1
|
Šterk M, Zhang Y, Pohorec V, Leitgeb EP, Dolenšek J, Benninger RKP, Stožer A, Kravets V, Gosak M. Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis. PLoS Comput Biol 2024; 20:e1012130. [PMID: 38739680 PMCID: PMC11115366 DOI: 10.1371/journal.pcbi.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Yaowen Zhang
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Richard K. P. Benninger
- Department of Bioengineering, Barbara Davis Center for Diabetes, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Vira Kravets
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor
| |
Collapse
|
2
|
Khajavi N, Beck A, Riçku K, Beyerle P, Jacob K, Syamsul SF, Belkacemi A, Reinach PS, Schreier PC, Salah H, Popp T, Novikoff A, Breit A, Chubanov V, Müller TD, Zierler S, Gudermann T. TRPM7 kinase is required for insulin production and compensatory islet responses during obesity. JCI Insight 2023; 8:163397. [PMID: 36574297 PMCID: PMC9977431 DOI: 10.1172/jci.insight.163397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β cell compensation are potential targets for treatment of diabetes. The transient receptor potential cation channel subfamily M member 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β cells disrupted insulin secretion and led to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β cell-specific Trpm7-knockout mice was caused by decreased insulin production because of impaired enzymatic activity of this protein. Accordingly, high-fat-fed mice with a genetic loss of TRPM7 kinase activity displayed a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects were engendered by reduced compensatory β cell responses because of mitigated protein kinase B (AKT)/ERK signaling. Collectively, our data identify TRPM7 kinase as a potentially novel regulator of insulin synthesis, β cell dynamics, and glucose homeostasis under obesogenic diet.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Klea Riçku
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Philipp Beyerle
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Sabrina F. Syamsul
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Peter S. Reinach
- Wenzhou Medical University, Ophthalmology Department, Wenzhou, China
| | - Pascale C.F. Schreier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Houssein Salah
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
3
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. The ischaemic preconditioning paradox and its implications for islet isolation from heart-beating and non heart-beating donors. Sci Rep 2022; 12:19321. [PMID: 36369239 PMCID: PMC9652462 DOI: 10.1038/s41598-022-23862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of ischaemia can severely damage procured donor organs for transplantation. The pancreas, and pancreatic islets in particular, is one of the most sensitive tissues towards hypoxia. The present study was aimed to assess the effect of hypoxic preconditioning (HP) performed ex-vivo in islets isolated from heart-beating donor (HBD) and non heart-beating donor (NHBD) rats. After HP purified islets were cultured for 24 h in hypoxia followed by islet characterisation. Post-culture islet yields were significantly lower in sham-treated NHBD than in HBD. This difference was reduced when NHBD islets were preconditioned. Similar results were observed regarding viability, apoptosis and in vitro function. Reactive oxygen species generation after hypoxic culture was significantly enhanced in sham-treated NHBD than in HBD islets. Again, this difference could be diminished through HP. qRT-PCR revealed that HP decreases pro-apoptotic genes but increases HIF-1 and VEGF. However, the extent of reduction and augmentation was always substantially higher in preconditioned NHBD than in HBD islets. Our findings indicate a lower benefit of HBD islets from HP than NHBD islets. The ischaemic preconditioning paradox suggests that HP should be primarily applied to islets from marginal donors. This observation needs evaluation in human islets.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Heide Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Samuel Acreman
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul R V Johnson
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Effects of GH on the Aging Process in Several Organs: Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23147848. [PMID: 35887196 PMCID: PMC9318627 DOI: 10.3390/ijms23147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the possible beneficial effects of GH administration on the aging process, 24-month-old rats of both sexes and 10-month-old SAMP8 mice were used. Male rats showed increased fat content and decreased lean body mass together with enhanced vasoconstriction and reduced vasodilation of their aortic rings compared to young adult animals. Chronic GH treatment for 10 weeks increased lean body mass and reduced fat weight together with inducing an enhancement of the vasodilatory response by increasing eNOS and a reduction of the constrictory responses. Old SAMP8 male mice also showed insulin resistance together with a decrease in insulin production by the endocrine pancreas and a reduced expression of differentiation parameters. GH treatment decreased plasma levels and increased pancreatic production of insulin and restored differentiation parameters in these animals. Ovariectomy plus low calcium diet in rabbits induced osteoporosis Titanium implants inserted into these rabbit tibiae showed after one month lesser bone to implant (BIC) surface and bone mineral density (BMD). Local application of GH in the surgical opening was able to increase BIC in the osteoporotic group. The hippocampus of old rats showed a reduction in the number of neurons and also in neurogenesis compared to young ones, together with an increase of caspases and a reduction of Bcl-2. GH treatment was able to enhance significantly only the total number of neurons. In conclusion, GH treatment was able to show beneficial effects in old animals on all the different organs and metabolic functions studied.
Collapse
|
5
|
Marolt U, Paradiž Leitgeb E, Pohorec V, Lipovšek S, Venglovecz V, Gál E, Ébert A, Menyhárt I, Potrč S, Gosak M, Dolenšek J, Stožer A. Calcium imaging in intact mouse acinar cells in acute pancreas tissue slices. PLoS One 2022; 17:e0268644. [PMID: 35657915 PMCID: PMC9165796 DOI: 10.1371/journal.pone.0268644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.
Collapse
Affiliation(s)
- Urška Marolt
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Menyhárt
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Stojan Potrč
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| |
Collapse
|
6
|
Weitz J, Menegaz D, Caicedo A. Deciphering the Complex Communication Networks That Orchestrate Pancreatic Islet Function. Diabetes 2021; 70:17-26. [PMID: 33355306 PMCID: PMC7881851 DOI: 10.2337/dbi19-0033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Pancreatic islets are clusters of hormone-secreting endocrine cells that rely on intricate cell-cell communication mechanisms for proper function. The importance of multicellular cooperation in islet cell physiology was first noted nearly 30 years ago in seminal studies showing that hormone secretion from endocrine cell types is diminished when these cells are dispersed. These studies showed that reestablishing cellular contacts in so-called pseudoislets caused endocrine cells to regain hormone secretory function. This not only demonstrated that cooperation between islet cells is highly synergistic but also gave birth to the field of pancreatic islet organoids. Here we review recent advances related to the mechanisms of islet cell cross talk. We first describe new developments that revise current notions about purinergic and GABA signaling in islets. Then we comment on novel multicellular imaging studies that are revealing emergent properties of islet communication networks. We finish by highlighting and discussing recent synthetic approaches that use islet organoids of varied cellular composition to interrogate intraislet signaling mechanisms. This reverse engineering of islets not only will shed light on the mechanisms of intraislet signaling and define communication networks but also may guide efforts aimed at restoring islet function and β-cell mass in diabetes.
Collapse
Affiliation(s)
- Jonathan Weitz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Danusa Menegaz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| |
Collapse
|
7
|
Tan RP, Hallahan N, Kosobrodova E, Michael PL, Wei F, Santos M, Lam YT, Chan AHP, Xiao Y, Bilek MMM, Thorn P, Wise SG. Bioactivation of Encapsulation Membranes Reduces Fibrosis and Enhances Cell Survival. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56908-56923. [PMID: 33314916 DOI: 10.1021/acsami.0c20096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulation devices are an emerging barrier technology designed to prevent the immunorejection of replacement cells in regenerative therapies for intractable diseases. However, traditional polymers used in current devices are poor substrates for cell attachment and induce fibrosis upon implantation, impacting long-term therapeutic cell viability. Bioactivation of polymer surfaces improves local host responses to materials, and here we make the first step toward demonstrating the utility of this approach to improve cell survival within encapsulation implants. Using therapeutic islet cells as an exemplar cell therapy, we show that internal surface coatings improve islet cell attachment and viability, while distinct external coatings modulate local foreign body responses. Using plasma surface functionalization (plasma immersion ion implantation (PIII)), we employ hollow fiber semiporous poly(ether sulfone) (PES) encapsulation membranes and coat the internal surfaces with the extracellular matrix protein fibronectin (FN) to enhance islet cell attachment. Separately, the external fiber surface is coated with the anti-inflammatory cytokine interleukin-4 (IL-4) to polarize local macrophages to an M2 (anti-inflammatory) phenotype, muting the fibrotic response. To demonstrate the power of our approach, bioluminescent murine islet cells were loaded into dual FN/IL-4-coated fibers and evaluated in a mouse back model for 14 days. Dual FN/IL-4 fibers showed striking reductions in immune cell accumulation and elevated levels of the M2 macrophage phenotype, consistent with the suppression of fibrotic encapsulation and enhanced angiogenesis. These changes led to markedly enhanced islet cell survival and importantly to functional integration of the implant with the host vasculature. Dual FN/IL-4 surface coatings drive multifaceted improvements in islet cell survival and function, with significant implications for improving clinical translation of therapeutic cell-containing macroencapsulation implants.
