1
|
Elshafei AA, Ibrahim EI, Abdellatif KF, Salem AEAK, Moustafa KA, Al-Doss AA, Migdadi HM, Hussien AM, Soufan W, Abd El Rahman T, Eldemery SM. Molecular and agro-morphological characterization of new barley genotypes in arid environments. BMC Biotechnol 2024; 24:41. [PMID: 38862994 PMCID: PMC11167802 DOI: 10.1186/s12896-024-00861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.
Collapse
Affiliation(s)
- Adel A Elshafei
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Institute, National Research Center, Dokki, Giza, 12622, Egypt.
| | - Eid I Ibrahim
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Kamal F Abdellatif
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Abd El-Azeem K Salem
- Field Crops Research Department, Agricultural and Biological Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Khaled A Moustafa
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Abdullah A Al-Doss
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hussein M Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Amal M Hussien
- Genetic Resources Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Taha Abd El Rahman
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Samah M Eldemery
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| |
Collapse
|
2
|
Du B, Wu J, Wang Q, Sun C, Sun G, Zhou J, Zhang L, Xiong Q, Ren X, Lu B. Genome-wide screening of meta-QTL and candidate genes controlling yield and yield-related traits in barley (Hordeum vulgare L.). PLoS One 2024; 19:e0303751. [PMID: 38768114 PMCID: PMC11104655 DOI: 10.1371/journal.pone.0303751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Increasing yield is an important goal of barley breeding. In this study, 54 papers published from 2001-2022 on QTL mapping for yield and yield-related traits in barley were collected, which contained 1080 QTLs mapped to the barley high-density consensus map for QTL meta-analysis. These initial QTLs were integrated into 85 meta-QTLs (MQTL) with a mean confidence interval (CI) of 2.76 cM, which was 7.86-fold narrower than the CI of the initial QTL. Among these 85 MQTLs, 68 MQTLs were validated in GWAS studies, and 25 breeder's MQTLs were screened from them. Seventeen barley orthologs of yield-related genes in rice and maize were identified within the hcMQTL region based on comparative genomics strategy and were presumed to be reliable candidates for controlling yield-related traits. The results of this study provide useful information for molecular marker-assisted breeding and candidate gene mining of yield-related traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Canada
| | - Jie Zhou
- Lu’an Academy of Agricultural Science, Lu’an, China
| | - Lei Zhang
- Lu’an Academy of Agricultural Science, Lu’an, China
| | | | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
3
|
Pidon H, Ruge-Wehling B, Will T, Habekuß A, Wendler N, Oldach K, Maasberg-Prelle A, Korzun V, Stein N. High-resolution mapping of Ryd4 Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:60. [PMID: 38409375 PMCID: PMC10896957 DOI: 10.1007/s00122-024-04542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
KEY MESSAGE We mapped Ryd4Hb in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding. Virus diseases are causing high yield losses in crops worldwide. The Barley yellow dwarf virus (BYDV) complex is responsible for one of the most widespread and economically important viral diseases of cereals. While no gene conferring complete resistance (immunity) has been uncovered in the primary gene pool of barley, sources of resistance were searched and identified in the wild relative Hordeum bulbosum, representing the secondary gene pool of barley. One such locus, Ryd4Hb, has been previously introgressed into barley, and was allocated to chromosome 3H, but is tightly linked to a sublethality factor that prevents the incorporation and utilization of Ryd4Hb in barley varieties. To solve this problem, we fine-mapped Ryd4Hb and separated it from this negative factor. We narrowed the Ryd4Hb locus to a corresponding 66.5 kbp physical interval in the barley 'Morex' reference genome. The region comprises a gene from the nucleotide-binding and leucine-rich repeat immune receptor family, typical of dominant virus resistance genes. The closest homolog to this Ryd4Hb candidate gene is the wheat Sr35 stem rust resistance gene. In addition to the fine mapping, we reduced the interval bearing the sublethality factor to 600 kbp in barley. Aphid feeding experiments demonstrated that Ryd4Hb provides a resistance to BYDV rather than to its vector. The presented results, including the high-throughput molecular markers, will permit a more targeted selection of the resistance in breeding, enabling the use of Ryd4Hb in barley varieties.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Brigitte Ruge-Wehling
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Antje Habekuß
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | | | | | | | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Göttingen, Germany.
| |
Collapse
|
4
|
Du B, Wu J, Wang M, Wu J, Sun C, Zhang X, Ren X, Wang Q. Detection of consensus genomic regions and candidate genes for quality traits in barley using QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1319889. [PMID: 38283973 PMCID: PMC10811794 DOI: 10.3389/fpls.2023.1319889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Improving barley grain quality is a major goal in barley breeding. In this study, a total of 35 papers focusing on quantitative trait loci (QTLs) mapping for barley quality traits published since 2000 were collected. Among the 454 QTLs identified in these studies, 349 of them were mapped onto high-density consensus maps, which were used for QTL meta-analysis. Through QTL meta-analysis, the initial QTLs were integrated into 41 meta-QTLs (MQTLs) with an average confidence interval (CI) of 1. 66 cM, which is 88.9% narrower than that of the initial QTLs. Among the 41 identified MQTLs, 25 were subsequently validated in publications using genome-wide association study (GWAS). From these 25 validated MQTLs, ten breeder's MQTLs were selected. Synteny analysis comparing barley and wheat MQTLs revealed orthologous relationships between eight breeder's MQTLs and 45 wheat MQTLs. Additionally, 17 barley homologs associated with rice quality traits were identified within the regions of the breeder's MQTLs through comparative analysis. The findings of this study provide valuable insights for molecular marker-assisted breeding and the identification of candidate genes related to quality traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Jindong Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Meng Wang
- Xingtai Agriculture and Rural Bureau, Xingtai, Hebei, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xingen Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qifei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Shukre VM, Tahakik R, Kumar KG, Tarte SH, Kore G. In Vitro Screening of Molecular Diversity Among Sorghums (Sorghum bicolor (L.) Landraces in Marathwada Region by Molecular Markers. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04724-2. [PMID: 38051406 DOI: 10.1007/s12010-023-04724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 12/07/2023]
Abstract
Allelic variation is a valuable tool for displaying high levels of polymorphism within species and is closely correlated with crop productivity. In Marathawada, there is a significant amount of phenotypic heterogeneity among sorghum landraces. However, molecular variability needs to be reevaluated in order to identify any potential barriers that can interfere with current improvement initiatives. In the current work, we used 5 SSR markers to categorize 20 genotypes of elite (Sorghum bicolor L. Moench) accession from the Marathwada region, including one standard cultivar from various agro-economic zones. According to the results of this study, 14 alleles were found among the 20 genotypes, with a PIC value that ranged from 0.37 to 0.70 and a mean of 0.44 per locus. Each locus had anything from 1 (gpsb089) and 5 (mSbCIR223), with an average of 2.80 alleles per locus. A neighbor-joining tree was constructed and showed clustering of genotypes into two groups; this indicates that there is considerable diversity in genotypes compared with advanced cultivar for desired genotype (IS1042) by using SSR markers. Results show that most diverse cultivars were IS-4564, IS18357, and IS-18381, and significant variation was also reported in IS4566 and IS18379.
Collapse
Affiliation(s)
- Vikas Manikrao Shukre
- Dept. of Plant Biotechnology, MGM College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Gandheli, Aurangabad, India, Maharashtra.
| | - Rushikesh Tahakik
- Dept. of Plant Biotechnology, MGM College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Gandheli, Aurangabad, India, Maharashtra
| | - Kunvar Gyanendra Kumar
- Dept. of Plant Biotechnology, MGM College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Gandheli, Aurangabad, India, Maharashtra
| | - Shilpa Hanmatrao Tarte
- Dept. of Plant Biotechnology, MGM College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Gandheli, Aurangabad, India, Maharashtra
| | - Ganesh Kore
- Dept. of Plant Biotechnology, MGM College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Gandheli, Aurangabad, India, Maharashtra
| |
Collapse
|
6
|
Varshney RK, Stein N, Reif J. Professor Andreas Graner: driven by the quest to unlock crop plant genomes for conservation and utilization of germplasm for breeding. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2426-2432. [PMID: 37549196 PMCID: PMC10651146 DOI: 10.1111/pbi.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Professor Andreas Graner stands as a towering figure in international crop plant genomics research, leaving an indelible imprint on the field over the past four decades. As we commemorate the 80th anniversary of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany and Professor Graner's retirement in September 2023, here we celebrate and acknowledge his profound impact on crop genome analyses and genebank genomics. His trailblazing work extends from developing the first integrated RFLP map of barley, establishing the foundation of barley genome sequencing, and advancing functional genomics of malting quality, to pioneering the use of high-throughput phenomics. As the dedicated custodian of Germany's largest ex situ genebank at IPK Gatersleben, Professor Graner has fortified the institution's collection management and crop research, thereby contributing significantly to global efforts on conservation and utilization of plant genetic resources through genomics approaches. Alongside his impressive array of scientific achievements, Professor Graner's inspiring mentorship has nurtured a new generation of scientists, including us, leaving a lasting legacy in the field. This tribute underscores his enduring influence and celebrates his unwavering dedication to the scientific community.
