1
|
Singh C, Yadav S, Khare V, Gupta V, Patial M, Kumar S, Mishra CN, Tyagi BS, Gupta A, Sharma AK, Ahlawat OP, Singh G, Tiwari R. Wheat Drought Tolerance: Unveiling a Synergistic Future with Conventional and Molecular Breeding Strategies. PLANTS (BASEL, SWITZERLAND) 2025; 14:1053. [PMID: 40219121 PMCID: PMC11990385 DOI: 10.3390/plants14071053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
The development of wheat cultivars capable of withstanding drought conditions is necessary for global food security. Conventional breeding, emphasizing the exploitation of inherent genetic diversity by selecting wheat genotypes exhibiting superior drought-related traits, including root architecture, water use efficiency, and stress-responsive genes, has been used by breeders. Simultaneously, molecular techniques such as marker-assisted selection and gene editing are deployed to accelerate the identification and integration of specific drought-responsive genes into elite wheat lines. Cutting-edge genomic tools play a pivotal role in decoding the genetic basis of wheat drought tolerance, enabling the precise identification of key genomic regions and facilitating breeding decisions. Gene-editing technologies, deployed judiciously, ensure the targeted enhancement of desirable traits without compromising the overall genomic integrity of wheat varieties. This review introduces a strategic amalgamation of conventional and molecular breeding approaches for developing drought-tolerant wheat. The review aims to accelerate progress by seamlessly merging traditional breeding methods with advanced molecular tools, and it also underscores the potential of a synergistic future for enhancing wheat drought resilience, providing a roadmap for the development of resilient wheat varieties essential for sustainable agriculture in the 21st century.
Collapse
Affiliation(s)
- Charan Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Sapna Yadav
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Vikas Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Madhu Patial
- ICAR-Indian Institute of Agricultural Research-Regional Station, Shimla 171001, Himachal Pradesh, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Chandra Nath Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Bhudeva Singh Tyagi
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Arun Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Amit Kumar Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Om Prakash Ahlawat
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India; (S.Y.)
| |
Collapse
|
2
|
Wang Y, Han W, Wang T, Jia C, Liu J, Fan X, Chen J. Elucidating the genetic basis of bulb-related traits in garlic (Allium sativum) through genome-wide association study. Int J Biol Macromol 2025; 284:137842. [PMID: 39579831 DOI: 10.1016/j.ijbiomac.2024.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The genetic architecture of garlic bulb related traits were still not well elucidated due to its big and complex genome. In this study, genotyping-by-sequencing (GBS) in 163 garlic accessions mainly from China were conducted. All the 163 garlic accessions were divided into three subpopulations, and largely consistent with geographic origins. Genome-wide association study (GWAS) was conducted for 5 garlic bulb related traits across four environments. Totally, 26 significantly loci were identified in two or more environments and located within or near 431 genes, and explain 14.0-31.7 % of the phenotypic variances. Among these, qBW5.1 was nearly with the qBH5.1. Four loci were reported previously, whereas the remaining 22 are likely to be new. Gene ontology enrichment analysis showed that the candidate genes were significantly enriched in metabolic process, biosynthetic process and catalytic activity. Nine candidate genes encode the zinc finger domain-containing protein, serine/threonine-protein kinase, peroxygenase, auxin-induced protein, ethylene-responsive transcription and E3-Ubiquitin protein ligases were identified and validated. Additionally, a meaningful achievement is one kompetitive allele-specific PCR marker, Kasp_chr7_BW for bulb weight were successfully developed and validated in a diverse panel. These results uncover the genetic mechanism of garlic bulb related traits and provide accessions and KASP markers for further garlic molecular breeding.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenjing Han
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Taotao Wang
- Shandong Dongyun Engineering and Technology Research Center for Garlic, Jining 272200, China
| | - Chunying Jia
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Liu
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Xiaorong Fan
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Krishnan J. N, Kaur S, Kumar U, Singh R, Dhillon GS, Bhati PK, Chhuneja P. Mapping heat tolerance QTLs in Triticum durum-Aegilops speltoides backcross introgression lines to enhance thermotolerance in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1485914. [PMID: 39759239 PMCID: PMC11695302 DOI: 10.3389/fpls.2024.1485914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Wheat, a major cereal crop, is the most consumed staple food after rice in India. Frequent episodes of heat waves during the past decade have raised concerns about food security under impending global warming and necessitate the development of heat-tolerant wheat cultivars. Wild relatives of crop plants serve as untapped reservoirs of novel genetic variations. In the present study a mapping population comprising 311 BC2F10 backcross introgression lines (BILs) developed by crossing Triticum durum and heat-tolerant diploid wild wheat relative Aegilops speltoides accession pau3809 was used to map QTLs for terminal heat tolerance. The homozygous BILs were evaluated for heat stress tolerance component traits under an optimum environment (OE) and a heat-stressed environment (HE) for the two cropping seasons. Data on spike length, spikelet number per spike, peduncle length, thousand-grain weight, grains per spike, days to heading, days to maturity, grain filling duration, NDVI at heading, plant height and plot yield were recorded. Genotyping-by-sequencing (GBS) of the BILs was carried out, and 2945 high-quality, polymorphic SNPs were obtained. Thirty QTLs were detected for various heat tolerance component traits on chromosomes 1A, IB, 2A, 2B, 3B, 4B, 5A, 5B, 6A and 6B with phenotypic variance ranging from 5 to 11.5%. Several candidate genes reported to play a role in heat stress responses were identified by browsing the 1.85 Mb physical region flanking the stable QTLs detected under the HE. Identified QTL and linked markers can be employed for genomics-assisted breeding for heat tolerance in wheat.
Collapse
Affiliation(s)
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India
- Astralyn Agro One Person Company (OPC) Pvt. Ltd, Shamli, India
| | - Rohtas Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Rana A, Rana V, Bakshi S, Kumar Sood V. Isolation and characterization of gamma rays induced mutants for improved agro-morphological performance and harder grain texture in wheat ( Triticum aestivum L.). Int J Radiat Biol 2024:1-16. [PMID: 39526939 DOI: 10.1080/09553002.2024.2425305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Kernel texture plays a principal role in determining technological flour properties and end-use quality of wheat products. Hence, a multi-year mutation induction programme was conducted to isolate advanced wheat mutant lines with agro-morphologically superior performance, higher disease resistance and harder grain texture. MATERIALS AND METHODS Radiation mutagenesis was employed in soft textured wheat variety HPW 89 using gamma rays dose of 250, 300 and 350 Gy (Co60: BARC, Mumbai) and evaluated across M1-5 generations. Promising superior mutants selected were evaluated during M4 and M5 generation for induced variability and trait association for agro-morphological and quality traits. The screened mutants were also determined for induced changes at genetic level using gene specific markers for puroindoline genes. RESULTS A total of 293 agro-morphologically superior mutants isolated showed significant genetic variation in the M4 generation. Single kernel characterization system categorized 267 mutants (8.79-50.06) with higher grain hardness than the HPW 89 variety (7.39). Among these, 108 mutants were selected for agro-morphological and molecular characterization. Significant variations were found in these mutants in either pina and pinb or both puroindoline genes. Clustering among these mutants led to the formation of five clusters and a total of eleven mutants were found with better set of agro-morphological, disease resistance and quality traits. CONCLUSION These mutants can serve as important genetic resource for developing harder texture bread wheat varieties in the future grain quality improvement programmes. These mutants will also bridge the need of bakers and millers' requirement of varieties with specific texture and quality.