Collapse
Affiliation(s)
- Richard P Tan
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Nicole Hallahan
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- Applied Plasma and Physics, A28, School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
| | - Praveesuda L Michael
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4000, Australia
| | - Miguel Santos
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Yuen Ting Lam
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, United States
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4000, Australia
| | - Marcela M M Bilek
- Applied Plasma and Physics, A28, School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Steven G Wise
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| |
Collapse
|
8
|
Coloured Rice Phenolic Extracts Increase Expression of Genes Associated with Insulin Secretion in Rat Pancreatic Insulinoma β-cells. Int J Mol Sci 2020; 21:ijms21093314. [PMID: 32392844 PMCID: PMC7246603 DOI: 10.3390/ijms21093314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Glucose-induced oxidative stress is associated with the overproduction of reactive oxygen species (ROS), which may dysregulate the expression of genes controlling insulin secretion leading to β-cell dysfunction, a hallmark of type 2 diabetes mellitus (T2DM). This study investigated the impact of coloured rice phenolic extracts (CRPEs) on the expression of key genes associated with β-cell function in pancreatic β-cells (INS-1E). These genes included glucose transporter 2 (Glut2), silent mating type information regulation 2 homolog 1 (Sirt1), mitochondrial transcription factor A (Tfam), pancreatic/duodenal homeobox protein 1 (Pdx-1) and insulin 1 (Ins1). INS-1E cells were cultured in high glucose (25 mM) to induce glucotoxic stress conditions (HGSC) and in normal glucose conditions (NGC-11.1 mM) to represent normal β-cell function. Cells were treated with CRPEs derived from two coloured rice cultivars, Purple and Yunlu29-red varieties at concentrations ranged from 50 to 250 µg/mL. CRPEs upregulated the expression of Glut2, Sirt1 and Pdx-1 significantly at 250 µg/mL under HGSC. CRPEs from both cultivars also upregulated Glut2, Sirt1, Tfam, Pdx-1 and Ins1 markedly at 250 µg/mL under NGC with Yunlu29 having the greatest effect. These data suggest that CRPEs may reduce β-cell dysfunction in T2DM by upregulating the expression of genes involved in insulin secretion pathways.
Collapse
|
9
|
White MG, Maheshwari RR, Anderson SJ, Berlinguer-Palmini R, Jones C, Richardson SJ, Rotti PG, Armour SL, Ding Y, Krasnogor N, Engelhardt JF, Gray MA, Morgan NG, Shaw JAM. In Situ Analysis Reveals That CFTR Is Expressed in Only a Small Minority of β-Cells in Normal Adult Human Pancreas. J Clin Endocrinol Metab 2020; 105:dgz209. [PMID: 31748811 PMCID: PMC7341165 DOI: 10.1210/clinem/dgz209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/20/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Although diabetes affects 40% to 50% of adults with cystic fibrosis, remarkably little is known regarding the underlying mechanisms leading to impaired pancreatic β-cell insulin secretion. Efforts toward improving the functional β-cell deficit in cystic fibrosis-related diabetes (CFRD) have been hampered by an incomplete understanding of whether β-cell function is intrinsically regulated by cystic fibrosis transmembrane conductance regulator (CFTR). Definitively excluding meaningful CFTR expression in human β-cells in situ would contribute significantly to the understanding of CFRD pathogenesis. OBJECTIVE To determine CFTR messenger ribonucleic acid (mRNA) and protein expression within β-cells in situ in the unmanipulated human pancreas of donors without any known pancreatic pathology. DESIGN In situ hybridization for CFTR mRNA expression in parallel with insulin immunohistochemical staining and immunofluorescence co-localization of CFTR with insulin and the ductal marker, Keratin-7 (KRT7), were undertaken in pancreatic tissue blocks from 10 normal adult, nonobese deceased organ donors over a wide age range (23-71 years) with quantitative image analysis. RESULTS CFTR mRNA was detectable in a mean 0.45% (range 0.17%-0.83%) of insulin-positive cells. CFTR protein expression was co-localized with KRT7. One hundred percent of insulin-positive cells were immunonegative for CFTR. CONCLUSIONS For the first time, in situ CFTR mRNA expression in the unmanipulated pancreas has been shown to be present in only a very small minority (<1%) of normal adult β-cells. These data signal a need to move away from studying endocrine-intrinsic mechanisms and focus on elucidation of exocrine-endocrine interactions in human cystic fibrosis.
Collapse
Affiliation(s)
- Michael G White
- Diabetes Regenerative Medicine Research Group, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Rashmi R Maheshwari
- Diabetes Regenerative Medicine Research Group, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Scott J Anderson
- Diabetes Regenerative Medicine Research Group, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, UK
| | | | - Claire Jones
- Molecular Pathology Node Proximity Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Pavana G Rotti
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, US
| | - Sarah L Armour
- Diabetes Regenerative Medicine Research Group, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - John F Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, US
| | - Mike A Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - James A M Shaw
- Diabetes Regenerative Medicine Research Group, Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, UK
- Newcastle Diabetes Centre, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Espes D, Liljebäck H, Franzén P, Quach M, Lau J, Carlsson PO. Function and Gene Expression of Islets Experimentally Transplanted to Muscle and Omentum. Cell Transplant 2020. [PMCID: PMC8544762 DOI: 10.1177/0963689720960184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Islet transplantation to the liver is a potential curative treatment for patients with type 1 diabetes. Muscle and the greater omentum are two alternative implantation sites, which can provide excellent engraftment and hold potential as future sites for stem-cell-derived beta-cell replacement. We evaluated the functional outcome after islet transplantation to muscle and omentum and found that alloxan-diabetic animals were cured with a low number of islets (200) at both sites. The cured animals had a normal area under the curve blood glucose response to intravenous glucose, albeit animals with intramuscular islet grafts had increased 120-min blood glucose levels. They also demonstrated an exaggerated counter regulatory response to hypoglycemia. The expression of genes important for beta-cell function was, at both implantation sites, comparable to that in native pancreatic islets. The gene expression of insulin (INS1 and INS2) and glucose transporter-2 was even increased, and the expression of lactate dehydrogenase decreased, at both sites when compared to native islets. We conclude that muscle and omentum provide excellent conditions for engraftment of transplanted islets. When compared to control, 200 islets implanted to the omentum displayed a restored glucose tolerance, whereas animals with intramuscular islet grafts of similar size displayed mild glucose intolerance.
Collapse
Affiliation(s)
- Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hanna Liljebäck
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petra Franzén
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - My Quach
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Abstract
BACKGROUND Current therapeutic strategies for type 1 (T1DM) and type 2 diabetes mellitus (T2DM) rely on increasing or substituting endogenous insulin secretion in combination with lifestyle changes. β-cell regeneration, a process whereby new β-cells arise from progenitors, self-renewal or transdifferentiation, has the potential to become a viable route to insulin self-sufficiency. Current regeneration strategies capture many of the transcriptomic and protein features of native β-cells, generating cells capable of glucose-dependent insulin secretion in vitro and alleviation of hyperglycemia in vivo. However, whether novel β-cells display appreciable heterogeneity remains poorly understood, with potential consequences for long-term functional robustness. SCOPE OF REVIEW The review brings together crucial discoveries in the β-cell regeneration field with state-of-the-art knowledge regarding β-cell heterogeneity. Aspects that might aid production of longer-lasting and more plastic regenerated β-cells are highlighted and discussed. MAJOR CONCLUSIONS Different β-cell regeneration approaches result in a similar outcome: glucose-sensitive, insulin-positive cells that mimic the native β-cell phenotype but which lack normal plasticity. The β-cell subpopulations identified to date expand our understanding of β-cell survival, proliferation and function, signposting the direction for future regeneration strategies. Therefore, regenerated β-cells should exhibit stimulus-dependent differences in gene and protein expression, as well as establish a functional network with different β-cells, all while coexisting with other cell types on a three-dimensional platform.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lewis Everett
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
12
|
Kurian SM, Ferreri K, Wang CH, Todorov I, Al-Abdullah IH, Rawson J, Mullen Y, Salomon DR, Kandeel F. Gene expression signature predicts human islet integrity and transplant functionality in diabetic mice. PLoS One 2017; 12:e0185331. [PMID: 28968432 PMCID: PMC5624587 DOI: 10.1371/journal.pone.0185331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022] Open
Abstract
There is growing evidence that transplantation of cadaveric human islets is an effective therapy for type 1 diabetes. However, gauging the suitability of islet samples for clinical use remains a challenge. We hypothesized that islet quality is reflected in the expression of specific genes. Therefore, gene expression in 59 human islet preparations was analyzed and correlated with diabetes reversal after transplantation in diabetic mice. Analysis yielded 262 differentially expressed probesets, which together predict islet quality with 83% accuracy. Pathway analysis revealed that failing islet preparations activated inflammatory pathways, while functional islets showed increased regeneration pathway gene expression. Gene expression associated with apoptosis and oxygen consumption showed little overlap with each other or with the 262 probeset classifier, indicating that the three tests are measuring different aspects of islet cell biology. A subset of 36 probesets surpassed the predictive accuracy of the entire set for reversal of diabetes, and was further reduced by logistic regression to sets of 14 and 5 without losing accuracy. These genes were further validated with an independent cohort of 16 samples. We believe this limited number of gene classifiers in combination with other tests may provide complementary verification of islet quality prior to their clinical use.
Collapse
Affiliation(s)
- Sunil M. Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kevin Ferreri
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chia-Hao Wang
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Ivan Todorov
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Ismail H. Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes, and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Gene 2017; 629:52-58. [PMID: 28760554 DOI: 10.1016/j.gene.2017.07.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023]
Abstract
The NONcNZO10/LtJ mouse is a polygenic model of type-2 diabetes (T2D) that shows moderate obesity and diabetes, and is regarded as a good model reflective of the conditions of human T2D. In this study, we analyzed pathological changes of pancreases with the progress of time by using histopathology and gene expression analysis, including microRNA. A number of gene expression changes associated with decreased insulin secretion (possibly regulated by miR-29a/b) were observed, and zinc homeostasis (Slc30a8, Mt1 and Mt2) or glucose metabolism (Slc2a2) was suggested as being the candidate mechanism of pancreas failure in NONcNZO10/LtJ mice. These results demonstrate NONcNZO10/LtJ mice have a complex pathogenic mechanism of diabetes, and moreover, this fundamental information of NONcNZO10/LtJ mice would offer the opportunity for research and development of a novel antidiabetic drug.