Collapse
Affiliation(s)
- Rajeev K. Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food InnovationMurdoch UniversityMurdochWAAustralia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Jochen Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| |
Collapse
|
7
|
Maanju S, Jasrotia P, Yadav SS, Kashyap PL, Kumar S, Jat MK, Lal C, Sharma P, Singh G, Singh GP. Deciphering the genetic diversity and population structure of wild barley germplasm against corn leaf aphid, Rhopalosiphum maidis (Fitch). Sci Rep 2023; 13:17313. [PMID: 37828115 PMCID: PMC10570286 DOI: 10.1038/s41598-023-42717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Corn-leaf aphid (CLA-Rhopalosiphum maidis) is a major insect pest of barley (Hordeum vulgare) causing yield loss upto 30% under severe infestation. Keeping in view of the availability of very few sources of CLA resistance in barley, the present investigation was framed to assess the genetic diversity and population structure of 43 wild barley (H. vulgare subsp. spontaneum) genotypes using eight microsatellite markers against R. maidis. Three statistical methods viz. multivariate-hierarchical clustering, Bayesian clustering and PCoA, unanimously grouped genotypes into three subpopulations (K = 3) with 25.58% (SubPop1-Red), 39.53% (SubPop2-Green) and 34.88% (SubPop3-Blue) genotypes including admixtures. Based on Q ≥ 66.66%, 37.20% genotypes formed a superficial "Mixed/Admixture" subpopulation. All polymorphic SSR markers generated 36 alleles, averaging to 4.5 alleles/locus (2-7 range). The PIC and H were highest in MS31 and lowest in MS28, with averages of 0.66 and 0.71. MAF and mean genetic diversity were 0.16 and 89.28%, respectively. All these parameters indicated the presence of predominant genetic diversity and population structure amongst the studied genotypes. Based on AII, only 6 genotypes were found to be R. maidis resistant. SubPop3 had 91.66% (11) of the resistant or moderately resistant genotypes. SubPop3 also had the most pure genotypes (11), the least aphid infestation (8.78), and the highest GS (0.88), indicating its suitability for future R. maidis resistance breeding initiatives.
Collapse
Affiliation(s)
- Sunny Maanju
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | | | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Manoj Kumar Jat
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Chuni Lal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Preeti Sharma
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| |
Collapse
|
8
|
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M, Mastinu A. Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3515. [PMID: 37836255 PMCID: PMC10575077 DOI: 10.3390/plants12193515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
To map the genomic regions and control chlorophyll fluorescence attributes under normal, salinity-, and drought-stress conditions in barley (Hordeum vulgare L.) at the seedling stage, an experiment was conducted in 2019-2020 using 106 F8 lines resulting from the cross between Badia × Kavir. Initially, the different chlorophyll fluorescence parameters were evaluated. Under drought stress, the highest decrease was related to REo/CSm (59.56%), and the highest increase was related to dV/dto (77.17%). Also, under salinity stress, the highest decrease was related to Fv/Fo (59.56%), and the highest increase was related to DIo/RC (77.17%). Linkage maps were prepared using 152 SSR polymorphic markers, 72 ISSR alleles, 7 IRAP alleles, 29 CAAT alleles, 27 Scot alleles, and 15 iPBS alleles. The obtained map accounted for 999.2 centi-Morgans (cM) of the barley genome length (92% of the whole barley genome). The results indicated the importance of chromosomes 3, 2, and 7 in controlling ABS/CSm, Area, ETo/CSm, Fm, Fv, and ETo/RC under drought stress. qEToRCD-7, as a major QTL, controlled 18.3% of ETo/RC phenotypic variation under drought stress. Under salinity stress, the regions of chromosomes 2 and 7 (102 cM and 126 cM) controlled the parameters ABS/CSo, Fm, Fo, Fv, TRo/SCo, Area, ETo/CSm, and ETo/CSo. The results showed that chlorophyll fluorescence is an important parameter in the study of drought and salinity effects on barley. This is the first report of the investigation of changes in the genetic structure of quantitative genes controlling the fluorescence parameters associated with barley response to drought and salinity stresses in the Iranian barley RILs population. According to the obtained results, it is possible to use HVPLASC1B and EBmac0713 in normal conditions, ISSR21-2 and ISSR30-4 in drought conditions, and Bmac0047, Scot5-B, CAAT6-C, and ISSR30iPBS2076-4 in saline stress conditions to select genotypes with higher photosynthetic capacity in marker-assisted selection programs.
Collapse
Affiliation(s)
- Somayyeh Makhtoum
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Abdollatif Gholizadeh
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Leila Ahangar
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Mahnaz Katouzi
- Department of Plant Breeding and Genetic Resource, Agroscope, 1260 Nyon, Switzerland;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
9
|
Maanju S, Jasrotia P, Yadav SS, Sharma P, Kashyap PL, Kumar S, Jat MK, Singh GP. Genetic diversity and population structure analyses in barley ( Hordeum vulgare) against corn-leaf aphid, Rhopalosiphum maidis (Fitch). FRONTIERS IN PLANT SCIENCE 2023; 14:1188627. [PMID: 37736612 PMCID: PMC10510198 DOI: 10.3389/fpls.2023.1188627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Corn-leaf aphid (CLA), Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) is a serious economic pest of barley worldwide. Breeding for aphid resistance in plants is considered a cost-effective and environmentally safe approach for aphid control, compared to the use of chemical pesticides. One of the challenges in breeding for aphid resistance is the identification of resistant plant genotypes, which can be achieved through the use of molecular markers. In the present study, a set of aphid specific 10 simple-sequence repeats (SSR) markers were used to investigate genetic diversity and population structure analyses in 109 barley genotypes against R. maidis. Three statistical methods viz., multivariate hierarchical clustering based on Jaccard's similarity coefficient, principal coordinate analysis (PCoA) and the Bayesian approach were utilized to classify the 109 barley genotypes. The analyses revealed four subpopulations i.e., SubPop1, SubPop2, SubPop3 and SubPop4 with 19, 46, 20 and 24 genotypes including admixtures, respectively and represented 17.43%, 42.2%, 18.34% and 22.01% genotypes of the total population size, respectively. The studied SSR markers produced 67 polymorphic bands, with an average of 6.7 and ranging from 3 to 12 bands. Heterozygosity (H) was found to be highest in SSR28 (0.64) and lowest in SSR27 (0.89). The observed genetic diversity index varied from 0.10 to 0.34 (with an average of 0.19). Major allele frequency varied from 74.08% to 94.80%. On an average, 87.52% of the 109 barley genotypes shared a common major allele at any locus. Based on the Aphid Infestation Index (AII), only 2 genotypes were found to be resistant against CLA. SubPop2 also had lowest mean aphid population (28.83), widest genetic similarity index (0.60-1.00) and highest genetic similarity coefficient (0.82), which highlighted its potential for inclusion in future CLA resistance breeding programs.
