1
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Mohammed S, Qadri SSYH, Molangiri A, Basak S, Rajkumar H. Gestational low dietary protein induces intrauterine inflammation and alters the programming of adiposity & insulin sensitivity in the adult offspring. J Nutr Biochem 2023; 116:109330. [PMID: 36967094 DOI: 10.1016/j.jnutbio.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
Abstract
Malnutrition associated with low dietary protein can induce gestational inflammation and sets a long-lasting metabolic impact on the offspring even after replenishment. The work investigated whether a low-protein diet (LPD) during pregnancy and lactation induces intrauterine inflammation and predisposes offspring to adiposity and insulin resistance in their adult life. Female Golden Syrian hamsters were fed LPD (10.0% energy from protein) or a control diet (CD, 20.0 % energy from protein) from preconception until lactation. All pups were switched to CD after lactation and continued until the end. Maternal LPD increased intrauterine inflammation by enhancing neutrophil infiltration, amniotic hsCRP, oxidative stress, and mRNA expression of NFκβ, IL8, COX2, and TGFβ in the chorioamniotic membrane (P<.05). The prepregnancy body weight, placental, and fetal weights, serum AST and ALT were decreased, while blood platelets, lymphocytes, insulin, and HDL were significantly increased in LPD-fed dams (P<.05). A postnatal switch to an adequate protein could not prevent hyperlipidemia in the 6-months LPD/CD offspring. The lipid profile and liver functions were restored over 10 months of protein feeding but failed to normalize fasting glucose and body fat accumulation compared to CD/CD. LPD/CD showed elevated GLUT4 expression & activated pIRS1 in the skeletal muscle and increased expression of IL6, IL1β, and p65-NFκB proteins in the liver (P<.05). In conclusion, present data suggest that maternal protein restriction may induce intrauterine inflammation and affect liver inflammation in the adult offspring by an influx of fats from adipose that may alter lipid metabolism and reduce insulin sensitivity in skeletal muscle.
Collapse
|
3
|
Blasetti A, Quarta A, Guarino M, Cicolini I, Iannucci D, Giannini C, Chiarelli F. Role of Prenatal Nutrition in the Development of Insulin Resistance in Children. Nutrients 2022; 15:nu15010087. [PMID: 36615744 PMCID: PMC9824240 DOI: 10.3390/nu15010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Nutrition during the prenatal period is crucial for the development of insulin resistance (IR) and its consequences in children. The relationship between intrauterine environment, fetal nutrition and the onset of IR, type 2 diabetes (T2D), obesity and metabolic syndrome later in life has been confirmed in many studies. The intake of carbohydrates, protein, fat and micronutrients during pregnancy seems to damage fetal metabolism programming; indeed, epigenetic mechanisms change glucose-insulin metabolism. Intrauterine growth restriction (IUGR) induced by unbalanced nutrient intake during prenatal life cause fetal adipose tissue and pancreatic beta-cell dysfunction. In this review we have summarized and discussed the role of maternal nutrition in preventing insulin resistance in youth.
Collapse
|
4
|
Vipin VA, Blesson CS, Yallampalli C. Maternal low protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022; 13:185-202. [PMID: 35432755 PMCID: PMC8984567 DOI: 10.4239/wjd.v13.i3.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal nutrition is found to be the key factor that determines fetal health in utero and metabolic health during adulthood. Metabolic diseases have been primarily attributed to impaired maternal nutrition during pregnancy, and impaired nutrition has been an immense issue across the globe. In recent years, type 2 diabetes (T2D) has reached epidemic proportion and is a severe public health problem in many countries. Although plenty of research has already been conducted to tackle T2D which is associated with obesity, little is known regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent studies have focused on the effects of epigenetic variation on the contribution of in utero origins of lean T2D, although other mechanisms might also contribute to the pathology. Observational studies in humans and experiments in animals strongly suggest an association between maternal low protein diet and lean T2D phenotype. In addition, clear sex-specific disease prevalence was observed in different studies. Consequently, more research is essential for the understanding of the etiology and pathophysiology of lean T2D, which might help to develop better disease prevention and treatment strategies. This review examines the role of protein insufficiency in the maternal diet as the central driver of the developmental programming of lean T2D.
Collapse
Affiliation(s)
- Vidyadharan Alukkal Vipin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Chellakkan Selvanesan Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, United States
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
5
|
Mechanisms Underlying the Expansion and Functional Maturation of β-Cells in Newborns: Impact of the Nutritional Environment. Int J Mol Sci 2022; 23:ijms23042096. [PMID: 35216239 PMCID: PMC8877060 DOI: 10.3390/ijms23042096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
The functional maturation of insulin-secreting β-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional β-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal β-cell development have already been identified. However, single-cell transcriptomic and proteomic analyses continue to reveal new players contributing to the acquisition of β-cell identity. In this review, we provide an updated picture of the mechanisms governing postnatal β-cell mass expansion and the transition of insulin-secreting cells from an immature to a mature state. We then highlight the contribution of the environment to β-cell maturation and discuss the adverse impact of an in utero and neonatal environment characterized by calorie and fat overload or by protein deficiency and undernutrition. Inappropriate nutrition early in life constitutes a risk factor for developing diabetes in adulthood and can affect the β-cells of the offspring over two generations. A better understanding of these events occurring in the neonatal period will help developing better strategies to produce functional β-cells and to design novel therapeutic approaches for the prevention and treatment of diabetes.
