiang T, Wu X, Li C, Liang S, Hong L, Wu Q. The Reparative Effect of FOXM1 in Pulmonary Disease. Lung 2024; 203:1. [PMID: 39601876 DOI: 10.1007/s00408-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
FOXM1, a key member of the FOX transcription factor family, maintains cell homeostasis by accurately controlling diverse biological processes, such as proliferation, cell cycle progression, differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, redox signaling, and drug resistance. In recent years, an increasing number of studies have focused on the role of FOXM1 in the occurrence of multiple diseases and various pathophysiological processes. In the field of pulmonary diseases, FOXM1 has a certain reparative effect by promoting cell proliferation, regulating cell cycle, antifibrosis, participating in inflammation regulation, and synergizing with other signaling pathways. On the basis of the repair properties of FOXM1, this review explores its therapeutic potential in acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, lung cancer, and other lung diseases, with the goal of providing a new perspective for the analysis of FOXM1-related mechanism of action and the expansion of clinical treatment strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Hao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
4
|
Hiraide T, Tsuda N, Momoi M, Shinya Y, Sano M, Fukuda K, Shibahara J, Kuramoto J, Kanai Y, Kosaki K, Hakamata Y, Kataoka M. CXCL12/CXCR4 pathway as a novel therapeutic target for RNF213-associated pulmonary arterial hypertension. Sci Rep 2024; 14:26604. [PMID: 39496725 PMCID: PMC11535198 DOI: 10.1038/s41598-024-77388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Genetic backgrounds of patients with pulmonary arterial hypertension (PAH) were not fully investigated. A variant of c.14429G > A (p.Arg4810Lys) in the ring finger protein 213 gene (RNF213) was recently identified as a risk allele for poor treatment response and poor clinical prognosis in patients with PAH. However, the molecular mechanisms of the RNF213 p.Arg4810Lys variant in development of PAH are unknown. We investigated the underlying molecular mechanisms of RNF213-associated vasculopathy using an in vivo mouse model. RNF213+/p.Arg4828Lys mice, harboring the heterozygous RNF213 p.Arg4828Lys variant corresponding to the p.Arg4810Lys variant in humans, were created using the CRISPR-Cas9 system to recapitulate the genetic status of PAH patients. RNF213+/p.Arg4828Lys mice had a significant elevation of the right ventricular systolic pressure, hypertrophy of the right ventricle, and increased thickness of the pulmonary arterial medial wall compared with wild-type mice after 3 months of exposure to a hypoxic environment. C-X-C motif chemokine ligand 12 (CXCL12), a C-X-C chemokine receptor type 4 (CXCR4) ligand, was significantly elevated in the lungs of RNF213+/p.Arg4828Lys mice, and PAH was ameliorated by the administration of a CXCR4 antagonist. CXCL12-CXCR4 is an angiogenic chemokine axis, and immunohistochemistry demonstrated an increase in CXCR4 in vimentin-positive spindle-shaped cells in adventitia and interstitial lesions in RNF213+/p.Arg4828Lys mice and lung specimens from severe PAH patients with the RNF213 p.Arg4810Lys variant. We confirmed a cause-and-effect relationship between the RNF213 p.Arg4810Lys variant and PAH via the CXCL12-CXCR4 pathway. The findings in this study suggest that targeting this pathway might be a novel therapeutic strategy for RNF213-associated vasculopathy.
Collapse
Affiliation(s)
- Takahiro Hiraide
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mizuki Momoi
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiki Shinya
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Motoaki Sano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junji Shibahara
- Department of Pathology, School of Medicine, Kyorin University, Mitaka, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yoji Hakamata
- Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan.
- The Second Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
5
|
Massaro M, Quarta S, Calabriso N, Carluccio MA, Scoditti E, Mancuso P, De Caterina R, Madonna R. Omega-3 polyunsaturated fatty acids and pulmonary arterial hypertension: Insights and perspectives. Eur J Clin Invest 2024; 54:e14277. [PMID: 38940236 PMCID: PMC11490397 DOI: 10.1111/eci.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disorder that affects the pulmonary vasculature. Although recent developments in pharmacotherapy have extended the life expectancy of PAH patients, their 5-year survival remains unacceptably low, underscoring the need for multitarget and more comprehensive approaches to managing the disease. This should incorporate not only medical, but also lifestyle interventions, including dietary changes and the use of nutraceutical support. Among these strategies, n-3 polyunsaturated fatty acids (n-3 PUFAs) are emerging as promising agents able to counteract the inflammatory component of PAH. In this narrative review, we aim at analysing the preclinical evidence for the impact of n-3 PUFAs on the pathogenesis and the course of PAH. Although evidence for the role of n-3 PUFAs deficiencies in the development and progression of PAH in humans is limited, preclinical studies suggest that these dietary components may influence several aspects of the pathobiology of PAH. Further clinical research should test the efficacy of n-3 PUFAs on top of approved clinical management. These studies will provide evidence on whether n-3 PUFAs can genuinely serve as a valuable tool to enhance the efficacy of pharmacotherapy in the treatment of PAH.
Collapse
Affiliation(s)
- Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | | | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Peter Mancuso
- Department of Nutritional Sciences and the Program in Immunology, School of Public Health, University of Michigan, 1415 Washington Hts., Ann Arbor, Michigan 481009
| | | | | |
Collapse
|
6
|
Yun X, Niedermeyer S, Andrade MR, Jiang H, Suresh K, Kolb T, Damarla M, Shimoda LA. Aquaporin 1 confers apoptosis resistance in pulmonary arterial smooth muscle cells from the SU5416 hypoxia rat model. Physiol Rep 2024; 12:e16156. [PMID: 39175041 PMCID: PMC11341275 DOI: 10.14814/phy2.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Pulmonary hypertension (PH) arises from increased pulmonary vascular resistance due to contraction and remodeling of the pulmonary arteries. The structural changes include thickening of the smooth muscle layer from increased proliferation and resistance to apoptosis. The mechanisms underlying apoptosis resistance in PH are not fully understood. In cancer cells, high expression of aquaporin 1 (AQP1), a water channel, is associated with apoptosis resistance. We showed AQP1 protein was expressed in pulmonary arterial smooth muscle cells (PASMCs) and upregulated in preclinical PH models. In this study, we used PASMCs isolated from control male rats and the SU5416 plus hypoxia (SuHx) model to test the role of AQP1 in modulating susceptibility to apoptosis. We found the elevated level of AQP1 in PASMCs from SuHx rats was necessary for resistance to apoptosis and that apoptosis resistance could be conferred by increasing AQP1 in control PASMCs. In exploring the downstream pathways involved, we found AQP1 levels influence the expression of Bcl-2, with enhanced AQP1 levels corresponding to increased Bcl-2 expression, reducing the ratio of BAX to Bcl-2, consistent with apoptosis resistance. These results provide a mechanism by which AQP1 can regulate PASMC fate.
Collapse
MESH Headings
- Animals
- Aquaporin 1/metabolism
- Aquaporin 1/genetics
- Apoptosis
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/cytology
- Rats
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Pyrroles/pharmacology
- Indoles/pharmacology
- Hypoxia/metabolism
- Rats, Sprague-Dawley
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Cells, Cultured
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Disease Models, Animal
Collapse
Affiliation(s)
- Xin Yun
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Shannon Niedermeyer
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Manuella Ribas Andrade
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Todd Kolb
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Liu X, Liu B, Luo X, Liu Z, Tan X, Zhu K, Ouyang F. Research progress on the role of p53 in pulmonary arterial hypertension. Respir Investig 2024; 62:541-550. [PMID: 38643536 DOI: 10.1016/j.resinv.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a devastating disease characterized by increased pulmonary vascular resistance and pulmonary arterial pressure. At present, the definitive pathology of PAH has not been elucidated and its effective treatment remains lacking. Despite PAHs having multiple pathogeneses, the cancer-like characteristics of cells have been considered the main reason for PAH progression. RECENT FINDINGS p53 protein, an important tumor suppressor, regulates a multitude of gene expressions to maintain normal cellular functions and suppress the progression of malignant tumors. Recently, p53 has been found to exert multiple biological effects on cardiovascular diseases. Since PAH shares similar metabolic features with cancer cells, the regulatory roles of p53 in PAH are mainly the induction of cell cycle, inhibition of cell proliferation, and promotion of apoptosis. SUMMARY This paper summarized the advanced findings on the molecular mechanisms and regulatory functions of p53 in PAH, aiming to reveal the potential therapeutic targets for PAH.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Biao Liu
- Department of Cardiovascular Medicine, Taojiang County People's Hospital, No.328 Taohuaxi Road, Taohuajiang Town, Taojiang County, Yiyang City, 413499, Hunan, China
| | - Xin Luo
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Zhenfang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Xiaoli Tan
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Ke Zhu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| | - Fan Ouyang
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| |
Collapse
|
8
|
de Castro AL, Duarte Ortiz V, Hickmann AR, Santos Lacerda D, Türck P, Campos Carraro C, Freitas S, Bello Klein A, Bassani V, da Rosa Araujo AS. Effects of Pterostilbene on Heart and Lung Oxidative Stress Parameters in 2 Experimental Models of Cardiovascular Disease: Myocardial Infarction and Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol 2024; 84:101-109. [PMID: 38573589 DOI: 10.1097/fjc.0000000000001572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
ABSTRACT Myocardial infarction (MI) and pulmonary arterial hypertension (PAH) are 2 prevalent cardiovascular diseases. In both conditions, oxidative stress is associated with a worse prognosis. Pterostilbene (PTE), an antioxidant compound, has been studied as a possible therapy for cardiovascular diseases. This study aims to evaluate the effect of PTE on oxidative stress in the hearts of animals with MI and in the lungs of animals with PAH. Male Wistar rats were used in both models. In the MI model, the experimental groups were sham, MI, and MI + PTE. In the PAH model, the experimental groups were control, PAH, and PAH + PTE. Animals were exposed to MI through surgical ligation of the left coronary artery, or to PAH, by the administration of monocrotaline (60 mg/kg). Seven days after undergoing cardiac injury, the MI + PTE animals were treated with PTE (100 mg/kg day) for 8 days. After this, the heart was collected for molecular analysis. The PAH + PTE animals were treated with PTE (100 mg/kg day) for 14 days, beginning 7 days after PAH induction. After this, the lungs were collected for biochemical evaluation. We found that PTE administration attenuated the decrease in ejection fraction and improved left ventricle end-systolic volume in infarcted animals. In the PAH model, PTE improved pulmonary artery flow and decreased reactive oxygen species levels in the lung. PTE administration promoted protective effects in terms of oxidative stress in 2 experimental models of cardiac diseases: MI and PAH. PTE also improved cardiac function in infarcted rats and pulmonary artery flow in animals with PAH.