Collapse
Affiliation(s)
- Sunny Maanju
- Division of Crop Protection, Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Poonam Jasrotia
- Division of Crop Protection, Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Surender Singh Yadav
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Preeti Sharma
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Prem Lal Kashyap
- Division of Crop Protection, Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sudheer Kumar
- Division of Crop Protection, Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Manoj Kumar Jat
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Gyanendra Pratap Singh
- Division of Crop Protection, Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
10
|
Akbari M, Sabouri H, Sajadi SJ, Yarahmadi S, Ahangar L, Abedi A, Katouzi M. Mega Meta-QTLs: A Strategy for the Production of Golden Barley (Hordeum vulgare L.) Tolerant to Abiotic Stresses. Genes (Basel) 2022; 13:genes13112087. [PMID: 36360327 PMCID: PMC9690463 DOI: 10.3390/genes13112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abiotic stresses cause a significant decrease in productivity and growth in agricultural products, especially barley. Breeding has been considered to create resistance against abiotic stresses. Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from previous research and mapped from various populations. A consensus genetic map was made, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore, three MegaMQTL were identified, which explained more than 30% of the phenotypic variation. MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding and breeding programs to develop produce cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
- Mahjoubeh Akbari
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| | - Sayed Javad Sajadi
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Saeed Yarahmadi
- Horticulture-Crops Reseaech Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan 4969186951, Iran
| | - Leila Ahangar
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| |
Collapse
|
11
|
Verma SK, Singh CK, Taunk J, Gayacharan, Chandra Joshi D, Kalia S, Dey N, Singh AK. Vignette of Vigna domestication: From archives to genomics. Front Genet 2022; 13:960200. [PMID: 36338960 PMCID: PMC9634637 DOI: 10.3389/fgene.2022.960200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 06/26/2024] Open
Abstract
The genus Vigna comprises fast-growing, diploid legumes, cultivated in tropical and subtropical parts of the world. It comprises more than 200 species among which Vigna angularis, Vigna radiata, Vigna mungo, Vigna aconitifolia, Vigna umbellata, Vigna unguiculata, and Vigna vexillata are of enormous agronomic importance. Human selection along with natural variability within these species encompasses a vital source for developing new varieties. The present review convokes the early domestication history of Vigna species based on archeological pieces of evidence and domestication-related traits (DRTs) together with genetics of domestication. Traces of early domestication of Vigna have been evidenced to spread across several temperate and tropical regions of Africa, Eastern Asia, and few parts of Europe. Several DRTs of Vigna species, such as pod shattering, pod and seed size, dormancy, seed coat, seed color, maturity, and pod dehiscence, can clearly differentiate wild species from their domesticates. With the advancement in next-generation high-throughput sequencing techniques, exploration of genetic variability using recently released reference genomes along with de novo sequencing of Vigna species have provided a framework to perform genome-wide association and functional studies to figure out different genes related to DRTs. In this review, genes and quantitative trait loci (QTLs) related to DRTs of different Vigna species have also been summarized. Information provided in this review will enhance the in-depth understanding of the selective pressures that causes crop domestication along with nature of evolutionary selection made in unexplored Vigna species. Furthermore, correlated archeological and domestication-related genetic evidence will facilitate Vigna species to be considered as suitable model plants.
Collapse
Affiliation(s)
| | | | - Jyoti Taunk
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Chandra Joshi
- ICAR-Vivekananda Institute of Hill Agriculture (Vivekananda Parvatiya Krishi Anusandhan Sansthan), Uttarakhand, Almora, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Nrisingha Dey
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
12
|
Ma S, Zhao J, Su W, Zheng J, Zhang S, Zhao W, Su S. Transcriptome-derived SSR markers for DNA fingerprinting and inter-populations genetic diversity assessment of Atractylodes chinensis. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
AbstractAtractylodes chinensis (fam. Asteraceae) is an important medicinal plant due to its unique pharmacological activity. The species is widely distributed in most areas of northern China. It is difficult to identify different populations of A. chinensis due to their similarity in characteristics. This study was the first investigation to date that assessed the genetic diversity of A. chinensis from different geographical counties of northern China using simple sequence repeat (SSR) markers. Of the 106 SSR primers in the clusters classified in the sesquiterpenoid biosynthesis pathway in the transcriptomic database of A. chinensis, ten with high polymorphism were used to analyze the inter-populations genetic diversity and construct DNA fingerprinting of 19 A. chinensis populations. A total of 78 alleles were detected, with an average number of 6.5 alleles per primer. The PIC value ranged from 0.4748 to 0.8918 with a mean of 0.6265. The neighbor-joining tree was used to classify 19 populations of A. chinensis into three clusters. DNA fingerprinting was performed according to these ten SSR markers. The results revealed that geographic origin is not exactly related to genetic diversity, as populations belonging to different provinces are grouped in the same cluster. The results of this study confirm that SSR markers are effective for genetic diversity analysis. The inter-populations genetic diversity and fingerprinting of A. chinensis in this study could provide a scientific basis for species identification and selective breeding.
Collapse
|
13
|
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M. QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions. BIOTECH 2022; 11:biotech11030026. [PMID: 35892931 PMCID: PMC9326576 DOI: 10.3390/biotech11030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
To identify the genomic regions for the physiological and morphological traits of barley genotypes under normal salinity and drought, a set of 103 recombinant inbred line (RIL) populations, developed between Badia and Kavir crosses, was evaluated under phytotron conditions in a completely randomized design in 2019. Linkage maps were prepared using 152 SSR markers, 72 ISSR, 7 IRAP, 29 CAAT, 27 SCoT, and 15 iPBS alleles. The markers were assigned to seven barley chromosomes and covered 999.29 centimorgans (cM) of the barley genome. In addition, composite interval mapping showed 8, 9, and 26 quantitative trait loci (QTLs) under normal, drought, and salinity stress conditions, respectively. Our results indicate the importance of chromosomes 1, 4, 5, and 7 in salinity stress. These regions were involved in genes controlling stomata length (LR), leaf number (LN), leaf weight (LW), and genetic score (SCR). Three major stable pleiotropic QTLs (i.e., qSCS-1, qRLS-1, and qLNN-1) were associated with SCR, root length (RL), and root number (RN) in both treatments (i.e., normal and salinity), and two major stable pleiotropic QTLs (i.e., qSNN-3 and qLWS-3) associated with the stomata number (SN) and LW appeared to be promising for marker-assisted selection (MAS). Two major-effect QTLs (i.e., SCot8-B-CAAT5-D and HVM54-Bmag0571) on chromosomes 1 and 2 were characterized for their positive allele effect, which can be used to develop barley varieties concerning drought conditions. The new alleles (i.e., qLWS-4a, qSLS-4, qLNS-7b, qSCS-7, and qLNS-7a) identified in this study are useful in pyramiding elite alleles for molecular breeding and marker assisted selection for improving salinity tolerance in barley.
Collapse
Affiliation(s)
- Somayyeh Makhtoum
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
- Correspondence: or (H.S.); (M.K.); Tel.: +98-91-1143-8917 (H.S.); +41-77-9660486 (M.K.)
| | - Abdollatif Gholizadeh
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Leila Ahangar
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran; (S.M.); (A.G.); (L.A.)
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: or (H.S.); (M.K.); Tel.: +98-91-1143-8917 (H.S.); +41-77-9660486 (M.K.)
| |
Collapse
|
14
|
Molecular characterization and validation of sunflower (Helianthus annuus L.) hybrids through SSR markers. PLoS One 2022; 17:e0267383. [PMID: 35588423 PMCID: PMC9119457 DOI: 10.1371/journal.pone.0267383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Genetic purity is a prerequisite for exploiting the potential of hybrids in cross-pollinated crops, such as sunflower. In this regard DNA-based study was conducted using 110 simple sequence repeat (SSR) markers to check the genetic purity of 23 parents and their 60 hybrids in sunflower. The polymorphism was shown in 92 markers with value 83.63%. The SSR markers ORS-453 and CO-306 showed the highest PIC values of 0.76 and 0.74, respectively. The primer ORS-453 amplified allele size of 310 base pairs (bp) for female parent L6 and 320 bp for L11, while for male parents, T1 and T2 had allele size 350 bp and 340 bp, respectively. The hybrids from these parents showed a similar size of alleles with parents, including hybrids L6×T1 (310 bp and 350 bp), L6×T2 (310 bp and 340 bp), and L11×T2 (320 bp and 340 bp). Similarly, the primer CO-306 amplified allele size 350 bp and 330 bp for female parents L6 and L11, respectively, while, allele size 300 bp and 310 bp for male parents T1 and T2, respectively. The hybrids’ allele size was like the parents viz., L6×T1 (350 bp and 300 bp), L6×T2 (350 bp and 310 bp), and L11×T2 (330 bp and 310 bp). All 60 hybrids and their 23 parents were grouped into three main clusters (A, B and C) based upon DARWIN v.6.0 and STRUCTURE v.2.3 Bayesian analyses using genotypic data. Further, each main cluster was divided into two sub-divisions. Each sub-division showed the relatedness of parents and their hybrids, thus authenticating the genetic purity of hybrids. In conclusion, this study provides useful for accurate and effective identification of hybrids, which will help to improve seed genetic purity testing globally.