Collapse
|
6
|
Abstract
Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Jin YY, He MZ, Wu ZY, Huang K, Shen Y, Liang L, Mao JH. Dysregulation of calcium channels decreases parasecretion in pancreatic β-cells in rats born small for gestational age. Growth Factors 2016; 34:159-165. [PMID: 27681688 DOI: 10.3109/08977194.2016.1145677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the role of intrauterine malnourishment in the development and function of pancreatic islet β-cells. METHODS Whole-cell patch clamping was used to record voltage-gated calcium channel (VGCC)-mediated currents. Insulin secretion was detected by measuring capacitance using a sequence of sine wave stimuli. VGCC currents and insulin secretion were measured in the small for gestational age (SGA) group treated with human recombinant growth hormone (hGH). RESULTS The membrane capacitance in the SGA group (6.4 ± 0.9 fF/Pf) was significantly reduced. Calcium current density and peak current density in the SGA group were also markedly decreased, whereas other measurements of calcium channels were unaltered. Treatment with hGH significantly rescued the membrane capacitance, whereas calcium channels were not affected. CONCLUSION Our data suggest that decreased β-cell secretion is caused by a decreased expression of calcium channels and reduced calcium currents. hGH restores β-cell secretion in SGA animals, possibly independently of VGCC.
Collapse
Affiliation(s)
- Yan-Yan Jin
- a Children's Hospital of Zhejiang University School of Medicine , Hangzhou , China
| | - Meng-Zao He
- b Department of Pediatrics , Hangzhou First People's Hospital, Nanjing Medical University , Hangzhou , China
| | - Zhen-Yong Wu
- c Department of Neurobiology , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Ke Huang
- a Children's Hospital of Zhejiang University School of Medicine , Hangzhou , China
| | - Ying Shen
- c Department of Neurobiology , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Li Liang
- d The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Jian-Hua Mao
- a Children's Hospital of Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
8
|
Su Y, Jiang X, Li Y, Li F, Cheng Y, Peng Y, Song D, Hong J, Ning G, Cao Y, Wang W. Maternal Low Protein Isocaloric Diet Suppresses Pancreatic β-Cell Proliferation in Mouse Offspring via miR-15b. Endocrinology 2016; 157:4782-4793. [PMID: 27754789 DOI: 10.1210/en.2016-1167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism underlying the increased susceptibility of type 2 diabetes in offspring of maternal malnutrition is poorly determined. Here we tested the hypothesis that functional microRNAs (miRNAs) mediated the maternal low-protein (LP) isocaloric diet induced pancreatic β-cell impairment. We performed miRNA profiling in the islets from offspring of LP and control diet mothers to explore the potential functional miRNAs responsible for β-cell dysfunction. We found that LP offspring exhibited impaired glucose tolerance due to decreased β-cell mass and insulin secretion. Reduction in the β-cell proliferation rate and cell size contributed to the decreased β-cell mass. MiR-15b was up-regulated in the islets of LP offspring. The up-regulated miR-15b inhibited pancreatic β-cell proliferation via targeting cyclin D1 and cyclin D2. Inhibition of miR-15b in LP islet cells restored β-cell proliferation and insulin secretion. Our findings demonstrate that miR-15b is critical for the regulation of pancreatic β-cells in offspring of maternal protein restriction, which may provide a further insight for β-cell exhaustion originated from intrauterine growth restriction.
Collapse
Affiliation(s)
- Yutong Su
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiuli Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yulong Cheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Peng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Song
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Hong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Alterations of protein expression in serum of infants with intrauterine growth restriction and different gestational ages. J Proteomics 2015; 119:169-82. [DOI: 10.1016/j.jprot.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/16/2015] [Indexed: 01/19/2023]
|
10
|
Abstract
During the last decade, a major breakthrough in the field of proteomics has been achieved. This review describes available techniques for proteomic analyses, both gel and non-gel based, particularly concentrating on relative quantification techniques. The principle of the different techniques is discussed, highlighting the advantages and drawbacks of recently available visualization methods in gel-based assays. In addition, recent developments for quantitative analysis in non-gel-based approaches are summarized. This review focuses on applications in Type 1 diabetes. These mainly include proteomic studies on pancreatic islets in animal models and in the human situation. Also discussed are mass spectrometry-based studies on T-cells, and studies on the development of diagnostic markers for diabetic nephropathology by capillary electrophoresis coupled to mass spectrometry.