Collapse
Affiliation(s)
- Alexandre Luz de Castro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Vanessa Duarte Ortiz
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Alexandre R Hickmann
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Denise Santos Lacerda
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil ; and
| | - Patrick Türck
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Cristina Campos Carraro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Schauana Freitas
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Adriane Bello Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Valquiria Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
9
|
Luo A, Hao R, Zhou X, Jia Y, Bao C, Yang L, Zhou L, Gu C, Desai AA, Tang H, Chu AA. Transcriptomic profiling highlights cell proliferation in the progression of experimental pulmonary hypertension in rats. Sci Rep 2024; 14:14056. [PMID: 38890390 PMCID: PMC11189536 DOI: 10.1038/s41598-024-64251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remolding and occlusion, leading to the elevated pulmonary arterial pressures, right ventricular hypertrophy, and eventual heart failure if left untreated. Understanding the molecular mechanisms underlying the development and progression of pulmonary hypertension (PH) is crucial for devising efficient therapeutic approaches for the disease. Lung homogenates were collected weekly and underwent RNA-sequencing in the monocrotaline (MCT)-induced PH rat model to explore genes associated with PH progression. Statistical analyses revealed 1038, 1244, and 3125 significantly altered genes (P < 0.05, abs (log2fold change) > log21.5) between control and MCT-exposed rats during the first, second, and third week, respectively. Pathway enrichment analyses revealed involvement of cell cycle and innate immune system for the upregulated genes, GPCR and VEGF signaling for the downregulated genes. Furthermore, qRT-PCR validated upregulation of representative genes associated with cell cycle including Cdc25c (cell division cycle 25C), Cdc45, Top2a (topoisomerase IIα), Ccna2 (cyclin A2) and Ccnb1 (cyclin B1). Western blot and immunofluorescence analysis confirmed increases in PCNA, Ccna2, Top2a, along with other proliferation markers in the lung tissue of MCT-treated rats. In summary, RNA sequencing data highlights the significance of cell proliferation in progression of rodent PH.
Collapse
Affiliation(s)
- Ang Luo
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China.
| | - Rongrong Hao
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Xia Zhou
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Yangfan Jia
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Lirong Zhou
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, China
| | - Chenxin Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Ai-Ai Chu
- Division of Echocardiography, Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Lemay SE, Montesinos MS, Grobs Y, Yokokawa T, Shimauchi T, Romanet C, Sauvaget M, Breuils-Bonnet S, Bourgeois A, Théberge C, Pelletier A, El Kabbout R, Martineau S, Yamamoto K, Ray AS, Lippa B, Goodwin B, Lin FY, Wang H, Dowling JE, Lu M, Qiao Q, McTeague TA, Moy TI, Potus F, Provencher S, Boucherat O, Bonnet S. Exploring Integrin α5β1 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension: Insights from Comprehensive Multicenter Preclinical Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596052. [PMID: 38854025 PMCID: PMC11160677 DOI: 10.1101/2024.05.27.596052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PA) and progressive increase in pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Although several drugs are approved for the treatment of PAH, mortality remains high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets. However, their role in PAH remains largely unexplored. We found that the arginine-glycine-aspartate (RGD)-binding integrin α5β1 is upregulated in PA endothelial cells (PAEC) and PA smooth muscle cells (PASMC) from PAH patients and remodeled PAs from animal models. Blockade of the integrin α5β1 or depletion of the α5 subunit resulted in mitotic defects and inhibition of the pro-proliferative and apoptosis-resistant phenotype of PAH cells. Using a novel small molecule integrin inhibitor and neutralizing antibodies, we demonstrated that α5β1 integrin blockade attenuates pulmonary vascular remodeling and improves hemodynamics and RV function in multiple preclinical models. Our results provide converging evidence to consider α5β1 integrin inhibition as a promising therapy for pulmonary hypertension. One sentence summary The α5β1 integrin plays a crucial role in pulmonary vascular remodeling.
Collapse
|
11
|
Li HR, Chen GL, Fang XL, Cai XJ, Xu RL, Li DD, Zhang ZW. Circ_0068481 Affects the Human Pulmonary Artery Smooth Muscle Cells' Progression by miR-361-3p/KLF5 Axis. Am J Hypertens 2024; 37:33-45. [PMID: 37738301 DOI: 10.1093/ajh/hpad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 06/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) contributes to the pathogenesis of pulmonary arterial hypertension (PAH). In this work, we defined the precise part of circ_0068481 in PASMC proliferation and migration induced by hypoxia. We hypothesized that circ_0068481 enhanced hypoxia-induced PASMC proliferation, invasion, and migration through the microRNA (miR)-361-3p/Krüppel-like factor 5 (KLF5) pathway. METHODS Human PASMCs (hPASMCs) were exposed to hypoxic (3% O2) conditions. Circ_0068481, miR-361-3p, and KLF5 levels were gauged by qRT-PCR and western blot. Cell viability, proliferation, invasion, and migration were detected by XTT, EdU incorporation, transwell, and wound-healing assays, respectively. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were performed to confirm the direct relationship between miR-361-3p and circ_0068481 or KLF5. RESULTS Circ_0068481 expression was increased in the serum of PAH patients and hypoxia-induced hPASMCs. Downregulation of circ_0068481 attenuated hypoxia-induced promotion in hPASMC proliferation, invasion, and migration. Circ_0068481 directly targeted miR-361-3p, and miR-361-3p downregulation reversed the inhibitory effects of circ_0068481 silencing on hypoxia-induced hPASMC proliferation, invasion, and migration. KLF5 was a direct miR-361-3p target, and miR-361-3p upregulation mitigated hypoxia-induced hPASMC proliferation, invasion, and migration by inhibiting KLF5 expression. Moreover, circ_0068481-induced KLF5 expression by binding to miR-361-3p in hypoxic hPASMCs. CONCLUSIONS Circ_0068481 knockdown ameliorated hypoxia-induced hPASMC proliferation, invasion, and migration at least in part through the miR-361-3p/KLF5 axis.
Collapse
Affiliation(s)
- Hai-Rong Li
- Department of Cardiology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guan-Liang Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Fang
- Department of Cardiology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Xing-Jiu Cai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rong-Li Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dong-Dong Li
- Laboratory department, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Zhi-Wei Zhang
- Department of Cardiology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
12
|
Yi Y, Tianxin Y, Zhangchi L, Cui Z, Weiguo W, Bo Y. Pinocembrin attenuates susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension. Eur J Pharmacol 2023; 960:176169. [PMID: 37925134 DOI: 10.1016/j.ejphar.2023.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a disease characterized by pulmonary vascular remodeling that triggers fibrosis and excessive myocardium apoptosis, ultimately facilitating atrial fibrillation (AF). In various rat models, Pinocembrin has anti-fibrotic and anti-apoptotic effects, reducing arrhythmia vulnerability. However, whether pinocembrin alleviates to AF in a PAH model remains unclear. The experiment aims to investigate how pinocembrin affects AF susceptibility in PAH rats and the possible mechanisms involved. METHODS The PAH model was induced by monocrotaline (MCT; i. p. 60 mg/kg). Concurrently, rats received pinocembrin (i.p.50 mg/kg) or saline. Hemodynamics parameters, electrocardiogram parameters, lung H.E. staining, atrial electrophysiological parameters, histology, Western blot, and TUNEL assay were detected. RESULTS Compared to the control rats, MCT-induced PAH rats possessed prominently enhancive mPAP (mean pulmonary artery pressure), pulmonary vascular remodeling, AF inducibility, HRV, right atrial myocardial fibrosis, apoptosis, atrial ERP, APD, and P-wave duration. Additionally, there were lowered protein levels of Cav1.2, Kv4.2, Kv4.3, and connexin 40 (CX40) in the MCT group in right atrial tissue. However, pinocembrin reversed the above pathologies and alleviated the activity of the Rho A/ROCKs signaling pathway, including the expression of Rho A, ROCK1, ROCK2, and its downstream MYPT-1, LIMK2, BCL-2, BAX, cleaved-caspase3 in right atrial and HL-1 cells. CONCLUSION Present data exhibited pinocembrin attenuated atrial electrical, ion-channel, and autonomic remodeling, diminished myocardial fibrosis and apoptosis levels, thereby reducing susceptibility to AF in the MCT-induced PAH rats. Furthermore, we found that pinocembrin exerted inhibitory action on the Rho A/ROCK signaling pathway, which may be potentially associated with its anti-AF effects.