Collapse
|
15
|
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022; 13:874648. [PMID: 35518351 PMCID: PMC9061961 DOI: 10.3389/fgene.2022.874648] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
16
|
Liu Y, Fang X, Tang T, Wang Y, Wu Y, Luo J, Wu H, Wang Y, Zhang J, Ruan R, Zhou M, Zhang K, Yi Z. Inflorescence Transcriptome Sequencing and Development of New EST-SSR Markers in Common Buckwheat ( Fagopyrum esculentum). PLANTS (BASEL, SWITZERLAND) 2022; 11:742. [PMID: 35336623 PMCID: PMC8950064 DOI: 10.3390/plants11060742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology was used to sequence the transcriptome of green-flower common buckwheat (Gr) with coarse pedicels and white-flower Ukrainian daliqiao (UD) with fine pedicels. A total of 118,448 unigenes were obtained, with an average length of 1248 bp and an N50 of 1850 bp. A total of 39,432 differentially expressed genes (DEGs) were identified, and the DEGs of the porphyrins and chlorophyll metabolic pathway had significantly upregulated expression in Gr. Then, a total of 17,579 sequences containing SSR loci were detected, and 20,756 EST-SSR loci were found. The distribution frequency of EST-SSR in the transcriptome was 17.52%, and the average distribution density was 8.21 kb. A total of 224 pairs of primers were randomly selected for synthesis; 35 varieties of common buckwheat and 13 varieties of Tartary buckwheat were verified through these primers. The clustering results well verified the previous conclusion that common buckwheat and Tartary buckwheat had a distant genetic relationship. The EST-SSR markers identified and developed in this study will be helpful to enrich the transcriptome information and marker-assisted selection breeding of buckwheat.
Collapse
Affiliation(s)
- Yang Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Tian Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Yudong Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Yinhuan Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Jinyu Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Haotian Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Yingqian Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Renwu Ruan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (Y.L.); (X.F.); (T.T.); (Y.W.); (Y.W.); (J.L.); (H.W.); (Y.W.); (J.Z.); (R.R.)
| |
Collapse
|
17
|
Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers. J Genet 2022. [DOI: 10.1007/s12041-021-01346-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Glagoleva A, Kukoeva T, Mursalimov S, Khlestkina E, Shoeva O. Effects of Combining the Genes Controlling Anthocyanin and Melanin Synthesis in the Barley Grain on Pigment Accumulation and Plant Development. AGRONOMY 2022; 12:112. [PMID: 0 DOI: 10.3390/agronomy12010112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Anthocyanins and melanins are phenolic pigments of plants and accumulate in seed envelopes of the barley grain, thereby giving them a blue, purple, or black color. To explore the effects of combined accumulation of anthocyanins and melanins in the grain, a barley near-isogenic line (NIL), characterized by simultaneous accumulation in both pigments, was developed using a marker-assisted approach. The presence of both pigments in the grain pericarp was evaluated by light microscopy. Emergence of anthocyanin pigmentation proved to be temporally separated from that of melanin, and the formation of anthocyanin pigments began at an earlier stage of spike maturation. During spike maturation, a significantly higher total anthocyanin content was noted in the created NIL than in the parental anthocyanin-accumulating NIL, indicating a positive influence of the Blp1 gene on the anthocyanin content at some developmental stages. In a comparative analysis of yield components, it was found that the observed differences between the barley NILs are possibly caused by environmental factors, and the presence of pigments does not decrease plant productivity. Our results should facilitate investigation into genetic mechanisms underlying overlaps in the biosynthesis of pigments and into breeding strategies aimed at the enrichment of barley varieties with polyphenols.
Collapse
|
19
|
Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome 2021; 65:83-94. [PMID: 34870479 DOI: 10.1139/gen-2021-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As genotyping-by-sequencing (GBS) is widely used in barley genetic studies, the translation of the physical position of GBS-derived SNPs into accurate genetic positions has become relevant. The main aim of this study was to develop a high-resolution consensus linkage map based on GBS-derived SNPs. The construction of this integrated map involved 11 bi-parental populations composed of 3743 segregating progenies. We adopted a uniform set of SNP-calling and filtering conditions to identify 50 875 distinct SNPs segregating in at least one population. These SNPs were grouped into 18 580 non-redundant SNPs (bins). The resulting consensus linkage map spanned 1050.1 cM, providing an average density of 17.7 bins and 48.4 SNPs per cM. The consensus map is characterized by the absence of large intervals devoid of marker coverage (significant gaps), the largest interval between bins was only 3.7 cM and the mean distance between adjacent bins was 0.06 cM. This high-resolution linkage map will contribute to several applications in genomic research, such as providing useful information on the recombination landscape for QTLs/genes identified via GWAS or ensuring a uniform distribution of SNPs when developing low-cost genotyping tools offering a limited number of markers.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Aaron Beattie
- Barley and Oat Breeding Program Crop Development Centre, University of Saskatchewan, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Raja Khanal
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - James Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Wang Y, Habekuß A, Snowdon RJ, Ordon F, Perovic D. Delineating the elusive BaMMV resistance gene rym15 in barley by medium-resolution mapping. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:76. [PMID: 37309517 PMCID: PMC10236098 DOI: 10.1007/s11032-021-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Barley mild mosaic virus (BaMMV), transmitted by the soil-borne protist Polymyxa graminis, has a serious impact on winter barley production. Previously, the BaMMV resistance gene rym15 was mapped on chromosome 6HS, but the order of flanking markers was non-collinear between different maps. To resolve the position of the flanking markers and to enable map-based cloning of rym15, two medium-resolution mapping populations Igri (susceptible) × Chikurin Ibaraki 1 (resistant) (I × C) and Chikurin Ibaraki 1 × Uschi (susceptible) (C × U), consisting of 342 and 180 F2 plants, respectively, were developed. Efficiency of the mechanical inoculation of susceptible standards varied from 87.5 to 100% and in F2 populations from 90.56 to 93.23%. Phenotyping of F2 plants and corresponding F3 families revealed segregation ratios of 250 s:92r (I × C, χ2 = 0.659) and 140 s:40r (C × U, χ2 = 0.741), suggesting the presence of a single recessive resistance gene. After screening the parents with the 50 K Infinium chip and anchoring corresponding SNPs to the barley reference genome, 8 KASP assays were developed and used to remap the gene. Newly constructed maps revealed a collinear order of markers, thereby allowing the identification of high throughput flanking markers. This study demonstrates how construction of medium-resolution mapping populations in combination with robust phenotyping can efficiently resolve conflicting marker ordering and reduce the size of the target interval. In the reference genome era and genome-wide genotyping era, medium-resolution mapping will help accelerate candidate gene identification for traits where phenotyping is difficult. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01270-9.
Collapse
Affiliation(s)
- Yaping Wang
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Erwin-Baur-Strasse 27, 06484 Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Erwin-Baur-Strasse 27, 06484 Quedlinburg, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Erwin-Baur-Strasse 27, 06484 Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Erwin-Baur-Strasse 27, 06484 Quedlinburg, Germany
| |
Collapse
|
21
|
Göransson M, Sigurdardottir TH, Lillemo M, Bengtsson T, Hallsson JH. The Winter-Type Allele of HvCEN Is Associated With Earliness Without Severe Yield Penalty in Icelandic Spring Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:720238. [PMID: 34630467 PMCID: PMC8500236 DOI: 10.3389/fpls.2021.720238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Icelandic barley genotypes have shown extreme earliness both in flowering and maturity compared to other north European genotypes, whereas earliness is a key trait in adapting barley to northern latitudes. Four genes were partially re-sequenced, which are Ppd-H1, HvCEN, HvELF3, and HvFT1, to better understand the mechanisms underlying this observed earliness. These genes are all known to play a part in the photoperiod response. The objective of this study is to correlate allelic diversity with flowering time and yield data from Icelandic field trials. The resequencing identified two to three alleles at each locus which resulted in 12 haplotype combinations. One haplotype combination containing the winter-type allele of Ppd-H1 correlated with extreme earliness, however, with a severe yield penalty. A winter-type allele in HvCEN in four genotypes correlated with earliness combined with high yield. Our results open the possibility of marker-assisted pyramiding as a rapid way to develop varieties with a shortened time from sowing to flowering under the extreme Icelandic growing conditions and possibly in other arctic or sub-arctic regions.