Collapse
Affiliation(s)
- Tsuyoshi Hirata
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Tomomi Yoshitomi
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Minoru Inoue
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Iigo
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Koji Matsumoto
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Akira Shinagawa
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
14
|
N-acyl Taurines and Acylcarnitines Cause an Imbalance in Insulin Synthesis and Secretion Provoking β Cell Dysfunction in Type 2 Diabetes. Cell Metab 2017; 25:1334-1347.e4. [PMID: 28591636 DOI: 10.1016/j.cmet.2017.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
The processes contributing to β cell dysfunction in type 2 diabetes (T2D) are uncertain, largely because it is difficult to access β cells in their intact immediate environment. We examined the pathophysiology of β cells under T2D progression directly in pancreatic tissues. We used MALDI imaging of Langerhans islets (LHIs) within mouse tissues or from human tissues to generate in situ-omics data, which we supported with in vitro experiments. Molecular interaction networks provided information on functional pathways and molecules. We found that stearoylcarnitine accumulated in β cells, leading to arrest of insulin synthesis and energy deficiency via excessive β-oxidation and depletion of TCA cycle and oxidative phosphorylation metabolites. Acetylcarnitine and an accumulation of N-acyl taurines, a group not previously detected in β cells, provoked insulin secretion. Thus, β cell dysfunction results from enhanced insulin secretion combined with an arrest of insulin synthesis.
Collapse
|
15
|
Zhang L, Lanzoni G, Battarra M, Inverardi L, Zhang Q. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection. J Proteomics 2016; 150:149-159. [PMID: 27620696 DOI: 10.1016/j.jprot.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/20/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
The etiology of Type 1 Diabetes (T1D) remains elusive. Enzymatically isolated and cultured (EIC) islets cannot fully reflect the natural protein composition and disease process of in vivo islets, because of the stress from isolation procedures. In order to study islet protein composition in conditions close to the natural environment, we performed proteomic analysis of EIC islets, and laser capture microdissected (LCM) human islets and acinar tissue from fresh-frozen pancreas sections of three cadaveric donors. 1104 and 706 proteins were identified from 6 islets equivalents (IEQ) of LCM islets and acinar tissue, respectively. The proteomic profiles of LCM islets were reproducible within and among cadaveric donors. The endocrine hormones were only detected in LCM islets, whereas catalytic enzymes were significantly enriched in acinar tissue. Furthermore, high overlap (984 proteins) and similar function distribution were found between LCM and EIC islets proteomes, except that EIC islets had more acinar contaminants and stress-related signal transducer activity proteins. The comparison among LCM islets, LCM acinar tissue and EIC islets proteomes indicates that LCM combined with proteomic methods enables accurate and unbiased profiling of islet proteome from frozen pancreata. This paves the way for proteomic studies on human islets during the progression of T1D. SIGNIFICANCE The etiological agent triggering autoimmunity against beta cells in Type 1 diabetes (T1D) remains obscure. The in vitro models available (enzymatically isolated and cultured islets, EIC islets) do not accurately reflect what happens in vivo due to lack of the natural environment where islets exist and the preparation-induced changes in cell physiology. The importance of this study is that we investigated the feasibility of laser capture microdissection (LCM) for the isolation of intact islets from frozen cadaveric pancreatic tissue sections. We compared the protein profile of LCM islets (9 replicates from 3 cadaveric donors) with that of both LCM acinar tissues (6 replicates from the same 3 cadaveric donor as LCM islets) and EIC islets (at least 4 replicates for each sample with the same islets equivalents) by using proteomics techniques with advanced instrumentation, nanoLC-Q Exactive HF Orbitrap mass spectrometry (nano LC-MS/MS). The results demonstrate that the LCM method is reliable in isolating islets with an intact environment. LCM-based islet proteomics is a feasible approach to obtain good proteome coverage for assessing the pathology of T1D using cadaveric pancreatic samples, even from very small sample amounts. Future applications of this LCM-based proteomic method may help us understand the pathogenesis of T1D and identify potential biomarkers for T1D diagnosis at an early stage.
Collapse
Affiliation(s)
- Lina Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Matteo Battarra
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
16
|
Choong FJ, Freeman C, Parish CR, Simeonovic CJ. Islet heparan sulfate but not heparan sulfate proteoglycan core protein is lost during islet isolation and undergoes recovery post-islet transplantation. Am J Transplant 2015; 15:2851-64. [PMID: 26104150 DOI: 10.1111/ajt.13366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 03/29/2015] [Accepted: 04/19/2015] [Indexed: 01/25/2023]
Abstract
Islet beta cells in situ express intracellular heparan sulfate (HS), a property previously shown in vitro to be important for their survival. We report that HS levels inside islet beta cells correlate with the novel intracellular localization of the HSPG core proteins for collagen type XVIII (Col18), a conventional extracellular matrix component. Syndecan-1 (Sdc1) and CD44 core proteins were similarly localized inside beta cells. During isolation, mouse islets selectively lose HS to 11-27% of normal levels but retain their HSPG core proteins. Intra-islet HS failed to recover substantially during culture for 4 days and was not reconstituted in vitro using HS mimetics. In contrast, significant recovery of intra-islet HS to ∼40-50% of normal levels occurred by 5-10 days after isotransplantation. Loss of islet HS during the isolation procedure is independent of heparanase (a HS-degrading endoglycosidase) and due, in part, to oxidative damage. Treatment with antioxidants reduced islet cell death by ∼60% and increased the HS content of isolated islets by ∼twofold compared to untreated islets, preserving intra-islet HS to ∼60% of the normal HS content of islets in situ. These findings suggest that the preservation of islet HS during the islet isolation process may optimize islet survival posttransplant.
Collapse
Affiliation(s)
- F J Choong
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C Freeman
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C R Parish
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C J Simeonovic
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
17
|
Spégel P, Andersson LE, Storm P, Sharoyko V, Göhring I, Rosengren AH, Mulder H. Unique and Shared Metabolic Regulation in Clonal β-Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology 2015; 156:1995-2005. [PMID: 25774549 DOI: 10.1210/en.2014-1391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As models for β-cell metabolism, rat islets are, to some extent, a, heterogeneous cell population stressed by the islet isolation procedure, whereas rat-derived clonal β-cells exhibit a tumor-like phenotype. To describe to what extent either of these models reflect normal cellular metabolism, we compared metabolite profiles and gene expression in rat islets and the INS-1 832/13 line, a widely used clonal β-cell model. We found that insulin secretion and metabolic regulation provoked by glucose were qualitatively similar in these β-cell models. However, rat islets exhibited a more pronounced glucose-provoked increase of glutamate, glycerol-3-phosphate, succinate, and lactate levels, whereas INS-1 832/13 cells showed a higher glucose-elicited increase in glucose-6-phosphate, alanine, isocitrate, and α-ketoglutarate levels. Glucose induced a decrease in levels of γ-aminobutyrate (GABA) and aspartate in rat islets and INS-1 832/13 cells, respectively. Genes with cellular functions related to proliferation and the cell cycle were more highly expressed in the INS-1 832/13 cells. Most metabolic pathways that were differentially expressed included GABA metabolism, in line with altered glucose responsiveness of GABA. Also, lactate dehydrogenase A, which is normally expressed at low levels in mature β-cells, was more abundant in rat islets than in INS-1 832/13 cells, confirming the finding of elevated glucose-provoked lactate production in the rat islets. Overall, our results suggest that metabolism in rat islets and INS-1 832/13 cells is qualitatively similar, albeit with quantitative differences. Differences may be accounted for by cellular heterogeneity of islets and proliferation of the INS-1 832/13 cells.