Collapse
Affiliation(s)
- Yu Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Ye Tianxin
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Liu Zhangchi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Zhang Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Wan Weiguo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Yang Bo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
13
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
14
|
Lukovic D, Hasimbegovic E, Winkler J, Mester-Tonczar J, Müller-Zlabinger K, Han E, Spannbauer A, Traxler-Weidenauer D, Bergler-Klein J, Pavo N, Goliasch G, Batkai S, Thum T, Zannad F, Gyöngyösi M. Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis. Int J Mol Sci 2023; 24:ijms24087461. [PMID: 37108624 PMCID: PMC10139067 DOI: 10.3390/ijms24087461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
We have designed translational animal models to investigate cardiac profibrotic gene signatures. Domestic pigs were treated with cardiotoxic drugs (doxorubicin, DOX, n = 5 or Myocet®, MYO, n = 5) to induce replacement fibrosis via cardiotoxicity. Reactive interstitial fibrosis was triggered by LV pressure overload by artificial isthmus stenosis with stepwise developing myocardial hypertrophy and final fibrosis (Hyper, n = 3) or by LV volume overload in the adverse remodeled LV after myocardial infarction (RemoLV, n = 3). Sham interventions served as controls and healthy animals (Control, n = 3) served as a reference in sequencing study. Myocardial samples from the LV of each group were subjected to RNA sequencing. RNA-seq analysis revealed a clear distinction between the transcriptomes of myocardial fibrosis (MF) models. Cardiotoxic drugs activated the TNF-alpha and adrenergic signaling pathways. Pressure or volume overload led to the activation of FoxO pathway. Significant upregulation of pathway components enabled the identification of potential drug candidates used for the treatment of heart failure, such as ACE inhibitors, ARB, ß-blockers, statins and diuretics specific to the distinct MF models. We identified candidate drugs in the groups of channel blockers, thiostrepton that targets the FOXM1-regulated ACE conversion to ACE2, tyrosine kinases or peroxisome proliferator-activated receptor inhibitors. Our study identified different gene targets involved in the development of distinct preclinical MF protocols enabling tailoring expression signature-based approach for the treatment of MF.
Collapse
Affiliation(s)
- Dominika Lukovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ena Hasimbegovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Mester-Tonczar
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katrin Müller-Zlabinger
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Emilie Han
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Denise Traxler-Weidenauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jutta Bergler-Klein
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sandor Batkai
- Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies (IMTTS), 30625 Hannover, Germany
| | - Thomas Thum
- Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies (IMTTS), 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Faiez Zannad
- Inserm Clinical Investigation Centre, Université de Lorraine, CHU, 54052 Nancy, France
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
16
|
Kang T, Liu L, Tan F, Zhang D, Yu L, Jiang H, Qian W, Hua J, Zheng Z. Inhibition of YTHDF1 prevents hypoxia-induced pulmonary artery smooth muscle cell proliferation by regulating Foxm1 translation in an m6A-dependent manner. Exp Cell Res 2023; 424:113505. [PMID: 36736607 DOI: 10.1016/j.yexcr.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by pulmonary vascular remodeling. It refers to the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs), and hypoxia is an important risk factor for this progression. The present study aims to investigate the role of YTHDF1 in the regulation of hypoxic PASMC proliferation and the underlying mechanism. Human PASMCs were transfected with si-YTHDF1/2/3 followed by treatment of hypoxia, and the PASMC proliferation and Foxm1 expression were detected. Through RNA pull-down, RNA immunoprecipitation, and protein synthesis assay, the mechanism of YTHDF1 regulating Foxm1 was explored. Next, Foxm1 was inhibited by thiostrepton, and cell proliferation was detected. In vivo, mice received a tail vein injection of adenovirus containing si-YTHDF1 and were exposed to hypoxia treatment. Pulmonary vascular changes, right ventricular systolic pressure (RVSP), and genes involving proliferation were analyzed. YTHDF1 silencing reduced more hypoxic PASMC proliferation and Foxm1 protein level than YTHDF2/3 silencing. Mechanical results showed that YTHDF1 interacted with Foxm1 mRNA and up-regulated Foxm1 protein level by enhancing the translation efficiency in an m6A-dependent manner. Furthermore, YTHDF1 facilitated hypoxic PASMC proliferation and proliferation marker expressions through up-regulation of Foxm1 in an m6A-dependent manner. In vivo, the YTHDF1 silencing alleviated pulmonary vascular changes and fibrosis, reduced RVSP, inhibited the interaction of YTHDF1 and Foxm1, and reduced proliferation marker levels, as compared to the PAH group. In conclusion, YTHDF1 silencing inhibits hypoxic PASMC proliferation by regulating Foxm1 translation in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ting Kang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lijuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Feng Tan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dinghong Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lvhong Yu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Haiyan Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jinghai Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
17
|
Jiang Y, Huang J, Xia Y, Sun Z, Hu P, Wang D, Liu Y, Tao T, Liu Y. Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells. Eur J Pharmacol 2023; 941:175502. [PMID: 36638952 DOI: 10.1016/j.ejphar.2023.175502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hypoxia is a risk factor of pulmonary hypertension (PH) and may induce pulmonary artery endothelial cells (PAECs) injury and inflammation. Pyroptosis is a form of cell death through maturation and secretion of inflammatory mediators. However, the mechanistic association of pyroptosis, PAECs injury, and inflammation remain unknown. Here, we explored in detail the effects of hypoxia on pyroptosis of PAECs. EXPERIMENTAL APPROACH Using RNA sequencing, we screened differentially expressed genes in pulmonary artery tissue of a Sugen5416/hypoxia-induced (SuHx) rat PH model. We examined the role of the differentially expressed gene G-protein coupled receptor 146 (GPR146) in PAECs through immunohistochemistry, immunofluorescence, CCK-8 assays, western blotings, real-time PCR, detection of reactive oxygen species, and lactate dehydrogenase release experiments. KEY RESULTS According to RNA sequencing, GPR146 was 11.64-fold increased in the SuHx-induced PH model, compared to the controls. Further, GPR146 was highly expressed in pulmonary arterial hypertension human lung tissue and SuHx-induced rat PH lung tissues. Our results suggested that the expression of pyroptosis-related proteins was markedly increased under hypoxia, both in vivo and in vitro, which was inhibited by silencing GPR146. Moreover, inhibiting NLRP3 or caspase-1 effectively suppressed cleavage of caspase-1, production of interleukin (IL)-1β, IL-6, and IL-18 in PAECs by hypoxia and overexpression of GPR146. CONCLUSION Our results indicated that GPR146 induced pyroptosis and inflammatory responses through the NLRP3/caspase-1 signaling axis, thus triggering endothelial injury and vascular remodeling. Hypoxia may promote PAECs pyroptosis through upregulation of GPR146 and thereby facilitate the progression of PH. Taken together, these insights may help identify a novel target for the treatment of PH.
Collapse
Affiliation(s)
- Yanjiao Jiang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Jie Huang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Yu Xia
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Zengxian Sun
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China; Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
| | - Panpan Hu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Dapeng Wang
- Department of Intensive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yi Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Ting Tao
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Yun Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China; Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China.
| |
Collapse
|
18
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
19
|
Luo X, Hang C, Zhang Z, Le K, Ying Y, Lv Y, Yan L, Huang Y, Ye L, Xu X, Zhong Y, Du L. PVECs-Derived Exosomal microRNAs Regulate PASMCs via FoxM1 Signaling in IUGR-induced Pulmonary Hypertension. J Am Heart Assoc 2022; 11:e027177. [PMID: 36533591 PMCID: PMC9798821 DOI: 10.1161/jaha.122.027177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Intrauterine growth restriction (IUGR) is closely related to systemic or pulmonary hypertension (PH) in adulthood. Aberrant crosstalk between pulmonary vascular endothelial cells (PVECs) and pulmonary arterial smooth muscle cells (PASMCs) that is mediated by exosomes plays an essential role in the progression of PH. FoxM1 (Forkhead box M1) is a key transcription factor that governs many important biological processes. Methods and Results IUGR-induced PH rat models were established. Transwell plates were used to coculture PVECs and PASMCs. Exosomes were isolated from PVEC-derived medium, and a microRNA (miRNA) screening was proceeded to identify effects of IUGR on small RNAs enclosed within exosomes. Dual-Luciferase assay was performed to validate the predicted binding sites of miRNAs on FoxM1 3' untranslated region. FoxM1 inhibitor thiostrepton was used in IUGR-induced PH rats. In this study, we found that FoxM1 expression was remarkably increased in IUGR-induced PH, and PASMCs were regulated by PVECs through FoxM1 signaling in a non-contact way. An miRNA screening showed that miR-214-3p, miR-326-3p, and miR-125b-2-3p were downregulated in PVEC-derived exosomes of the IUGR group, which were associated with overexpression of FoxM1 and more significant proliferation and migration of PASMCs. Dual-Luciferase assay demonstrated that the 3 miRNAs directly targeted FoxM1 3' untranslated region. FoxM1 inhibition blocked the PVECs-PASMCs crosstalk and reversed the abnormal functions of PASMCs. In vivo, treatment with thiostrepton significantly reduced the severity of PH. Conclusions Transmission of exosomal miRNAs from PVECs regulated the functions of PASMCs via FoxM1 signaling, and FoxM1 may serve as a potential therapeutic target in IUGR-induced PH.