Collapse
Affiliation(s)
- Amit Rana
- Department of Genetics and Plant Breeding, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Vijay Rana
- Department of Genetics and Plant Breeding, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
- Rice and Wheat Research Centre, Malan, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Suman Bakshi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra, India
| | - Vinod Kumar Sood
- Department of Genetics and Plant Breeding, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| |
Collapse
|
5
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
6
|
Awan MJA, Amin I, Rasheed A, Saeed NA, Mansoor S. Knockout mutation in TaD27 enhances number of productive tillers in hexaploid wheat. Front Genome Ed 2024; 6:1455761. [PMID: 39469217 PMCID: PMC11513295 DOI: 10.3389/fgeed.2024.1455761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Recent advances allow the deployment of cluster regularly interspaced short palindromic repeats (CRISPR)-associated endonucleases (Cas) system for the targeted mutagenesis in the genome with accuracy and precision for trait improvement in crops. CRISPR-Cas systems have been extensively utilized to induce knockout or frameshift mutations in the targeted sequence of mostly negative regulating genes for wheat improvement. However, most of the reported work has been done in non-commercial varieties of wheat and introgression of edited alleles into breeding population comes with the penalty of unwanted linkage-drag. Wheat yield is controlled by various genes such as positive and negative regulators. The TaD27 gene is described as a negative regulator of shoot branching or tillering and involved in the biosynthesis of strigolactones. In this study, we developed Tad27 knockout mutant lines of an elite wheat cultivar that showed a twofold increase in the number of tillers and 1.8-fold increase in the number of grains per plant. Subsequently, enhancing the grain yield without any morphological penalty in the architecture of the plants. The co-transformation of regeneration enhancing growth regulator, Growth Regulating Factor 4 (GRF4) and its cofactor GRF-Interacting Factor 1 (GIF1), under single T-DNA cassette improved the regeneration efficiency up to 6% of transgenic events from mature embryos of wheat. Our results indicate that the CRISPR-mediated targeted mutagenesis confers the potential to knockout yield-related negative regulators in elite cultivars of wheat that can substantially enhance grain yield per plant and this strategy can be harnessed for the improvement of future wheat.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Nasir A. Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Ezzat MA, Alotaibi NM, Soliman SS, Sultan M, Kamara MM, Abd El-Moneim D, Felemban WF, Al Aboud NM, Aljabri M, Abdelmalek IB, Mansour E, Hassanin AA. Molecular and agro-morphological diversity assessment of some bread wheat genotypes and their crosses for drought tolerance. PeerJ 2024; 12:e18104. [PMID: 39346037 PMCID: PMC11439381 DOI: 10.7717/peerj.18104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Wheat, a staple cereal crop, faces challenges due to climate change and increasing global population. Maintaining genetic diversity is vital for developing drought-tolerant cultivars. This study evaluated the genetic diversity and drought response of five wheat cultivars and their corresponding F1 hybrids under well-watered and drought stress conditions. Molecular profiling using ISSR and SCoT-PCR markers revealed 28 polymorphic loci out of 76 amplified. A statistically significant impact of parental genotypes and their crosses was observed on all investigated agro-morphological traits, including root length, root weight, shoot length, shoot weight, proline content, spikelet number/spike, spike length, grain number/spike, and grain weight/spike. The parental genotypes P1 and P3 had desirable positive and significant general combining ability (GCA) effects for shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, shoot length, and root length under well-watered conditions, while P3 and P5 recorded the highest GCA estimates under drought stress. P3 and P4 showed the highest GCA effects for number of spikelets per spike, the number of grains per spike, and grain weight per spike under normal conditions. P5 presented the maximum GCA effects and proved to be the best combiner under drought stress conditions. The cross P1× P3 showed the highest positive specific combining ability (SCA) effects for shoot fresh weight under normal conditions, while P2×P3 excelled under water deficit conditions. P1× P2, P1 × P3, and P4× P5 were most effective for shoot dry weight under normal conditions, whereas P1×P3 and P3×P5 showed significant SCA effects under drought stress. Positive SCA effects for root fresh weight and shoot length were observed for P3×P5 under stressed conditions. Additionally, P4×P5 consistently recorded the highest SCA for root length in both environments, and P3×P5 excelled in the number of spikelets, grains per spike, and grain weight per spike under drought conditions. The evaluated genotypes were categorized based on their agronomic performance under drought stress into distinct groups ranging from drought-tolerant genotypes (group A) to drought-sensitive ones (group C). The genotypes P5, P2×P5, and P3×P5 were identified as promising genotypes to improve agronomic performance under water deficit conditions. The results demonstrated genetic variations for drought tolerance and highlighted the potential of ISSR and SCoT markers in wheat breeding programs for developing drought-tolerant cultivars.
Collapse
Affiliation(s)
- Mohamed A. Ezzat
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Nahaa M. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Said S. Soliman
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahasin Sultan
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed M. Kamara
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental and Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Wessam F. Felemban
- Biological Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nora M. Al Aboud
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
8
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
9
|
Pang Y, Wang L, Li L, Wang X, Wang D, Zhao M, Ma C, Zhang H, Yan Q, Lu Y, Liang Y, Kong X, Zhu H, Sun X, Zhao Y, Liu S. Genotype selection identified elite lines through quantitative trait loci mapping of agronomically important traits in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:56. [PMID: 39220047 PMCID: PMC11364835 DOI: 10.1007/s11032-024-01496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Wheat is one of the most important staple foods in the world. Genetic characterization of wheat agronomically important traits is crucial for yield improvement through molecular breeding. In this study, a recombinant inbred line (RIL) population was developed by crossing a local adapted high yield variety Jimai 22 (JM22) with an external variety Cunmai no.1 (CM1). A high-density genetic map containing 7,359 single nucleotide polymorphism (SNP) markers was constructed. Quantitative trait loci (QTL) mapping identified 61 QTL for eight yield-related traits under six environments (years). Among them, 17 QTL affecting spike number per plant, grain number per spike and thousand grain weight showed high predictability for theoretical yield per plant (TYP), of which, 12 QTL alleles positively contributed to TYP. Nine promising candidate genes for seven of the 12 QTL were identified including three known wheat genes and six rice orthologs. Four elite lines with TYP increased by 5.6%-15.2% were identified through genotype selection which carried 7-9 favorable alleles from JM22 and 2-3 favorable alleles from CM1 of the 12 QTL. Moreover, the linked SNPs of the 12 QTL were converted to high-throughput kompetitive allele-specific PCR (KASP) markers and validated in the population. The mapped QTL, identified promising candidate genes, developed elite lines and KASP markers are highly valuable in future genotype selection to improve wheat yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01496-3.
Collapse
Affiliation(s)
- Yunlong Pang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Liming Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Linzhi Li
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Xiaoqian Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Danfeng Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Meng Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Chenhao Ma
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Huirui Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qiang Yan
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yue Lu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yunlong Liang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiangsheng Kong
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Huaqiang Zhu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xuecheng Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yujie Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shubing Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
10
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
11
|
Niu J, Wang W, Wang Z, Chen Z, Zhang X, Qin Z, Miao L, Yang Z, Xie C, Xin M, Peng H, Yao Y, Liu J, Ni Z, Sun Q, Guo W. Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing. Genome Biol 2024; 25:171. [PMID: 38951917 PMCID: PMC11218387 DOI: 10.1186/s13059-024-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.
Collapse
Affiliation(s)
- Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Hong MJ, Ko CS, Kim DY. Genome-Wide Association Study to Identify Marker-Trait Associations for Seed Color in Colored Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 25:3600. [PMID: 38612412 PMCID: PMC11011601 DOI: 10.3390/ijms25073600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
This study conducted phenotypic evaluations on a wheat F3 population derived from 155 F2 plants. Traits related to seed color, including chlorophyll a, chlorophyll b, carotenoid, anthocyanin, L*, a*, and b*, were assessed, revealing highly significant correlations among various traits. Genotyping using 81,587 SNP markers resulted in 3969 high-quality markers, revealing a genome-wide distribution with varying densities across chromosomes. A genome-wide association study using fixed and random model circulating probability unification (FarmCPU) and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) identified 11 significant marker-trait associations (MTAs) associated with L*, a*, and b*, and chromosomal distribution patterns revealed predominant locations on chromosomes 2A, 2B, and 4B. A comprehensive annotation uncovered 69 genes within the genomic vicinity of each MTA, providing potential functional insights. Gene expression analysis during seed development identified greater than 2-fold increases or decreases in expression in colored wheat for 16 of 69 genes. Among these, eight genes, including transcription factors and genes related to flavonoid and ubiquitination pathways, exhibited distinct expression patterns during seed development, providing further approaches for exploring seed coloration. This comprehensive exploration expands our understanding of the genetic basis of seed color and paves the way for informed discussions on the molecular intricacies contributing to this phenotypic trait.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.)
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.)