Collapse
Affiliation(s)
- Magnus Göransson
- Faculty of Agriculture, Agricultural University of Iceland, Reykjavík, Iceland
- Department of Plant Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten Lillemo
- Department of Plant Science, Norwegian University of Life Sciences, Ås, Norway
| | - Therése Bengtsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
22
|
Pomortsev AA, Lyalina EV, Tereshchenko NA, Boldyrev SV, Yakovleva EY, Berezkin AN, Malko AM, Androsova OV. Genetic Markers in Laboratory Variety Control of Barley (Hordeum vulgare L.). RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ghomi K, Rabiei B, Sabouri H, Gholamalipour Alamdari E. Association analysis, genetic diversity and population structure of barley (Hordeum vulgare L.) under heat stress conditions using SSR and ISSR markers linked to primary and secondary metabolites. Mol Biol Rep 2021; 48:6673-6694. [PMID: 34495461 DOI: 10.1007/s11033-021-06652-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Barley is one of the major cereal crops, which can provide a significant source of genes for stress tolerance due to its high diversity and adaptability. Metabolite traits are considered to be significant for adaptation of barley to heat stress. METHODS AND RESULTS In the present study, genetic relationships between 120 barley genotypes were determined with 50 simple sequence repeat (SSR) and 26 inter simple sequence repeat (ISSR) markers under heat stress and non-stress conditions. Moreover, genetic diversity of barley accessions was investigated using the studied markers covering 7 chromosomes of barley. RESULTS In general, 153 and 85 polymorphic alleles were detected for SSR and ISSR and number of the observed polymorphic allele varied between 2-9 and 2-6, with an average of 3.26 and 3.26 alleles per locus, respectively. Markers of Bmag0223, GBMS180/180, HVM7, ISSR22, ISSR25, and ISSR48 were the most informative due to their high polymorphism information content value demonstrating that putative techniques utilized in this research can be powerful and valuable tools in breeding program of barley. Association analysis was performed between 9 important traits and SSR and ISSR markers using four statistical models. The results revealed that the model containing both population structure (Q) and general similarity in genetic background arising from shared kinship (K) factors reduced false positive associations between markers and phenotypes. CONCLUSIONS According to the results, some of markers related to more than one trait under normal conditions (ISSR31-2, HVM62, and GBMS180/180) and heat stress conditions (ISSR20-5, EBmac635, HVM14, and ISSR37-3) were determined, which can be considered to be the most interesting candidates for further studies and simultaneously will provide a useful target for the future breeding programs, such as marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Khadijeh Ghomi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Persian Gulf Highway, P.O. Box: 41635-1314, Rasht, Guilan, Iran
| | - Babak Rabiei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Persian Gulf Highway, P.O. Box: 41635-1314, Rasht, Guilan, Iran.
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad University, Shahid Fallahi Street, Gonbad-e Kāvūs, Golestan, Iran
| | - Ebrahim Gholamalipour Alamdari
- Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad University, Shahid Fallahi Street, Gonbad-e Kāvūs, Golestan, Iran
| |
Collapse
|
24
|
Taketa S, Hattori M, Takami T, Himi E, Sakamoto W. Mutations in a�Golden2-Like�Gene Cause Reduced Seed Weight in�Barley�albino lemma 1�Mutants. PLANT & CELL PHYSIOLOGY 2021; 62:447-457. [PMID: 33439257 DOI: 10.1093/pcp/pcab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The albino lemma 1 (alm1) mutants of barley (Hordeum vulgare L.) exhibit obvious chlorophyll-deficient hulls. Hulls are seed-enclosing tissues on the spike, consisting of the lemma and palea. The alm1 phenotype is also expressed in the pericarp, culm nodes and basal leaf sheaths, but leaf blades and awns are normal green. A single recessive nuclear gene controls tissue-specific alm1 phenotypic expression. Positional cloning revealed that the ALM1 gene encodes a Golden 2-like (GLK) transcription factor, HvGLK2, belonging to the GARP subfamily of Myb transcription factors. This finding was validated by genetic evidence indicating that all 10 alm1 mutants studied had a lesion in functionally important regions of HvGLK2, including the three alpha-helix domains, an AREAEAA motif and the GCT box. Transmission electron microscopy revealed that, in lemmas of the alm1.g mutant, the chloroplasts lacked thylakoid membranes, instead of stacked thylakoid grana in wild-type chloroplasts. Compared with wild type, alm1.g plants showed similar levels of leaf photosynthesis but reduced spike photosynthesis by 34%. The alm1.g mutant and the alm1.a mutant showed a reduction in 100-grain weight by 15.8% and 23.1%, respectively. As in other plants, barley has HvGLK2 and a paralog, HvGLK1. In flag leaves and awns, HvGLK2 and HvGLK1 are expressed at moderate levels, but in hulls, HvGLK1 expression was barely detectable compared with HvGLK2. Barley alm1/Hvglk2 mutants exhibit more severe phenotypes than glk2 mutants of other plant species reported to date. The severe alm1 phenotypic expression in multiple tissues indicates that HvGLK2 plays some roles that are nonredundant with HvGLK1.
Collapse
Affiliation(s)
- Shin Taketa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Momoko Hattori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
25
|
Hibara KI, Miya M, Benvenuto SA, Hibara-Matsuo N, Mimura M, Yoshikawa T, Suzuki M, Kusaba M, Taketa S, Itoh JI. Regulation of the plastochron by three many-noded dwarf genes in barley. PLoS Genet 2021; 17:e1009292. [PMID: 33970916 PMCID: PMC8136844 DOI: 10.1371/journal.pgen.1009292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/20/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | - Masayuki Miya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sean Akira Benvenuto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Hibara-Matsuo
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | | | | | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shin Taketa
- Group of Genetic Resources and Functions, Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Amom T, Tikendra L, Apana N, Goutam M, Sonia P, Koijam AS, Potshangbam AM, Rahaman H, Nongdam P. Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. PHYTOCHEMISTRY 2020; 174:112330. [PMID: 32146386 DOI: 10.1016/j.phytochem.2020.112330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 05/26/2023]
Abstract
10 primers each of random amplified polymorphic DNA (RAPD), inter-simple sequence repeats (ISSR), inter primer binding site (iPBS) and start codon targeted (SCoT) were used to analyze genetic polymorphism and relationship between 50 genotypes of 5 economical important native bamboos (Bambusa cacharensis, B. mizorameana, Dendrocalamus manipureanus, D. hamiltonii and D. sikkimensis) of North-East India. The 40 different primers generated 111, 115, 116 and 138 polymorphic bands for RAPD, ISSR, iPBS and SCoT markers respectively. The comparative analysis of 4 marker systems based on polymorphic information content (PIC), effective multiplex ratio (EMR) and marker index (MI) values showed SCoT to be more informative with higher discriminating power than the other three markers. The correlation value (r) as determined by the Mantel test ranged from 0.60 (SCoT and RAPD) to 0.83 (iPBS and ISSR) indicating a high positive correlation between the markers. The close correspondence between the genetic matrices of RAPD, ISSR, iPBS and SCoT markers revealed the effectiveness of each marker system in determining the genetic relationship between bamboos. UPGMA (Unweighted Pair Group Arithmetic Mean Method) dendrograms generated from DNA marker analysis demonstrated species-specific clustering of different bamboo genotypes. Except for RAPD, the dendrograms of ISSR, iPBS and SCoT markers also showed a close association of bamboo genotypes based on geographical origin. Principal coordinate analysis (PCoA) revealed the distribution of different bamboo genotypes in accordance with the cluster analysis. The cluster grouping based on phytochemical study not only discriminated the different bamboo species but also illustrated a location-specific grouping of the genotypes. The bamboo clustering pattern derived from phytochemical analysis matched closely with the dendrograms generated by the DNA markers. The present investigation established the possibility of using a combined molecular and phytochemical marker approach to determine the genetic relationship between 5 native bamboos of North-East India with high precision.