Collapse
Affiliation(s)
- Xiaofei Luo
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Chengcheng Hang
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Ziming Zhang
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Kaixing Le
- Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Yuhan Ying
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Ying Lv
- Department of Pediatric Health Care, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Lingling Yan
- Department of Pediatrics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvincePeople’s Republic of China
| | - Yajie Huang
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Lixia Ye
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Xuefeng Xu
- Department of Rheumatology Immunology & Allergy, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Ying Zhong
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| | - Lizhong Du
- Department of Neonatology, The Children’s HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang ProvincePeople’s Republic of China
| |
Collapse
|
20
|
Zhai C, Zhang N, Wang J, Cao M, Luan J, Liu H, zhang Q, Zhu Y, Xue Y, Li S. Activation of Autophagy Induces Monocrotaline-Induced Pulmonary Arterial Hypertension by FOXM1-Mediated FAK Phosphorylation. Lung 2022; 200:619-631. [PMID: 36107242 DOI: 10.1007/s00408-022-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
|
21
|
Rai N, Sydykov A, Kojonazarov B, Wilhelm J, Manaud G, Veeroju S, Ruppert C, Perros F, Ghofrani HA, Weissmann N, Seeger W, Schermuly RT, Novoyatleva T. Targeting peptidyl-prolyl isomerase 1 in experimental pulmonary arterial hypertension. Eur Respir J 2022; 60:2101698. [PMID: 35058248 PMCID: PMC9403440 DOI: 10.1183/13993003.01698-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease characterised by pro-proliferative and anti-apoptotic phenotype in vascular cells, leading to pulmonary vascular remodelling and right heart failure. Peptidyl-prolyl cis/trans isomerase, NIMA interacting 1 (Pin1), a highly conserved enzyme, which binds to and catalyses the isomerisation of specific phosphorylated Ser/Thr-Pro motifs, acts as a molecular switch in multiple coordinated cellular processes. We hypothesised that Pin1 plays a substantial role in PAH, and its inhibition with a natural organic compound, Juglone, would reverse experimental pulmonary hypertension. RESULTS We demonstrated that the expression of Pin1 was markedly elevated in experimental pulmonary hypertension (i.e. hypoxia-induced mouse and Sugen/hypoxia-induced rat models) and pulmonary arterial smooth muscle cells of patients with clinical PAH. In vitro Pin1 inhibition by either Juglone treatment or short interfering RNA knockdown resulted in an induction of apoptosis and decrease in proliferation of human pulmonary vascular cells. Stimulation with growth factors induced Pin1 expression, while its inhibition reduced the activity of numerous PAH-related transcription factors, such as hypoxia-inducible factor (HIF)-α and signal transducer and activator of transcription (STAT). Juglone administration lowered pulmonary vascular resistance, enhanced right ventribular function, improved pulmonary vascular and cardiac remodelling in the Sugen/hypoxia rat model of PAH and the chronic hypoxia-induced pulmonary hypertension model in mice. CONCLUSION Our study demonstrates that targeting of Pin1 with small molecule inhibitor, Juglone, might be an attractive future therapeutic strategy for PAH and right heart disease secondary to PAH.
Collapse
Affiliation(s)
- Nabham Rai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Akylbek Sydykov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Grégoire Manaud
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Swathi Veeroju
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- These co-senior authors contributed equally to this work
| | - Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- These co-senior authors contributed equally to this work
| |
Collapse
|
22
|
An Update on Advancements and Challenges in Inhalational Drug Delivery for Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27113490. [PMID: 35684428 PMCID: PMC9182169 DOI: 10.3390/molecules27113490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
A lethal condition at the arterial–alveolar juncture caused the exhaustive remodeling of pulmonary arterioles and persistent vasoconstriction, followed by a cumulative augmentation of resistance at the pulmonary vascular and, consequently, right-heart collapse. The selective dilation of the pulmonary endothelium and remodeled vasculature can be achieved by using targeted drug delivery in PAH. Although 12 therapeutics were approved by the FDA for PAH, because of traditional non-specific targeting, they suffered from inconsistent drug release. Despite available inhalation delivery platforms, drug particle deposition into the microenvironment of the pulmonary vasculature and the consequent efficacy of molecules are influenced by pathophysiological conditions, the characteristics of aerosolized mist, and formulations. Uncertainty exists in peripheral hemodynamics outside the pulmonary vasculature and extra-pulmonary side effects, which may be further exacerbated by underlying disease states. The speedy improvement of arterial pressure is possible via the inhalation route because it has direct access to pulmonary arterioles. Additionally, closed particle deposition and accumulation in diseased tissues benefit the restoration of remolded arterioles by reducing fallacious drug deposition in other organs. This review is designed to decipher the pathological changes that should be taken into account when targeting the underlying pulmonary endothelial vasculature, especially with regard to inhaled particle deposition in the alveolar vasculature and characteristic formulations.
Collapse
|
23
|
Provencher S, Potus F, Blais-Lecours P, Bernard S, Martineau S, Breuils-Bonnet S, Weatherald J, Sweeney M, Kulikowski E, Boucherat O, Bonnet S. BET Protein Inhibition for Pulmonary Arterial Hypertension: A Pilot Study. Am J Respir Crit Care Med 2022; 205:1357-1360. [PMID: 35289736 DOI: 10.1164/rccm.202109-2182le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Steeve Provencher
- Institut universitaire de cardiologie et de pneumologie de Québec, 55973, Pneumologie, Quebec, Quebec, Canada;
| | - François Potus
- Institut universitaire de cardiologie et de pneumologie de Québec, Pulmonary Hypertension Research Group, Québec, Quebec, Canada
| | | | - Sarah Bernard
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Université Laval, Quebec, Quebec, Canada
| | - Sandra Martineau
- Institut universitaire de cardiologie et de pneumologie de Québec, Pulmonary Hypertension Research Group, Québec, Quebec, Canada
| | - Sandra Breuils-Bonnet
- Institut universitaire de cardiologie et de pneumologie de Québec, Pulmonary Hypertension Research Group, Québec, Quebec, Canada
| | - Jason Weatherald
- University of Calgary Cumming School of Medicine, 70401, Calgary, Alberta, Canada
| | | | | | - Olivier Boucherat
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pneumologie, Québec, Quebec, Canada
| | | |
Collapse
|
24
|
Ho L, Hossen N, Nguyen T, Vo A, Ahsan F. Epigenetic Mechanisms as Emerging Therapeutic Targets and Microfluidic Chips Application in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:170. [PMID: 35052850 PMCID: PMC8773438 DOI: 10.3390/biomedicines10010170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.
Collapse
Affiliation(s)
- Linh Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Nazir Hossen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Trieu Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
- East Bay Institute for Research & Education (EBIRE), Mather, CA 95655, USA
| | - Au Vo
- Department of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
25
|
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:14-26. [PMID: 35656442 PMCID: PMC9118284 DOI: 10.22038/ijbms.2022.60380.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
The flavonoids, baicalin, and its aglycone baicalein possess multi-fold therapeutic properties and are mainly found in the roots of Oroxylum indicum (L.) Kurz and Scutellaria baicalensis Georgi. These flavonoids have been reported to possess various pharmacological properties, including antibacterial, antiviral, anticancer, anticonvulsant, anti-oxidant, hepatoprotective, and neuroprotective effects. The pharmacological properties of baicalin and baicalein are due to their abilities to scavenge reactive oxygen species (ROS) and interaction with various signaling molecules associated with apoptosis, inflammation, autophagy, cell cycle, mitochondrial dynamics, and cytoprotection. In this review, we summarized the molecular mechanisms underlying the chemopreventive and chemotherapeutic applications of baicalin and baicalein in the treatment of cancer and inflammatory diseases. In addition, the preventive effects of baicalin and baicalein on mitochondrial dynamics and functions were highlighted with a particular emphasis on their anti-oxidative and cytoprotective properties. The current review highlights could be useful for future prospective studies to further improve the pharmacological applications of baicalein and baicalin. These studies should define the threshold for optimal drug exposure, dose optimization and focus on therapeutic drug monitoring, objective disease markers, and baicalin/baicalein drug levels.