Collapse
Affiliation(s)
- Peter Spégel
- Unit of Molecular Metabolism (P.S., L.E.A., V.S., I.G., H.M.), Lund University Diabetes Centre, Clinical Research Center, Skåne University Hospital, and Lund University Diabetes Centre (P.S., A.H.R.), Clinical Research Center, Skåne University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc 2014; 9:2809-22. [PMID: 25393778 DOI: 10.1038/nprot.2014.195] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
Collapse
|
19
|
Zammit NW, Grey ST. Emerging roles for A20 in islet biology and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:141-62. [PMID: 25302370 DOI: 10.1007/978-1-4939-0398-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A20 is most characteristically described in terms relating to inflammation and inflammatory pathologies. The emerging understanding of inflammation in the etiology of diabetes mellitus lays the framework for considering a central role for A20 in this disease process. Diabetes mellitus is considered a major health issue, and describes a group of common metabolic disorders pathophysiologically characterized by hyperglycemia. Within islets of Langherhans, the endocrine powerhouse of the pancreas, are the insulin-producing pancreatic beta-cells. Loss of beta-cell mass and function to inflammation and apoptosis is a major contributing factor to diabetes. Consequently, restoring functional beta-cell mass via transplantation represents a therapeutic option for diabetes. Unfortunately, transplanted islets also suffers from loss of beta-cell function and mass fueled by a multifactorial inflammatory cycle triggered by islet isolation prior to transplantation, the ischemic environment at transplantation as well as allogeneic or recurrent auto-immune responses. Activation of the transcription factor NF-kappaB is a central mediator of inflammatory mediated beta-cell dysfunction and loss. Accordingly, a plethora of strategies to block NF-kappaB activation in islets and hence limit beta-cell loss have been explored, with mixed success. We propose that the relatively poor efficacy of NF-kappaB blockade in beta-cells is due to concommittant loss of the important, NF-kappaB regulated anti-apoptotic and anti-inflammatory protein A20. A20 has been identified as a beta-cell expressed gene, raising questions about its role in beta-cell development and function, and in beta-cell related pathologies. Involvement of apoptosis, inflammation and NF-kappaB activation as beta-cell factors contributing to the pathophysiology of diabetes, coupled with the knowledge that beta-cells express the A20 gene, implies an important role for A20 in both normal beta-cell biology as well as beta-cell related pathology. Genome wide association studies (GWAS) linking single nucleotide polymorphisms in the A20 gene with the occurrence of diabetes and its complications support this hypothesis. In this chapter we review data supporting the role of A20 in beta-cell health and disease. Furthermore, by way of their specialized function in metabolism, pancreatic beta-cells also provide opportunities to explore the biology of A20 in scenarios beyond inflammation.
Collapse
|
20
|
Marciniak A, Selck C, Friedrich B, Speier S. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ. PLoS One 2013; 8:e78706. [PMID: 24223842 PMCID: PMC3817072 DOI: 10.1371/journal.pone.0078706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/15/2013] [Indexed: 12/24/2022] Open
Abstract
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.
Collapse
Affiliation(s)
- Anja Marciniak
- CRTD - DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Claudia Selck
- CRTD - DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Betty Friedrich
- CRTD - DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Stephan Speier
- CRTD - DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
- * E-mail:
| |
Collapse
|
21
|
Cuesta S, Kireev R, García C, Rancan L, Vara E, Tresguerres JAF. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8). AGE (DORDRECHT, NETHERLANDS) 2013; 35:659-671. [PMID: 22411259 PMCID: PMC3636397 DOI: 10.1007/s11357-012-9397-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the effect of aging on several parameters related to glucose homeostasis and insulin resistance in pancreas and how melatonin administration could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant mice (SAMR1). Insulin levels in plasma were increased with aging in both SAMP8 and SAMR1 mice, whereas insulin content in pancreas was decreased with aging in SAMP8 and increased in SAMR1 mice. Expressions of glucagon and GLUT2 messenger RNAs (mRNAs) were increased with aging in SAMP8 mice, and no differences were observed in somatostatin and insulin mRNA expressions. Furthermore, aging decreased also the expressions of Pdx-1, FoxO 1, FoxO 3A and Sirt1 in pancreatic SAMP8 samples. Pdx-1 was decreased in SAMR1 mice, but no differences were observed in the rest of parameters on these mice strains. Treatment with melatonin was able to decrease plasma insulin levels and to increase its pancreatic content in SAMP8 mice. In SAMR1, insulin pancreatic content and plasma levels were decreased. HOMA-IR was decreased with melatonin treatment in both strains of animals. On the other hand, in SAMP8 mice, treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin mRNA. Furthermore, it was also able to increase the expression of Sirt1, Pdx-1 and FoxO 3A. According to these results, aging is associated with significant alterations in the relative expression of pancreatic genes associated to glucose metabolism. This has been especially observed in SAMP8 mice. Melatonin administration was able to improve pancreatic function in old SAMP8 mice and to reduce HOMA-IR improving their insulin physiology and glucose metabolism.
Collapse
Affiliation(s)
- Sara Cuesta
- />Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
| | - Roman Kireev
- />Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
| | - Cruz García
- />Department of Biochemistry and Molecular Biology, Medical School, University Complutense of Madrid, Madrid, Spain
| | - Lisa Rancan
- />Department of Biochemistry and Molecular Biology, Medical School, University Complutense of Madrid, Madrid, Spain
| | - Elena Vara
- />Department of Biochemistry and Molecular Biology, Medical School, University Complutense of Madrid, Madrid, Spain
| | - Jesús A. F. Tresguerres
- />Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
- />Laboratory of Experimental Endocrinology, Department of Physiology, School of Medicine, Complutense University, Avda, Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
22
|
Kang NY, Lee SC, Park SJ, Ha HH, Yun SW, Kostromina E, Gustavsson N, Ali Y, Chandran Y, Chun HS, Bae M, Ahn JH, Han W, Radda GK, Chang YT. Visualization and Isolation of Langerhans Islets by a Fluorescent Probe PiY. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Kang NY, Lee SC, Park SJ, Ha HH, Yun SW, Kostromina E, Gustavsson N, Ali Y, Chandran Y, Chun HS, Bae M, Ahn JH, Han W, Radda GK, Chang YT. Visualization and isolation of Langerhans islets by a fluorescent probe PiY. Angew Chem Int Ed Engl 2013; 52:8557-60. [PMID: 23716493 DOI: 10.1002/anie.201302149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Nam-Young Kang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 138667, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim JW, You YH, Jung S, Suh-Kim H, Lee IK, Cho JH, Yoon KH. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 2013; 56:847-55. [PMID: 23338554 DOI: 10.1007/s00125-012-2812-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS The loss of beta cell function is a critical factor in the development of type 2 diabetes. Glucotoxicity plays a major role in the progressive deterioration of beta cell function and development of type 2 diabetes mellitus. Here we demonstrate that microRNA (miR)-30a-5p is a key player in early-stage glucotoxicity-induced beta cell dysfunction. METHODS We performed northern blots, RT-PCR and western blots in glucotoxicity-exposed primary rat islets and INS-1 cells. We also measured glucose-stimulated insulin secretion and insulin content. In vivo approaches were used to evaluate the role of miR-30a-5p in beta cell dysfunction. RESULTS miR-30a-5p expression was increased in beta cells after exposure to glucotoxic conditions, and exogenous miR-30a-5p overexpression also induced beta cell dysfunction in vitro. miR-30a-5p directly suppressed expression of Beta2/NeuroD (also known as Neurod1) by binding to a specific binding site in its 3'-untranslated region. After restoration of Beta2/NeuroD expression by knockdown miR-30a-5p or transfection of the Beta2/NeuroD gene, beta cell dysfunction, including decreased insulin content, gene expression and glucose-stimulated insulin secretion, recovered. Glucose tolerance and beta cell dysfunction improved on direct injection of Ad-si30a-5p into the pancreas of diabetic mice. CONCLUSIONS/INTERPRETATION Our data demonstrate that miR-30a-5p-mediated direct suppression of Beta2/NeuroD gene expression is an important initiation step of glucotoxicity-induced beta cell dysfunction.
Collapse
Affiliation(s)
- J-W Kim
- Department of Endocrinology and Metabolism, Seoul St Mary's Hospital, The Catholic University of Korea, # 505, Banpo-Dong, Seocho-Gu, Seoul 137-040, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
The role of the unfolded protein response in diabetes mellitus. Semin Immunopathol 2013; 35:333-50. [PMID: 23529219 DOI: 10.1007/s00281-013-0369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) plays a key role in the synthesis and modification of secretory and membrane proteins in all eukaryotic cells. Under normal conditions, these proteins are correctly folded and assembled in the ER. However, when cells are exposed to environmental factors such as overproduction of ER proteins, viral infections, or glucose deprivation, the secretory and membrane proteins can accumulate in unfolded or misfolded forms in the lumen of the ER, and consequently, cause stress in the ER. To maintain cellular homeostasis, cells induce several responses to ER stress. In mammalian cells, ER stress responses are induced by a diversity of signal pathways. There are three ER-located transmembrane proteins that play important roles in mammalian ER stress responses: activating transcription factor 6, inositol-requiring protein 1, and protein kinase RNA-like endoplasmic reticulum kinase. ER stress is linked to various diseases, including diabetes. This review highlights the particular importance of ER stress-responsive molecules in insulin biosynthesis, glyconeogenesis, insulin resistance, glucose intolerance, and pancreatic β-cell apoptosis. An understanding of the pathogenic mechanism of diabetes from the aspect of ER stress is crucial in formulating therapeutic strategies.
Collapse
|
26
|
Klein D, Misawa R, Bravo-Egana V, Vargas N, Rosero S, Piroso J, Ichii H, Umland O, Zhijie J, Tsinoremas N, Ricordi C, Inverardi L, Domínguez-Bendala J, Pastori RL. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One 2013; 8:e55064. [PMID: 23383059 PMCID: PMC3558471 DOI: 10.1371/journal.pone.0055064] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/22/2012] [Indexed: 12/26/2022] Open
Abstract
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology.