Collapse
Affiliation(s)
- Thoungamba Amom
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Leimapokpam Tikendra
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Nandeibam Apana
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Moirangthem Goutam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Paonam Sonia
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Arunkumar Singh Koijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Hamidur Rahaman
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Potshangbam Nongdam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
27
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
28
|
Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. TRENDS IN PLANT SCIENCE 2020; 25:148-158. [PMID: 31787539 PMCID: PMC6988109 DOI: 10.1016/j.tplants.2019.10.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 05/19/2023]
Abstract
The pangenome provides genomic variations in the cultivated gene pool for a given species. However, as the crop's gene pool comprises many species, especially wild relatives with diverse genetic stock, here we suggest using accessions from all available species of a given genus for the development of a more comprehensive and complete pangenome, which we refer to as a super-pangenome. The super-pangenome provides a complete genomic variation repertoire of a genus and offers unprecedented opportunities for crop improvement. This opinion article focuses on recent developments in crop pangenomics, the need for a super-pangenome that should include wild species, and its application for crop improvement.
Collapse
Affiliation(s)
- Aamir W Khan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; School of Biological Sciences, The University of Western Australia (UWA), Crawley, WA, Australia
| | - Vanika Garg
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia (UWA), Crawley, WA, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
29
|
El-Fiki A, Adly M. Morphological, molecular, and organosulphur compounds characterization in irradiated garlic (Allium sativum) by GC–MS and SCoT markers. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2019.1697079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ayman El-Fiki
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Adly
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
30
|
Ezzat A, Adly M, El-Fiki A. Morphological, agronomical and molecular characterization in irradiated Cowpea (Vignaunguiculata (L.) Walp.) and detection by start codon target markers. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1686578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Asmaa Ezzat
- Horticulture Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Mohamed Adly
- National Centre for Radiation Research and TechnologyAtomic Energy Authority, Cairo, Egypt
| | - Ayman El-Fiki
- National Centre for Radiation Research and TechnologyAtomic Energy Authority, Cairo, Egypt
| |
Collapse
|
31
|
Fazlikhani L, Keilwagen J, Kopahnke D, Deising H, Ordon F, Perovic D. High Resolution Mapping of Rph MBR1012 Conferring Resistance to Puccinia hordei in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2019; 10:640. [PMID: 31191570 PMCID: PMC6541035 DOI: 10.3389/fpls.2019.00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 06/01/2023]
Abstract
Isolation of disease resistance genes in barley was hampered by the large genome size, but has become easy due to the availability of the reference genome sequence. During the last years, many genomic resources, e.g., the Illumina 9K iSelect, the 50K Infinium arrays, the Barley Genome Zipper, POPSEQ, and genotyping by sequencing (GBS), were developed that enable enhanced gene isolation in combination with the barley genome sequence. In the present study, we developed a fine map of the barley leaf rust resistance gene Rph MBR1012. 537 segmental homozygous recombinant inbred lines (RILs) derived from 4775 F2-plants were used to construct a high-resolution mapping population (HRMP). The Barley Genome Zipper, the 9K iSelect chip, the 50K Infinium chip and GBS were used to develop 56 molecular markers located in the target interval of 8 cM. This interval was narrowed down to about 0.07 cM corresponding to 0.44 Mb of the barley reference genome. Eleven low-confidence and 18 high-confidence genes were identified in this interval. Five of these are putative disease resistance genes and were subjected to allele-specific sequencing. In addition, comparison of the genetic map and the reference genome revealed an inversion of 1.34 Mb located distally to the resistance locus. In conclusion, the barley reference sequence and the respective gene annotation delivered detailed information about the physical size of the target interval, the genes located in the target interval and facilitated the efficient development of molecular markers for marker-assisted selection for RphMBR1012.
Collapse
Affiliation(s)
- Leila Fazlikhani
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
- Department of Phytopathology and Plant Protection, Institute of Agricultural and Nutrition Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Holger Deising
- Department of Phytopathology and Plant Protection, Institute of Agricultural and Nutrition Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| |
Collapse
|
32
|
Du B, Liu L, Wang Q, Sun G, Ren X, Li C, Sun D. Identification of QTL underlying the leaf length and area of different leaves in barley. Sci Rep 2019. [PMID: 30872632 DOI: 10.1038/s41598-019-40703-40706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.
Collapse
Affiliation(s)
- Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA, 6155, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
33
|
Identification of QTL underlying the leaf length and area of different leaves in barley. Sci Rep 2019; 9:4431. [PMID: 30872632 PMCID: PMC6418291 DOI: 10.1038/s41598-019-40703-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.
Collapse
|
34
|
Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:204-225. [PMID: 30414305 DOI: 10.1111/jipb.12737] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/27/2018] [Indexed: 05/02/2023]
Abstract
Wheat and barley are two of the founder crops of the agricultural revolution that took place 10,000 years ago in the Fertile Crescent and both crops remain among the world's most important crops. Domestication of these crops from their wild ancestors required the evolution of traits useful to humans, rather than survival in their natural environment. Of these traits, grain retention and threshability, yield improvement, changes to photoperiod sensitivity and nutritional value are most pronounced between wild and domesticated forms. Knowledge about the geographical origins of these crops and the genes responsible for domestication traits largely pre-dates the era of next-generation sequencing, although sequencing will lead to new insights. Molecular markers were initially used to calculate distance (relatedness), genetic diversity and to generate genetic maps which were useful in cloning major domestication genes. Both crops are characterized by large, complex genomes which were long thought to be beyond the scope of whole-genome sequencing. However, advances in sequencing technologies have improved the state of genomic resources for both wheat and barley. The availability of reference genomes for wheat and some of its progenitors, as well as for barley, sets the stage for answering unresolved questions in domestication genomics of wheat and barley.
Collapse
Affiliation(s)
- Matthew Haas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Genetic diversity and population structure among 133 elite genotypes of sugarcane ( Saccharum spp.) for use as parents in sugarcane varietal improvement. 3 Biotech 2018; 8:339. [PMID: 30073124 DOI: 10.1007/s13205-018-1364-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022] Open
Abstract
A measure of genetic diversity of genotypes to be used as parents is imperative to use them prudently in crop improvement. In this study, genetic diversity and population structure of 133 sugarcane hybrid derivatives were quantified using 20 sequence-tagged microsatellite sites (STMS) primers. The number of alleles ranged from 9 to 27 with the average of 17.95 alleles per primer, while the polymorphism information content values of the primers ranged from 0.29 to 0.78. Cophenetic correlation coefficient value observed as 0.84 by STMS markers revealed that the cluster result was acceptable for the calculation of genetic similarity matrix. Principal component analysis showed that 133 genotypes fell in two groups, first and second components associated 8.34 and 3.22% with eigen values of 5.61 and 2.17, respectively. Similar trend was observed with principal coordinate analysis, wherein, the first and second component accounted to 8.34 and 3.22% with eigen values of 741.29 and 286.11. The similarity index values ranged from 0.50 to 0.87 for the possible 8778 combinations from 133 genotypes, of which 8069 combinations exhibited less/moderate genetic similarity indicating the availability of sufficient genetic diversity in the experimental material and hence their value in the genetic improvement of sugarcane. Dissimilarity analysis using DARwin of 133 genotypes could distinguish two major clusters and into five subclusters and the results matched with those of the population structure which also showed five subpopulations. The bigger group SP1 was predominantly comprised of clones developed at the main sugarcane-breeding place in India, located at Coimbatore. The subpopulation SP4 was formed largely with clones from research stations other than at Coimbatore and interspecific hybrids, while SP5 comprised of clones of early origin. These observations were similar to the radial tree based on the DARwin software in that 81.95% of the genotypes of each cluster were similar in the two analyses. The results thus showed that location and time of origin were two major factors that contributed to diversity. Based on analysis of molecular variance, subpopulations SP2 and SP4 were more variable from the rest. SP2 (comprising of Co 99008, Co 99006, Co 94012, Co 93023, CoC 671, Co 89034, Co 91003, Co 06022, Co 98017, Co 87044, Co 06018, Co 89003, Co 98014, and Co 86032) exhibited maximum genetic variation, the least gene flow, and the lowest heterozygosity value and would serve as the best group for utilization in genetic improvement. Graphical genotyping (GGT) image of each genotype was distinctly different, indicating the genetic uniqueness of sugarcane genotypes under study as revealed through STMS technology. A core set of 40 genotypes was identified using GGT 2.0 software program for the easiness of harnessing the available genetic diversity of 133 genotypes, through hybridization in sugarcane improvement programs.