Collapse
Affiliation(s)
- Zhihua Hu
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Yurong Guan
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Xu
- Hubei Zhiying Medical Imaging Center, Radiology Department of Huanggang Hospital of Traditional Chinese Medicine, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
26
|
Zang H, Zhang Q, Li X. Non-Coding RNA Networks in Pulmonary Hypertension. Front Genet 2021; 12:703860. [PMID: 34917122 PMCID: PMC8669616 DOI: 10.3389/fgene.2021.703860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are involved in various cellular processes. There are several ncRNA classes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The detailed roles of these molecules in pulmonary hypertension (PH) remain unclear. We systematically collected and reviewed reports describing the functions of ncRNAs (miRNAs, lncRNAs, and circRNAs) in PH through database retrieval and manual literature reading. The characteristics of identified articles, especially the experimental methods, were carefully reviewed. Furthermore, regulatory networks were constructed using ncRNAs and their interacting RNAs or genes. These data were extracted from studies on pulmonary arterial smooth muscle cells, pulmonary artery endothelial cells, and pulmonary artery fibroblasts. We included 14 lncRNAs, 1 circRNA, 74 miRNAs, and 110 mRNAs in the constructed networks. Using these networks, herein, we describe the current knowledge on the role of ncRNAs in PH. Moreover, these networks actively provide an improved understanding of the roles of ncRNAs in PH. The results of this study are crucial for the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Hongbin Zang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiongyu Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Abstract
Pulmonary arterial hypertension is characterized by obliteration and obstruction of the pulmonary arterioles that in turn results in high right ventricular afterload and right heart failure. The pathobiology of pulmonary arterial hypertension is complex, with contributions from multiple pathophysiologic processes that are regulated by a variety of molecular mechanisms. This nature likely explains the limited efficacy of our current therapies, which only target a small portion of the pathobiological mechanisms that underlie advanced disease. Here we review the pathobiology of pulmonary arterial hypertension, focusing on the systemic, cellular, and molecular mechanisms that underlie the disease.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Room 128A Hanes House, 330 Trent Drive, Durham, NC 27710, USA.
| | - Yen-Rei A Yu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, 12605 E. 16th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Kurakula K, Hagdorn QAJ, van der Feen DE, Vonk Noordegraaf A, Ten Dijke P, de Boer RA, Bogaard HJ, Goumans MJ, Berger RMF. Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis 2021; 25:99-112. [PMID: 34379232 PMCID: PMC8813847 DOI: 10.1007/s10456-021-09812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodelling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-β/BMP signalling, endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone significantly decreased TGF-β signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-β signalling in monocrotaline + shunt-PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-β/BMP signalling pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Quint A J Hagdorn
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diederik E van der Feen
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Rolf M F Berger
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Gu M, Donato M, Guo M, Wary N, Miao Y, Mao S, Saito T, Otsuki S, Wang L, Harper RL, Sa S, Khatri P, Rabinovitch M. iPSC-endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Sci Transl Med 2021; 13:13/592/eaba6480. [PMID: 33952674 DOI: 10.1126/scitranslmed.aba6480] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder leading to occlusive vascular remodeling. Current PAH therapies improve quality of life but do not reverse structural abnormalities in the pulmonary vasculature. Here, we used high-throughput drug screening combined with in silico analyses of existing transcriptomic datasets to identify a promising lead compound to reverse PAH. Induced pluripotent stem cell-derived endothelial cells generated from six patients with PAH were exposed to 4500 compounds and assayed for improved cell survival after serum withdrawal using a chemiluminescent caspase assay. Subsequent validation of caspase activity and improved angiogenesis combined with data analyses using the Gene Expression Omnibus and Library of Integrated Network-Based Cellular Signatures databases revealed that the lead compound AG1296 was positively associated with an anti-PAH gene signature. AG1296 increased abundance of bone morphogenetic protein receptors, downstream signaling, and gene expression and suppressed PAH smooth muscle cell proliferation. AG1296 induced regression of PA neointimal lesions in lung organ culture and PA occlusive changes in the Sugen/hypoxia rat model and reduced right ventricular systolic pressure. Moreover, AG1296 improved vascular function and BMPR2 signaling and showed better correlation with the anti-PAH gene signature than other tyrosine kinase inhibitors. Specifically, AG1296 up-regulated small mothers against decapentaplegic (SMAD) 1/5 coactivators, cAMP response element-binding protein 3 (CREB3), and CREB5: CREB3 induced inhibitor of DNA binding 1 and downstream genes that improved vascular function. Thus, drug discovery for PAH can be accelerated by combining phenotypic screening with in silico analyses of publicly available datasets.
Collapse
Affiliation(s)
- Mingxia Gu
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Michele Donato
- Department of Medicine (Biomedical Informatics) and Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil Wary
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yifei Miao
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shuai Mao
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Toshie Saito
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shoichiro Otsuki
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lingli Wang
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rebecca L Harper
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Silin Sa
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Medicine (Biomedical Informatics) and Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA. .,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Wu WH, Bonnet S, Shimauchi T, Toro V, Grobs Y, Romanet C, Bourgeois A, Vitry G, Omura J, Tremblay E, Nadeau V, Orcholski M, Breuils-Bonnet S, Martineau S, Ferraro P, Potus F, Paulin R, Provencher S, Boucherat O. Potential for inhibition of checkpoint kinases 1/2 in pulmonary fibrosis and secondary pulmonary hypertension. Thorax 2021; 77:247-258. [PMID: 34226205 DOI: 10.1136/thoraxjnl-2021-217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.
Collapse
Affiliation(s)
- Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Victoria Toro
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Geraldine Vitry
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Valerie Nadeau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Mark Orcholski
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Pasquale Ferraro
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| |
Collapse
|
31
|
Pal-Ghosh R, Xue D, Warburton R, Hill N, Polgar P, Wilson JL. CDC2 Is an Important Driver of Vascular Smooth Muscle Cell Proliferation via FOXM1 and PLK1 in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:6943. [PMID: 34203295 PMCID: PMC8268698 DOI: 10.3390/ijms22136943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.
Collapse
Affiliation(s)
- Ruma Pal-Ghosh
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Danfeng Xue
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rod Warburton
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Nicholas Hill
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Peter Polgar
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Jamie L. Wilson
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| |
Collapse
|
32
|
Lopez-Crisosto C, Arias-Carrasco R, Sepulveda P, Garrido-Olivares L, Maracaja-Coutinho V, Verdejo HE, Castro PF, Lavandero S. Novel molecular insights and public omics data in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166200. [PMID: 34144090 DOI: 10.1016/j.bbadis.2021.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension is a rare disease with high morbidity and mortality which mainly affects women of reproductive age. Despite recent advances in understanding the pathogenesis of pulmonary hypertension, the high heterogeneity in the presentation of the disease among different patients makes it difficult to make an accurate diagnosis and to apply this knowledge to effective treatments. Therefore, new studies are required to focus on translational and personalized medicine to overcome the lack of specificity and efficacy of current management. Here, we review the majority of public databases storing 'omics' data of pulmonary hypertension studies, from animal models to human patients. Moreover, we review some of the new molecular mechanisms involved in the pathogenesis of pulmonary hypertension, including non-coding RNAs and the application of 'omics' data to understand this pathology, hoping that these new approaches will provide insights to guide the way to personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile
| | - Raul Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Sepulveda
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Cardiovascular Surgery, Division of Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
33
|
Sun F, Wang G, Pradhan A, Xu K, Gomez-Arroyo J, Zhang Y, Kalin GT, Deng Z, Vagnozzi RJ, He H, Dunn AW, Wang Y, York AJ, Hegde RS, Woods JC, Kalin TV, Molkentin JD, Kalinichenko VV. Nanoparticle Delivery of STAT3 Alleviates Pulmonary Hypertension in a Mouse Model of Alveolar Capillary Dysplasia. Circulation 2021; 144:539-555. [PMID: 34111939 DOI: 10.1161/circulationaha.121.053980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.