Collapse
Affiliation(s)
- Wannes D'Hertog
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Herestraat 49, Catholic University of Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
11
|
Taurine Supplementation Restores Insulin Secretion and Reduces ER Stress Markers in Protein-Malnourished Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:129-39. [DOI: 10.1007/978-1-4614-6093-0_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Liu J, Yao Y, Yu B, Mao X, Huang Z, Chen D. Effect of folic acid supplementation on hepatic antioxidant function and mitochondrial-related gene expression in weanling intrauterine growth retarded piglets. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A gestational high protein diet affects the abundance of muscle transcripts related to cell cycle regulation throughout development in porcine progeny. PLoS One 2012; 7:e34519. [PMID: 22496824 PMCID: PMC3322122 DOI: 10.1371/journal.pone.0034519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP) or 12% (adequate protein--AP) throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi) was collected at 94 days post conception (dpc), and 1, 28, and 188 days post natum (dpn) for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the transcriptome. The transcriptome modulations are interpreted as the molecular equivalent of developmental plasticity of the offspring that necessitates adaptation and maintenance of the organismal phenotype.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C. Metges
- Research Unit Nutritional Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
14
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A low protein diet during pregnancy provokes a lasting shift of hepatic expression of genes related to cell cycle throughout ontogenesis in a porcine model. BMC Genomics 2012; 13:93. [PMID: 22424151 PMCID: PMC3342123 DOI: 10.1186/1471-2164-13-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/16/2012] [Indexed: 12/23/2022] Open
Abstract
Background In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. Adverse environmental conditions during fetal development provoke an intrauterine adaptive response termed 'fetal programming', which may lead to both persistently biased responsiveness to extrinsic factors and permanent consequences for the organismal phenotype. This leads to the hypothesis that the offspring's transcriptome exhibits short-term and long-term changes, depending on the maternal diet. In order to contribute to a comprehensive inventory of genes and functional networks that are targets of nutritional programming initiated during fetal life, we applied whole-genome microarrays for expression profiling in a longitudinal experimental design covering prenatal, perinatal, juvenile, and adult ontogenetic stages in a porcine model. Pregnant sows were fed either a gestational low protein diet (LP, 6% CP) or an adequate protein diet (AP, 12% CP). All offspring was nursed by foster sows receiving standard diets. After weaning, all offspring was fed standard diets ad libitum. Results Analyses of the hepatic gene expression of the offspring at prenatal (94 dies post conceptionem, dpc) and postnatal stages (1, 28, 188 dies post natum, dpn) included comparisons between dietary groups within stages as well as comparisons between ontogenetic stages within diets to separate diet-specific transcriptional changes and maturation processes. We observed differential expression of genes related to lipid metabolism (e.g. Fatty acid metabolism, Biosynthesis of steroids, Synthesis and degradation of ketone bodies, FA elongation in mitochondria, Bile acid synthesis) and cell cycle regulation (e.g. Mitotic roles of PLK, G1/S checkpoint regulation, G2/M DNA damage checkpoint regulation). Notably, at stage 1 dpn no regulation of a distinct pathway was found in LP offspring. Conclusions The transcriptomic modulations point to persistent functional demand on the liver towards cell proliferation in the LP group but not in the AP group at identical nutritional conditions during postnatal life due to divergent 'programming' of the genome. Together with the observation that the offspring of both groups did not differ in body weight but in body composition and fat content, the data indicate that the activity of various genes led to diverse partitioning of nutrients among peripheral and visceral organs and tissues.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
15
|
Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 2012; 71:276-83. [PMID: 22390978 DOI: 10.1017/s0029665112000055] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The huge health burden accompanying obesity is not only attributable to inadequate dietary and sedentary lifestyle habits, since a predisposing genetic make-up and other putative determinants concerning easier weight gain and fat deposition have been reported. Thus, several investigations aiming to understand energy metabolism and body composition maintenance have been performed considering the participation of perinatal nutritional programming and epigenetic processes as well as inflammation phenomena. The Developmental Origins of Health and Disease hypothesis and inheritance-oriented investigations concerning gene-nutrient interactions on energy homoeostasis and metabolic functions have suggested that inflammation could be not only a comorbidity of obesity but also a cause. There are several examples about the role of nutritional interventions in pregnancy and lactation, such as energetic deprivation, protein restriction and excess fat, which determine a cluster of disorders affecting energy efficiency in the offspring as well as different metabolic pathways, which are mediated by epigenetics encompassing the chromatin information encrypted by DNA methylation patterns, histone covalent modifications and non-coding RNA or microRNA. Epigenetic mechanisms may be boosted or impaired by dietary and environmental factors in the mother, intergenerationally or transiently transmitted, and could be involved in the obesity and inflammation susceptibility in the offspring. The aims currently pursued are the early identification of epigenetic biomarkers concerned in individual's disease susceptibility and the description of protocols for tailored dietary treatments/advice to counterbalance adverse epigenomic events. These approaches will allow diagnosis and prognosis implementation and facilitate therapeutic strategies in a personalised 'epigenomically modelled' manner to combat obesity and inflammation.
Collapse
|
16
|
Reusens B, Theys N, Remacle C. Alteration of mitochondrial function in adult rat offspring of malnourished dams. World J Diabetes 2011; 2:149-57. [PMID: 21954419 PMCID: PMC3180527 DOI: 10.4239/wjd.v2.i9.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life.