Collapse
|
36
|
Gudys K, Guzy-Wrobelska J, Janiak A, Dziurka MA, Ostrowska A, Hura K, Jurczyk B, Żmuda K, Grzybkowska D, Śróbka J, Urban W, Biesaga-Koscielniak J, Filek M, Koscielniak J, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Kuczyńska A, Krajewski P, Szarejko I. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:769. [PMID: 29946328 PMCID: PMC6005862 DOI: 10.3389/fpls.2018.00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 05/27/2023]
Abstract
Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs), followed by their prioritization based on Gene Ontology (GO) enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric oxide synthase, ATP sulfurylases, and proteins involved in regulation of flowering time. This global approach may be proposed for identification of new CGs that underlies QTLs responsible for complex traits.
Collapse
Affiliation(s)
- Kornelia Gudys
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Guzy-Wrobelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Agnieszka Janiak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michał A. Dziurka
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Ostrowska
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Barbara Jurczyk
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Daria Grzybkowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Joanna Śróbka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wojciech Urban
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Jolanta Biesaga-Koscielniak
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Maria Filek
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Janusz Koscielniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Krzysztof Mikołajczak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Ogrodowicz
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Krystkowiak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
37
|
Saito M, Tanaka T, Sato K, Vrinten P, Nakamura T. A single nucleotide polymorphism in the "Fra" gene results in fractured starch granules in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:353-364. [PMID: 29098311 DOI: 10.1007/s00122-017-3006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
We report here that the mutation causing fractured starch granules in the barley line "Franubet" results from a point mutation in the barley gene corresponding to the rice FLO6 gene. The "fra" mutation in barley, which was originally isolated and characterized over 30 years ago, results in fractured starch granules and an opaque phenotype. This mutation has been used in breeding programs, since it appears to be useful in the production of pearled barley for human consumption. However, selection for this phenotype is difficult, since wild-type and heterozygous kernels cannot be distinguished phenotypically, and until now, the gene involved in this mutation has not been determined. Here, we used a map-based cloning approach using nanopore sequencing to obtain long reads from a BAC clone carrying markers on either side of the fra locus. By fine mapping followed by aligning RNA-seq reads to four genes within the mapped region, we were able to determine that the fra mutation is caused by the introduction of a stop codon in the barley homologue of the rice FLOURY ENDOSPERM 6 (FLO6) gene. This gene has a CBM48 domain that binds to starch, and may act through interactions with isoamylase1 (ISA1), assisting in the binding of ISA1 to starch granules. Perfect markers able to distinguish all genotypes were designed and tested in several large populations; in all cases, the markers were able to distinguish wild-type, heterozygous, and mutant genotypes.
Collapse
Affiliation(s)
- Mika Saito
- NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan
| | | | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Patricia Vrinten
- Bioriginal Food and Science Corporation, Saskatoon, S7J 0R1, Canada
| | - Toshiki Nakamura
- NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| |
Collapse
|
38
|
Ates D, Aldemir S, Alsaleh A, Erdogmus S, Nemli S, Kahriman A, Ozkan H, Vandenberg A, Tanyolac B. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One 2018; 13:e0191375. [PMID: 29351563 PMCID: PMC5774769 DOI: 10.1371/journal.pone.0191375] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Background Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. Materials and methods A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including “CDC Redberry” x “ILL7502” (LR8), “ILL8006” x “CDC Milestone” (LR11) and “PI320937” x “Eston” (LR39). Results The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. Conclusion This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.
Collapse
Affiliation(s)
- Duygu Ates
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Secil Aldemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Alsaleh
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Semih Erdogmus
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Seda Nemli
- Department of Bieoengineering and Genetics, Gumushane University, Gumushane, Turkey
| | - Abdullah Kahriman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanlı Urfa, Turkey
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Albert Vandenberg
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bahattin Tanyolac
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| |
Collapse
|
39
|
|
40
|
Kumar N, Shikha D, Kumari S, Choudhary BK, Kumar L, Singh IS. SSR-Based DNA Fingerprinting and Diversity Assessment Among Indian Germplasm of Euryale ferox: an Aquatic Underutilized and Neglected Food Crop. Appl Biochem Biotechnol 2017; 185:34-41. [PMID: 29082475 DOI: 10.1007/s12010-017-2643-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/18/2017] [Indexed: 11/29/2022]
Abstract
Euryale ferox is native to Southeast Asia and China, and it is one of the important aquatic food crops propagated mostly in eastern part of India. The aim of the present study was to characterize and evaluate the genetic diversity of ex situ collections of E. ferox germplasm from different geographical states of India using microsatellite (simple sequence repeats (SSRs)) markers. Ten SSR markers were analyzed to assess DNA fingerprinting and genetic diversity of 16 cultivated germplasm of E. ferox. Total 37 polymorphic alleles were recorded with an average of 3.7 allele frequency per primer. The polymorphic information content value varied from 0.204 to 0.735 with mean of 0.448. A high range of heterozygosity (Ho 0.228; He 0.512) was detected in the present study. The neighbor-joining (N-J) tree and the principle coordinate analysis showed that the germplasm divided in to three main clusters. The results of the present investigation comply that SSR markers are effective for computing genetic assessment of genetic diversity and similarity with classifying cultivated varieties of E. ferox. Evaluation of genetic diversity among Indian E. ferox germplasm could provide useful information for genetic improvement.
Collapse
Affiliation(s)
- Nitish Kumar
- Centre for Biological Sciences (Biotechnology), School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Patna, Bihar, 800014, India.
| | - Divya Shikha
- Centre for Biological Sciences (Biotechnology), School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Patna, Bihar, 800014, India
| | - Swati Kumari
- Centre for Education (Life Science), Central University of South Bihar, Gaya Campus, Gaya, Bihar, 823001, India
| | - Binod Kumar Choudhary
- ICAR-National Institute of Biotic Stress Management, Baronda Farm, Raipur, Chhattisgarh, 493225, India
| | - Lokendra Kumar
- ICAR-Indian Institute of Wheat & Barley Research, Karnal, Haryana, 132001, India
| | | |
Collapse
|
41
|
Hellal FA, El-Shabrawi HM, Abd El-Hady M, Khatab IA, El-Sayed SAA, Abdelly C. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J Genet Eng Biotechnol 2017; 16:203-212. [PMID: 30647723 PMCID: PMC6296644 DOI: 10.1016/j.jgeb.2017.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/10/2017] [Accepted: 10/05/2017] [Indexed: 11/15/2022]
Abstract
In order to investigate the effects of drought stress on germination components of barley cultivars, a laboratory experiment was conducted in a factorial randomized complete design with four replications. The controlled experiment included ten of Egyptian barley cultivars namely; (Giza 123, 124, 125, 126, 127, 129, 130, 134, 135 and 2000) as first factor. The second factor included 4 levels of drought stress inducer by applying 0, 5, 10 and 20% of polyethylene glycol-6000 (PEG) which is equivalent to four osmotic potential levels including −0.001, −0.27, −0.54 and −1.09 MPa, respectively. The results showed that, the highest reduction was related to the drought level of 20% PEG among the barley cultivars. The best cultivars in terms of germination traits were Giza 134, Giza 127, and Giza 126 this indicate their tolerance to drought stress and Giza 130, 135, 2000 cultivars was moderately tolerance and remaining is less tolerance. The protein band 27 kDa and 78 kDa showed high intensity after stress in almost all cultivars. Those two protein bands their exciting was very clear in treated barley leaf tissue. It could be related to dehydrine and oxygen evolving enhancer protein 2 (OEE2) which involved in drought stress tolerance response. Cultivars Giza 127, 130 and 134 showed highest tolerance response under drought stress. The antioxidant enzymes PAGE pattern of Peroxidase (POX), Sodium dismutase (SOD) and Ascorbate peroxidase (APX) for Barley cultivars under drought stress revealed a high activities for Giza 126, 127, 134, 136 and 2000 under −0.5 MPa osmotic stress by PEG in most of their isoforms. Based on similarity coefficient values the highest values were 1.0 with 100% similarly between tolerant cultivars Giza 130 and Giza 127. Similarly between the susceptible cultivars 125 and Giza 129 was 60%.These data confirmed by the growth parameters which we ranked as tolerant to drought stress.