Collapse
Affiliation(s)
- Fei Sun
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Kui Xu
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Jose Gomez-Arroyo
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Department of Internal Medicine, Section of Pulmonary and Critical Care (J.G.-A.), University of Cincinnati, OH
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Division of Pulmonary Biology (G.T.K., H.H., T.V.K., J.D.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Zicheng Deng
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- The Materials Science and Engineering Program, College of Engineering and Applied Science (Z.D., A.W.D.), University of Cincinnati, OH
| | - Ronald J Vagnozzi
- Division of Molecular Cardiovascular Biology, Heart Institute (R.J.V., A.J.Y., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Hua He
- Division of Pulmonary Biology (G.T.K., H.H., T.V.K., J.D.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Andrew W Dunn
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- The Materials Science and Engineering Program, College of Engineering and Applied Science (Z.D., A.W.D.), University of Cincinnati, OH
| | - Yuhua Wang
- Division of Developmental Biology (Y.W., R.S.H., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Allen J York
- Division of Molecular Cardiovascular Biology, Heart Institute (R.J.V., A.J.Y., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Rashmi S Hegde
- Division of Developmental Biology (Y.W., R.S.H., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Department of Pediatrics (R.S.H., J.C.W., T.V.K., J.S.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Jason C Woods
- Department of Pediatrics (R.S.H., J.C.W., T.V.K., J.S.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine (J.C.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Tanya V Kalin
- Division of Pulmonary Biology (G.T.K., H.H., T.V.K., J.D.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Department of Pediatrics (R.S.H., J.C.W., T.V.K., J.S.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| | - Jeffery D Molkentin
- Division of Pulmonary Biology (G.T.K., H.H., T.V.K., J.D.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Division of Molecular Cardiovascular Biology, Heart Institute (R.J.V., A.J.Y., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
- Department of Pediatrics (R.S.H., J.C.W., T.V.K., J.S.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute (F.S., G.W., A.P., K.X., J.G.-A., Y.Z., G.T.K., Z.D., A.W.D., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Division of Pulmonary Biology (G.T.K., H.H., T.V.K., J.D.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Division of Developmental Biology (Y.W., R.S.H., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
- Department of Pediatrics (R.S.H., J.C.W., T.V.K., J.S.M., V.V.K.), Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
34
|
Lemay SE, Awada C, Shimauchi T, Wu WH, Bonnet S, Provencher S, Boucherat O. Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH? Cells 2021; 10:1473. [PMID: 34208388 PMCID: PMC8231250 DOI: 10.3390/cells10061473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension is a debilitating chronic disorder marked by the progressive obliteration of the pre-capillary arterioles. This imposes a pressure overload on the right ventricle (RV) pushing the latter to undergo structural and mechanical adaptations that inexorably culminate in RV failure and death. Thanks to the advances in molecular biology, it has been proposed that some aspects of the RV and pulmonary vascular remodeling processes are orchestrated by a subversion of developmental regulatory mechanisms with an upregulation of a suite of genes responsible for the embryo's early growth and normally repressed in adults. In this review, we present relevant background regarding the close relationship between overactivation of fetal genes and cardiopulmonary remodeling, exploring whether the reawakening of developmental factors plays a causative role or constitutes a protective mechanism in the setting of PAH.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Wen-Hui Wu
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| |
Collapse
|
35
|
Chen Z, Zhang J, Wei D, Chen J, Yang J. GCN2 Regulates ATF3-p38 MAPK Signaling Transduction in Pulmonary Veno-Occlusive Disease. J Cardiovasc Pharmacol Ther 2021; 26:677-689. [PMID: 33988041 DOI: 10.1177/10742484211015535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a fatal disease of pulmonary vascular lesions leading to right heart failure. Heritable PVOD (hPVOD) is related to biallelic mutation of EIF2AK4 (encoding GCN2), but its molecular mechanism remains unclear. In this study, we aimed to investigate the pathogenesis of PVOD and to find potential drug targets for PVOD. GCN2 dysfunction led to an enhanced transcription of collagen I gene (col1a1 and col1a2) through decreasing ATF3-dependent p38 phosphorylation inhibition in PVOD, which promotes the collagen I synthesis in pulmonary arterial smooth muscle cells (PASMCs) and eventually leads to increased collagen deposition in pulmonary artery. Four GCN2 knockout (KO) cell lines (exon 15 or 33 mutation) were successfully constructed by epiCRISPR system. Two induced pluripotent stem cells (iPSCs) were generated by reprogramming peripheral blood mononuclear cells (PBMCs) of PVOD patient. It was also comfirmed that GCN2 dysfunction could lead to increased expression of collagen I in lateral plate mesoderm lineage-smooth muscle cells (LM-SMCs) differentiated from both GCN2 KO cell lines and iPSCs. SB203580 (a specific inhibitor of p38) improved hemodynamics and pulmonary vascular remodeling in mitomycin C (MMC)-induced PVOD rats by right ventricle echocardiography. On the whole, we proposed that GCN2 deficiency decreased ATF3-dependent p38 phosphorylation inhibition in PVOD development and suggested a potential therapeutic reagent of SB203580 for the treatment of the disease.
Collapse
Affiliation(s)
- Zhongqiu Chen
- Department of Cell Biology, State Key Laboratory of Medical Molecular Biology, 12501Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Physiology, 26441Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyuan Zhang
- Department of Physiology, 26441Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Wei
- Wuxi Lung Transplant Center, 261546Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, 261546Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Jun Yang
- Department of Physiology, 26441Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Klinhom-On N, Seubwai W, Sawanyawisuth K, Lert-Itthiporn W, Waraasawapati S, Detarya M, Wongkham S. FOXM1c is the predominant FOXM1 isoform expressed in cholangiocarcinoma that associated with metastatic potential and poor prognosis of patients. Heliyon 2021; 7:e06846. [PMID: 33997388 PMCID: PMC8093466 DOI: 10.1016/j.heliyon.2021.e06846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/16/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Forkhead box M1 (FOXM1) is a transcriptional factor which plays an important role in oncogenesis. Four FOXM1 isoforms, FOXM1a, FOXM1b, FOXM1c and FOXM1d, are known so far. Different FOXM1 isoforms influence progression of cancer in different cancer types. In this study, the FOXM1c isoform and its impact in cholangiocarcinoma (CCA) was identified. FOXM1c was found to be the predominant isoform in patient-CCA tissues and cell lines. Detection of FOXM1c expression in CCA tissues reflected the worse prognosis of the patients, namely the advanced stage and shorter survival. Suppression of FOXM1 expression using siRNA considerably reduced migration and invasion abilities of CCA cell lines. RNA sequencing analysis revealed claudin-1 as a target of FOXM1. FOXM1 exhibited a negative correlation with claudin-1 expression which was demonstrated in patient CCA tissues and cell lines. FOXM1 may be a potential target for therapeutic treatment of the metastatic CCA.
Collapse
Affiliation(s)
- Nathakan Klinhom-On
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Sakda Waraasawapati
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| |
Collapse
|
37
|
Vitry G, Paulin R, Grobs Y, Lampron MC, Shimauchi T, Lemay SE, Tremblay E, Habbout K, Awada C, Bourgeois A, Nadeau V, Paradis R, Breuils-Bonnet S, Roux-Dalvai F, Orcholski M, Potus F, Provencher S, Boucherat O, Bonnet S. Oxidized DNA Precursors Cleanup by NUDT1 Contributes to Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2021; 203:614-627. [PMID: 33021405 DOI: 10.1164/rccm.202003-0627oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.
Collapse
Affiliation(s)
- Géraldine Vitry
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Marie-Claude Lampron
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Karima Habbout
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Renée Paradis
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | | | - Mark Orcholski
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - François Potus
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| |
Collapse
|
38
|
Yi D, Liu B, Wang T, Liao Q, Zhu MM, Zhao YY, Dai Z. Endothelial Autocrine Signaling through CXCL12/CXCR4/FoxM1 Axis Contributes to Severe Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:3182. [PMID: 33804745 PMCID: PMC8003962 DOI: 10.3390/ijms22063182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial autocrine signaling is essential to maintain vascular homeostasis. There is limited information about the role of endothelial autocrine signaling in regulating severe pulmonary vascular remodeling during the onset of pulmonary arterial hypertension (PAH). In this study, we employed the first severe pulmonary hypertension (PH) mouse model, Egln1Tie2Cre (Tie2Cre-mediated disruption of Egln1) mice, to identify the novel autocrine signaling mediating the pulmonary vascular endothelial cell (PVEC) proliferation and the pathogenesis of PAH. PVECs isolated from Egln1Tie2Cre lung expressed upregulation of many growth factors or angiocrine factors such as CXCL12, and exhibited pro-proliferative phenotype coincident with the upregulation of proliferation-specific transcriptional factor FoxM1. Treatment of CXCL12 on PVECs increased FoxM1 expression, which was blocked by CXCL12 receptor CXCR4 antagonist AMD3100 in cultured human PVECs. The endothelial specific deletion of Cxcl12(Egln1/Cxcl12Tie2Cre) or AMD3100 treatment in Egln1Tie2Cre mice downregulated FoxM1 expression in vivo. We then generated and characterized a novel mouse model with endothelial specific FoxM1 deletion in Egln1Tie2Cre mice (Egln1/Foxm1Tie2Cre), and found that endothelial FoxM1 deletion reduced pulmonary vascular remodeling and right ventricular systolic pressure. Together, our study identified a novel mechanism of endothelial autocrine signaling in regulating PVEC proliferation and pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Dan Yi
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| | - Bin Liu
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo 315211, China;
| | - Maggie M. Zhu
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.M.Z.); (Y.-Y.Z.)
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.M.Z.); (Y.-Y.Z.)
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhiyu Dai
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| |
Collapse
|
39
|
Preclinical Investigation of Trifluoperazine as a Novel Therapeutic Agent for the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22062919. [PMID: 33805714 PMCID: PMC7998101 DOI: 10.3390/ijms22062919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.