Collapse
Affiliation(s)
- Brigitte Reusens
- Brigitte Reusens, Nicolas Theys, Claude Remacle, Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
17
|
Developmental origins of health and disease: experimental and human evidence of fetal programming for metabolic syndrome. J Hum Hypertens 2011; 26:405-19. [PMID: 21697895 DOI: 10.1038/jhh.2011.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The concept of developmental origins of health and disease has been defined as the process through which the environment encountered before birth, or in infancy, shapes the long-term control of tissue physiology and homeostasis. The evidence for programming derives from a large number of experimental and epidemiological observations. Several nutritional interventions during diverse phases of pregnancy and lactation in rodents are associated with fetal and neonatal programming for metabolic syndrome. In this paper, recent experimental models and human epidemiological studies providing evidence for the fetal programming associated with the development of metabolic syndrome and related diseases are revisited.
Collapse
|
18
|
Taurine supplementation restored the changes in pancreatic islet mitochondria in the fetal protein-malnourished rat. Br J Nutr 2011; 106:1198-206. [DOI: 10.1017/s0007114511001632] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intra-uterine growth retardation has been linked to the development of type 2 diabetes in later life. Mitochondrial changes have been suggested as a link between fetal malnutrition and adult insulin resistance. Taurine has been implicated in this process. We investigated whether protein malnutrition in early life alters mitochondria of the pancreatic islets in adulthood, and whether taurine supplementation restores these changes. Male offspring of rats fed a control diet, a low-protein diet or a low-protein diet supplemented with taurine during pregnancy and lactation were weaned onto the control diet. In each group, at 20 weeks of age, intravenous glucose tolerance tests, euglycaemic–hyperinsulinaemic clamp studies, morphometric analysis of the pancreatic islets and ultra-structural analysis of the mitochondria of the β-cells were performed. The expressions of cytochrome c oxidase (COX) I and mitochondrial respiratory chain complex II were also measured. Fetal protein-malnourished rats showed decreased pancreatic islet mass and reduced insulin-secretory responses to a glucose load. These rats also showed reduced mitochondrial DNA-encoded COX I gene expression in the islets. Electron microscopic examination showed abnormal mitochondrial shapes in the β-cells of fetal protein-malnourished rats. Taurine supplementation to the low-protein diet restored all these changes. Our findings indicate that a maternal protein-restriction diet causes long-lasting mitochondrial changes that may contribute to the development of type 2 diabetes later in life. The lack of taurine may be a key causative factor for these dysfunctional mitochondrial changes.
Collapse
|
19
|
Abstract
The complementary disciplines of genomics and proteomics offer better insights into the molecular mechanisms of diseases. While genomics hunts for defining our static genetic substrate, proteomics explores the structure and function of proteins expressed by a cell or tissue type under specified conditions. In the past decade, proteomics has been revolutionized by the application of techniques such as two-dimensional gel electrophoresis (2DGE), mass spectrometry (MS), and protein arrays. These techniques have tremendous potential for biomarker development, target validation, diagnosis, prognosis, and optimization of treatment in medical care, especially in the field of islet and diabetes research. This chapter will highlight the contributions of proteomic technologies toward the dissection of complex network of signaling molecules regulating islet function, the identification of potential biomarkers, and the understanding of mechanisms involved in the pathogenesis of diabetes.
Collapse
|
20
|
Abstract
Islet protein profiling is defined as generation of extended protein expression data sets from islets or islet cells. Islets from rodent control and animal models of type 1 and type 2 diabetes mellitus and healthy humans and insulin- and glucagon-producing cell lines have been used. Protein profiling entails separation, differential expression determination, identification and expression analysis. Protein/peptide separation is either gel-based or by chromatography. Differential expression is based on comparison of visualized spots/proteins between gels or by sample labelling in gel-free systems. Identification of proteins is made by tryptic fragmentation of proteins, fragment mass determination and mass comparison with protein databases. Analysis of expression data sets interprets the complex protein changes into cellular mechanisms to generate hypotheses. The importance of such protein expression sets to elucidate islet cellular events is evidenced by the observation that only about 50% of the differentially expressed proteins and transcripts showed concordance when measured in parallel. Using protein profiling, different areas related to islet dysfunction in type 1 and type 2 diabetes mellitus have been addressed, including dysfunction induced by elevated levels of glucose and fatty acids and cytokines. Because islets from individuals with type 1 or type 2 diabetes mellitus have not yet been protein profiled, islets from rat (BB-DP) and mouse (NOD, ob/ob, MKR) models of the disease have been used, and mechanisms responsible for islet dysfunction delineated offering avenues of intervention.
Collapse
Affiliation(s)
- P Bergsten
- Department of Medical Cell Biology, Uppsala University, Sweden.
