1
|
Hashmi HZ, Khowaja A, Moheet A. Experimental pharmacological approaches to reverse impaired awareness of hypoglycemia-a review. Front Pharmacol 2024; 15:1349004. [PMID: 38323079 PMCID: PMC10844401 DOI: 10.3389/fphar.2024.1349004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The colossal global burden of diabetes management is compounded by the serious complication of hypoglycemia. Protective physiologic hormonal and neurogenic counterregulatory responses to hypoglycemia are essential to preserve glucose homeostasis and avert serious morbidity. With recurrent exposure to hypoglycemic episodes over time, these counterregulatory responses to hypoglycemia can diminish, resulting in an impaired awareness of hypoglycemia (IAH). IAH is characterized by sudden neuroglycopenia rather than preceding cautionary autonomic symptoms. IAH increases the risk of subsequent sudden and severe hypoglycemic episodes in patients with diabetes. The postulated causative mechanisms behind IAH are complex and varied. It is therefore challenging to identify a single effective therapeutic strategy. In this review, we closely examine the efficacy and feasibility of a myriad of pharmaceutical interventions in preventing and treating IAH as described in clinical and preclinical studies. Pharmaceutical agents outlined include N-acetyl cysteine, GABA A receptor blockers, opioid receptor antagonists, AMP activated protein kinase agonists, potassium channel openers, dehydroepiandrosterone, metoclopramide, antiadrenergic agents, antidiabetic agents and glucagon.
Collapse
Affiliation(s)
- Hiba Z. Hashmi
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ameer Khowaja
- Northeast Endocrinology Associates, San Antonio, TX, United States
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Macon EL, Devore MH, Lin YK, Music MB, Wooten M, McMullen CA, Woodcox AM, Marksbury AR, Beckner Z, Patel BV, Schoeder LA, Iles AN, Fisher SJ. Current and future therapies to treat impaired awareness of hypoglycemia. Front Pharmacol 2023; 14:1271814. [PMID: 37942482 PMCID: PMC10628050 DOI: 10.3389/fphar.2023.1271814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
In order to achieve optimal glycemic control, intensive insulin regimes are needed for individuals with Type 1 Diabetes (T1D) and insulin-dependent Type 2 Diabetes (T2D). Unfortunately, intensive glycemic control often results in insulin-induced hypoglycemia. Moreover, recurrent episodes of hypoglycemia result in both the loss of the characteristic warning symptoms associated with hypoglycemia and an attenuated counterregulatory hormone responses. The blunting of warning symptoms is known as impaired awareness of hypoglycemia (IAH). Together, IAH and the loss of the hormonal response is termed hypoglycemia associated autonomic failure (HAAF). IAH is prevalent in up to 25% in people with T1D and up to 10% in people with T2D. IAH and HAAF increase the risk of severe hypoglycemia 6-fold and 25-fold, respectively. To reduce this risk for severe hypoglycemia, multiple different therapeutic approaches are being explored that could improve awareness of hypoglycemia. Current therapies to improve awareness of hypoglycemia include patient education and psychoeducation, the use of novel glycemic control technology, pancreas/islet transplantation, and drug therapy. This review examines both existing therapies and potential therapies that are in pre-clinical testing. Novel treatments that improve awareness of hypoglycemia, via improving the counterregulatory hormone responses or improving hypoglycemic symptom recognition, would also shed light on the possible neurological mechanisms that lead to the development of IAH. To reduce the risk of severe hypoglycemia in people with diabetes, elucidating the mechanism behind IAH, as well as developing targeted therapies is currently an unmet need for those that suffer from IAH.