Collapse
|
40
|
Agarwal S, de Jesus Perez VA. In Defense of the Nucleus: NUDT1 and Oxidative DNA Damage in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2021; 203:541-542. [PMID: 33095993 PMCID: PMC7924564 DOI: 10.1164/rccm.202009-3706ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Stuti Agarwal
- Divisions of Pulmonary and Critical Care Medicine and
- The Vera Moulton Wall Center for Pulmonary Vascular Medicine Stanford University Stanford, California
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and
- The Vera Moulton Wall Center for Pulmonary Vascular Medicine Stanford University Stanford, California
| |
Collapse
|
41
|
Zhang L, Zeng X, Li Y, Chen S, Tang L, Wang N, Yang X, Lin M. Keratin 1 attenuates hypoxic pulmonary artery hypertension by suppressing pulmonary artery media smooth muscle expansion. Acta Physiol (Oxf) 2021; 231:e13558. [PMID: 32920982 DOI: 10.1111/apha.13558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
AIM Abnormally activated vascular smooth muscle cells are key factors in pulmonary artery remodelling (PAR) and pulmonary artery hypertension (PAH). Keratin 1 is involved in inflammatory diseases; however, its role in PAH is unknown. We speculated that keratin 1 could regulate PASMCs and prevent PAH. METHODS Rats were exposed to hypoxia (10% O2 ) or MCT (50 mg/kg, intraperitoneal injection) or treated with AAV6 virus. PAR was measured through HE and Masson staining. PASMC activities were measured using MTS assay, EdU and Western blot analyses after cell knockdown with siRNAs or overexpression with Krt1 vectors. RESULTS 1. Hypoxic PAR was associated with a decrease in keratin 1, especially in PASMCs. 2. Keratin 1 knockdown led to cell proliferation, migration and contraction to synthetic transformation, while keratin 1 overexpression attenuated hypoxia-induced changes in PASMCs. 3. Decreased keratin 1 induced TLR7 upregulation and mediated increases in the inflammatory factors S100a8 and S100a9. 4. Keratin 1 overexpression reduced the inflammatory factor expression induced by TLR7 activation. 5. Further studies demonstrated that keratin 1 expression was negatively correlated with pulmonary vascular pressure following prolonged hypoxia. 6. Pre-treatment with keratin 1 decreased pulmonary artery pressure and the right heart hypertrophy index and alleviated PAR in two model rats. 7. Keratin 1 exhibited a hypermethylation status in hypoxic pulmonary arteries in the sequencing. Hypoxia-induced decrease in keratin 1 expression was associated with Dnmt1 upregulation induced by YY1 downregulation in PASMCs. CONCLUSION This study suggests that keratin 1 regulates PASMC expansion and has a preventive effect on PAH.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Xi‐Xi Zeng
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
- Department of Clinical Laboratory the Affiliated Hospital of Jiujiang University Jiujiang China
| | - Yu‐Mei Li
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
- Fujian Center for Safety Evaluation of New Drug Fujian Medical University Fuzhou China
| | - Shao‐Kun Chen
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Li‐Yu Tang
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Nan Wang
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Xi Yang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
- Fujian Center for Safety Evaluation of New Drug Fujian Medical University Fuzhou China
| | - Mo‐Jun Lin
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| |
Collapse
|
42
|
Zhou M, Shi J, Lan S, Gong X. FOXM1 regulates the proliferation, apoptosis and inflammatory response of keratinocytes through the NF-κB signaling pathway. Hum Exp Toxicol 2021; 40:1130-1140. [PMID: 33401961 DOI: 10.1177/0960327120984225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Psoriasis is a common immune-mediated and genetic skin disease. Forkhead box M1 (FOXM1) is a member of FOX family that has been found to modulate skin disorders. However, its role in psoriasis remains unknown. Thus, we aimed to investigate the effect of FOXM1 on keratinocytes in response to tumor necrosis factor-α (TNF-α). The expression levels of FOXM1 in psoriasis tissues and normal skin tissues were examined using qRT-PCR and western blot. HaCaT cells were stimulated by TNF-α to mimic psoriasis in vitro. MTT assay was performed to assess cell proliferation. The caspase-3 activity and expression levels of bcl-2 and bax were determined to indicate cell apoptosis. The mRNA and secretion levels of IL-6, IL-23 and TGF-β were determined by qRT-PCR and ELISA, respectively. The NF-κB activation was assessed using western blot analysis. Our results demonstrated that FOXM1 was highly upregulated in psoriatic skin tissues and TNF-α-stimulated HaCaT cells. Knockdown of FOXM1 repressed cell proliferation of TNF-α-stimulated HaCaT cells. Knockdown of FOXM1 caused significant increases in caspase-3 activity, bax expression and decrease in bcl-2 expression in TNF-α-stimulated HaCaT cells. Moreover, FOXM1 knockdown also suppressed the TNF-α-induced production of IL-6, IL-23, and TGF-β in HaCaT cells. However, FOXM1 overexpression showed the opposite effect. Furthermore, the TNF-α-induced NF-κB activation was prevented by FOXM1 knockdown. Additionally, inhibition of NF-κB reversed the effects of FOXM1 on HaCaT cells. Taken together, these findings indicated that FOXM1 regulated cell proliferation, apoptosis and inflammation in TNF-α-induced HaCaT cells. The effects of FOXM1 were mediated by NF-κB pathway.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Dermatology, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China.,Both the authors contributed equally to this paper
| | - Jing Shi
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.,Both the authors contributed equally to this paper
| | - Shaobo Lan
- Department of Hepatology, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Xianjun Gong
- Department of Dermatology, ZaoZhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
43
|
Chen A, Ding S, Kong L, Xu J, He F, Ru C, Lin X. Safflower injection inhibits pulmonary arterial remodeling in a monocrotaline-induced pulmonary arterial hypertension rat model. ACTA ACUST UNITED AC 2020; 76:27-34. [PMID: 33725750 DOI: 10.1515/znc-2020-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/13/2020] [Indexed: 01/29/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a group of diseases with an increase of pulmonary artery pressure (PAP) and pulmonary vascular resistance. Here, the effects of safflower injection, a preparation of Chinese herbs, was investigated in a monocrotaline (MCT)-induced PAH rat model. PAP, carotid artery pressure (CAP), and the right ventricular hypertrophy index (RVHI) increased in the PAH group, while safflower injection was able to inhibit this increase to similar levels as observed in the normal group. The arteriole wall of the lungs and cardiac muscle were thickened and edema was observed in the PAH group, while these pathologies were improved in the herb-treated group in a dose-dependent manner. MCT treatment induced proliferation of pulmonary artery smooth muscle cells (PASMCs), which was inhibited by safflower injection in a dose-dependent manner. Our experimental results demonstrated that safflower injection can regulate pulmonary arterial remodeling through affecting the expression of connective tissue growth factor, transforming growth factor-β, integrin, collagen or fibronectin, which subsequently affected the thicknesses of the arteriole walls of the lungs and cardiac muscle, and thereby benefits the control of PAH. This means safflower injection improved the abnormalities in PAP, CAP and RVHI, and pulmonary arterial remodeling through regulation of remodeling factors.
Collapse
Affiliation(s)
- Aifeng Chen
- Department of Respiratory Medicine, Zhejiang Chinese and Western Medicine Integrated Hospital, Hangzhou310003, China
| | - Shibiao Ding
- Laboratory Department, Zhejiang Chinese and Western Medicine Integrated Hospital, Hangzhou310003, China
| | - Liangliang Kong
- Department of Medical Microbiology and Parasitology, and Department of infectious diseases, affiliated children's hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianpu Xu
- Department of Respiratory Medicine, Zhejiang Chinese and Western Medicine Integrated Hospital, Hangzhou310003, China
| | - Fei He
- Department of Respiratory Medicine, Zhejiang Chinese and Western Medicine Integrated Hospital, Hangzhou310003, China
| | - Chuhui Ru
- Department of Respiratory Medicine, Zhejiang Chinese and Western Medicine Integrated Hospital, Hangzhou310003, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, and Department of infectious diseases, affiliated children's hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China.,Department of Infectious Diseases, Affiliated Children's Hospital, School of Medicine, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
44
|
Mirhadi E, Roufogalis BD, Banach M, Barati M, Sahebkar A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res 2020; 163:105287. [PMID: 33157235 DOI: 10.1016/j.phrs.2020.105287] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022]
Abstract
Resveratrol, trans 3,5,4'-trihydroxystilbene, is a stilbenoid polyphenol with a wide range of properties including antioxidant, neuroprotective, cardioprotective, anti-inflammatory and anticancer activities. It is found in the skins of grape (50-100 μg/mL), red wine, peanuts, bilberries, blueberries and cranberries. The most important effects of resveratrol have been found in cardiovascular disease, with pulmonary arterial hypertension (PAH) being a major severe and progressive component. Many factors are involved in the pathogenesis of PAH, including enzymes, transcription factors, proteins, chemokines, cytokines, hypoxia, oxidative stress and others. Resveratrol treats PAH through its actions on various signaling pathways. These signaling pathways are mainly suppressed SphK1-mediated NF-κB activation, BMP/SMAD signaling pathway, miR-638 and NR4A3/cyclin D1 pathway, SIRT1 pathway, Nrf-2, HIF-1 α expression, MAPK/ERK1 and PI3K/AKT pathways, and RhoA-ROCK signaling pathway. Resveratrol efficiently inhibits the proliferation of pulmonary arterial smooth muscle cells and right ventricular remodeling, which are underlying processes leading to enhanced PAH. While supportive evidence from randomized controlled trials is yet to be available, current in vitro and in vivo studies seem to be convincing and suggest a therapeutic promise for the use of resveratrol in PAH.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
46
|
Omura J, Habbout K, Shimauchi T, Wu WH, Breuils-Bonnet S, Tremblay E, Martineau S, Nadeau V, Gagnon K, Mazoyer F, Perron J, Potus F, Lin JH, Zafar H, Kiely DG, Lawrie A, Archer SL, Paulin R, Provencher S, Boucherat O, Bonnet S. Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation 2020; 142:1464-1484. [PMID: 32698630 DOI: 10.1161/circulationaha.120.047626] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Right ventricular (RV) function is the major determinant for both functional capacity and survival in patients with pulmonary arterial hypertension (PAH). Despite the recognized clinical importance of preserving RV function, the subcellular mechanisms that govern the transition from a compensated to a decompensated state remain poorly understood and as a consequence there are no clinically established treatments for RV failure and a paucity of clinically useful biomarkers. Accumulating evidence indicates that long noncoding RNAs are powerful regulators of cardiac development and disease. Nonetheless, their implication in adverse RV remodeling in PAH is unknown. METHODS Expression of the long noncoding RNA H19 was assessed by quantitative PCR in plasma and RV from patients categorized as control RV, compensated RV or decompensated RV based on clinical history and cardiac index. The impact of H19 suppression using GapmeR was explored in 2 rat models mimicking RV failure, namely the monocrotaline and pulmonary artery banding. Echocardiographic, hemodynamic, histological, and biochemical analyses were conducted. In vitro gain- and loss-of-function experiments were performed in rat cardiomyocytes. RESULTS We demonstrated that H19 is upregulated in decompensated RV from PAH patients and correlates with RV hypertrophy and fibrosis. Similar findings were observed in monocrotaline and pulmonary artery banding rats. We found that silencing H19 limits pathological RV hypertrophy, fibrosis and capillary rarefaction, thus preserving RV function in monocrotaline and pulmonary artery banding rats without affecting pulmonary vascular remodeling. This cardioprotective effect was accompanied by E2F transcription factor 1-mediated upregulation of enhancer of zeste homolog 2. In vitro, knockdown of H19 suppressed cardiomyocyte hypertrophy induced by phenylephrine, while its overexpression has the opposite effect. Finally, we demonstrated that circulating H19 levels in plasma discriminate PAH patients from controls, correlate with RV function and predict long-term survival in 2 independent idiopathic PAH cohorts. Moreover, H19 levels delineate subgroups of patients with differentiated prognosis when combined with the NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels or the risk score proposed by both REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) and the 2015 European Pulmonary Hypertension Guidelines. CONCLUSIONS Our findings identify H19 as a new therapeutic target to impede the development of maladaptive RV remodeling and a promising biomarker of PAH severity and prognosis.