| |
Collapse
|
21
|
Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1516-25. [PMID: 19759337 DOI: 10.1152/ajpregu.00280.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction may be a long-term consequence of a poor nutritional environment during early life. Our aim was to investigate whether a maternal low-protein (LP) diet may program mitochondrial dysfunction in islets of adult progeny before glucose intolerance ensues. To address this, pregnant Wistar rats were fed isocaloric diets containing either 20% protein (control) or 8% protein (LP diet) throughout gestation. From birth, offspring received the control diet. The mitochondrial function was analyzed in islets of 3-mo-old offspring. Related to their basal insulin release, cultured islets from both male and female LP offspring presented a lower response to glucose challenge and a blunted ATP production compared with control offspring. The expression of malate dehydrogenase as well as the subunit 6 of the ATP synthase encoded by mitochondrial genome (mtDNA) was lower in these islets, reducing the capacity of ATP production through the Krebs cycle and oxidative phosphorylation. However, mtDNA content was unchanged in LP islets compared with control. Several consequences of protein restriction during fetal life were more marked in male offspring. Only LP males showed an increased reactive oxygen species production associated with a higher expression of mitochondrial subunits of the electron transport chain NADH-ubiquinone oxireductase subunit 4L, an overexpression of peroxisome proliferator-activated receptor-gamma and uncoupling protein-2, and a strongly reduced beta-cell mass. In conclusion, mitochondrial function is clearly altered in islets from LP adult offspring in a sex-specific manner. That may provide a cellular explanation for the earlier development of glucose intolerance in male than in female offspring of dams fed an LP diet.
Collapse
Affiliation(s)
- Nicolas Theys
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
22
|
Theys N, Clippe A, Bouckenooghe T, Reusens B, Remacle C. Early low protein diet aggravates unbalance between antioxidant enzymes leading to islet dysfunction. PLoS One 2009; 4:e6110. [PMID: 19568427 PMCID: PMC2699474 DOI: 10.1371/journal.pone.0006110] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 05/25/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Islets from adult rat possess weak antioxidant defense leading to unbalance between superoxide dismutase (SOD) and hydrogen peroxide-inactivating enzymatic activities, catalase (CAT) and glutathione peroxidase (GPX) rending them susceptible to oxidative stress. We have shown that this vulnerability is influenced by maternal diet during gestation and lactation. METHODOLOGY/PRINCIPAL FINDINGS The present study investigated if low antioxidant activity in islets is already observed at birth and if maternal protein restriction influences the development of islet antioxidant defenses. Rats were fed a control diet (C group) or a low protein diet during gestation (LP) or until weaning (LPT), after which offspring received the control diet. We found that antioxidant enzymatic activities varied with age. At birth and after weaning, normal islets possessed an efficient GPX activity. However, the antioxidant capacity decreased thereafter increasing the potential vulnerability to oxidative stress. Maternal protein malnutrition changed the antioxidant enzymatic activities in islets of the progeny. At 3 months, SOD activity was increased in LP and LPT islets with no concomitant activation of CAT and GPX. This unbalance could lead to higher hydrogen peroxide production, which may concur to oxidative stress causing defective insulin gene expression due to modification of critical factors that modulate the insulin promoter. We found indeed that insulin mRNA level was reduced in both groups of malnourished offspring compared to controls. Analyzing the expression of such critical factors, we found that c-Myc expression was strongly increased in islets from both protein-restricted groups compared to controls. CONCLUSION AND SIGNIFICANCE Modification in antioxidant activity by maternal low protein diet could predispose to pancreatic islet dysfunction later in life and provide new insights to define a molecular mechanism responsible for intrauterine programming of endocrine pancreas.
Collapse
Affiliation(s)
- Nicolas Theys
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - André Clippe
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thomas Bouckenooghe
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
23
|
Programming of impaired insulin secretion versus sensitivity: cause or effect? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 646:125-31. [PMID: 19536671 DOI: 10.1007/978-1-4020-9173-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A substantial body of evidence suggests that a poor intrauterine milieu elicited by maternal nutritional disturbance, including maternal diabetes or placental insufficiency, may programme susceptibility in the fetus to later development of glucose intolerance and diabetes. Numerous data in animals have allowed possible mechanisms for programming to be proposed. This review of work in several animal models attempts to identify the cellular and molecular mechanisms at the level of the beta-cell and in the insulin sensitive tissues that are involved in the process of events leading to the pathology later in life.
Collapse
|
24
|
Reusens B, Sparre T, Kalbe L, Bouckenooghe T, Theys N, Kruhøffer M, Orntoft TF, Nerup J, Remacle C. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia 2008; 51:836-45. [PMID: 18311556 DOI: 10.1007/s00125-008-0956-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/11/2008] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Events during fetal life may in critical time windows programme tissue development leading to organ dysfunction with potentially harmful consequences in adulthood such as diabetes. In rats, the beta cell mass of progeny from dams fed with a low-protein (LP) diet during gestation is decreased at birth and metabolic perturbation lasts through adulthood even though a normal diet is given after birth or after weaning. Maternal and fetal plasma taurine levels are suboptimal. Maternal taurine supplementation prevents these induced abnormalities. In this study, we aimed to reveal changes in gene expression in fetal islets affected by the LP diet and how taurine may prevent these changes. METHODS Pregnant Wistar rats were fed an LP diet (8% [wt/wt] protein) supplemented or not with taurine in the drinking water or a control diet (20% [wt/wt] protein). At 21.5 days of gestation, fetal pancreases were removed, digested and cultured for 7 days. Neoformed islets were collected and transcriptome analysis was performed. RESULTS Maternal LP diet significantly changed the expression of more than 10% of the genes. Tricarboxylic acid cycle and ATP production were highly targeted, but so too were cell proliferation and defence. Maternal taurine supplementation normalised the expression of all altered genes. CONCLUSIONS/INTERPRETATION Development of the beta cells and particularly their respiration is modulated by the intrauterine environment, which may epigenetically modify expression of the genome and programme the beta cell towards a pre-diabetic phenotype. This mis-programming by maternal LP diet was prevented by early taurine intervention.