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan-eup 32439, Republic of Korea
| |
Collapse
|
13
|
Clouard C, Nettelblad C. Genotyping of SNPs in bread wheat at reduced cost from pooled experiments and imputation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:26. [PMID: 38243086 PMCID: PMC10799138 DOI: 10.1007/s00122-023-04533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
KEY MESSAGE Pooling and imputation are computational methods that can be combined for achieving cost-effective and accurate high-density genotyping of both common and rare variants, as demonstrated in a MAGIC wheat population. The plant breeding industry has shown growing interest in using the genotype data of relevant markers for performing selection of new competitive varieties. The selection usually benefits from large amounts of marker data, and it is therefore crucial to dispose of data collection methods that are both cost-effective and reliable. Computational methods such as genotype imputation have been proposed earlier in several plant science studies for addressing the cost challenge. Genotype imputation methods have though been used more frequently and investigated more extensively in human genetics research. The various algorithms that exist have shown lower accuracy at inferring the genotype of genetic variants occurring at low frequency, while these rare variants can have great significance and impact in the genetic studies that underlie selection. In contrast, pooling is a technique that can efficiently identify low-frequency items in a population, and it has been successfully used for detecting the samples that carry rare variants in a population. In this study, we propose to combine pooling and imputation and demonstrate this by simulating a hypothetical microarray for genotyping a population of recombinant inbred lines in a cost-effective and accurate manner, even for rare variants. We show that with an adequate imputation model, it is feasible to accurately predict the individual genotypes at lower cost than sample-wise genotyping and time-effectively. Moreover, we provide code resources for reproducing the results presented in this study in the form of a containerized workflow.
Collapse
Affiliation(s)
- Camille Clouard
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Lägerhyddsvägen 1, 75237, Uppsala, Sweden.
| | - Carl Nettelblad
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Lägerhyddsvägen 1, 75237, Uppsala, Sweden
- SciLifeLab, Science for Life Laboratory, Husargatan 3, 75237, Uppsala, Sweden
| |
Collapse
|
14
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Xu X, Ni Z, Zou X, Zhang Y, Tong J, Xu X, Dong Y, Han B, Li S, Wang D, Xia X, He Z, Hao Y. QTL Mapping Reveals Both All-Stage and Adult-Plant Resistance to Powdery Mildew in Chinese Elite Wheat Cultivars. PLANT DISEASE 2023; 107:3230-3237. [PMID: 37018212 DOI: 10.1094/pdis-02-23-0399-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.
Collapse
Affiliation(s)
- Xiaoting Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhongqiu Ni
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xinyu Zou
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050031, Hebei, China
| | - Jingyang Tong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaowan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yachao Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Bin Han
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Simin Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
16
|
Kajla A, Schoen A, Paulson C, Yadav IS, Neelam K, Riera-Lizarazu O, Leonard J, Gill BS, Venglat P, Datla R, Poland J, Coleman G, Rawat N, Tiwari V. Physical mapping of the wheat genes in low-recombination regions: radiation hybrid mapping of the C-locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:159. [PMID: 37344686 DOI: 10.1007/s00122-023-04403-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
KEY MESSAGE This work reports the physical mapping of an important gene affecting spike compactness located in a low-recombination region of hexaploid wheat. This work paves the way for the eventual isolation and characterization of the factor involved but also opens up possibilities to use this approach to precisely map other wheat genes located on proximal parts of wheat chromosomes that show highly reduced recombination. Mapping wheat genes, in the centromeric and pericentromeric regions (~ 2/3rd of a given chromosome), poses a formidable challenge due to highly suppressed recombination. Using an example of compact spike locus (C-locus), this study provides an approach to precisely map wheat genes in the pericentromeric and centromeric regions that house ~ 30% of wheat genes. In club-wheat, spike compactness is controlled by the dominant C-locus, but previous efforts have failed to localize it, on a particular arm of chromosome 2D. We integrated radiation hybrid (RH) and high-resolution genetic mapping to locate C-locus on the short arm of chromosome 2D. Flanking markers of the C-locus span a physical distance of 11.0 Mb (231.0-242 Mb interval) and contain only 11 high-confidence annotated genes. This work demonstrates the value of this integrated strategy in mapping dominant genes in the low-recombination regions of the wheat genome. A comparison of the mapping resolutions of the RH and genetic maps using common anchored markers indicated that the RH map provides ~ 9 times better resolution that the genetic map even with much smaller population size. This study provides a broadly applicable approach to fine map wheat genes in regions of suppressed recombination.
Collapse
Affiliation(s)
- Anmol Kajla
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Adam Schoen
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Carl Paulson
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Inderjit Singh Yadav
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | | | | | - Jeff Leonard
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Raju Datla
- Global Institute of Food Security, Saskatoon, SK, Canada
| | - Jesse Poland
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Gary Coleman
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Vijay Tiwari
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA.
| |
Collapse
|
17
|
Ali I, Anwar S, Ali A, Ullah Z, Binjawhar DN, Sher H, Abdel-Hameed UK, Khan MA, Majeed K, Jaremko M. Biochemical and phenological characterization of diverse wheats and their association with drought tolerance genes. BMC PLANT BIOLOGY 2023; 23:326. [PMID: 37331960 DOI: 10.1186/s12870-023-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Drought is one of the most important wheat production limiting factor, and can lead to severe yield losses. This study was designed to examine the effect of drought stress on wheat physiology and morphology under three different field capacities (FC) viz. 80% (control), 50% (moderate) and 30% (severe drought stress) in a diverse collection of wheat germplasm including cultivars, landraces, synthetic hexaploid and their derivatives. Traits like grain weight, thousand grain weight and biomass were reduced by 38.23%, 18.91% and 26.47% respectively at 30% FC, whereas the reduction rate for these traits at 50% FC were 19.57%, 8.88% and 18.68%. In principal component analysis (PCA), the first two components PC1 and PC2 accounted for 58.63% of the total variation and separated the cultivars and landraces from synthetic-based germplasm. Landraces showed wide range of phenotypic variations at 30% FC compared to synthetic-based germplasm and improved cultivars. However, least reduction in grain weight was observed in improved cultivars which indicated the progress in developing drought resilient cultivars. Allelic variations of the drought-related genes including TaSnRK2.9-5A, TaLTPs-11, TaLTPs-12, TaSAP-7B-, TaPPH-13, Dreb-B1 and 1fehw3 were significantly associated with the phenological traits under drought stress in all 91 wheats including 40 landraces, 9 varieties, 34 synthetic hexaploids and 8 synthetic derivatives. The favorable haplotypes of 1fehw3, Dreb-B1, TaLTPs-11 and TaLTPs-12 increased grain weight, and biomass. Our results iterated the fact that landraces could be promising source to deploy drought adaptability in wheat breeding. The study further identified drought tolerant wheat genetic resources across various backgrounds and identified favourable haplotypes of water-saving genes which should be considered to develop drought tolerant varieties.
Collapse
Affiliation(s)
- Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
| | - Saeed Anwar
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Ahmad Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
| | - Zahid Ullah
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Hassan Sher
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Usama K Abdel-Hameed
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawarah, 42353, Saudi Arabia
- Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Khawar Majeed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 329555-6900, Saudi Arabia
| |
Collapse
|
18
|
Kang Y, Choi C, Kim JY, Min KD, Kim C. Optimizing genomic selection of agricultural traits using K-wheat core collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1112297. [PMID: 37389296 PMCID: PMC10303932 DOI: 10.3389/fpls.2023.1112297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 07/01/2023]
Abstract
The agricultural traits that constitute basic plant breeding information are usually quantitative or complex in nature. This quantitative and complex combination of traits complicates the process of selection in breeding. This study examined the potential of genome-wide association studies (GWAS) and genomewide selection (GS) for breeding ten agricultural traits by using genome-wide SNPs. As a first step, a trait-associated candidate marker was identified by GWAS using a genetically diverse 567 Korean (K)-wheat core collection. The accessions were genotyped using an Axiom® 35K wheat DNA chip, and ten agricultural traits were determined (awn color, awn length, culm color, culm length, ear color, ear length, days to heading, days to maturity, leaf length, and leaf width). It is essential to sustain global wheat production by utilizing accessions in wheat breeding. Among the traits associated with awn color and ear color that showed a high positive correlation, a SNP located on chr1B was significantly associated with both traits. Next, GS evaluated the prediction accuracy using six predictive models (G-BLUP, LASSO, BayseA, reproducing kernel Hilbert space, support vector machine (SVM), and random forest) and various training populations (TPs). With the exception of the SVM, all statistical models demonstrated a prediction accuracy of 0.4 or better. For the optimization of the TP, the number of TPs was randomly selected (10%, 30%, 50% and 70%) or divided into three subgroups (CC-sub 1, CC-sub 2 and CC-sub 3) based on the subpopulation structure. Based on subgroup-based TPs, better prediction accuracy was found for awn color, culm color, culm length, ear color, ear length, and leaf width. A variety of Korean wheat cultivars were used for validation to evaluate the prediction ability of populations. Seven out of ten cultivars showed phenotype-consistent results based on genomics-evaluated breeding values (GEBVs) calculated by the reproducing kernel Hilbert space (RKHS) predictive model. Our research provides a basis for improving complex traits in wheat breeding programs through genomics assisted breeding. The results of our research can be used as a basis for improving wheat breeding programs by using genomics-assisted breeding.