Collapse
Affiliation(s)
- Erica L. Macon
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Micah H. Devore
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yu Kuei Lin
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan B. Music
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Mason Wooten
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Colleen A. McMullen
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrea M. Woodcox
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ashlee R. Marksbury
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zachary Beckner
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bansi V. Patel
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Lily A. Schoeder
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ashley N. Iles
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Simon J. Fisher
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Patel V, Sarkar P, Siegel DM, Teegala SB, Hirschberg PR, Wajid H, Itani O, Routh VH. The Antinarcolepsy Drug Modafinil Reverses Hypoglycemia Unawareness and Normalizes Glucose Sensing of Orexin Neurons in Male Mice. Diabetes 2023; 72:1144-1153. [PMID: 36525384 PMCID: PMC10382647 DOI: 10.2337/db22-0639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2023] [Indexed: 12/23/2022]
Abstract
Perifornical hypothalamus (PFH) orexin glucose-inhibited (GI) neurons that facilitate arousal have been implicated in hypoglycemia awareness. Mice lacking orexin exhibit narcolepsy, and orexin mediates the effect of the antinarcolepsy drug modafinil. Thus, hypoglycemia awareness may require a certain level of arousal for awareness of the sympathetic symptoms of hypoglycemia (e.g., tremors, anxiety). Recurrent hypoglycemia (RH) causes hypoglycemia unawareness. We hypothesize that RH impairs the glucose sensitivity of PFH orexin GI neurons and that modafinil normalizes glucose sensitivity of these neurons and restores hypoglycemia awareness after RH. Using patch-clamp recording, we found that RH enhanced glucose inhibition of PFH orexin GI neurons in male mice, thereby blunting activation of these neurons in low-glucose conditions. We then used a modified conditioned place preference behavioral test to demonstrate that modafinil reversed hypoglycemia unawareness in male mice after RH. Similarly, modafinil restored normal glucose sensitivity to PFH orexin GI neurons. We conclude that impaired glucose sensitivity of PFH orexin GI neurons plays a role in hypoglycemia unawareness and that normalizing their glucose sensitivity after RH is associated with restoration of hypoglycemia awareness. This suggests that the glucose sensitivity of PFH orexin GI neurons is a therapeutic target for preventing hypoglycemia unawareness.
Collapse
Affiliation(s)
- Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Dashiel M. Siegel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Suraj B. Teegala
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Pamela R. Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Hamad Wajid
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Omar Itani
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ
| | - Vanessa H. Routh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| |
Collapse
|
4
|
Verhulst CEM, Fabricius TW, Teerenstra S, Kristensen PL, Tack CJ, McCrimmon RJ, Heller S, Evans ML, Amiel SA, Pedersen-Bjergaard U, de Galan BE. Glycaemic thresholds for counterregulatory hormone and symptom responses to hypoglycaemia in people with and without type 1 diabetes: a systematic review. Diabetologia 2022; 65:1601-1612. [PMID: 35867127 PMCID: PMC9477942 DOI: 10.1007/s00125-022-05749-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/06/2022] [Indexed: 02/05/2023]
Abstract
AIM/HYPOTHESIS The physiological counterregulatory response to hypoglycaemia is reported to be organised hierarchically, with hormone responses usually preceding symptomatic awareness and autonomic responses preceding neuroglycopenic responses. To compare thresholds for activation of these responses more accurately between people with or without type 1 diabetes, we performed a systematic review on stepped hyperinsulinaemic-hypoglycaemic glucose clamps. METHODS A literature search in PubMed and EMBASE was conducted. We included articles published between 1980 and 2018 involving hyperinsulinaemic stepped hypoglycaemic glucose clamps among people with or without type 1 diabetes. Key exclusion criteria were as follows: data were previously published; other patient population; a clamp not the primary intervention; and an inadequate clamp description. Glycaemic thresholds for counterregulatory hormone and/or symptom responses to hypoglycaemia were estimated and compared using generalised logrank test for interval-censored data, where the intervals were either extracted directly or calculated from the data provided by the study. A glycaemic threshold was defined as the glucose level at which the response exceeded the 95% CI of the mean baseline measurement or euglycaemic control clamp. Because of the use of interval-censored data, we described thresholds using median and IQR. RESULTS A total of 63 articles were included, whereof 37 papers included participants with type 1 diabetes (n=559; 67.4% male sex, aged 32.7±10.2 years, BMI 23.8±1.4 kg/m2) and 51 papers included participants without diabetes (n=733; 72.4% male sex, aged 31.1±9.2 years, BMI 