Collapse
Affiliation(s)
- B Reusens
- Laboratoire de Biologie Cellulaire, Université catholique de Louvain, 5, Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Resjö S, Berger K, Fex M, Hansson O. Proteomic studies in animal models of diabetes. Proteomics Clin Appl 2008; 2:654-69. [PMID: 21136865 DOI: 10.1002/prca.200780030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Indexed: 01/17/2023]
Abstract
The aim of this review is to provide an overview of proteomic studies in animal models of diabetes and to give some insight into the different methods available today in the rapidly developing field of proteomics. A summary of 31 papers published between 1997 and 2007 is presented. For instance, proteomics has been used to study the development of both type 1 and type 2 diabetes, diabetic complications in tissues like heart, kidney and retina and changes after treatment with anti-diabetic drugs like peroxisome proliferator-activated receptors agonists. Together, these studies give a good overview of a number of experimental approaches. Proteomics holds the promise of providing major contributions to the field of diabetes research. However, to achieve this, a number of issues need to be resolved. Appropriate data representation to facilitate data comparison, exchange, and verification is required, as well as improved statistical assessment of proteomic experiments. In addition, it is important to follow up the results with functional studies to be able to make biologically relevant conclusions. The potential of proteomics to dissect complex human disorders is now beginning to be realized. In the future, this will result in new important information concerning diabetes.
Collapse
Affiliation(s)
- Svante Resjö
- Department of Experimental Medical Science, Lund University, BMC C11, Lund, Sweden
| | | | | | | |
Collapse
|
26
|
Remacle C, Dumortier O, Bol V, Goosse K, Romanus P, Theys N, Bouckenooghe T, Reusens B. Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 2007; 9 Suppl 2:196-209. [PMID: 17919194 DOI: 10.1111/j.1463-1326.2007.00790.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiological studies have revealed strong relationships between poor foetal growth and subsequent development of the metabolic syndrome. Persisting effects of early malnutrition become translated into pathology, thereby determine chronic risk for developing glucose intolerance and diabetes. These epidemiological observations identify the phenomena of foetal programming without explaining the underlying mechanisms that establish the causal link. Animal models have been established and studies have demonstrated that reduction in the availability of nutrients during foetal development programs the endocrine pancreas and insulin-sensitive tissues. Whatever the type of foetal malnutrition, whether there are not enough calories or protein in food or after placental deficiency, malnourished pups are born with a defect in their beta-cell population that will never completely recover, and insulin-sensitive tissues will be definitively altered. Despite the similar endpoint, different cellular and physiological mechanisms are proposed. Hormones operative during foetal life like insulin itself, insulin-like growth factors and glucocorticoids, as well as specific molecules like taurine, or islet vascularization were implicated as possible factors amplifying the defect. The molecular mechanisms responsible for intrauterine programming of the beta cells are still elusive, but two hypotheses recently emerged: the first one implies programming of mitochondria and the second, epigenetic regulation.
Collapse
Affiliation(s)
- C Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vaiserman AM, Voitenko VP, Tron’ko ND, Kravchenko VI, Khalangot ND, Mekhova LV, Gur’yanov VG. Role of seasonal factors in pre-and postnatal ontogenesis in etiology of type 1 diabetes mellitus. Russ J Dev Biol 2006; 37:230-236. [DOI: 10.1134/s1062360406040047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
|
28
|
Abstract
Diabetes is a common disease worldwide and can cause several complications, leading to systemic derangements and end-organ damage. Despite blood sugar control and adequate therapy with currently available drugs, diabetic complications remain a serious issue in clinical practice, indicating that our knowledge of diabetes and its complications is only at the tip of the iceberg. Better understanding of its pathogenesis and pathophysiology is crucial to achieve better therapeutic outcomes and to prevent its complications. This review provides an overview of proteomics and introduces proteomic technologies commonly used for diabetes research. Recent proteomic studies for the investigation of diabetes and its complications are summarized. Finally, the future perspectives for the field of proteomics in diabetes research are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- a Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine at Siriraj Hospital, Mahidol University, 12th Floor, Adulyadej Vikrom Building, Siriraj Hospital, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
29
|
Lee HK, Park KS, Cho YM, Lee YY, Pak YK. Mitochondria-Based Model for Fetal Origin of Adult Disease and Insulin Resistance. Ann N Y Acad Sci 2006; 1042:1-18. [PMID: 15965040 DOI: 10.1196/annals.1338.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin resistance has been recognized as the fundamental underlying metabolic defect in the pathogenesis of metabolic syndrome, a clustering of cardiovascular risk factors such as diabetes, hypertension, dyslipidemia, and obesity. Recent studies established that mitochondrial dysfunction is involved in insulin resistance in general and fetal origin of this state in particular. Because genes are the fundamental molecular basis of inheritance--and thus the cornerstones of evolution--a model explaining insulin resistance is based at the gene level at best. Since a certain mtDNA polymorphism, 16189T>C, is associated with insulin resistance, mtDNA has to be a basic component of the gene-based model. We developed a mitochondria-based model that explains insulin resistance in terms of quantitative and qualitative change of the mitochondrion and its DNA. This model can accommodate several important hypotheses, such as thrifty genotype hypothesis, thrifty phenotype hypothesis, fetal insulin hypothesis, contribution of metabolic imprinting by epigenetic changes, and many other features associated with insulin resistance. We will discuss mechanisms that indicate why the perturbed initial condition of mitochondrial function should lead to the reduced insulin sensitivity.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, Korea.