Collapse
Affiliation(s)
- Dagmar Klein
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ryosuke Misawa
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Valia Bravo-Egana
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nancy Vargas
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Samuel Rosero
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Julieta Piroso
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Hirohito Ichii
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Jiang Zhijie
- Center for Computational Science, University of Miami, Miami, Florida, United States of America
| | - Nicholas Tsinoremas
- Center for Computational Science, University of Miami, Miami, Florida, United States of America
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgical Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgical Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ricardo L. Pastori
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
β-Cell dysfunction is a critical component in the development of type 2 diabetes. Whilst both genetic and environmental factors contribute to the development of the disease, relatively little is known about the molecular network that is responsible for diet-induced functional changes in pancreatic β-cells. Recent genome-wide association studies for diabetes-related traits have generated a large number of candidate genes that constitute possible links between dietary factors and the genetic susceptibility for β-cell failure. Here, we summarize recent approaches for identifying nutritionally regulated transcripts in islets on a genome-wide scale. Polygenic mouse models for type 2 diabetes have been instrumental for investigating the mechanism of diet-induced β-cell dysfunction. Enhanced oxidative metabolism, triggered by a combination of dietary carbohydrates and fat, appears to play a critical role in the pathophysiology of diet-induced impairment of islets. More systematic studies of gene-diet interactions in β-cells of rodent models in combination with genetic profiling might reveal the regulatory circuits fundamental for the understanding of diet-induced impairments of β-cell function in humans.
Collapse
Affiliation(s)
- A Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
28
|
Where is the vitamin D receptor? Arch Biochem Biophys 2012; 523:123-33. [PMID: 22503810 DOI: 10.1016/j.abb.2012.04.001] [Citation(s) in RCA: 419] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/30/2012] [Accepted: 04/01/2012] [Indexed: 02/08/2023]
Abstract
The vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and plays a central role in the biological actions of vitamin D. VDR regulates the expression of numerous genes involved in calcium/phosphate homeostasis, cellular proliferation and differentiation, and immune response, largely in a ligand-dependent manner. To understand the global function of the vitamin D system in physiopathological processes, great effort has been devoted to the detection of VDR in various tissues and cells, many of which have been identified as vitamin D targets. This review focuses on the tissue- and cell type-specific distribution of VDR throughout the body.
Collapse
|
29
|
Merani S, Famulski KS, Ramassar V, Shapiro AJ, Halloran PF. Characterization of the transcriptome in isolated and transplanted mouse pancreatic islets: associations with engraftment and dysfunction. Islets 2012; 4:158-66. [PMID: 22653155 DOI: 10.4161/isl.19770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transplantation of pancreatic islets is an option for therapeutic management of hypoglycemia unawareness in select patients with type 1 diabetes mellitus. Characteristics of the transcriptome of freshly isolated islets, islet allografts, and islet isograft are reported in the literature. However, no single experiment has undertaken a comparison of the islet allograft to isograft. Potential implications of the latter are the use in diagnosis of rejection and to discover the molecular pathways in islet allograft dysfunction after transplant. Here, the mouse model of islet transplant is used to characterize the transcriptome of freshly isolated islets and compare islet graft in an isogeneic vs. allogeneic host using an Affymetrix GeneChip® Array assay. A set of islet associated transcripts (IAT) was developed, and subsequently shown to have high level of expression in islet allografts and isografts harvested either five- or ten-days after transplant. Furthermore, specific analysis of transcriptome differences between islet isografts and pre-rejection allografts (ten-day), reveal a series of islet rejection associated transcripts (IRAT). Nearly half of IRAT show overlap with previously described pathogenesis based transcript sets identified in the setting of mouse kidney allograft rejection. The novel transcripts identified to be associated with islet rejection include those involved in chemotaxis or lymphocyte function. Although use of biopsy based monitoring of humans islet transplants remains difficult at the present time, this study provides proof of principle for a transcriptome based technique for islet graft rejection monitoring and describes the transcripts associated with islet graft dysfunction.
Collapse
Affiliation(s)
- Shaheed Merani
- Alberta Diabetes Institute; University of Alberta; Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
30
|
Induction of protective genes leads to islet survival and function. J Transplant 2011; 2011:141898. [PMID: 22220267 PMCID: PMC3246756 DOI: 10.1155/2011/141898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/01/2011] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1), A20/tumor necrosis factor alpha inducible protein3 (tnfaip3), biliverdin reductase (BVR), Bcl2, and others) or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.
Collapse
|
31
|
Lee EM, Lee YE, Lee E, Ryu GR, Ko SH, Moon SD, Song KH, Ahn YB. Protective Effect of Heme Oxygenase-1 on High Glucose-Induced Pancreatic β-Cell Injury. Diabetes Metab J 2011; 35:469-79. [PMID: 22111038 PMCID: PMC3221022 DOI: 10.4093/dmj.2011.35.5.469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/19/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Glucose toxicity that is caused by chronic exposure to a high glucose concentration leads to islet dysfunction and induces apoptosis in pancreatic β-cells. Heme oxygenase-1 (HO-1) has been identified as an anti-apoptotic and cytoprotective gene. The purpose of this study is to investigate whether HO-1 up-regulation when using metalloprotophyrin (cobalt protoporphyrin, CoPP) could protect pancreatic β-cells from high glucose-induced apoptosis. METHODS Reverse transcription-polymerase chain reaction was performed to analyze the CoPP-induced mRNA expression of HO-1. Cell viability of INS-1 cells cultured in the presence of CoPP was examined by acridine orange/propidium iodide staining. The generation of intracellular reactive oxygen species (ROS) was measured using flow cytometry. Glucose stimulated insulin secretion (GSIS) was determined following incubation with CoPP in different glucose concentrations. RESULTS CoPP increased HO-1 mRNA expression in both a dose- and time-dependent manner. Overexpression of HO-1 inhibited caspase-3, and the number of dead cells in the presence of CoPP was significantly decreased when exposed to high glucose conditions (HG). CoPP also decreased the generation of intracellular ROS by 50% during 72 hours of culture with HG. However, decreased GSIS was not recovered even in the presence of CoPP. CONCLUSION Our data suggest that CoPP-induced HO-1 up-regulation results in protection from high glucose-induced apoptosis in INS-1 cells; however, glucose stimulated insulin secretion is not restored.
Collapse
Affiliation(s)
- Eun-Mi Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Esder Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Gyeong Ryul Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sung-Dae Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Olerud J, Mokhtari D, Johansson M, Christoffersson G, Lawler J, Welsh N, Carlsson PO. Thrombospondin-1: an islet endothelial cell signal of importance for β-cell function. Diabetes 2011; 60:1946-54. [PMID: 21617177 PMCID: PMC3121439 DOI: 10.2337/db10-0277] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Loss of thrombospondin (TSP)-1 in pancreatic islets has been shown to cause islet hyperplasia. This study tested the hypothesis that endothelial-derived TSP-1 is important for β-cell function. RESEARCH DESIGN AND METHODS Islet function was evaluated both in vivo and in vitro. Messenger RNA and protein expression were measured by real-time PCR and Western blot, respectively. The role of endothelial-derived TSP-1 for β-cell function was determined using a transplantation design in which recipient blood vessels either were allowed to grow or not into the transplanted islets. RESULTS TSP-1-deficient mice were glucose intolerant, despite having an increased β-cell mass. Moreover, their islets had decreased glucose-stimulated insulin release, (pro)insulin biosynthesis, and glucose oxidation rate, as well as increased expression of uncoupling protein-2 and lactate dehydrogenase-A when compared with control islets. Almost all TSP-1 in normal islets were found to be derived from the endothelium. Transplantation of free and encapsulated neonatal wild-type and TSP-1-deficient islets was performed in order to selectively reconstitute with TSP-1-positive or -negative blood vessels in the islets and supported that the β-cell defects occurring in TSP-1-deficient islets reflected postnatal loss of the glycoprotein in the islet endothelial cells. Treatment of neonatal TSP-1-deficient mice with the transforming growth factor (TGF)β-1-activating sequence of TSP-1 showed that reconstitution of TGFβ-1 activation prevented the development of decreased glucose tolerance in these mice. Thus, endothelial-derived TSP-1 activates islet TGFβ-1 of importance for β-cells. CONCLUSIONS Our study indicates a novel role for endothelial cells as functional paracrine support for pancreatic β-cells.
Collapse
Affiliation(s)
- Johan Olerud
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Magnus Johansson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Corresponding author: Per-Ola Carlsson,
| |
Collapse
|
33
|
Cuesta S, Kireev R, Forman K, García C, Acuña D, Vara E, Tresguerres JAF. Growth hormone can improve insulin resistance and differentiation in pancreas of senescence accelerated prone male mice (SAMP8). Growth Horm IGF Res 2011; 21:63-68. [PMID: 21239198 DOI: 10.1016/j.ghir.2010.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of aging on several parameters related to glucose metabolism, proliferation and differentiation in the pancreas and how GH administration to old SAMP8 mice could affect these parameters. MATERIALS AND METHODS Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice SAMP8 and SAMR1 mice and the influence of exogenous administration of GH (2mgs.c./kg/day) on SAMP8 mice. RNA was isolated from pancreas samples of male mice using the kit RNeasy total RNA kit Ref. 50974104 (Qiagen). Insulin was measured in plasma by RIA kit and glucose was measured in plasma by an assay kit. RESULTS Aging decreases the expression of differentiation in the pancreas of Pdx-1, FoxO 1 and FoxO 3A but not of Sirt 1 or of the expression of the proliferative genes PCNA and Sei1. The expression of glucagon and GLUT2 were increased with aging and no differences were observed in somatostatin and insulin expressions. Insulin levels in plasma were increased with aging in SAMP8 mice. IGF-1 expression was reduced with aging. The treatment with GH was able to increase the expression of Sirt 1, Pdx-1, FoxO 3A and IGF-1. On the other hand, the treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin, furthermore GH was able to decrease the plasma levels of insulin in old male SAMP8 mice (p<0.0004). CONCLUSION The present study has shown that aging is associated with significant alterations in the relative expression of pancreatic genes involved in insulin secretion as well as in the differentiation and in the intra islet glucose metabolism. According to our results, GH administration to old SAMP8 mice was able to improve the pancreatic function of the old SAMP8 mice and to decrease insulin and glucagon expressions in the pancreas improving instead insulin levels and glucose metabolism.