23.6±1.1 kg/m2). Compared with non-diabetic control individuals, in people with type 1 diabetes, the median (IQR) glycaemic thresholds for adrenaline (3.8 [3.2-4.2] vs 3.4 [2.8-3.9 mmol/l]), noradrenaline (3.2 [3.2-3.7] vs 3.0 [2.8-3.1] mmol/l), cortisol (3.5 [3.2-4.2]) vs 2.8 [2.8-3.4] mmol/l) and growth hormone (3.8 [3.3-3.8] vs. 3.2 [3.0-3.3] mmol/l) all occurred at lower glucose levels in people with diabetes than in those without diabetes (all p≤0.01). Similarly, although both autonomic (median [IQR] 3.4 [3.4-3.4] vs 3.0 [2.8-3.4] mmol/l) and neuroglycopenic (median [IQR] 3.4 [2.8-N/A] vs 3.0 [3.0-3.1] mmol/l) symptom responses were elicited at lower glucose levels in people with type 1 diabetes, the thresholds for autonomic and neuroglycopenic symptoms did not differ for each individual subgroup. CONCLUSIONS/INTERPRETATION People with type 1 diabetes have glycaemic thresholds for counterregulatory hormone and symptom responses at lower glucose levels than people without diabetes. Autonomic and neuroglycopenic symptoms responses are generated at about similar levels of hypoglycaemia. There was a considerable variation in the methodology of the articles and the high insulin doses in most of the clamps may affect the counterregulatory responses. FUNDING This article has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement no. 777460. REGISTRATION This systematic review is registered in PROSPERO (CRD42019120083).
Collapse
Affiliation(s)
- Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark.
| | - Steven Teerenstra
- Section Biostatistics, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter L Kristensen
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Simon Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Mark L Evans
- Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stephanie A Amiel
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Centre, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | | |
Collapse
|
5
|
Thieu VT, Mitchell BD, Varnado OJ, Frier BM. Treatment and prevention of severe hypoglycaemia in people with diabetes: Current and new formulations of glucagon. Diabetes Obes Metab 2020; 22:469-479. [PMID: 31820562 PMCID: PMC7079012 DOI: 10.1111/dom.13941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Some therapies for diabetes increase the risk of hypoglycaemia, in particular all insulins and insulin secretagogues, including the glinides and sulfonylureas. Hypoglycaemia remains a major limiting factor to successful glycaemic management, despite the availability of prevention options such as insulin analogues, continuous glucose monitoring, insulin pumps, and dogs that have been trained to detect hypoglycaemia. Non-severe (self-treated) and severe (requiring assistance for recovery) hypoglycaemia rates are higher in people with type 1 diabetes, but those with insulin-treated type 2 diabetes are also at risk. Education and regular review are essential between people with diabetes and their caregivers and healthcare professionals about symptoms, prevention and treatment. Awareness of the potential dangers of hypoglycaemia is fundamental to the optimal management of diabetes. When therapy is intensified to achieve glycaemic targets, it is important that people at risk of severe hypoglycaemia, and particularly their caregivers, have ready access to effective treatment for hypoglycaemia emergencies. The current and potential formulations of glucagon available for treatment of severe hypoglycaemia are reviewed.
Collapse
Affiliation(s)
| | | | | | - Brian M. Frier
- The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Nistor M, Schmidt M, Graul I, Rakers F, Schiffner R. A Systematic Review of Neuroprotective Strategies in the Management of Hypoglycemia. Int J Mol Sci 2019; 20:ijms20030550. [PMID: 30696060 PMCID: PMC6386855 DOI: 10.3390/ijms20030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Severe hypogylcemia has been found to induce cerebral damage. While a number of illnesses can lead to hypoglycemic episodes, antidiabetic medications prescribed for glycemic control are a common cause. Considering the rising prevalence of diabetes mellitus in the population, we investigated neuroprotective strategies during hypoglycemia in the form of a systematic review in adherence to the PRISMA statement. A review protocol was registered in the PROSPERO database. A systematic literature search of PubMed, Web of Science, and CENTRAL was performed in September 2018. Based on a predefined inclusion protocol, results were screened and evaluated by two researchers. Both animal experiments and human studies were included, and their risk of bias was assessed with SYRCLE’s and the Cochrane risk of bias tools, respectively. Of a total of 16,230 results, 145 were assessed in full-text form: 27 articles adhered to the inclusion criteria and were qualitatively analyzed. The retrieved neuroprotective strategies could be categorized into three subsets: (1) Energy substitution, (2) hypoglycemia unawareness, and (3) other neuroprotective strategies. While on a study level, the individual results appeared promising, more research is required to investigate not only specific neuroprotective strategies against hypoglycemic cerebral damage, but also its underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Marius Nistor
- Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena 07747, Germany.