Collapse
Affiliation(s)
- Yuna Kang
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea
| | - Changhyun Choi
- Wheat Research Team, National Institution Crop Sciences, Wanju-gun, Republic of Korea
| | - Jae Yoon Kim
- Department of Plant Resources, Kongju National University, Yesan, Republic of Korea
| | - Kyeong Do Min
- Department of Plant Resources, Kongju National University, Yesan, Republic of Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Tafuri A, Zuccaro M, Ravaglia S, Pirona R, Masci S, Sestili F, Lafiandra D, Ceriotti A, Baldoni E. Exploring Variability of Free Asparagine Content in the Grain of Bread Wheat ( Triticum aestivum L.) Varieties Cultivated in Italy to Reduce Acrylamide-Forming Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1349. [PMID: 36987037 PMCID: PMC10054617 DOI: 10.3390/plants12061349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Acrylamide, a suspected human carcinogen, is generated during food processing at high temperatures in the Maillard reaction, which involves reducing sugars and free asparagine. In wheat derivatives, free asparagine represents a key factor in acrylamide formation. Free asparagine levels in the grain of different wheat genotypes has been investigated in recent studies, but little is known about elite varieties that are cultivated in Italy. Here, we analysed the accumulation of free asparagine in a total of 54 bread wheat cultivars that are relevant for the Italian market. Six field trials in three Italian locations over two years were considered. Wholemeal flours obtained from harvested seeds were analysed using an enzymatic method. Free asparagine content ranged from 0.99 to 2.82 mmol/kg dry matter in the first year, and from 0.55 to 2.84 mmol/kg dry matter in the second year. Considering the 18 genotypes that were present in all the field trials, we evaluated possible environment and genetic influences for this trait. Some cultivars seemed to be highly affected by environment, whereas others showed a relative stability in free asparagine content across years and locations. Finally, we identified two varieties showing the highest free asparagine levels in our analysis, representing potential useful materials for genotype x environment interaction studies. Two other varieties, which were characterized by low amounts of free asparagine in the considered samples, may be useful for the food industry and for future breeding programs aimed to reduce acrylamide-forming potential in bread wheat.
Collapse
Affiliation(s)
- Andrea Tafuri
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
- SIS Società Italiana Sementi, Via Mirandola 5, 40068 San Lazzaro di Savena, Italy;
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Melania Zuccaro
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Stefano Ravaglia
- SIS Società Italiana Sementi, Via Mirandola 5, 40068 San Lazzaro di Savena, Italy;
| | - Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Aldo Ceriotti
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| |
Collapse
|
20
|
Song J, Li L, Liu B, Dong Y, Dong Y, Li F, Liu S, Luo X, Sun M, Ni Z, Fei S, Xia X, Ni Z, He Z, Cao S. Fine mapping of reduced height locus RHT26 in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:62. [PMID: 36914894 DOI: 10.1007/s00122-023-04331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
We fine mapped RHT26 for plant height in wheat, confirmed its genetic effects in a panel of wheat cultivars and predicted candidate genes. Development of wheat cultivars with appropriate plant height (PH) is an important goal in breeding. Utilization of semi-dwarfing genes Rht-B1b and Rht-D1b triggered wheat Green Resolution in the 1960s. Since these genes also bring unfavorable features, such as reduced coleoptile length and grain weight, it is necessary to identify alternative reduced height genes without yield penalty. Here we constructed a high-density genetic map of a recombinant inbred line population derived from the cross of Zhongmai175 and Lunxuan987 and detected a stable genetic locus for PH, designated RHT26, on chromosome arm 3DL in all of six environments, accounting for 6.8-14.0% of the phenotypic variances. RHT26 was delimited to an approximate 1.4 Mb physical interval (517.1-518.5 Mb) using secondary mapping populations derived from 22 heterozygous recombinant plants and 24 kompetitive allele-specific PCR markers. Eleven high-confidence genes were annotated in the physical interval according to the Chinese Spring reference genome, and four of them were predicted as candidates for RHT26 based on genome and transcriptome sequencing analyses. We also confirmed that RHT26 had significant effects on PH, but not grain yield in a panel of wheat cultivars; its dwarfing allele has been frequently used in wheat breeding. These findings lay a sound foundation for map-based cloning of RHT26 and provide a breeding-applicable tool for marker-assisted selection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lei Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yachao Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Mengjing Sun
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhongqiu Ni
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shuaipeng Fei
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhongfu Ni
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Zhonghu He
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o, CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
21
|
Rasheed A. Semi-Thermal Asymmetric Reverse PCR (STARP) Genotyping. Methods Mol Biol 2023; 2638:221-230. [PMID: 36781645 DOI: 10.1007/978-1-0716-3024-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
PCR-based individual Single nucleotide polymorphism (SNP) genotyping methods are preferred due to their flexibility, high-throughput, and improved accuracy. Semi-thermal asymmetric reverse PCR (STARP) is one of the SNP genotyping methods developed to reduce operational cost with improved platform compatibility. STARP is a unique method which can be used either as a gel-free SNP genotyping by detection of fluorescent signals or polyacrylamide gel-based size separation. SNP assay designing using sequence information and detection methods of STARP are described in detail.
Collapse
Affiliation(s)
- Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China Office, Beijing, China.
| |
Collapse
|
22
|
Xiang M, Liu S, Wang X, Zhang M, Yan W, Wu J, Wang Q, Li C, Zheng W, He Y, Ge Y, Wang C, Kang Z, Han D, Zeng Q. Development of breeder chip for gene detection and molecular-assisted selection by target sequencing in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:13. [PMID: 37313130 PMCID: PMC10248658 DOI: 10.1007/s11032-023-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 06/15/2023]
Abstract
Wheat is an essential food crop and its high and stable yield is suffering from great challenges due to the limitations of current breeding technology and various stresses. Accelerating molecularly assisted stress-resistance breeding is critical. Through a meta-analysis of published loci in wheat over the last two decades, we selected 60 loci with main breeding objectives, high heritability, and reliable genotyping, such as stress resistance, yield, plant height, and resistance to spike germination. Then, using genotyping by target sequencing (GBTS) technology, we developed a liquid phase chip based on 101 functional or closely linked markers. The genotyping of 42 loci was confirmed in an extensive collection of Chinese wheat cultivars, indicating that the chip can be used in molecular-assisted selection (MAS) for target breeding goals. Besides, we can perform the preliminary parentage analysis with the genotype data. The most significant contribution of this work lies in translating a large number of molecular markers into a viable chip and providing reliable genotypes. Breeders can quickly screen germplasm resources, parental breeding materials, and intermediate materials for the presence of excellent allelic variants using the genotyping data by this chip, which is high throughput, convenient, reliable, and cost-efficient. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01359-3.