Collapse
Affiliation(s)
- F A Hellal
- Plant Nutrition Dept., National Research Centre, Dokki, Cairo, Egypt
| | - H M El-Shabrawi
- Plant Biotechnology Dept., National Research Centre, Dokki, Cairo, Egypt
| | - M Abd El-Hady
- Water Relation and Field Irrigation Dept., National Research Centre, Dokki, Cairo, Egypt
| | - I A Khatab
- Department of Genetics, Faculty of Agriculture, Kafr El-Sheikh University, 33516 Kafr El-Sheikh, Egypt
| | - S A A El-Sayed
- Plant Nutrition Dept., National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
42
|
Adhikari S, Saha S, Biswas A, Rana TS, Bandyopadhyay TK, Ghosh P. Application of molecular markers in plant genome analysis: a review. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0214-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Zhang XW, Jiang QT, Wei YM, Liu C. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. PLoS One 2017; 12:e0183704. [PMID: 28832657 PMCID: PMC5568277 DOI: 10.1371/journal.pone.0183704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 11/19/2022] Open
Abstract
Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- CSIRO Agriculture & Food, St Lucia, Queensland, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Chunji Liu
- CSIRO Agriculture & Food, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
44
|
Xue W, Yan J, Zhao G, Jiang Y, Cheng J, Cattivelli L, Tondelli A. A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genet 2017; 18:79. [PMID: 28830338 PMCID: PMC5568257 DOI: 10.1186/s12863-017-0545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Seedling establishment is a crucial and vulnerable stage in the crop life cycle which determines further plant growth. While many studies are available on salt tolerance at the vegetative stage, the mechanisms and genetic bases of salt tolerance during seedling establishment have been poorly investigated. Here, a novel and accurate phenotyping protocol was applied to characterize the response of seedlings to salt stress in two barley cultivars (Nure and Tremois) and their double-haploid population. Results The combined phenotypic data and existing genetic map led to the identification of a new major QTL for root elongation under salt stress on chromosome 7HS, with the parent Nure carrying the favourable allele. Gene-based markers were developed from the rice syntenic genomic region to restrict the QTL interval to Bin2.1 of barley chromosome 7HS. Furthermore, doubled haploid lines with contrasting responses to salt stress revealed different root morphological responses to stress, with the susceptible genotypes exhibiting an overall reduction in root length and volume but an increase in root diameter and root hair density. Conclusions Salt tolerance at the seedling stage was studied in barley through a comprehensive phenotyping protocol that allowed the detection of a new major QTL on chromosome 7HS. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0545-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Xue
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Jiang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Luigi Cattivelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy.
| |
Collapse
|
45
|
Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. MOLECULAR PLANT 2017; 10:1047-1064. [PMID: 28669791 DOI: 10.1016/j.molp.2017.06.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 05/18/2023]
Abstract
There is a rapidly rising trend in the development and application of molecular marker assays for gene mapping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop molecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype-phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Khan
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, USA
| | - Yunbi Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China.
| |
Collapse
|
46
|
Development and characterization of polymorphic EST based SSR markers in barley ( Hordeum vulgare). 3 Biotech 2017; 7:265. [PMID: 28791211 DOI: 10.1007/s13205-017-0899-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022] Open
Abstract
In barley, breeding using good genetic characteristics can improve the quality or quantity of crop characters from one generation to the next generation. The development of effective molecular markers in barley is crucial for understanding and analyzing the diversity of useful alleles. In this study, we conducted genetic relationship analysis using expressed sequence tag-simple sequence repeat (EST-SSR) markers for barley identification and assessment of barley cultivar similarity. Seeds from 82 cultivars, including 31 each of naked and hulled barley from the Korea Seed and Variety Service and 20 of malting barley from the RDA-Genebank Information Center, were analyzed in this study. A cDNA library of the cultivar Gwanbori was constructed for use in analysis of genetic relationships, and 58 EST-SSR markers were developed and characterized. In total, 47 SSR markers were employed to analyze polymorphisms. A relationship dendrogram based on the polymorphism data was constructed to compare genetic diversity. We found that the polymorphism information content among the examined cultivars was 0.519, which indicates that there is low genetic diversity among Korean barley cultivars. The results obtained in this study may be useful in preventing redundant investment in new cultivars and in resolving disputes over seed patents. Our approach can be used by companies and government groups to develop different cultivars with distinguishable markers. In addition, the developed markers can be used for quantitative trait locus analysis to improve both the quantity and the quality of cultivated barley.
Collapse
|
47
|
Xia T, Zhang L, Xu J, Wang L, Liu B, Hao M, Chang X, Zhang T, Li S, Zhang H, Liu D, Shen Y. The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:757-766. [PMID: 28258369 DOI: 10.1007/s00122-016-2848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The early flowering of Lalu was determined to be due to a novel spontaneous eam8 mutation, which resulted in intron retention and the formation of a putative truncated protein. Barley is a staple crop grown over an extensive area in the Qinghai-Tibetan Plateau. Understanding the genetic mechanism for its success in a high altitude is important for crop improvement in marginal environments. Early flowering is a critical adaptive trait that strongly influences reproductive fitness in a short growing season. Loss-of-function mutations at the circadian clock gene EARLY MATURITY 8 (EAM8) promote rapid flowering. In this study, we identified a novel, spontaneous recessive eam8 mutant with an early flowering phenotype in a Tibetan barley landrace Lalu, which is natively grown at a high altitude of approximately 4000 m asl. The co-segregation analysis in a F2 population derived from the cross Lalu (early flowering) × Diqing 1 (late flowering) confirmed that early flowering of Lalu was determined to be due to an allele at EAM8. The eam8 allele from Lalu carries an A/G alternative splicing mutation at position 3257 in intron 3, designated eam8.l; this alternative splicing event leads to intron retention and a putative truncated protein. Of the 134 sequenced barley accessions, which are primarily native to the Qinghai-Tibet Plateau, three accessions carried this mutation. The eam8.l mutation was likely to have originated in wild barley due to the presence of the Lalu haplotype in H. spontaneum from Tibet. Overall, alternative splicing has contributed to the evolution of the barley circadian clock and in the short-season adaptation of local barley germplasm. The study has also identified a novel donor of early-flowering barley which will be useful for barley improvement.
Collapse
Affiliation(s)
- Tengfei Xia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China
- University of Chinese Academy of Sciences, No. 19 (Jia), Shijingshan District, Beijing, 100049, People's Republic of China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jinqing Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China
- University of Chinese Academy of Sciences, No. 19 (Jia), Shijingshan District, Beijing, 100049, People's Republic of China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Chang
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, Tibet, People's Republic of China
| | - Tangwei Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, People's Republic of China
| | - Shiming Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China
| | - Dengcai Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China.
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, 810008, Qinghai, People's Republic of China.
| |
Collapse
|
48
|
Yeo FKS, Bouchon R, Kuijken R, Loriaux A, Boyd C, Niks RE, Marcel TC. High-resolution mapping of genes involved in plant stage-specific partial resistance of barley to leaf rust. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:45. [PMID: 28356783 PMCID: PMC5352788 DOI: 10.1007/s11032-017-0624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/20/2017] [Indexed: 05/30/2023]
Abstract
Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.
Collapse
Affiliation(s)
- F. K. S. Yeo
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - R. Bouchon
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - R. Kuijken
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - A. Loriaux
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - C. Boyd
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-4660 USA
| | - R. E. Niks
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - T. C. Marcel
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
49
|
Ogrodowicz P, Adamski T, Mikołajczak K, Kuczyńska A, Surma M, Krajewski P, Sawikowska A, Górny AG, Gudyś K, Szarejko I, Guzy-Wróbelska J, Krystkowiak K. QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes. J Appl Genet 2017; 58:49-65. [PMID: 27503092 PMCID: PMC5243898 DOI: 10.1007/s13353-016-0363-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022]
Abstract
Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880-2547, in the vicinity of Ppd-H1 gene. SNP 5880-2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
50
|
Palumbo F, Galla G, Barcaccia G. Developing a Molecular Identification Assay of Old Landraces for the Genetic Authentication of Typical Agro-Food Products: The Case Study of the Barley 'Agordino'. Food Technol Biotechnol 2017; 55:29-39. [PMID: 28559731 DOI: 10.17113/ftb.55.01.17.4858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L.) that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR) loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which could be rapidly and efficiently exploited to guarantee the authenticity of local varieties and the typicality of food products.
Collapse
Affiliation(s)
- Fabio Palumbo
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale dell'Università 16, IT-35020 Legnaro (Padova), Italy
| | - Giulio Galla
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale dell'Università 16, IT-35020 Legnaro (Padova), Italy
| | - Gianni Barcaccia
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale dell'Università 16, IT-35020 Legnaro (Padova), Italy
| |
Collapse
|