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital - Friedrich Schiller University, Jena 07743, Germany.
| | - Isabel Graul
- Orthopedic Department, Jena University Hospital - Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Straße 81, Eisenberg 07607, Germany.
| | - Florian Rakers
- Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena 07747, Germany.
| | - René Schiffner
- Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena 07747, Germany.
- Orthopedic Department, Jena University Hospital - Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Straße 81, Eisenberg 07607, Germany.
| |
Collapse
|
7
|
Lontchi-Yimagou E, You JY, Carey M, Gabriely I, Shamoon H, Hawkins M. Potential approaches to prevent hypoglycemia-associated autonomic failure. J Investig Med 2018; 66:641-647. [PMID: 29141871 PMCID: PMC6338223 DOI: 10.1136/jim-2017-000582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/27/2023]
Abstract
Clear health benefits are associated with intensive glucose control in type 1 diabetes mellitus (T1DM). However, maintaining near-normal glycemia remains an elusive goal for many patients, in large part owing to the risk of severe hypoglycemia. In fact, recurrent episodes of hypoglycemia lead to 'hypoglycemia-associated autonomic failure' (HAAF), characterized by defective counter-regulatory responses to hypoglycemia. Extensive studies to understand the mechanisms underlying HAAF have revealed multiple potential etiologies, suggesting various approaches to prevent the development of HAAF. In this review, we present an overview of the literature focused on pharmacological approaches that may prevent the development of HAAF. The purported underlying mechanisms of HAAF include: 1) central mechanisms (opioid receptors, ATP-sensitive K+(KATP) channels, adrenergic receptors, serotonin selective receptor inhibitors, γ-aminobuyric acid receptors, N-methyl D-aspartate receptors); 2) hormones (cortisol, estrogen, dehydroepiandrosterone (DHEA) or DHEA sulfate, glucagon-like peptide-1) and 3) nutrients (fructose, free fatty acids, ketones), all of which have been studied vis-à-vis their ability to impact the development of HAAF. A careful review of the current literature reveals many promising therapeutic approaches to treat or reduce this important limitation to optimal glycemic control.
Collapse
Affiliation(s)
- Eric Lontchi-Yimagou
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jee Young You
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michelle Carey
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Ilan Gabriely
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harry Shamoon
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Meredith Hawkins
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Abstract
Intensive glycaemic control reduces the diabetic microvascular disease burden but iatrogenic hypoglycaemia is a major barrier preventing tight glycaemic control because of the limitations of subcutaneous insulin preparations and insulin secretagogues. Severe hypoglycaemia is uncommon early in the disease as robust physiological defences, particularly glucagon and adrenaline release, limit falls in blood glucose whilst associated autonomic symptoms drive patients to take action by ingesting oral carbohydrate. With increasing diabetes duration, glucagon release is progressively impaired and sympatho-adrenal responses are activated at lower glucose levels. Repeated hypoglycaemic episodes contribute to impaired defences, increasing the risk of severe hypoglycaemia in a vicious downward spiral. Managing hypoglycaemia requires a systematic clinical approach with structured insulin self-management training and support of experienced diabetes educators. Judicious use of technologies includes insulin analogues, insulin pump therapy, continuous glucose monitoring, and in a few cases islet cell transplantation. Some individuals require specialist psychological support.