Collapse
Affiliation(s)
- Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingming Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yilin He
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035 Hebei China
| | - Yunxia Ge
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035 Hebei China
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
- Yangling Seed Industry Innovation Center, Yangling, 712100 Shaanxi China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
23
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
24
|
Singh J, Chhabra B, Raza A, Yang SH, Sandhu KS. Important wheat diseases in the US and their management in the 21st century. FRONTIERS IN PLANT SCIENCE 2023; 13:1010191. [PMID: 36714765 PMCID: PMC9877539 DOI: 10.3389/fpls.2022.1010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Wheat is a crop of historical significance, as it marks the turning point of human civilization 10,000 years ago with its domestication. Due to the rapid increase in population, wheat production needs to be increased by 50% by 2050 and this growth will be mainly based on yield increases, as there is strong competition for scarce productive arable land from other sectors. This increasing demand can be further achieved using sustainable approaches including integrated disease pest management, adaption to warmer climates, less use of water resources and increased frequency of abiotic stress tolerances. Out of 200 diseases of wheat, 50 cause economic losses and are widely distributed. Each year, about 20% of wheat is lost due to diseases. Some major wheat diseases are rusts, smut, tan spot, spot blotch, fusarium head blight, common root rot, septoria blotch, powdery mildew, blast, and several viral, nematode, and bacterial diseases. These diseases badly impact the yield and cause mortality of the plants. This review focuses on important diseases of the wheat present in the United States, with comprehensive information of causal organism, economic damage, symptoms and host range, favorable conditions, and disease management strategies. Furthermore, major genetic and breeding efforts to control and manage these diseases are discussed. A detailed description of all the QTLs, genes reported and cloned for these diseases are provided in this review. This study will be of utmost importance to wheat breeding programs throughout the world to breed for resistance under changing environmental conditions.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Bhavit Chhabra
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seung Hwan Yang
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | | |
Collapse
|
25
|
Sallam A, Alqudah AM, Baenziger PS, Rasheed A. Editorial: Genetic validation and its role in crop improvement. Front Genet 2023; 13:1078246. [PMID: 36685961 PMCID: PMC9846199 DOI: 10.3389/fgene.2022.1078246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany,*Correspondence: Ahmed Sallam,
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha, Qatar
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
26
|
Xiong W, Reynolds M, Xu Y. Climate change challenges plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102308. [PMID: 36279790 DOI: 10.1016/j.pbi.2022.102308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Plant breeding is important to cope with climate change impacts, complementing crop management and policy interventions to ensure global food production. However, changes in environmental factors also affect the objectives, efficiency, and genetic gains of the current plant breeding system. In this review, we summarize the challenges prompted by climate change to breeding climate-resilient crops and the limitations of the next-generation breeding approach in addressing climate change. It is anticipated that the integration of multi-disciplines and technologies into three schemes of genotyping, phenotyping, and envirotyping will result in the delivery of climate change-ready crops in less time.
Collapse
Affiliation(s)
- Wei Xiong
- CIMMYT-Henan Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico.
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Mohamed M, Siddiqui MN, Oyiga BC, Léon J, Ballvora A. Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. Int J Mol Sci 2022; 23:13745. [PMID: 36430224 PMCID: PMC9691212 DOI: 10.3390/ijms232213745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Salt stress is one the most destructive abiotic stressors, causing yield losses in wheat worldwide. A prerequisite for improving salt tolerance is the identification of traits for screening genotypes and uncovering causative genes. Two populations of F3 lines developed from crosses between sensitive and tolerant parents were tested for salt tolerance at the seedling stage. Based on their response, the offspring were classified as salt sensitive and tolerant. Under saline conditions, tolerant genotypes showed lower Na+ and proline content but higher K+, higher chlorophyll content, higher K+/Na+ ratio, higher PSII activity levels, and higher photochemical efficiency, and were selected for further molecular analysis. Five stress responsive QTL identified in a previous study were validated in the populations. A QTL on the short arm of chromosome 1D showed large allelic effects in several salt tolerant related traits. An expression analysis of associated candidate genes showed that TraesCS1D02G052200 and TraesCS5B02G368800 had the highest expression in most tissues. Furthermore, qRT-PCR expression analysis revealed that ZIP-7 had higher differential expressions under saline conditions compared to KefC, AtABC8 and 6-SFT. This study provides information on the genetic and molecular basis of salt tolerance that could be useful in development of salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Maisa Mohamed
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
- Agronomy Department, College of Agriculture, South Valley University, Qena 83523, Egypt
| | - Md Nurealam Siddiqui
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| | - Benedict Chijioke Oyiga
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - Jens Léon
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| | - Agim Ballvora
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| |
Collapse
|
28
|
Shan D, Ali M, Shahid M, Arif A, Waheed MQ, Xia X, Trethowan R, Tester M, Poland J, Ogbonnaya FC, Rasheed A, He Z, Li H. Genetic networks underlying salinity tolerance in wheat uncovered with genome-wide analyses and selective sweeps. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2925-2941. [PMID: 35915266 DOI: 10.1007/s00122-022-04153-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A genetic framework underpinning salinity tolerance at reproductive stage was revealed by genome-wide SNP markers and major adaptability genes in synthetic-derived wheats, and trait-associated loci were used to predict phenotypes. Using wild relatives of crops to identify genes related to improved productivity and resilience to climate extremes is a prioritized area of crop genetic improvement. High salinity is a widespread crop production constraint, and development of salt-tolerant cultivars is a sustainable solution. We evaluated a panel of 294 wheat accessions comprising synthetic-derived wheat lines (SYN-DERs) and modern bread wheat advanced lines under control and high salinity conditions at two locations. The GWAS analysis revealed a quantitative genetic framework of more than 200 loci with minor effect underlying salinity tolerance at reproductive stage. The significant trait-associated SNPs were used to predict phenotypes using a GBLUP model, and the prediction accuracy (r2) ranged between 0.57 and 0.74. The r2 values for flag leaf weight, days to flowering, biomass, and number of spikes per plant were all above 0.70, validating the phenotypic effects of the loci discovered in this study. Furthermore, the germplasm sets were compared to identify selection sweeps associated with salt tolerance loci in SYN-DERs. Six loci associated with salinity tolerance were found to be differentially selected in the SYN-DERs (12.4 Mb on chromosome (chr)1B, 7.1 Mb on chr2A, 11.2 Mb on chr2D, 200 Mb on chr3D, 600 Mb on chr6B, and 700.9 Mb on chr7B). A total of 228 reported markers and genes, including 17 well-characterized genes, were uncovered using GWAS and EigenGWAS. A linkage disequilibrium (LD) block on chr5A, including the Vrn-A1 gene at 575 Mb and its homeologs on chr5D, were strongly associated with multiple yield-related traits and flowering time under salinity stress conditions. The diversity panel was screened with more than 68 kompetitive allele-specific PCR (KASP) markers of functional genes in wheat, and the pleiotropic effects of superior alleles of Rht-1, TaGASR-A1, and TaCwi-A1 were revealed under salinity stress. To effectively utilize the extensive genetic information obtained from the GWAS analysis, a genetic interaction network was constructed to reveal correlations among the investigated traits. The genetic network data combined with GWAS, selective sweeps, and the functional gene survey provided a quantitative genetic framework for identifying differentially retained loci associated with salinity tolerance in wheat.
Collapse
Affiliation(s)
- Danting Shan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China
| | - Mohsin Ali
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China
| | - Mohammed Shahid
- International Center for Biosaline Agriculture (ICBA), Al Ruwayyah 2, Academic City, Dubai, UAE
| | - Anjuman Arif
- National Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Richard Trethowan
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006, Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KASUT), Thuwal, 23955-6900, Saudi Arabia
| | - Jesse Poland
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KASUT), Thuwal, 23955-6900, Saudi Arabia
- Kansas State University, Manhattan, KS, USA
| | | | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China.