| | | | | | | | | |
Collapse
|
30
|
Reusens B, Remacle C. Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol 2005; 38:913-22. [PMID: 16337425 DOI: 10.1016/j.biocel.2005.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 10/17/2005] [Accepted: 10/18/2005] [Indexed: 11/16/2022]
Abstract
A substantial body of evidence now suggests that poor intrauterine milieu elicited by maternal nutritional disturbance or placental insufficiency may programme susceptibility in the foetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. Further data showing the developmental programming of the metabolic syndrome are now available thanks to animal studies in which the foetal environment has been manipulated. This review examines the developmental programming of glucose intolerance by disturbed intrauterine metabolic condition in rats. It focuses on the alteration of the endocrine pancreas at birth. Long-term consequences, deterioration of glucose tolerance and even transgenerational effects are reported. Maternal protein, caloric restriction and diabetes during gestation/lactation lead to altered beta-cell mass. This review also tempts to identify cellular and molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Brigitte Reusens
- Laboratoire de Biologie Cellulaire, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
31
|
Lee YY, Park KS, Pak YK, Lee HK. The role of mitochondrial DNA in the development of type 2 diabetes caused by fetal malnutrition. J Nutr Biochem 2005; 16:195-204. [PMID: 15808323 DOI: 10.1016/j.jnutbio.2004.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 10/12/2004] [Accepted: 11/05/2004] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have revealed strong and reproducible links between indices of poor fetal growth and susceptibility to the development of glucose intolerance and insulin resistance syndrome in adult life. To explain these associations, the thrifty phenotype hypothesis has been proposed. Mitochondrial DNA abnormalities have been known to cause insulin deficiency, insulin resistance and diabetes mellitus. In this review, we propose that mitochondrial dysfunction is a link between malnutrition during early life and disease in adult life. The potential mechanism for mitochondrial dysfunction will be focused on availability of the taurine and nucleotides, and imprinting on the genes.
Collapse
Affiliation(s)
- Yun Yong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744, South Korea
| | | | | | | |
Collapse
|
32
|
Abstract
A number of epidemiological studies worldwide have demonstrated a relationship between poor early growth and an increased susceptibility to insulin resistance, visceral obesity, type 2 diabetes and other features of the metabolic syndrome in adulthood. However, the mechanistic basis of this relationship and the relative roles of genes and the environment remain a subject of debate. The 'thrifty phenotype' hypothesis proposes that poor fetal nutrition leads to programming of metabolism and an adult phenotype that is adapted to poor but not plentiful nutrition. The maternal reduced-protein rat model has been used to examine the importance of the maternal environment in determining susceptibility to adult disease. Pregnant and lactating rat dams are fed a diet containing 80 g protein/kg as compared with 200 g protein/kg, which leads to growth restriction in utero. Offspring of low-protein dams have increased susceptibility to diabetes, insulin resistance and hypertension when fed a palatable high-fat diet that promotes obesity. Administration of leptin during pregnancy and lactation to these protein-restricted dams produces offspring that have increased metabolic rate and do not become obese or insulin resistant when fed on a high-fat diet. Increased glucocorticoid exposure, particularly during late gestation, has been linked with insulin resistance in adulthood. High levels of fetal glucocorticoids may result from a decreased activity of placental 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 2, which normally protects the fetus from high maternal glucocorticoid levels. Leptin administration to protein-restricted dams inhibits the suppression of 11beta-HSD-2 and may be one mechanism by which the metabolic syndrome is prevented.
Collapse
Affiliation(s)
- Claire J Stocker
- Clore Laboratory, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK.
| | | | | |
Collapse
|
33
|
McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85:571-633. [PMID: 15788706 DOI: 10.1152/physrev.00053.2003] [Citation(s) in RCA: 1299] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.
Collapse
Affiliation(s)
- I Caroline McMillen
- Discipline of Physiology, School of Molecular and Biomeducal Sciences, and Department of Obstetrics and Gynaecology, University of Adelaide, Australia.
| | | |
Collapse
|
34
|
Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F. Unraveling the Pathogenesis of Type 1 Diabetes with Proteomics: Present And Future Directions. Mol Cell Proteomics 2005; 4:441-57. [PMID: 15699484 DOI: 10.1074/mcp.r500002-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.