Collapse
Affiliation(s)
- Ahmed Iqbal
- Department of Human Metabolism and Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Simon Heller
- Department of Human Metabolism and Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
9
|
Repantis D, Maier LJ, Heuser I. Correspondence arising: Modafinil for cognitive neuroenhancement in health non-sleep-deprived-subjects. Eur Neuropsychopharmacol 2016; 26:392-393. [PMID: 26706695 DOI: 10.1016/j.euroneuro.2015.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022]
Affiliation(s)
- D Repantis
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - L J Maier
- Swiss Research Institute for Public Health and Addiction (ISGF), Associated Institute at the University of Zurich and WHO Collaborating Centre, Konradstrasse 32, P.O. Box 8031, Zurich, Switzerland
| | - I Heuser
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
10
|
Effects of Modafinil on Behavioral Learning and Hippocampal Synaptic Transmission in Rats. Int Neurourol J 2015; 19:220-7. [PMID: 26739176 PMCID: PMC4703929 DOI: 10.5213/inj.2015.19.4.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 11/29/2022] Open
Abstract
Purpose: Modafinil is a wake-promoting agent that has been proposed to improve cognitive performance at the preclinical and clinical levels. Since there is insufficient evidence for modafinil to be regarded as a cognitive enhancer, the aim of this study was to investigate the effects of chronic modafinil administration on behavioral learning in healthy adult rats. Methods: Y-maze training was used to assess learning performance, and the whole-cell patch clamp technique was used to assess synaptic transmission in pyramidal neurons of the hippocampal CA1 region of rats. Results: Intraperitoneal administration of modafinil at 200 mg/kg or 300 mg/kg significantly improved learning performance. Furthermore, perfusion with 1mM modafinil enhanced the frequency and amplitude of spontaneous postsynaptic currents and spontaneous excitatory postsynaptic currents in CA1 pyramidal neurons in hippocampal slices. However, the frequency and amplitude of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons were inhibited by treatment with 1mM modafinil. Conclusions: These results indicate that modafinil improves learning and memory in rats possibly by enhancing glutamatergic excitatory synaptic transmission and inhibiting GABAergic (gamma-aminobutyric acid-ergic) inhibitory synaptic transmission.
Collapse
|
11
|
Klement J, Mergelkuhl B, Born J, Lehnert H, Hallschmid M. Role of γ-aminobutyric acid signalling in the attenuation of counter-regulatory hormonal responses after antecedent hypoglycaemia in healthy men. Diabetes Obes Metab 2014; 16:1274-8. [PMID: 25059854 DOI: 10.1111/dom.12358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
The attenuated counter-regulatory response to hypoglycaemia after antecedent hypoglycaemic episodes has been observed in animals to be associated with an increase in γ-aminobutyric acid (GABA) signalling. We therefore tested the hypothesis that the pharmacological suppression of GABAergic activity during a repeated hypoglycaemic episode enhances counter-regulatory responses. Fourteen healthy men participated in two experimental sessions each comprising three insulin-induced hypoglycaemic episodes. Before the third hypoglycaemic episode, participants received the GABA-antagonistic drug modafinil (200 mg orally) and placebo, respectively. In the placebo condition, the secretion of norepinephrine, adrenocorticotropic hormone, cortisol and growth hormone, and the perception of neuroglycopenic symptoms were attenuated during the third as compared with the first hypoglycaemic episode (each p < 0.05). Modafinil reversed this effect for the noradrenergic response (p < 0.05), while not significantly altering the attenuation of other hormonal responses and symptom perception (p > 0.3). Our findings indicate that increased GABAergic transmission could contribute to aspects of the attenuated counter-regulatory response after recurrent hypoglycaemia in humans.
Collapse
Affiliation(s)
- J Klement
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
12
|
Scoriels L, Barnett JH, Soma PK, Sahakian BJ, Jones PB. Effects of modafinil on cognitive functions in first episode psychosis. Psychopharmacology (Berl) 2012; 220:249-58. [PMID: 21909634 DOI: 10.1007/s00213-011-2472-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022]
Abstract
RATIONALE Cognitive impairments are important determinants of functional outcome in psychosis, which are inadequately treated by antipsychotic medication. Modafinil is a wake-promoting drug that has been shown to improve attention, memory and executive function in the healthy population and in patients with schizophrenia. OBJECTIVES We aimed to establish modafinil's role in the adjunctive treatment of cognitive impairments in the first episode of psychosis, a time when symptoms may be more malleable than at chronic stages of the disease. METHODS Forty patients with a first episode of psychosis participated in a randomised, double-blind, placebo-controlled crossover design study assessing the effects of a single dose of 200 mg modafinil on measures of executive functioning, memory, learning, impulsivity and attention. RESULTS Modafinil improved verbal working memory (d = 0.24, p = 0.04), spatial working memory errors (d = 0.30, p = 0.0004) and strategy use (d = 0.23, p = 0.03). It also reduced discrimination errors in a task testing impulsivity. Modafinil showed no effect on impulsivity measures, sustained attention, attentional set-shifting, learning or fluency. CONCLUSIONS Modafinil selectively enhances working memory in first episode psychosis patients, which could have downstream effects on patients' social and occupational functioning.