| |
Collapse
|
29
|
Genievskaya Y, Pecchioni N, Laidò G, Anuarbek S, Rsaliyev A, Chudinov V, Zatybekov A, Turuspekov Y, Abugalieva S. Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151904. [PMID: 35893608 PMCID: PMC9329756 DOI: 10.3390/plants11151904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 05/05/2023]
Abstract
Leaf rust (LR) and stem rust (SR) are diseases increasingly impacting wheat production worldwide. Fungal pathogens producing rust diseases in wheat may cause yield losses of up to 50−60%. One of the most effective methods for preventing such losses is the development of resistant cultivars with high yield potential. This goal can be achieved through complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. The objective of this study was to identify sources of tetraploid wheat resistance to LR and SR races, both at the seedling growth stage in the greenhouse and at the adult plant stage in field experiments, under the conditions of the North Kazakhstan region. A panel consisting of 193 tetraploid wheat accessions was used in a genome-wide association study (GWAS) for the identification of quantitative trait loci (QTLs) associated with LR and SR resistance, using 16,425 polymorphic single-nucleotide polymorphism (SNP) markers in the seedling and adult stages of plant development. The investigated panel consisted of seven tetraploid subspecies (Triticum turgidum ssp. durum, ssp. turanicum, ssp. turgidum, ssp. polonicum, ssp. carthlicum, ssp. dicoccum, and ssp. dicoccoides). The GWAS, based on the phenotypic evaluation of the tetraploid collection’s reaction to the two rust species at the seedling (in the greenhouse) and adult (in the field) stages, revealed 38 QTLs (p < 0.001), comprising 17 for LR resistance and 21 for SR resistance. Ten QTLs were associated with the reaction to LR at the seedling stage, while six QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. Eleven QTLs were associated with SR response at the seedling stage, while nine QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. A comparison of these results with previous LR and SR studies indicated that 11 of the 38 QTLs are presumably novel loci. The QTLs identified in this work can potentially be used for marker-assisted selection of tetraploid and hexaploid wheat for the breeding of new LR- and SR-resistant cultivars.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Giovanni Laidò
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Shynar Anuarbek
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan;
| | - Vladimir Chudinov
- Breeding Department, Karabalyk Agricultural Experimental Station, Nauchnoe 110908, Kazakhstan;
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence: ; Tel.: +7-727-394-8006
| |
Collapse
|
30
|
Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S. Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 2022; 60:108006. [PMID: 35732256 DOI: 10.1016/j.biotechadv.2022.108006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Common wheat is a major source of nutrition around the globe, but unlike maize and rice hybrids, no breakthrough has been made to enhance wheat yield since Green Revolution. With the availability of reference genome sequence of wheat and advancement of allied genomics technologies, understanding of genes involved in grain yield components and disease resistance/susceptibility has opened new avenues for crop improvement. Wheat has a huge hexaploidy genome of approximately 17 GB with 85% repetition, and it is a daunting task to induce any mutation across three homeologues that can be helpful for the enhancement of agronomic traits. The CRISPR-Cas9 system provides a promising platform for genome editing in a site-specific manner. In wheat, CRISPR-Cas9 is being used in the improvement of yield, grain quality, biofortification, resistance against diseases, and tolerance against abiotic factors. The promising outcomes of the CRISPR-based multiplexing approach circumvent the constraint of targeting merely one gene at a time. Deployment of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 endonuclease (CRISPR-Cas9) and Cas9 variant systems such as cytidine base editing, adenosine base editing, and prime editing in wheat has been used to induce point mutations more precisely. Scientists have acquired major events such as induction of male sterility, fertility restoration, and alteration of seed dormancy through Cas9 in wheat that can facilitate breeding programs for elite variety development. Furthermore, a recent discovery in tissue culturing enables scientists to significantly enhance regeneration efficiency in wheat by transforming the GRF4-GIF1 cassette. Rapid generation advancement by speed breeding technology provides the opportunity for the generation advancement of the desired plants to segregate out unwanted transgenes and allows rapid integration of gene-edited wheat into the breeding pipeline. The combination of these novel technologies addresses some of the most important limiting factors for sustainable and climate-smart wheat that should lead to the second "Green Revolution" for global food security.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Komal Pervaiz
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguanccun South Street, Beijing 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Kanwarpal S Dhugga
- Corteva Agriscience, Johnston, IA, USA; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
31
|
Wang X, Hu Y, He W, Yu K, Zhang C, Li Y, Yang W, Sun J, Li X, Zheng F, Zhou S, Kong L, Ling H, Zhao S, Liu D, Zhang A. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation. PLANT COMMUNICATIONS 2022; 3:100345. [PMID: 35655430 PMCID: PMC9483109 DOI: 10.1016/j.xplc.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 01/17/2023]
Abstract
Triticum urartu is the progenitor of the A subgenome in tetraploid and hexaploid wheat. Uncovering the landscape of genetic variations in T. urartu will help us understand the evolutionary and polyploid characteristics of wheat. Here, we investigated the population genomics of T. urartu by genome-wide sequencing of 59 representative accessions collected around the world. A total of 42.2 million high-quality single-nucleotide polymorphisms and 3 million insertions and deletions were obtained by mapping reads to the reference genome. The ancient T. urartu population experienced a significant reduction in effective population size (Ne) from ∼3 000 000 to ∼140 000 and subsequently split into eastern Mediterranean coastal and Mesopotamian-Transcaucasian populations during the Younger Dryas period. A map of allelic drift paths displayed splits and mixtures between different geographic groups, and a strong genetic drift towards hexaploid wheat was also observed, indicating that the direct donor of the A subgenome originated from northwestern Syria. Genetic changes were revealed between the eastern Mediterranean coastal and Mesopotamian-Transcaucasian populations in genes orthologous to those regulating plant development and stress responses. A genome-wide association study identified two single-nucleotide polymorphisms in the exonic regions of the SEMI-DWARF 37 ortholog that corresponded to the different T. urartu ecotype groups. Our study provides novel insights into the origin and genetic legacy of the A subgenome in polyploid wheat and contributes a gene repertoire for genomics-enabled improvements in wheat breeding.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Weiming He
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Kang Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518120, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengya Zheng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shengjun Zhou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shancen Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China; BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518120, China.
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
32
|
Li J, Zhou K, Wang Z, Zhou J, Deng X. 基于隐性核雄性不育系的杂交小麦制种技术研究进展、问题与展望. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Burridge AJ, Winfield MO, Wilkinson PA, Przewieslik-Allen AM, Edwards KJ, Barker GLA. The Use and Limitations of Exome Capture to Detect Novel Variation in the Hexaploid Wheat Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:841855. [PMID: 35498663 PMCID: PMC9039655 DOI: 10.3389/fpls.2022.841855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.
Collapse
Affiliation(s)
| | - Mark O. Winfield
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul A. Wilkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Keith J. Edwards
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary L. A. Barker
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Rising Carbon Dioxide and Global Nutrition: Evidence and Action Needed. PLANTS 2022; 11:plants11071000. [PMID: 35406979 PMCID: PMC9003137 DOI: 10.3390/plants11071000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
While the role of CO2 as a greenhouse gas in the context of global warming is widely acknowledged, additional data from multiple sources is demonstrating that rising CO2 of and by itself will have a tremendous effect on plant biology. This effect is widely recognized for its role in stimulating photosynthesis and growth for multiple plant species, including crops. However, CO2 is also likely to alter plant chemistry in ways that will denigrate plant nutrition. That role is also of tremendous importance, not only from a human health viewpoint, but also from a global food–web perspective. Here, the goal is to review the current evidence, propose potential mechanistic explanations, provide an overview of critical unknowns and to elucidate a series of next steps that can address what is, overall, a critical but unappreciated aspect of anthropogenic climate change.
Collapse
|
35
|
Shorinola O, Simmonds J, Wingen LU, Uauy C. Trend, population structure, and trait mapping from 15 years of national varietal trials of UK winter wheat. G3 GENES|GENOMES|GENETICS 2022; 12:6460332. [PMID: 34897454 PMCID: PMC9210278 DOI: 10.1093/g3journal/jkab415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
There are now a rich variety of genomic and genotypic resources available to wheat researchers and breeders. However, the generation of high-quality and field-relevant phenotyping data which is required to capture the complexities of gene × environment interactions remains a major bottleneck. Historical datasets from national variety performance trials (NVPT) provide sufficient dimensions, in terms of numbers of years and locations, to examine phenotypic trends and study gene × environment interactions. Using NVPT for winter wheat varieties grown in the United Kingdom between 2002 and 2017, we examined temporal trends for eight traits related to yield, adaptation, and grain quality performance. We show a non-stationary linear trend for yield, grain protein content, Hagberg Falling Number (HFN), and days to ripening. Our data also show high environmental stability for yield, grain protein content, and specific weight in UK winter wheat varieties and high environmental sensitivity for HFN. We also show that UK varieties released within this period cluster into four main population groups. Using the historical NVPT data in a genome-wide association analysis, we uncovered a significant marker-trait association peak on wheat chromosome 6A spanning the NAM-A1 gene that have been previously associated with early senescence. Together, our results show the value of utilizing the data routinely collected during national variety evaluation process for examining breeding progress and the genetic architecture of important traits.
Collapse
Affiliation(s)
- Oluwaseyi Shorinola
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Bioscience Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI), Nairobi 00100, Kenya
| | - James Simmonds
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Luzie U Wingen
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cristobal Uauy
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
36
|
Goncharov NP, Kosolapov VM. Plant breeding is the food security basis in the Russian Federation. Vavilovskii Zhurnal Genet Selektsii 2022; 25:361-366. [PMID: 35088006 PMCID: PMC8765775 DOI: 10.18699/vj21.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This issue of the Vavilov Journal of Genetics and Breeding is composed of reports of top Russian breeders delivered at the scientific session of the RAS Department of Agricultural Sciences “Scientific support of the efficient development of crop breeding and seed production in the Russian Federation” held in Moscow on December 7, 2020.
