1
|
Pontini L, Angelini T, Palazzoli P, Maggioni D, Giorgi G, Raccosta L, Damiano G, Mammoli V, Fontana N, Russo V, Marinozzi M. Discovery of 22(S)-23-phenyl-24-norchol-5-en-3β,22-diol (PFM046) as the first-in-class, steroidal, non-sulfated Liver X Receptor antagonist with anticancer activity. Eur J Med Chem 2025; 283:117136. [PMID: 39671877 DOI: 10.1016/j.ejmech.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
A plethora of studies have demonstrated the crucial role played by Liver X Receptors (LXRs) in cancer. However, whether LXRs activation results in pro-versus anti-tumor effects is still matter of debate. Recently, we have reported the ability of 22(S)-hydroxycholesterol-3-sulfate (PFM037) to antagonize LXRα activity, and, at the same time, its capability to improve in-vivo anti-tumor immune responses. Herein we report the first study aimed at the definition of structure-activity relationships of PFM037. Successfully, we identified 22(S)-23-phenyl-24-norchol-5-en-3β,22-diol (PFM046) as a more potent LXRs antagonist than PFM037. PFM046 showed a peculiar LXR target gene expression profile, being able, as expected for an antagonist, to suppress SCD1 and FASN expression, while surprisingly maintaining the ability to upregulate ABCA1 gene, as typical for an agonist. PFM046 showed a remarkable antitumor activity in two both in vitro-and in-vivo mouse models, highlighting the high potential of LXRs antagonists in oncological applications.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123, Perugia, Italy
| | - Tommaso Angelini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123, Perugia, Italy
| | - Pietro Palazzoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123, Perugia, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, via Olgettina, 58-20132, Milan, Italy
| | - Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 53100, Siena, Italy
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, via Olgettina, 58-20132, Milan, Italy
| | - Giuseppe Damiano
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, via Olgettina, 58-20132, Milan, Italy
| | - Valerio Mammoli
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec Company, Via A. Fleming 4, 37135, Verona, Italy
| | - Niccolò Fontana
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec Company, Via A. Fleming 4, 37135, Verona, Italy
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, via Olgettina, 58-20132, Milan, Italy.
| | - Maura Marinozzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123, Perugia, Italy.
| |
Collapse
|
2
|
Chachaj Brekiesz A, Kobierski J, Wnętrzak A, Dynarowicz Latka P. Interactions Determining Stereoselectivity in Two-Dimensional Systems─The Case of 22-Hydroxycholesterol Epimers. J Phys Chem B 2025; 129:273-285. [PMID: 39688106 DOI: 10.1021/acs.jpcb.4c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Oxidized derivatives of cholesterol play an important role in the functioning of biomembranes. Unlike other biomolecules, which are physiologically active in only one enantiomeric form, some oxysterols exist endogenously as two stereoisomers that exhibit strictly different biological effects. In this paper, we focused our attention on 22-hydroxycholesterol (22-OH) epimers, 22(R)-OH and 22(S)-OH, and examined their properties in Langmuir monolayers spread at the air/water interface, using classical surface manometry complemented with Brewster angle microscopy (BAM) images of the film texture. The studied epimers showed quite different monolayer characteristics. Namely, 22(S)-OH formed homogeneous, condensed monolayers of high collapse pressure, while 22(R)-OH films were more disordered and expanded with quite low collapse pressure. Interestingly, the latter compound showed in the course of the surface pressure-molecular area isotherm a temperature-dependent plateau transition, characterized by the coexistence of domains of molecules with different inclinations, visible in BAM images as patches of varying brightness. Molecular dynamics (MD) simulations confirmed this and revealed that the greater structural variability of 22(R)-OH is due to the greater hydration of the oxygen atom at C(22) compared to the other epimer. Next, we tested whether 22-OH epimers could differentiate interactions with sphingomyelin (SM). Although the strength of interaction with SM was similar for both epimers, the composition of the films corresponding to this minimum was different. With the aid of MD, it was found that these differences result directly from the interplay between 22-OH molecules and their ability for hydrogen bond formation. Therefore, the stereochemistry of oxysterols seems to play a crucial role in the overall structural organization of the membrane.