Collapse
Affiliation(s)
- Linda Scoriels
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Affiliation(s)
- Philip E Cryer
- Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
15
|
Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacol Res 2010; 62:187-206. [DOI: 10.1016/j.phrs.2010.04.002] [Citation(s) in RCA: 382] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
|
16
|
Hedrington MS, Farmerie S, Ertl AC, Wang Z, Tate DB, Davis SN. Effects of antecedent GABAA activation with alprazolam on counterregulatory responses to hypoglycemia in healthy humans. Diabetes 2010; 59:1074-81. [PMID: 20086227 PMCID: PMC2844816 DOI: 10.2337/db09-1520] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To date, there are no data investigating the effects of GABA(A) activation on counterregulatory responses during repeated hypoglycemia in humans. The aim of this study was to determine the effects of prior GABA(A) activation using the benzodiazepine alprazolam on the neuroendocrine and autonomic nervous system (ANS) and metabolic counterregulatory responses during next-day hypoglycemia in healthy humans. RESEARCH DESIGN AND METHODS Twenty-eight healthy individuals (14 male and 14 female, age 27 +/- 6 years, BMI 24 +/- 3 kg/m(2), and A1C 5.2 +/- 0.1%) participated in four randomized, double-blind, 2-day studies. Day 1 consisted of either morning and afternoon 2-h hyperinsulinemic euglycemia or 2-h hyperinsulinemic hypoglycemia (2.9 mmol/l) with either 1 mg alprazolam or placebo administered 30 min before the start of each clamp. Day 2 consisted of a single-step hyperinsulinemic-hypoglycemic clamp of 2.9 mmol/l. RESULTS Despite similar hypoglycemia (2.9 +/- 1 mmol/l) and insulinemia (672 +/- 108 pmol/l) during day 2 studies, GABA(A) activation with alprazolam during day 1 euglycemia resulted in significant blunting (P < 0.05) of ANS (epinephrine, norepinephrine, muscle sympathetic nerve activity, and pancreatic polypeptide), neuroendocrine (glucagon and growth hormone), and metabolic (glucose kinetics, lipolysis, and glycogenolysis) counterregulatory responses. GABA(A) activation with alprazolam during prior hypoglycemia caused further significant (P < 0.05) decrements in subsequent glucagon, growth hormone, pancreatic polypeptide, and muscle sympathetic nerve activity counterregulatory responses. CONCLUSIONS Alprazolam activation of GABA(A) pathways during day 1 hypoglycemia can play an important role in regulating a spectrum of key physiologic responses during subsequent (day 2) hypoglycemia in healthy man.
Collapse
Affiliation(s)
| | | | - Andrew C. Ertl
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Zhihui Wang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Donna B. Tate
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Stephen N. Davis
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Veterans Affairs, Nashville, Tennessee
- Corresponding author: Stephen N. Davis,
| |
Collapse
|
17
|
Affiliation(s)
- Stephanie A. Amiel
- From the Department of Medicine, King's College London School of Medicine, London, England
| |
Collapse
|
18
|
Kristensen PL, Høi-Hansen T, Olsen NV, Pedersen-Bjergaard U, Thorsteinsson B. Erythropoietin during hypoglycaemia in type 1 diabetes: relation to basal renin-angiotensin system activity and cognitive function. Diabetes Res Clin Pract 2009; 85:75-84. [PMID: 19211168 DOI: 10.1016/j.diabres.2009.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 01/02/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
AIMS Preservation of cognitive function during hypoglycaemic episodes is crucial for patients with insulin-treated diabetes to avoid severe hypoglycaemic events. Erythropoietin has neuroprotective potential. However, the role of erythropoietin during hypoglycaemia is unclear. The aim of the study was to explore plasma erythropoietin response to hypoglycaemia and the relationship to basal renin-angiotensin system (RAS) activity and cognitive function. METHODS We performed a single-blinded, controlled, cross-over study with induced hypoglycaemia or maintained glycaemic level. Nine patients with type 1 diabetes with high and nine with low activity in RAS were studied. Hypoglycaemia was induced using a standardized insulin-infusion. RESULTS Overall, erythropoietin concentrations increased during hypoglycaemia. In the high RAS group erythropoietin rose 29% (p=0.032) whereas no significant response was observed in the low RAS group (7% increment; p=0.43). Independently, both hypoglycaemia and high RAS activity were associated with higher levels of erythropoietin (p=0.02 and 0.04, respectively). Low plasma erythropoietin at baseline was associated with poorer cognitive performance during hypoglycaemia. CONCLUSIONS Hypoglycaemia triggers a rise in plasma erythropoietin in patients with type 1 diabetes. The response is influenced by basal RAS activity. Erythropoietin may carry a neuroprotective potential during hypoglycaemia.