Collapse
Affiliation(s)
- Sara Cuesta
- Department Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Jermendy A, Toschi E, Aye T, Koh A, Aguayo-Mazzucato C, Sharma A, Weir GC, Sgroi D, Bonner-Weir S. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia 2011; 54:594-604. [PMID: 21240476 PMCID: PMC3045081 DOI: 10.1007/s00125-010-2036-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/25/2010] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Fetal and neonatal beta cells have poor glucose-induced insulin secretion and only gain robust glucose responsiveness several weeks after birth. We hypothesise that this unresponsiveness is due to a generalised immaturity of the metabolic pathways normally found in beta cells rather than to a specific defect. METHODS Using laser-capture microdissection we excised beta cell-enriched cores of pancreatic islets from day 1 (P1) neonatal and young adult Sprague-Dawley rats in order to compare their gene-expression profiles using Affymetrix U34A microarrays (neonatal, n = 4; adult, n = 3). RESULTS Using dChip software for analysis, 217 probe sets for genes/38 expressed sequence tags (ESTs) were significantly higher and 345 probe sets for genes/33 ESTs significantly lower in beta cell-enriched cores of neonatal islets compared with those of adult islets. Among the genes lower in the neonatal beta cells were key metabolic genes including mitochondrial shuttles (malate dehydrogenase, glycerol-3-phosphate dehydrogenase and glutamate oxalacetate transaminase), pyruvate carboxylase and carnitine palmitoyl transferase 2. Differential expression of these enzyme genes was confirmed by quantitative PCR on RNA from isolated neonatal (P2 until P28) and adult islets and with immunostaining of pancreas. Even by 28 days of age some of these genes were still expressed at lower levels than in adults. CONCLUSIONS/INTERPRETATION The lack of glucose responsiveness in neonatal islets is likely to be due to a generalised immaturity of the metabolic specialisation of pancreatic beta cells.
Collapse
Affiliation(s)
- A. Jermendy
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA; 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - E. Toschi
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - T. Aye
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - A. Koh
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - C. Aguayo-Mazzucato
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - A. Sharma
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - G. C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - D. Sgroi
- Molecular Pathology Unit, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - S. Bonner-Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
35
|
Li WC, Rukstalis JM, Nishimura W, Tchipashvili V, Habener JF, Sharma A, Bonner-Weir S. Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J Cell Sci 2010; 123:2792-802. [PMID: 20663919 DOI: 10.1242/jcs.065268] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The adult pancreas has considerable capacity to regenerate in response to injury. We hypothesized that after partial pancreatectomy (Px) in adult rats, pancreatic-duct cells serve as a source of regeneration by undergoing a reproducible dedifferentiation and redifferentiation. We support this hypothesis by the detection of an early loss of the ductal differentiation marker Hnf6 in the mature ducts, followed by the transient appearance of areas composed of proliferating ductules, called foci of regeneration, which subsequently form new pancreatic lobes. In young foci, ductules express markers of the embryonic pancreatic epithelium - Pdx1, Tcf2 and Sox9 - suggesting that these cells act as progenitors of the regenerating pancreas. The endocrine-lineage-specific transcription factor Neurogenin3, which is found in the developing embryonic pancreas, was transiently detected in the foci. Islets in foci initially resemble embryonic islets in their lack of MafA expression and lower percentage of beta-cells, but with increasing maturation have increasing numbers of MafA(+) insulin(+) cells. Taken together, we provide a mechanism by which adult pancreatic duct cells recapitulate aspects of embryonic pancreas differentiation in response to injury, and contribute to regeneration of the pancreas. This mechanism of regeneration relies mainly on the plasticity of the differentiated cells within the pancreas.
Collapse
Affiliation(s)
- Wan-Chun Li
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yanay O, Moralejo D, Kernan K, Brzezinski M, Fuller JM, Barton R, Lernmark A, Osborne WR. Prolonged survival and improved glycemia in BioBreeding diabetic rats after early sustained exposure to glucagon-like peptide 1. J Gene Med 2010; 12:538-44. [PMID: 20527046 PMCID: PMC2882674 DOI: 10.1002/jgm.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) in both humans and BioBreeding (BB) rats is an autoimmune disease that results in complete destruction of islets and insulin dependency for life. Glucagon-like peptide 1 (GLP-1) promotes beta cell proliferation and neogenesis and has a potent insulinotropic effect. We hypothesized that the expression of GLP-1 before disease onset would increase islet mass, delay diabetes and prolong survival of BB rats. METHODS Vascular smooth muscle cells retrovirally transduced to secrete GLP-1 were seeded into TheraCyte encapsulation devices, implanted subcutaneously, and rats were monitored for diabetes. RESULTS In untreated control rats, plasma GLP-1 levels were 34.5-39.5 pmol/l, whereas, in treated rats, plasma levels were elevated, in the range 90-250.4 pmol/l. Hypoglycemia was not detected and this was anticipated from the glucose-regulated action of GLP-1. Diabetes onset (mean + or - SEM) in untreated rats occurred at 56.5 + or - 0.6 days (n = 6) and, in GLP-1-treated rats, was delayed until 76.4 + or - 3.3 days (n = 5) (p < 0.001). After disease onset, untreated control rats showed a rapid weight loss and elevated blood glucose (>650 mg/dl) and did not survive beyond 11 days. At 5 days after diabetes onset, insulin-secreting islets were absent in untreated rats. By contrast, treated rats maintained weight for up to 143 days of age and showed insulin-secreting beta cells. CONCLUSIONS Sustained GLP-1 expression delivered by encapsulated cells before diabetes onset in BB rats showed an improved clinical outcome, suggesting the potential for treating patients using long lasting GLP-1 analogs.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/therapy
- Female
- Glucagon/metabolism
- Glucagon-Like Peptide 1/pharmacology
- Glucagon-Like Peptide 1/therapeutic use
- Humans
- Implants, Experimental
- Male
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Pancreas/cytology
- Pancreas/metabolism
- Rats
- Rats, Inbred BB
- Rats, Wistar
- Transduction, Genetic
Collapse
Affiliation(s)
- Ofer Yanay
- Department of Pediatrics, University of Washington, Seattle WA
| | - Daniel Moralejo
- Department of Comparative Medicine, University of Washington, Seattle WA
- Department of Medicine, University of Washington, Seattle WA
| | - Kelly Kernan
- Department of Pediatrics, University of Washington, Seattle WA
| | | | | | | | - Ake Lernmark
- Department of Medicine, University of Washington, Seattle WA
| | | |
Collapse
|
37
|
Dreja T, Jovanovic Z, Rasche A, Kluge R, Herwig R, Tung YCL, Joost HG, Yeo GSH, Al-Hasani H. Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia 2010; 53:309-20. [PMID: 19902174 PMCID: PMC2797618 DOI: 10.1007/s00125-009-1576-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/21/2009] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Numerous new genes have recently been identified in genome-wide association studies for type 2 diabetes. Most are highly expressed in beta cells and presumably play important roles in their function. However, these genes account for only a small proportion of total risk and there are likely to be additional candidate genes not detected by current methodology. We therefore investigated islets from the polygenic New Zealand mouse (NZL) model of diet-induced beta cell dysfunction to identify novel genes and pathways that may play a role in the pathogenesis of diabetes. METHODS NZL mice were fed a diabetogenic high-fat diet (HF) or a diabetes-protective carbohydrate-free HF diet (CHF). Pancreatic islets were isolated by laser capture microdissection (LCM) and subjected to genome-wide transcriptome analyses. RESULTS In the prediabetic state, 2,109 islet transcripts were differentially regulated (>1.5-fold) between HF and CHF diets. Of the genes identified, 39 (e.g. Cacna1d, Chd2, Clip2, Igf2bp2, Dach1, Tspan8) correlated with data from the Diabetes Genetics Initiative and Wellcome Trust Case Control Consortium genome-wide scans for type 2 diabetes, thus validating our approach. HF diet induced early changes in gene expression associated with increased cell-cycle progression, proliferation and differentiation of islet cells, and oxidative stress (e.g. Cdkn1b, Tmem27, Pax6, Cat, Prdx4 and Txnip). In addition, pathway analysis identified oxidative phosphorylation as the predominant gene-set that was significantly upregulated in response to the diabetogenic HF diet. CONCLUSIONS/INTERPRETATION We demonstrated that LCM of pancreatic islet cells in combination with transcriptional profiling can be successfully used to identify novel candidate genes for diabetes. Our data strongly implicate glucose-induced oxidative stress in disease progression.