Collapse
Affiliation(s)
- Anna Chachaj Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | | |
Collapse
|
3
|
Katare PB, Dalmao-Fernandez A, Mengeste AM, Hamarsland H, Ellefsen S, Bakke HG, Kase ET, Thoresen GH, Rustan AC. Energy metabolism in skeletal muscle cells from donors with different body mass index. Front Physiol 2022; 13:982842. [DOI: 10.3389/fphys.2022.982842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m2) and individuals with obesity (BMI>30 kg/m2). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups. Alterations in protein expression were investigated using proteomic analysis, and energy metabolism was studied using radiolabeled substrates. Gene Ontology enrichment analysis showed that glycolytic, apoptotic, and hypoxia pathways were upregulated, whereas the pentose phosphate pathway was downregulated in myotubes from donors with obesity compared to myotubes from lean donors. Moreover, fatty acid, glucose, and amino acid uptake were increased in myotubes from individuals with obesity. However, fatty acid oxidation was reduced, glucose oxidation was increased in myotubes from subjects with obesity compared to cells from lean. Pretreatment of myotubes with palmitic acid (PA) or eicosapentaenoic acid (EPA) for 24 h increased glucose oxidation and oleic acid uptake. EPA pretreatment increased the glucose and fatty acid uptake and reduced leucine fractional oxidation in myotubes from donors with obesity. In conclusion, these results suggest that myotubes from individuals with obesity showed increased fatty acid, glucose, and amino acid uptake compared to cells from lean donors. Furthermore, myotubes from individuals with obesity had reduced fatty acid oxidative capacity, increased glucose oxidation, and a higher glycolytic reserve capacity compared to cells from lean donors. Fatty acid pretreatment enhances glucose metabolism, and EPA reduces oleic acid and leucine fractional oxidation in myotubes from donor with obesity, suggesting increased metabolic flexibility after EPA treatment.
Collapse
|
4
|
Lagrost L, Masson D. The expanding role of lyso-phosphatidylcholine acyltransferase-3 (LPCAT3), a phospholipid remodeling enzyme, in health and disease. Curr Opin Lipidol 2022; 33:193-198. [PMID: 35165232 DOI: 10.1097/mol.0000000000000820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The turnover of fatty acids (FAs) at the sn-2 position of phospholipids is mediated by the reciprocal actions of phospholipases A2 and lyso-PL acyltransferases (LPLAT). LPCAT3, a major LPLAT isoform, exhibits a strong specificity for polyunsaturated FAs s (PUFAs). Although the enzyme was originally studied in the context of cardiometabolism, recent investigations have shed light on the role of LPCAT3 in other tissues such as skeletal muscle and in unexpected biological processes such as cell death and oncogenesis. RECENT FINDINGS The three-dimensional structure of LPCAT3 has been elucidated allowing further understanding of the mechanism of the acylation reaction as well as the substrate specificity of the enzyme. In skeletal muscle, LPCAT3-mediated phospholipid remodeling modulates membrane domain clustering and insulin signalingLPCAT3 plays an important role in the process of ferroptosis by modulating the PUFA content of phospholipids and possibly of plasmalogens.In tumor-associated macrophages, LPCAT3 can prevent ER stress induced by the tumor microenvironment and may equally modulate antitumor immunity. SUMMARY LPCAT3 is an attractive therapeutic target in the cardiometabolic disorders. Nevertheless, the involvement of LPCAT3 in processes such as cell death and oncogenesis demands caution with respect to the potential deleterious effects of enzyme modulation.