Collapse
|
35
|
Abstract
Regulation of fetal growth is multifactorial and complex. Diverse factors, including intrinsic fetal conditions as well as maternal and environmental factors, can lead to intrauterine growth restriction (IUGR). The interaction of these factors governs the partitioning of nutrients and rate of fetal cellular proliferation and maturation. Although IUGR is probably a physiologic adaptive response to various stimuli, it is associated with distinct short- and long-term morbidities. Immediate morbidities include those associated with prematurity and inadequate nutrient reserve, while childhood morbidities relate to impaired maturation and disrupted organ development. Potential long-term effects of IUGR are debated and explained by the fetal programming hypothesis. In formulating a comprehensive approach to the management and follow-up of the growth-restricted fetus and infant, physicians should take into consideration the etiology, timing, and severity of IUGR. In addition, they should be cognizant of the immediate perinatal response of the growth-restricted infant as well as the childhood and long-term associated morbidities. A multi disciplinary approach is imperative, including early recognition and obstetrical management of IUGR, assessment of the growth-restricted newborn in the delivery room, possible monitoring in the neonatal intensive care unit, and appropriate pediatric follow-up. Future research is necessary to establish effective preventive, diagnostic, and therapeutic strategies for IUGR, perhaps affecting the health of future generations.
Collapse
Affiliation(s)
- Dara Brodsky
- Beth Israel Deaconess Medical Center and Children's Hospital, Harvard Medical School, Department of Newborn Medicine, Boston, MA 02215, USA.
| | | |
Collapse
|
36
|
Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 2004; 561:355-77. [PMID: 15459241 PMCID: PMC1665360 DOI: 10.1113/jphysiol.2004.072009] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/28/2004] [Indexed: 12/24/2022] Open
Abstract
The incidence of the metabolic syndrome, a cluster of abnormalities focusing on insulin resistance and associated with high risk for cardiovascular disease and diabetes, is reaching epidemic proportions. Prevalent in both developed and developing countries, the metabolic syndrome has largely been attributed to altered dietary and lifestyle factors that favour the development of central obesity. However, population-based studies have suggested that predisposition to the metabolic syndrome may be acquired very early in development through inappropriate fetal or neonatal nutrition. Further evidence for developmental programming of the metabolic syndrome has now been suggested by animal studies in which the fetal environment has been manipulated through altered maternal dietary intake or modification of uterine artery blood flow. This review examines these studies and assesses whether the metabolic syndrome can be reliably induced by the interventions made. The validity of the different species, diets, feeding regimes and end-point measures used is also discussed.
Collapse
Affiliation(s)
- James A Armitage
- Maternal and Fetal Research Unit, Department of Women's Health, Guy's, King's and St Thomas' School of Medicine, King's College London, UK.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Fetal growth is the end product of a variety of genetic, maternal, fetal, and placental factors. Maternal size is a dominant determinant of birth weight. Specific nutrients and their availability modify the expression of genetically determined metabolic and transfer systems. Hormones and growth factors of maternal, fetal, and placental origin regulate nutrient transfer and fetal organ development. Fetal development is ultimately determined by dynamic interactions between all of these factors beginning prior to conception and proceeding to delivery.
Collapse
Affiliation(s)
- David A Sacks
- Department of Obstetrics and Gynecology, Kaiser Foundation Hospital, 9400 East Rosecrans Avenue, Bellflower, CA 90706, USA.
| |
Collapse
|
38
|
Merezak S, Reusens B, Renard A, Goosse K, Kalbe L, Ahn MT, Tamarit-Rodriguez J, Remacle C. Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia 2004; 47:669-75. [PMID: 15298344 DOI: 10.1007/s00125-004-1357-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS A maternal low-protein diet has been shown to induce an increased susceptibility of fetal islets to cytokines, but this effect can be avoided by maternal taurine supplementation. Here, we question whether these effects persist until adulthood in the offspring, despite the animal having a normal diet after weaning. METHODS Pregnant Wistar rats received a diet of either 20% or 8% protein (control [C group] and recuperated [R group] respectively), which was or was not supplemented with taurine (control treated with taurine [CT group] and recuperated treated with taurine [RT group] respectively) during gestation and lactation. When the female offspring reached adulthood, an OGTT was performed. In a second stage, islets were isolated from these offspring, then pretreated or not with taurine, and subsequently treated with cytokines. RESULTS Fasting glycaemia was higher (p<0.05) and insulinaemia was lower (p<0.01) in the R group than in the C group. Taurine supplementation decreased insulinaemia in the CT group and tended to increase it in the RT group. After the OGTT, glycaemia in R animals was not different from that in the C group, despite a blunted insulin response (p<0.05) which was restored by taurine. Supplementation in C-group mothers led to a weak glucose intolerance. In vitro, more apoptotic cells were observed in R islets after cytokines treatment (p<0.01). The addition of taurine to the culture medium in the R and C groups protected the islets from the cytokines (p<0.01). Maternal taurine supplementation decreased the sensitivity of islets in the RT group (p<0.01), but increased sensitivity in the CT group (p<0.01). CONCLUSIONS/INTERPRETATION The increased vulnerability of islets to cytokines due to a restriction of protein during fetal development was still evident when the offspring reached adulthood. The low-protein diet also induced hyperglycaemia in the presence of lower insulinaemia. Taurine supplementation protected adult islets of the R group from cytokine toxicity and restored the insulinaemia. However, unnecessary supplementation of taurine could have detrimental effects.
Collapse
Affiliation(s)
- S Merezak
- Laboratory of Cell Biology, World Health Organization Collaborating Centre for the Biology of Development of the Endocrine Pancreas, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|