Collapse
Affiliation(s)
- N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Kosolapov
- Federal Williams Research Center of Forage Production and Agroecology, Lobnya, Moscow region, Russia
| |
Collapse
|
37
|
Abstract
With the advancements in next-generation sequencing technologies, leading to millions of single nucleotide polymorphisms in all crop species including wheat, genome-wide association study (GWAS) has become a leading approach for trait dissection. In wheat, GWAS has been conducted for a plethora of traits and more and more studies are being conducted and reported in journals. While application of GWAS has become a routine in wheat using the standardized approaches, there has been a great leap forward using newer models and combination of GWAS with other sets of data. This chapter has reviewed all these latest advancements in GWAS in wheat by citing the most important studies and their outputs. Specially, we have focused on studies that conducted meta-GWAS, multilocus GWAS, haplotype-based GWAS, Environmental- and Eigen-GWAS, and/or GWAS combined with gene regulatory network and pathway analyses or epistatic interactions analyses; all these have taken the association mapping approach to new heights in wheat.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mex-Veracruz, Texcoco, CP, Mexico.
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mex-Veracruz, Texcoco, CP, Mexico.
| |
Collapse
|
38
|
Yao F, Guan F, Duan L, Long L, Tang H, Jiang Y, Li H, Jiang Q, Wang J, Qi P, Kang H, Li W, Ma J, Pu Z, Deng M, Wei Y, Zheng Y, Chen X, Chen G. Genome-Wide Association Analysis of Stable Stripe Rust Resistance Loci in a Chinese Wheat Landrace Panel Using the 660K SNP Array. FRONTIERS IN PLANT SCIENCE 2021; 12:783830. [PMID: 35003168 PMCID: PMC8728361 DOI: 10.3389/fpls.2021.783830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases affecting wheat production. The disease is best controlled by developing and growing resistant cultivars. Chinese wheat (Triticum aestivum) landraces have excellent resistance to stripe rust. The objectives of this study were to identify wheat landraces with stable resistance and map quantitative trait loci (QTL) for resistance to stripe rust from 271 Chinese wheat landraces using a genome-wide association study (GWAS) approach. The landraces were phenotyped for stripe rust responses at the seedling stage with two predominant Chinese races of P. striiformis f. sp. tritici in a greenhouse and the adult-plant stage in four field environments and genotyped using the 660K wheat single-nucleotide polymorphism (SNP) array. Thirteen landraces with stable resistance were identified, and 17 QTL, including eight associated to all-stage resistance and nine to adult-plant resistance, were mapped on chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 5A, 5B, 6D, and 7A. These QTL explained 6.06-16.46% of the phenotypic variation. Five of the QTL, QYrCL.sicau-3AL, QYrCL.sicau-3B.4, QYrCL.sicau-3B.5, QYrCL.sicau-5AL.1 and QYrCL.sicau-7AL, were likely new. Five Kompetitive allele specific PCR (KASP) markers for four of the QTL were converted from the significant SNP markers. The identified wheat landraces with stable resistance to stripe rust, significant QTL, and KASP markers should be useful for breeding wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xianming Chen
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Jin Y, Shi F, Liu W, Fu X, Gu T, Han G, Shi Z, Sheng Y, Xu H, Li L, An D. Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. PLANT DISEASE 2021; 105:3900-3908. [PMID: 34129353 DOI: 10.1094/pdis-03-21-0532-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.
Collapse
Affiliation(s)
- Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weihua Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Sheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Hanif U, Alipour H, Gul A, Jing L, Darvishzadeh R, Amir R, Munir F, Ilyas MK, Ghafoor A, Siddiqui SU, St Amand P, Bernado A, Bai G, Sonder K, Rasheed A, He Z, Li H. Characterization of the genetic basis of local adaptation of wheat landraces from Iran and Pakistan using genome-wide association study. THE PLANT GENOME 2021; 14:e20096. [PMID: 34275212 DOI: 10.1002/tpg2.20096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/31/2021] [Indexed: 05/21/2023]
Abstract
Characterization of genomic regions underlying adaptation of landraces can reveal a quantitative genetics framework for local wheat (Triticum aestivum L.) adaptability. A collection of 512 wheat landraces from the eastern edge of the Fertile Crescent in Iran and Pakistan were genotyped using genome-wide single nucleotide polymorphism markers generated by genotyping-by-sequencing. The minor allele frequency (MAF) and the heterozygosity (H) of Pakistani wheat landraces (MAF = 0.19, H = 0.008) were slightly higher than the Iranian wheat landraces (MAF = 0.17, H = 0.005), indicating that Pakistani landraces were slightly more genetically diverse. Population structure analysis clearly separated the Pakistani landraces from Iranian landraces, which indicates two separate adaptability trajectories. The large-scale agro-climatic data of seven variables were quite dissimilar between Iran and Pakistan as revealed by the correlation coefficients. Genome-wide association study identified 91 and 58 loci using agroclimatic data, which likely underpin local adaptability of the wheat landraces from Iran and Pakistan, respectively. Selective sweep analysis identified significant hits on chromosomes 4A, 4B, 6B, 7B, 2D, and 6D, which were colocalized with the loci associated with local adaptability and with some known genes related to flowering time and grain size. This study provides insight into the genetic diversity with emphasis on the genetic architecture of loci involved in adaptation to local environments, which has breeding implications.
Collapse
Affiliation(s)
- Uzma Hanif
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Hadi Alipour
- Dep. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia Univ., Urmia, Iran
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Li Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| | - Reza Darvishzadeh
- Dep. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia Univ., Urmia, Iran
| | - Rabia Amir
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Kashif Ilyas
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Abdul Ghafoor
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Sadar Uddin Siddiqui
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Paul St Amand
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernado
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Kai Sonder
- International Wheat and Maize Improvement Center (CIMMYT), Texcoco, Mexico
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
- Dep. of Plant Sciences, Quaid-i-Azam Univ., Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| |
Collapse
|
41
|
Zhou J, Singh RP, Ren Y, Bai B, Li Z, Yuan C, Li S, Huerta-Espino J, Liu D, Lan C. Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety 'Neimai 836'. PLANT DISEASE 2021; 105:3705-3714. [PMID: 33779256 DOI: 10.1094/pdis-12-20-2654-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
Collapse
Affiliation(s)
- Jingwei Zhou
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, P.R. China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuanxincun, Lanzhou 730070, Gansu Province, P.R. China
| | - Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Shunda Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), 56230 Chapingo, Edo. de Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding and China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Xining 810008, P.R. China
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| |
Collapse
|
42
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
43
|
Alomari DZ, Alqudah AM, Pillen K, von Wirén N, Röder MS. Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6305-6318. [PMID: 34145452 PMCID: PMC8483787 DOI: 10.1093/jxb/erab297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/16/2021] [Indexed: 05/21/2023]
Abstract
A multilocus genome-wide association study of a panel of 369 diverse wheat (Triticum aestivum) genotypes was carried out in order to examine the genetic basis of variations in nutrient mineral concentrations in the grains. The panel was grown under field conditions for three consecutive years and the concentrations of Ca, K, Mg, Mn, P, and S were determined. Wide ranges of natural variation were detected among the genotypes. Strong positive correlations were found among the minerals except for K, which showed negative correlation trends with the other minerals. Genetic association analysis detected 86 significant marker-trait associations (MTAs) underlying the natural variations in mineral concentrations in grains. The major MTA was detected on the long arm of chromosome 5A and showed a pleiotropic effect on Ca, K, Mg, Mn, and S. Further significant MTAs were distributed among the whole genome except for chromosomes 3D and 6D. We identified putative candidate genes that are potentially involved in metal uptake, transport, and assimilation, including TraesCS5A02G542600 on chromosome 5A, which was annotated as a Major Facilitator Superfamily transporter and acted on all the minerals except K. TraesCS5A02G542600 was highly expressed in seed coat, and to a lesser extent in the peduncle, awns, and lemma. Our results provide important insights into the genetic basis of enhancement of nutrient mineral concentrations that can help to inform future breeding studies in order to improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z Alomari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
- Correspondence: or
| | - Ahmad M Alqudah
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
44
|