Collapse
Affiliation(s)
- Laurent Lagrost
- Université Bourgogne Franche-Comté
- INSERM, LNC UMR1231
- FCS Bourgogne-Franche Comté, LipSTIC LabEx
| | - David Masson
- Université Bourgogne Franche-Comté
- INSERM, LNC UMR1231
- FCS Bourgogne-Franche Comté, LipSTIC LabEx
- CHU Dijon, Dijon, France
| |
Collapse
|
5
|
Mengeste AM, Rustan AC, Lund J. Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring) 2021; 29:1582-1595. [PMID: 34464025 DOI: 10.1002/oby.23227] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations in lipid turnover. In addition, fatty acid oxidation is decreased, probably at the level of complete oxidation, as β -oxidation may be enhanced in obesity, which indicates mitochondrial dysfunction. Metabolic changes in skeletal muscle with obesity promote metabolic inflexibility, ectopic lipid accumulation, and formation of toxic lipid intermediates. Skeletal muscle also acts as an endocrine organ, secreting myokines that participate in interorgan cross talk. This review highlights interventions and some possible targets for treatment through action on skeletal muscle energy metabolism. Effects of exercise in vivo on obesity have been compared with simulation of endurance exercise in vitro on myotubes (electrical pulse stimulation). Possible pharmaceutical targets, including signaling pathways and drug candidates that could modify lipid storage and turnover or increase mitochondrial function or cellular energy expenditure through adaptive thermogenic mechanisms, are discussed.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Lefort C, Cani PD. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells 2021; 10:cells10020400. [PMID: 33669184 PMCID: PMC7919658 DOI: 10.3390/cells10020400] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Among the myriad of molecules produced by the liver, both bile acids and their precursors, the oxysterols are becoming pivotal bioactive lipids which have been underestimated for a long time. Their actions are ranging from regulation of energy homeostasis (i.e., glucose and lipid metabolism) to inflammation and immunity, thereby opening the avenue to new treatments to tackle metabolic disorders associated with obesity (e.g., type 2 diabetes and hepatic steatosis) and inflammatory diseases. Here, we review the biosynthesis of these endocrine factors including their interconnection with the gut microbiota and their impact on host homeostasis as well as their attractive potential for the development of therapeutic strategies for metabolic disorders.
Collapse
|
7
|
Løvsletten NG, Vu H, Skagen C, Lund J, Kase ET, Thoresen GH, Zammit VA, Rustan AC. Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism. Sci Rep 2020; 10:238. [PMID: 31937853 PMCID: PMC6959318 DOI: 10.1038/s41598-019-57157-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose-FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Nils G Løvsletten
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Helene Vu
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Eili T Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Victor A Zammit
- Division of Translational and Experimental medicine, Warwick Medical School, University of Warwick, Coventry, UK
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Ando H, Horibata Y, Aoyama C, Shimizu H, Shinohara Y, Yamashita S, Sugimoto H. Side-chain oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase by inhibiting the interaction of p300 and NF-Y, and H3K27 acetylation. J Steroid Biochem Mol Biol 2019; 195:105482. [PMID: 31580889 DOI: 10.1016/j.jsbmb.2019.105482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
CTP: phosphoethanolamine cytidylyltransferase (Pcyt2) is the rate-limiting enzyme in mammalian phosphatidylethanolamine (PE) biosynthesis. Previously, we reported that increasedPcyt2 mRNA levels after serum starvation are suppressed by 25-hydroxycholesterol (HC) (25-HC), and that nuclear factor-Y (NF-Y) is involved in the inhibitory effects. Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is suppressed in the same manner. However, no typical sterol regulatory element (SRE) was detected in the Pcyt2 promoter. We were therefore interested in the effect of 25-HC on the modification of histones and thus treated cells with histone acetyltransferase inhibitor (anacardic acid) or histone deacetylase inhibitor (trichostatin A). The suppressive effect of 25-HC on Pcyt2 and Hmgcr mRNA transcription was ameliorated by trichostatin A. Anacardic acid, 25-HC and 24(S)-HC suppressed their transcription by inhibiting H3K27 acetylation in their promoters as evaluated by chromatin immunoprecipitation (ChIP) assays. 27-HC, 22(S)-HC and 22(R)-HC also suppressed their transcription, but 7α-HC, 7β-HC, the synthetic LXR agonist T0901317 and cholesterol did not. Furthermore, 25-HC inhibited p300 recruitment to the Pcyt2 and Hmgcr promoters, and suppressed H3K27 acetylation. 25-HC in the medium was easily conducted into cells. Based on these results, we concluded that 25-HC (and other side-chain oxysterols) in the medium was easily transferred into cells, suppressed H3K27 acetylation via p300 recruitment on the NF-Y complex in the Pcyt2 and Hmgcr promoters, and then suppressed transcription of these genes although LXR is not involved.