Collapse
Affiliation(s)
- Junichi Omura
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Karima Habbout
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Wen-Hui Wu
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (W-H.W.)
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Kassandra Gagnon
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Florence Mazoyer
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Jean Perron
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Francois Potus
- Department of Medicine, Queen's University, Kingston, ON, Canada (F.P., S.L.A.)
| | - Jian-Hui Lin
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.)
| | - Hamza Zafar
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.).,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, UK (H.Z., D.G.K.)
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.).,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, UK (H.Z., D.G.K.)
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.)
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada (F.P., S.L.A.)
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| |
Collapse
|
47
|
Franco S, Stranz A, Ljumani F, Urabe G, Chaudhary M, Stewart D, Pilli VS, Kelly M, Yamanouchi D, Kent KC, Liu B. Role of FOXM1 in vascular smooth muscle cell survival and neointima formation following vascular injury. Heliyon 2020; 6:e04028. [PMID: 32577545 PMCID: PMC7303564 DOI: 10.1016/j.heliyon.2020.e04028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/15/2020] [Accepted: 05/15/2020] [Indexed: 11/04/2022] Open
Abstract
Background Accelerated smooth muscle cell (SMC) proliferation is the primary cause of intimal hyperplasia (IH) following vascular interventions. Forkhead Box M1 (FOXM1) is considered a proliferation-associated transcription factor. However, the presence and role of FOXM1 in IH following vascular injury have not been determined. Objective We examined the expression of FOXM1 in balloon-injured rat carotid arteries and investigated the effect of FOXM1 inhibition in SMCs and on the development of IH. Methods and results FOXM1 was detected by immunofluorescent staining in balloon-injured rat carotid arteries where we observed an upregulation at day 7, 14, and 28 compared to uninjured controls. Immunofluorescence staining revealed FOXM1 coincided with proliferating cell nuclear antigen (PCNA). FOXM1 was also detectable in human carotid plaque samples. Western blot showed an upregulation of FOXM1 protein in serum-stimulated SMCs. Inhibition of FOXM1 using siRNA or chemical inhibition led to the induction of apoptosis as measured by flow cytometry and western blot for cleaved caspase 3. Perturbations in survival signaling were measured by western blot following FOXM1 inhibition, which showed a decrease in phosphorylated AKT and β-catenin. The chemical inhibitor thiostrepton was delivered by intraperitoneal injection in rats that underwent balloon injury and led to reduced intimal thickening compared to DMSO controls. Conclusions FOXM1 is an important molecular mediator of IH that contributes to the proliferation and survival of SMCs following vascular injury.
Collapse
Affiliation(s)
- Sarah Franco
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.,Department of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Amelia Stranz
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Fiona Ljumani
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Go Urabe
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Mirnal Chaudhary
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.,Department of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Danielle Stewart
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Vijaya Satish Pilli
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Matthew Kelly
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Dai Yamanouchi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.,Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
48
|
Gorr MW, Sriram K, Muthusamy A, Insel PA. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension. Br J Pharmacol 2020; 177:3505-3518. [PMID: 32337710 DOI: 10.1111/bph.15074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH, type 1 pulmonary hypertension) has a 3-year survival of ~50% and is in need of new, effective therapies. In PAH, remodelling of the pulmonary artery (PA) increases pulmonary vascular resistance and can result in right heart dysfunction and failure. Genetic mutations can cause PAH but it can also be idiopathic (IPAH). Enhanced contractility and proliferation of PA smooth muscle cells (PASMCs) are key contributors to the pathophysiology of PAH, but the underlying mechanisms are not well understood. EXPERIMENTAL APPROACH We utilized RNA-sequencing (RNA-seq) of IPAH and control patient-derived PASMCs as an unbiased approach to define differentially expressed (DE) genes that may identify new biology and potential therapeutic targets. KEY RESULTS Analysis of DE genes for shared gene pathways revealed increases in genes involved in cell proliferation and mitosis and decreases in a variety of gene sets, including response to cytokine signalling. ADGRG6/GPR126, an adhesion G protein-coupled receptor (GPCR), was increased in IPAH-PASMCs compared to control-PASMCs. Increased expression of this GPCR in control-PASMCs decreased their proliferation; siRNA knockdown of ADGRG6/GPR126 in IPAH-PASMCs tended to increase proliferation. CONCLUSION AND IMPLICATIONS These data provide insights regarding the expression of current and experimental PAH drug targets, GPCRs and GPCR-related genes as potentially new therapeutic targets in PAH-PASMCs. Overall, the findings identify genes and pathways that may contribute to IPAH-PASMC function and suggest that ADGRG6/GPR126 is a novel therapeutic target for IPAH.
Collapse
Affiliation(s)
- Matthew W Gorr
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Colleges of Nursing and Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Abinaya Muthusamy
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
49
|
Lin S, Du L. The therapeutic potential of BRD4 in cardiovascular disease. Hypertens Res 2020; 43:1006-1014. [PMID: 32409773 DOI: 10.1038/s41440-020-0459-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and extra terminal (BET) protein family that has gained wide attention in the field of cancer due to its role in the formation of super enhancers (SEs) and the regulation of oncogene expression. However, there is increasing evidence that BRD4 also plays a pivotal role in a variety of cardiovascular diseases, suggesting that understanding the mechanisms of BRD4 in these diseases is important to advance studies and clinical treatment. In this article, we summarize the mechanisms of BRD4 in cardiovascular diseases, including pulmonary arterial hypertension, heart failure, atherosclerosis, and hypertension. In addition, we discuss small molecule inhibitors of BRD4 as novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
50
|
Forkhead box M1 transcription factor: a novel target for pulmonary arterial hypertension therapy. World J Pediatr 2020; 16:113-119. [PMID: 31190319 DOI: 10.1007/s12519-019-00271-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Forkhead box M1 (FoxM1), a member of forkhead family, plays a key role in carcinogenesis, progression, invasion, metastasis and drug resistance. Based on the similarities between cancer and pulmonary arterial hypertension, studies on the roles and mechanisms of FoxM1 in pulmonary arterial hypertension have been increasing. This article aims to review recent advances in the mechanisms of signal transduction associated with FoxM1 in pulmonary arterial hypertension. DATA SOURCES Articles were retrieved from PubMed and MEDLINE published after 1990, including-but not limited to-FoxM1 and pulmonary arterial hypertension. RESULTS FoxM1 is overexpressed in pulmonary artery smooth muscle cells in both pulmonary arterial hypertension patients and animal models, and promotes pulmonary artery smooth muscle cell proliferation and inhibits cell apoptosis via regulating cell cycle progression. Multiple signaling molecules and pathways, including hypoxia-inducible factors, transforming growth factor-β/Smad, SET domain-containing 3/vascular endothelial growth factor, survivin, cell cycle regulatory genes and DNA damage response network, are reported to cross talk with FoxM1 in pulmonary arterial hypertension. Proteasome inhibitors are effective in the prevention and treatment of pulmonary arterial hypertension by inhibiting the expression and transcriptional activity of FoxM1. CONCLUSIONS FoxM1 has a crucial role in the pathogenesis of pulmonary arterial hypertension and may represent a novel therapeutic target. But more details of interaction between FoxM1 and other signaling pathways need to be clarified in the future.
Collapse
|