Collapse
Affiliation(s)
- T. Dreja
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - Z. Jovanovic
- Institute of Metabolic Science, Level 4, University of Cambridge Metabolic Research Laboratories, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - A. Rasche
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - R. Kluge
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - R. Herwig
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Y. C. L. Tung
- Institute of Metabolic Science, Level 4, University of Cambridge Metabolic Research Laboratories, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - H. G. Joost
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - G. S. H. Yeo
- Institute of Metabolic Science, Level 4, University of Cambridge Metabolic Research Laboratories, Box 289, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - H. Al-Hasani
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To summarize recent studies on the oxygenation of pancreatic islets and its role in islet transplantation. RECENT FINDINGS Pancreatic islet cells are highly sensitive to hypoxic conditions. Hypoxia contributes to poor islet yield at isolation, as well as inflammatory events and cellular death during culture and early posttransplantation. Use of oxygen carriers, such as semifluorinated alkanes, during pancreas preservation and gas-permeable devices for islet culture and transport has in recent studies proven beneficial. Beta-cell death can be limited posttransplantation by targeting hypoxia-induced cellular pathways that cause apoptotic death. Owing to low revascularization, impaired oxygenation seems to prevail in intraportally transplanted islets. Means to improve revascularization, oxygenation and function of transplanted islets can be achieved not only by stimulating angiogenic factors, but also by decrease of angiostatic factors such as thrombospondin-1 in islets for transplantation. Moreover, bone-marrow-derived cells, such as mesenchymal stem cells and hematopoietic stem cells, can induce or contribute to increased revascularization. SUMMARY Low oxygenation of islets contributes to cellular death and dysfunction during preparation of islets for transplantation, as well as posttransplantation. Interventions at these different steps to ensure adequate oxygenation have the potential to improve the results of clinical islet transplantation.
Collapse
|
39
|
Pdx1 (MODY4) regulates pancreatic beta cell susceptibility to ER stress. Proc Natl Acad Sci U S A 2009; 106:19090-5. [PMID: 19855005 DOI: 10.1073/pnas.0904849106] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) results from pancreatic beta cell failure in the setting of insulin resistance. Heterozygous mutations in the gene encoding the beta cell transcription factor pancreatic duodenal homeobox 1 (Pdx1) are associated with both T2DM and maturity onset diabetes of the young (MODY4), and low levels of Pdx1 accompany beta cell dysfunction in experimental models of glucotoxicity and diabetes. Here, we find that Pdx1 is required for compensatory beta cell mass expansion in response to diet-induced insulin resistance through its roles in promoting beta cell survival and compensatory hypertrophy. Pdx1-deficient beta cells show evidence of endoplasmic reticulum (ER) stress both in the complex metabolic milieu of high-fat feeding as well as in the setting of acutely reduced Pdx1 expression in the Min6 mouse insulinoma cell line. Further, Pdx1 deficiency enhances beta cell susceptibility to ER stress-associated apoptosis. The results of high throughput expression microarray and chromatin occupancy analyses reveal that Pdx1 regulates a broad array of genes involved in diverse functions of the ER, including proper disulfide bond formation, protein folding, and the unfolded protein response. These findings suggest that Pdx1 deficiency leads to a failure of beta cell compensation for insulin resistance at least in part by impairing critical functions of the ER.
Collapse
|
40
|
Pechhold S, Stouffer M, Walker G, Martel R, Seligmann B, Hang Y, Stein R, Harlan DM, Pechhold K. Transcriptional analysis of intracytoplasmically stained, FACS-purified cells by high-throughput, quantitative nuclease protection. Nat Biotechnol 2009; 27:1038-42. [PMID: 19838197 PMCID: PMC4638177 DOI: 10.1038/nbt.1579] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/15/2009] [Indexed: 12/21/2022]
Abstract
Exploring the pathophysiology underlying diabetes mellitus requires characterizing the cellular constituents of pancreatic islets, primarily insulin-producing β-cells. Such efforts have been limited by inadequate techniques for purifying islet cellular subsets for further biochemical and gene-expression studies. Using intracytoplasmic staining and fluorescence-activated cell-sorting (FACS) followed by quantitative nuclease protection assay (qNPA™) technology, we examined 30 relevant genes expressed by islet subpopulations. Purified islet cell subsets expressed all four tested “housekeeping” genes with a surprising variability, dependent on both cell lineage and developmental stage, suggesting caution when interpreting housekeeping gene-normalized mRNA quantifications. Our new approach confirmed expected islet cell lineage-specific gene expression patterns at the transcriptional level, but also detected new phenotypes, including mRNA-profiles (supported by immunohistology) demonstrating that during pregnancy, some β-cells express Mafb, previously found only in immature β-cells during embryonic development. Overall, qNPA™ gene expression analysis using intracellular-stained then FACS-sorted cells has broad applications beyond islet cell biology.
Collapse
Affiliation(s)
- Susanne Pechhold
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vergani A, Clissi B, Sanvito F, Doglioni C, Fiorina P, Pardi R. Laser capture microdissection as a new tool to assess graft-infiltrating lymphocytes gene profile in islet transplantation. Cell Transplant 2009; 18:827-32. [PMID: 19785935 DOI: 10.3727/096368909x472278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Innovative tolerogenic protocols in transplantation would take advantage of the development of new tools capable of evaluating the impact of these treatments on the immune system. These assays have potential for clinical application. Currently, many of these studies are based on the analysis of peripheral lymph nodes and blood-derived cells, where the percentage of alloantigen-specific cells can be low or even unpredictable. We combined a laser capture microdissection (LCM) technique with real-time PCR (RT-PCR) to evaluate gene profile of islet-infiltrating lymphocytes. Donor Lewis rats islets were transplanted under the kidney capsule in diabetic Brown Norway rats. Administration of anti-LFA1 mAb or anti-CD28 F(Ab)' was able to prolong islet survival, while the combined treatment resulted in indefinite survival. The analysis of gene expression profile for IL-2, IFN-gamma, and IL-10 production of graft-infiltrating cells revealed high IL-2, IFN-gamma, and IL-10 in untreated rats; on the contrary, the combined treatment selectively abrogated IL-2- and IFN-gamma-producing cells infiltrate. The comparison between cytokine profile in periphery (even during an allogenic extra stimulus) and in the graft revealed the dichotomy between graft and peripheral cytokine assessment. We thus propose that direct analysis of graft-infiltrating cells should be used whenever possible to evaluate the effects of a new immunomodulatory protocol.
Collapse
Affiliation(s)
- A Vergani
- Transplantation Research Center(TRC)-Nephrology, Children's Hospital-Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Pancreatic islets are highly vascularized micro-organs. Approximately 10% of an islet consists of blood vessels. The induction and maintenance of the islet vascular system depend on VEGF secreted from β-cells. VEGF is also critical for the phenotype of the islet vasculature by induction of a vast number of fenestrae. The islet vasculature serves the role of supplying the endocrine cells with oxygen and nutrients, but may also be important for proper glucose sensing of the cells, for paracrine support of endocrine function and growth, and for drainage of metabolites and secreted islet hormones into the systemic circulation. Emerging evidence suggests an important role of islet endothelial cells to maintain β-cell function and growth by secretion of molecules such as hepatocyte growth factor, thrombospondin-1 and laminins, thereby forming a vascular niche for the endocrine cells.
Collapse
Affiliation(s)
- Johan Olerud
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- b Department of Medical Sciences, Section for Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden and Department of Medical Cell Biology, Husargatan 3, Box 571, SE-75123, Uppsala, Sweden.
| |
Collapse
|
43
|
Hevezi P, Moyer BD, Lu M, Gao N, White E, Echeverri F, Kalabat D, Soto H, Laita B, Li C, Yeh SA, Zoller M, Zlotnik A. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 2009; 4:e6395. [PMID: 19636377 PMCID: PMC2712080 DOI: 10.1371/journal.pone.0006395] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/27/2009] [Indexed: 11/19/2022] Open
Abstract
Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM) procured fungiform (FG) and circumvallate (CV) taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.
Collapse
Affiliation(s)
- Peter Hevezi
- Senomyx, Inc, San Diego, California, United States of America
| | - Bryan D. Moyer
- Senomyx, Inc, San Diego, California, United States of America
- * E-mail:
| | - Min Lu
- Senomyx, Inc, San Diego, California, United States of America
| | - Na Gao
- Senomyx, Inc, San Diego, California, United States of America
| | - Evan White
- Senomyx, Inc, San Diego, California, United States of America
| | | | - Dalia Kalabat
- Senomyx, Inc, San Diego, California, United States of America
| | - Hortensia Soto
- Senomyx, Inc, San Diego, California, United States of America
| | - Bianca Laita
- Senomyx, Inc, San Diego, California, United States of America
| | - Cherry Li
- Senomyx, Inc, San Diego, California, United States of America
| | | | - Mark Zoller
- Senomyx, Inc, San Diego, California, United States of America
| | - Albert Zlotnik
- Senomyx, Inc, San Diego, California, United States of America
| |
Collapse
|
44
|
Rodríguez-Mulero S, Montanya E. Islet graft response to transplantation injury includes upregulation of protective as well as apoptotic genes. Cell Transplant 2009; 17:1025-34. [PMID: 19177839 DOI: 10.3727/096368908786991524] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pancreatic islets are particularly vulnerable in the initial days after transplantation when multiple factors converge to damage the islet graft. The aim of this study was to investigate the expression profile of genes involved in damage and protection of beta-cells in the initial days after syngeneic islet transplantation. We studied the expression of a set of selected genes involved in apoptosis (Bcl2, Bclx(L), Bax, Bad, Bid, and CHOP), cytokine defense, (SOCS-1 and SOCS-3), or free radical protection (Hmox1, Cu/Zn-SOD, Mn-SOD, and Hsp70). Because hyperglycemia has deleterious effects on islet transplantation outcome, we studied its effect on the expression of these genes. Five hundred islets were syngeneically transplanted under the kidney capsule of normoglycemic or streptozotocin-induced diabetic Lewis rats. Gene expression was analyzed by quantitative real-time RT-PCR in grafts 1, 3, and 7 days after transplantation, and in freshly isolated islets. The expression of proapoptotic genes Bid and CHOP, as well as protective genes Bclx(L), Socs1, Socs3, Hmox1, and MnSod, was maximally increased 1 day after transplantation, and in most cases it remained increased 7 days later, indicating the presence of a protective response against cell damage. In contrast, the expression of Bcl2, Bax, Bad, Cu/ZnSod, and Hsp70 genes did not change. Hyperglycemia did not modify the expression of most studied genes. However, MnSod and Ins2 expression was increased and reduced, respectively, on day 7 after transplantation to diabetic recipients, suggesting that hyperglycemia increased oxidative stress and deteriorated beta-cell function in transplanted islets.