Collapse
Affiliation(s)
- Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Chieko Aoyama
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroaki Shimizu
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasutake Shinohara
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Satoko Yamashita
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| |
Collapse
|
9
|
Gu M, Zhang Y, Liu C, Wang D, Feng L, Fan S, Yang B, Tong Q, Ji G, Huang C. Morin, a novel liver X receptor α/β dual antagonist, has potent therapeutic efficacy for nonalcoholic fatty liver diseases. Br J Pharmacol 2017. [PMID: 28646531 DOI: 10.1111/bph.13933] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Morin is a natural occurring flavonoid in many dietary plants and has a wide range of beneficial effects on metabolism; however, the mechanism underlying its action remains elusive. EXPERIMENTAL APPROACH A reporter assay and the time-resolved FRET assay were used to identify morin as a dual antagonist of liver X receptor (LXR)-α and -β. Morin (100 mg. 100 g-1 diet) was administered to high-fat diet-induced obese or LXRβ-/- mice. The pharmacological effects and mechanism of action of morin were evaluated by Western blot and RT-PCR analyses. KEY RESULTS From the in vitro assays, morin was shown to be a dual antagonist of LXRα and LXRβ. In vivo, morin blunted the development of liver hepatic steatosis, reduced body weight gains, lowered triglyceride levels and improved glucose and insulin tolerance in mice fed a high-fat diet. Mechanistically, morin inhibited 3T3-L1 adipocyte differentiation and lipid formation in human hepatic HepG2 cells and suppressed the mRNA expression of genes downstream of LXR. Consistently, the effects of morin on metabolic disorders were attenuated in LXRβ-/- mice. CONCLUSION AND IMPLICATIONS Our data reveal that morin is a dual antagonist of LXRα and LXRβ and suggest that morin may alleviate hepatic steatosis and other associated metabolic disorders via the suppression of LXR signalling and, therefore, shows promise as a novel therapy or nutraceutical for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Chuhe Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongshan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, TX, USA
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, TX, USA
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Lund J, Rustan AC, Løvsletten NG, Mudry JM, Langleite TM, Feng YZ, Stensrud C, Brubak MG, Drevon CA, Birkeland KI, Kolnes KJ, Johansen EI, Tangen DS, Stadheim HK, Gulseth HL, Krook A, Kase ET, Jensen J, Thoresen GH. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism. PLoS One 2017; 12:e0175441. [PMID: 28403174 PMCID: PMC5389842 DOI: 10.1371/journal.pone.0175441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men. METHODS Healthy sedentary men, aged 40-62 years, with normal weight (body mass index (BMI) < 25 kg/m2) or overweight (BMI ≥ 25 kg/m2) were included. Fatty acid and glucose metabolism were studied in myotubes using [14C]oleic acid and [14C]glucose, respectively. Gene and protein expressions, as well as DNA methylation were measured for selected genes. RESULTS The 12-week training intervention improved endurance, strength and insulin sensitivity in vivo, and reduced the participants' body weight. Biopsy-derived cultured human myotubes after exercise showed increased total cellular oleic acid uptake (30%), oxidation (46%) and lipid accumulation (34%), as well as increased fractional glucose oxidation (14%) compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism. CONCLUSIONS 12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro.