Collapse
Affiliation(s)
- Peter Lommer Kristensen
- Endocrinology Section, Department of Cardiology and Endocrinology, Hillerød Hospital, Dyrehavevej 29, DK-3400, Hillerød, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Heller SR. Minimizing hypoglycemia while maintaining glycemic control in diabetes. Diabetes 2008; 57:3177-83. [PMID: 19033404 PMCID: PMC2584120 DOI: 10.2337/db08-1195] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 09/18/2008] [Indexed: 02/07/2023]
Affiliation(s)
- Simon R Heller
- Unit of Diabetes, Endocrinology, and Metabolism, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
20
|
Huang Q, Zhang L, Tang H, Wang L, Wang Y. Modafinil modulates GABA-activated currents in rat hippocampal pyramidal neurons. Brain Res 2008; 1208:74-8. [DOI: 10.1016/j.brainres.2008.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 01/04/2008] [Accepted: 02/03/2008] [Indexed: 10/22/2022]
|
21
|
Chan O, Cheng H, Herzog R, Czyzyk D, Zhu W, Wang A, McCrimmon RJ, Seashore MR, Sherwin RS. Increased GABAergic tone in the ventromedial hypothalamus contributes to suppression of counterregulatory responses after antecedent hypoglycemia. Diabetes 2008; 57:1363-70. [PMID: 18375441 PMCID: PMC5518793 DOI: 10.2337/db07-1559] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We have previously demonstrated that modulation of gamma-aminobutyric acid (GABA) inhibitory tone in the ventromedial hypothalamus (VMH), an important glucose-sensing region in the brain, modulates the magnitude of glucagon and sympathoadrenal responses to hypoglycemia. In the current study, we examined whether increased VMH GABAergic tone may contribute to suppression of counterregulatory responses after recurrent hypoglycemia. RESEARCH DESIGN AND METHODS To test this hypothesis, we quantified expression of the GABA synthetic enzyme, glutamic acid decarboxylase (GAD), in the VMH of control and recurrently hypoglycemic rats. Subsequently, we used microdialysis and microinjection techniques to assess changes in VMH GABA levels and the effects of GABA(A) receptor blockade on counterregulatory responses to a standardized hypoglycemic stimulus. RESULTS Quantitative RT-PCR and immunoblots in recurrently hypoglycemic animals revealed that GAD(65) mRNA and protein were increased 33 and 580%, respectively. Basal VMH GABA concentrations were more than threefold higher in recurrently hypoglycemic animals. Furthermore, whereas VMH GABA levels decreased in both control and recurrently hypoglycemic animals with the onset of hypoglycemia, the fall was not significant in recurrently hypoglycemic rats. During hypoglycemia, recurrently hypoglycemic rats exhibited a 49-63% reduction in glucagon and epinephrine release. These changes were reversed by delivery of a GABA(A) receptor antagonist to the VMH. CONCLUSIONS Our data suggest that recurrent hypoglycemia increases GABAergic inhibitory tone in the VMH and that this, in turn, suppresses glucagon and sympathoadrenal responses to subsequent bouts of acute hypoglycemia. Thus, hypoglycemia-associated autonomic failure may be due in part to a relative excess of the inhibitory neurotransmitter, GABA, within the VMH.