Chen J, Xue M, Liu H, Fernie AR, Chen W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. PLANT COMMUNICATIONS 2021; 2:100216. [PMID: 34327326 PMCID: PMC8299079 DOI: 10.1016/j.xplc.2021.100216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum L.) is a leading cereal crop, but has lagged behind with respect to the interpretation of the molecular mechanisms of phenotypes compared with other major cereal crops such as rice and maize. The recently available genome sequence of wheat affords the pre-requisite information for efficiently exploiting the potential molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets. Meanwhile, the successful application of metabolomics as an emergent large-scale profiling methodology in several species has demonstrated this approach to be accessible for reaching the above goals. One such productive avenue is combining metabolomics approaches with genetic designs. However, this trial is not as widespread as that for sequencing technologies, especially when the acquisition, understanding, and application of metabolic approaches in wheat populations remain more difficult and even arguably underutilized. In this review, we briefly introduce the techniques used in the acquisition of metabolomics data and their utility in large-scale identification of functional candidate genes. Considerable progress has been made in delivering improved varieties, suggesting that the inclusion of information concerning these metabolites and genes and metabolic pathways enables a more explicit understanding of phenotypic traits and, as such, this procedure could serve as an -omics-informed roadmap for executing similar improvement strategies in wheat and other species.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyun Xue
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Utilization of a Wheat50K SNP Microarray-Derived High-Density Genetic Map for QTL Mapping of Plant Height and Grain Traits in Wheat. PLANTS 2021; 10:plants10061167. [PMID: 34201388 PMCID: PMC8229693 DOI: 10.3390/plants10061167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Plant height is significantly correlated with grain traits, which is a component of wheat yield. The purpose of this study is to investigate the main quantitative trait loci (QTLs) that control plant height and grain-related traits in multiple environments. In this study, we constructed a high-density genetic linkage map using the Wheat50K SNP Array to map QTLs for these traits in 198 recombinant inbred lines (RILs). The two ends of the chromosome were identified as recombination-rich areas in all chromosomes except chromosome 1B. Both the genetic map and the physical map showed a significant correlation, with a correlation coefficient between 0.63 and 0.99. However, there was almost no recombination between 1RS and 1BS. In terms of plant height, 1RS contributed to the reduction of plant height by 3.43 cm. In terms of grain length, 1RS contributed to the elongation of grain by 0.11 mm. A total of 43 QTLs were identified, including eight QTLs for plant height (PH), 11 QTLs for thousand grain weight (TGW), 15 QTLs for grain length (GL), and nine QTLs for grain width (GW), which explained 1.36–33.08% of the phenotypic variation. Seven were environment-stable QTLs, including two loci (Qph.nwafu-4B and Qph.nwafu-4D) that determined plant height. The explanation rates of phenotypic variation were 7.39–12.26% and 20.11–27.08%, respectively. One QTL, Qtgw.nwafu-4B, which influenced TGW, showed an explanation rate of 3.43–6.85% for phenotypic variation. Two co-segregating KASP markers were developed, and the physical locations corresponding to KASP_AX-109316968 and KASP_AX-109519968 were 25.888344 MB and 25.847691 MB, respectively. Qph.nwafu-4B, controlling plant height, and Qtgw.nwafu-4B, controlling TGW, had an obvious linkage relationship, with a distance of 7–8 cM. Breeding is based on molecular markers that control plant height and thousand-grain weight by selecting strains with low plant height and large grain weight. Another QTL, Qgw.nwafu-4D, which determined grain width, had an explanation rate of 3.43–6.85%. Three loci that affected grain length were Qgl.nwafu-5A, Qgl.nwafu-5D.2, and Qgl.nwafu-6B, illustrating the explanation rates of phenotypic variation as 6.72–9.59%, 5.62–7.75%, and 6.68–10.73%, respectively. Two QTL clusters were identified on chromosomes 4B and 4D.
Collapse
|
46
|
Pototskaya IV, Shamanin VP, Shepelev SS, Bhatta M, Morgounov AI. Analysis of the Genome D Polymorphism of Synthetic Wheat Obtained on the Basis of Ae. tauschii L. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Xiong H, Li Y, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Genetic Mapping by Integration of 55K SNP Array and KASP Markers Reveals Candidate Genes for Important Agronomic Traits in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:628478. [PMID: 33708233 PMCID: PMC7942297 DOI: 10.3389/fpls.2021.628478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Agronomic traits such as heading date (HD), plant height (PH), thousand grain weight (TGW), and spike length (SL) are important factors affecting wheat yield. In this study, we constructed a high-density genetic linkage map using the Wheat55K SNP Array to map quantitative trait loci (QTLs) for these traits in 207 recombinant inbred lines (RILs). A total of 37 QTLs were identified, including 9 QTLs for HD, 7 QTLs for PH, 12 QTLs for TGW, and 9 QTLs for SL, which explained 3.0-48.8% of the phenotypic variation. Kompetitive Allele Specific PCR (KASP) markers were developed based on sequencing data and used for validation of the stably detected QTLs on chromosomes 3A, 4B and 6A using 400 RILs. A QTL cluster on chromosome 4B for PH and TGW was delimited to a 0.8 Mb physical interval explaining 12.2-22.8% of the phenotypic variation. Gene annotations and analyses of SNP effects suggested that a gene encoding protein Photosynthesis Affected Mutant 68, which is essential for photosystem II assembly, is a candidate gene affecting PH and TGW. In addition, the QTL for HD on chromosome 3A was narrowed down to a 2.5 Mb interval, and a gene encoding an R3H domain-containing protein was speculated to be the causal gene influencing HD. The linked KASP markers developed in this study will be useful for marker-assisted selection in wheat breeding, and the candidate genes provide new insight into genetic study for those traits in wheat.
Collapse
|
48
|
Zhang W, Zhao J, He J, Kang L, Wang X, Zhang F, Hao C, Ma X, Chen D. Functional gene assessment of bread wheat: breeding implications in Ningxia Province. BMC PLANT BIOLOGY 2021; 21:103. [PMID: 33602134 PMCID: PMC7893757 DOI: 10.1186/s12870-021-02870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The overall genetic distribution and divergence of cloned genes among bread wheat varieties that have occurred during the breeding process over the past few decades in Ningxia Province, China, are poorly understood. Here, we report the genetic diversities of 44 important genes related to grain yield, quality, adaptation and resistance in 121 Ningxia and 86 introduced wheat cultivars and advanced lines. RESULTS The population structure indicated characteristics of genetic components of Ningxia wheat, including landraces of particular genetic resources, introduced varieties with rich genetic diversities and modern cultivars in different periods. Analysis of allele frequencies showed that the dwarfing alleles Rht-B1b at Rht-B1 and Rht-D1b at Rht-D1, 1BL/1RS translocation, Hap-1 at GW2-6B and Hap-H at Sus2-2B are very frequently present in modern Ningxia cultivars and in introduced varieties from other regions but absent in landraces. This indicates that the introduced wheat germplasm with numerous beneficial genes is vital for broadening the genetic diversity of Ningxia wheat varieties. Large population differentiation between modern cultivars and landraces has occurred in adaptation genes. Founder parents carry excellent allele combinations of important genes, with a higher number of favorable alleles than modern cultivars. Gene flow analysis showed that six founder parents have greatly contributed to breeding improvement in Ningxia Province, particularly Zhou 8425B, for yield-related genes. CONCLUSIONS Varieties introduced from other regions with rich genetic diversity and landraces with well-adapted genetic resources have been applied to improve modern cultivars. Founder parents, particularly Zhou 8425B, for yield-related genes have contributed greatly to wheat breeding improvement in Ningxia Province. These findings will greatly benefit bread wheat breeding in Ningxia Province as well as other areas with similar ecological environments.
Collapse
Affiliation(s)
- Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Jinshang He
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Ling Kang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Xiaoliang Wang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Fuguo Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 Ningxia China
| |
Collapse
|
49
|
Colasuonno P, Marcotuli I, Gadaleta A, Soriano JM. From Genetic Maps to QTL Cloning: An Overview for Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:315. [PMID: 33562160 PMCID: PMC7914919 DOI: 10.3390/plants10020315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies. This allows for high-density genetic maps to be developed for localizing candidate loci within a few Kb in a complex genome, such as durum wheat. Here, we review the identified QTL, fine mapping, and cloning of QTL or candidate genes involved in the main traits regarding the quality and biotic and abiotic stresses of durum wheat. The current knowledge on the used molecular markers, sequence data, and how they changed the development of genetic maps and the characterization of QTL is summarized. A deeper understanding of the trait architecture useful in accelerating durum wheat breeding programs is envisioned.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| |
Collapse
|
50
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|