Collapse
Affiliation(s)
- Silvia Rodríguez-Mulero
- Laboratory of Diabetes and Experimental Endocrinology, Clinical Science Department, IDIBELL-University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
45
|
Abstract
OBJECTIVES : This study observed whether mesenchymal stem cells (MSCs) adopt beta-cell fate upon diabetic microenvironment. METHODS : We transplanted male porcine MSCs to diabetic female pigs by directly injecting into pancreas. Recipients' sera and pancreatic tissue were analyzed to assess the therapeutic effect. Islets were collected from the sections using laser-capture microdissection. The RNAs from these specimens were extracted and analyzed for insulin and pancreas duodenum homeobox 1 messenger RNA (mRNA) expression. SRY gene was detected from the specimens. RESULTS : Compared with untreated diabetic controls, blood glucose level decreased greatly in recipients from 18 days (15.44 +/- 0.31 mmol/L vs 16.66 +/- 0.11 mmol/L) and insulin increased from 14 days (0.048 +/- 0.006 U/L vs 0.030 +/- 0.004 U/L). Hematoxylin and eosin-stained sections demonstrated increased islets in recipients and few lymphocytes present. The newly formed islets were smaller than normal islets (47.2 mum +/- 19.6 vs 119.6 +/- 27.7 mum). Reverse transcription-polymerase chain reaction showed that microdissected cells expressed insulin and pancreas duodenum homeobox 1 mRNA (79.3% +/- 16.2% of control, 65.2% +/- 14.8% of control, respectively). Immunoreactivity showed that the transplanted MSCs expressed insulin. SRY gene and insulin mRNA double-positive cells were found in microdissected cells by fluorescence in situ hybridization. CONCLUSIONS This study shows that MSCs could adopt beta-cell fate in diabetic pancreatic microenvironment without obvious immune rejections. Stem cell transplantation in orthotope is a promising therapy for diabetes.
Collapse
|
46
|
Huang J, Karakucuk V, Levitsky LL, Rhoads DB. Expression of HNF4alpha variants in pancreatic islets and Ins-1 beta cells. Diabetes Metab Res Rev 2008; 24:533-43. [PMID: 18561282 DOI: 10.1002/dmrr.870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatocyte nuclear factor (HNF4alpha) is a nuclear receptor essential for endodermal differentiation and cell functions in the adult pancreas, liver, and other tissues. Mutations in the HNF4A gene cause MODY1. Up to nine protein variants arise from two developmentally regulated promoters. Because some variants lack the N-terminal activation function 1 (AF-1) and/or C-terminal inhibitory F domain, defining their tissue-specific regulation and function is important for understanding pancreatic beta cell behaviour. METHODS Expression of HNF4alpha variants in islets, rat Ins-1 insulinoma cells, and human Hep3B hepatocellular carcinoma cells was assessed using a long-range reverse transcription-polymerase chain reaction (RT-PCR) strategy capable of recognizing each combination of mRNA termini. Protein expression was verified by immuno-blotting with terminus-specific antibodies and DNA-binding assays. RESULTS Mouse islets and both cell lines express HNF4alpha9, which lacks both AF-1 and the F domain. Islets also expressed the HNF4alpha P1 promoter variants HNF4alpha1/alpha2, and Hep3B cells expressed HNF4alpha3. When ectopically expressed in COS-7 cells, HNF4alpha1, alpha3, alpha7, and alpha9 each stimulated an HNF4alpha-dependent promoter. Variants containing exon 1B (HNF4alpha4 - alpha6) were not detected. Lack of canonical splicing signals and species conservation argues against exon 1B usage. CONCLUSIONS This is the first report of HNF4alpha9 expression in any tissue. Our findings extend our understanding of HNF4alpha gene transcription and function. This knowledge may be useful in efforts to recover or establish regulated insulin secretion.
Collapse
Affiliation(s)
- Jianmin Huang
- Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, MA 02114-2696, USA
| | | | | | | |
Collapse
|
47
|
Wilson JT, Chaikof EL. Thrombosis and inflammation in intraportal islet transplantation: a review of pathophysiology and emerging therapeutics. J Diabetes Sci Technol 2008; 2:746-59. [PMID: 19885257 PMCID: PMC2769789 DOI: 10.1177/193229680800200502] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the inception of the Edmonton Protocol, intraportal islet transplantation (IPIT) has re-emerged as a promising cell-based therapy for type 1 diabetes. However, current clinical islet transplantation remains limited, in part, by the need to transplant islets from 2-4 donor organs, often through several separate infusions, to reverse diabetes in a single patient. Results from clinical islet transplantation and experimental animal models now indicate that the majority of transplanted islets are destroyed in the immediate post-transplant period, a process largely facilitated by deleterious inflammatory responses triggered by islet-derived procoagulant and proinflammatory mediators. Herein, mechanisms that underlie the pathophysiology of thrombosis and inflammation in IPIT are reviewed, and emerging approaches to improve islet engraftment through attenuation of inflammatory responses are discussed.
Collapse
Affiliation(s)
- John T. Wilson
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Elliot L. Chaikof
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
48
|
Pathology of an Islet Transplant 2 Years After Transplantation: Evidence for a Nonimmunological Loss. Transplantation 2008; 86:54-62. [DOI: 10.1097/tp.0b013e318173a5da] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Effects of glucose toxicity and islet purity on in vivo magnetic resonance imaging of transplanted pancreatic islets. Transplantation 2008; 85:1091-8. [PMID: 18431227 DOI: 10.1097/tp.0b013e31816b183e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic islet transplantation has recently emerged as a powerful clinical modality to restore normoglycemia in diabetic patients. Despite the success of the Edmonton protocol, these patients still experience a significant islet loss immediately after transplantation. Noninvasive magnetic resonance imaging (MRI) allows for longitudinal monitoring of graft loss providing that islets are labeled with a magnetically "visible" contrast agent. To fully interpret the imaging data, it is critical to investigate factors normally present during clinical transplantation and influencing MRI of transplanted islets. METHODS Here, we focused on both the effect of hyperglycemia and the effect of contaminating nonendocrine tissue, which is always present in islet preparations, on MRI imaging of islet grafts. Human pancreatic islets labeled with Feridex were transplanted in diabetic and healthy animals. Separate groups of animals were transplanted with Feridex-labeled pure and nonpure (50% islets and 50% nonendocrine tissue) preparations. The fate of the graft in all groups was monitored by in vivo MRI. RESULTS We found that diabetic animals with transplanted islets showed a significantly higher rate of islet death than their healthy counterparts on in vivo MR images. Interestingly, transplantation of islets contaminated with nonendocrine tissue did not have any significant influence on MR images, presumably because of a low labeling rate of this tissue and a fast rate of its disappearance after transplantation. CONCLUSIONS We believe that this study serves as yet another step on our way to clinical use of in vivo imaging of islet transplantation.
Collapse
|
50
|
Inducible nitric oxide synthase-nitric oxide plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Transplantation 2008; 85:323-30. [PMID: 18301327 DOI: 10.1097/tp.0b013e31816168f9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Islet transplantation is a potential strategy to cure type 1 diabetes mellitus. However, a substantial part of the islet graft becomes nonfunctional due to several factors including hypoxia. However, the precise mechanism of cell damage is largely unknown in hypoxic exposure to pancreatic beta cells. The aim of the present study was to investigate whether acute and severe hypoxic injury could involve inducible nitric oxide synthase (iNOS)-nitric oxide (NO) signaling in beta cells. METHODS The rat beta cell line (INS-1) and primary rat islets were incubated in an anoxic chamber. Cell viability was determined by propium iodide staining or cell counting kit. The expression of iNOS mRNA and protein was examined using reverse-transcription polymerase chain reaction and Western blot analysis. NO production was measured as nitrite accumulation by Griess reagent method. RESULTS After hypoxic exposure, marked cell death occurred in INS-1 cells and rat islets, accompanied by increase in activated caspase-3 expression. NO production was increased in the culture medium in a time-dependent manner. Increase in expression of iNOS mRNA and protein was found. Pretreatment with a selective iNOS inhibitor, 1400W, significantly prevented cell death during hypoxia. In addition, hypoxia activated c-Jun N-terminal kinase (JNK) significantly, but the addition of 1400W inhibited hypoxia-induced JNK phosphorylation. CONCLUSIONS Our data suggest that iNOS-NO plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Therefore, iNOS-NO might be a potential therapeutic target for preserving beta cell survival in islet transplantation through prevention of hypoxia-mediated cell death.
Collapse
|