Collapse
Affiliation(s)
- Owen Chan
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Haiying Cheng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Raimund Herzog
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel Czyzyk
- Department of Genetics, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wanling Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ajin Wang
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Rory J. McCrimmon
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Margretta R. Seashore
- Department of Genetics, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Robert S. Sherwin
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Srinivasan P, Huang GC, Amiel SA, Heaton ND. Islet cell transplantation. Postgrad Med J 2007; 83:224-9. [PMID: 17403947 PMCID: PMC2600029 DOI: 10.1136/pgmj.2006.053447] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 12/18/2006] [Indexed: 11/04/2022]
Abstract
People with type 1 diabetes have normal exocrine pancreatic function, making islet cell rather than whole organ transplantation an attractive option. Achieving insulin independence in type 1 diabetes was the perceived goal of islet cell transplantation. The success of the Edmonton group in achieving this in a selected group of type 1 patients has led to renewed optimism that this treatment could eventually replace whole organ pancreas transplantation. However the long-term results of this treatment indicate that insulin independence is lost with time in a significant proportion of patients, although they may retain glycaemic stability. In this context, the indications for islet cell transplantation, which have evolved over the last 5 years, indicate that the patients who benefit most are those who experience severe hypoglycaemic reactions despite optimal insulin therapy. This review will summarise the history of islet cell transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, indications for islet cell transplantation, current clinical trials, the early UK islet cell transplant experience using the Edmonton protocol, and some of the challenges that lie ahead.
Collapse
Affiliation(s)
- P Srinivasan
- King's College London School of Medicine at King's College Hospital, Institute of Liver Studies and Diabetes Research Group, King's College Hospital, London, UK
| | | | | | | |
Collapse
|
23
|
Müssig K, Pfäfflin A, Häring HU, Schleicher ED. Dipyrone (Metamizole) Metabolites Interfere with HPLC Analysis of Plasma Catecholamines but Not with the Determination of Urinary Catecholamines. Clin Chem 2006; 52:1829-31. [PMID: 16940467 DOI: 10.1373/clinchem.2006.071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Chan O, Zhu W, Ding Y, McCrimmon RJ, Sherwin RS. Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 2006; 55:1080-7. [PMID: 16567532 DOI: 10.2337/diabetes.55.04.06.db05-0958] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypoglycemia provokes a multifaceted counterregulatory response involving the sympathoadrenal system, stimulation of glucagon secretion, and the hypothalamo-pituitary-adrenal axis that is commonly impaired in diabetes. We examined whether modulation of inhibitory input from gamma-aminobutyric acid (GABA) in the ventromedial hypothalamus (VMH), a major glucose-sensing region within the brain, plays a role in affecting counterregulatory responses to hypoglycemia. Normal Sprague-Dawley rats had carotid artery and jugular vein catheters chronically implanted, as well as bilateral steel microinjection guide cannulas inserted down to the level of the VMH. Seven to 10 days following surgery, the rats were microinjected with artificial extracellular fluid, the GABA(A) receptor agonist muscimol (1 nmol/side), or the GABA(A) receptor antagonist bicuculline methiodide (12.5 pmol/side) before being subjected to a hyperinsulinemic-hypoglycemic (2.5 mmol/l) glucose clamp for 90 min. Following VMH administration of bicuculline methiodide, glucose infusion rates were significantly suppressed, whereas muscimol raised glucose infusion rates significantly compared with controls. Glucagon and epinephrine responses were elevated with the antagonist and suppressed with the agonist compared with controls. Corticosterone responses, however, were unaffected by either administration of the agonist or antagonist into the VMH. These data demonstrate that modulation of the GABAergic system in the VMH alters both glucagon and sympathoadrenal, but not corticosterone, responses to hypoglycemia. Our findings are consistent with the hypothesis that GABAergic inhibitory tone within the VMH can modulate glucose counterregulatory responses.
Collapse
Affiliation(s)
- Owen Chan
- Yale University School of Medicine, Department of Internal Medicine, Section of Endocrinology, 300 Cedar St., New Haven, CT 06519-1612, USA
| | | | | | | | | |
Collapse
|
25
|
Current literature in diabetes. Diabetes Metab Res Rev 2005; 21:382-9. [PMID: 15959871 DOI: 10.1002/dmrr.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|