Collapse
Affiliation(s)
- Jenny Lund
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils G. Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jonathan M. Mudry
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgrim M. Langleite
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yuan Z. Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Stensrud
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mari G. Brubak
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo, University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristoffer J. Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hans K. Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hanne L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo, University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eili T. Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Viktorsson EÖ, Gabrielsen M, Kumarachandran N, Sylte I, Rongved P, Åstrand OAH, Kase ET. Regulation of liver X receptor target genes by 22-functionalized oxysterols. Synthesis, in silico and in vitro evaluations. Steroids 2017; 118:119-127. [PMID: 28011133 DOI: 10.1016/j.steroids.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
The endogenous oxysterol 22(R)-hydroxycholesterol (22RHC, 1) is an LXR agonist which upregulates genes of critical involvement in human cholesterol- and lipid metabolism. In contrast, its synthetic epimer 22(S)-hydroxycholesterol (22SHC, 8) has shown specific antagonistic effects in recent studies, avoiding unwanted side effects provided by potent LXR agonists. In terms of LXR modulation, the aim of this study was to compare 22SHC (8), 22RHC (1) and synthesized ligands with keto- and amide functionality in the 22nd position of the cholesterol scaffold. 22SHC (8) and 22RHC (1) performed as expected while 22-ketocholesterol (22KC, 10) revealed an attractive in vitro profile for further investigation in terms of anti-atherosclerotic properties as selective upregulation of the ATP-binding cassette transporter ABCA1 was observed. A new synthesized amide derivate, Fernholtz cyclohexylamide (13) was shown to reduce lipogenesis in a dose-responsive manner and abolish the effect of the potent LXR agonist T0901317 when administered simultaneously.
Collapse
Affiliation(s)
- Elvar Örn Viktorsson
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N0316 Oslo, Norway
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Nugalya Kumarachandran
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N0316 Oslo, Norway
| | - Ove Alexander Høgmoen Åstrand
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N0316 Oslo, Norway.
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Guillemot-Legris O, Mutemberezi V, Muccioli GG. Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med 2016; 22:594-614. [PMID: 27286741 DOI: 10.1016/j.molmed.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Oxysterols are cholesterol metabolites now considered bona fide bioactive lipids. Recent studies have identified new receptors for oxysterols involved in immune and inflammatory processes, hence reviving their appeal. Through multiple receptors, oxysterols are involved in numerous metabolic and inflammatory processes, thus emerging as key mediators in metabolic syndrome. This syndrome is characterized by complex interactions between inflammation and a dysregulated metabolism. Presently, the use of synthetic ligands and genetic models has facilitated a better understanding of the roles of oxysterols in metabolism, but also raised interesting questions. We discuss recent findings on the absolute levels of oxysterols in tissues, their newly identified targets, and the mechanistic studies emphasizing their importance in metabolic disease, as there is a pressing need to further comprehend these intriguing bioactive lipids.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium.
| |
Collapse
|
13
|
Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system. Mol Aspects Med 2016; 49:31-46. [DOI: 10.1016/j.mam.2016.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/08/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023]
|
14
|
Stevenson JL, Miller MK, Skillman HE, Paton CM, Cooper JA. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal. Eur J Nutr 2016; 56:1845-1857. [PMID: 27193583 DOI: 10.1007/s00394-016-1226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine substrate oxidation responses to saturated fatty acid (SFA)-rich meals before and after a 7-day polyunsaturated fatty acid (PUFA)-rich diet versus control diet. METHODS Twenty-six, normal-weight, adults were randomly assigned to either PUFA or control diet. Following a 3-day lead-in diet, participants completed the pre-diet visit where anthropometrics and resting metabolic rate (RMR) were measured, and two SFA-rich HF meals (breakfast and lunch) were consumed. Indirect calorimetry was used to determine fat oxidation (Fox) and energy expenditure (EE) for 4 h after each meal. Participants then consumed a PUFA-rich diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 21 % of total energy was PUFA) or control diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 7 % of total energy was PUFA) for the next 7 days. Following the 7-day diet, participants completed the post-diet visit. RESULTS From pre- to post-PUFA-rich diet, there was no change in RMR (16.3 ± 0.8 vs. 16.4 ± 0.8 kcal/20 min) or in incremental area under the curve for EE (118.9 ± 20.6-126.9 ± 14.1 kcal/8h, ns). Fasting respiratory exchange ratio increased from pre- to post-PUFA-rich diet only (0.83 ± 0.1-0.86 ± 0.1, p < 0.05). The postprandial change in Fox increased from pre- to post-visit in PUFA-rich diet (0.03 ± 0.1-0.23 ± 0.1 g/15 min for cumulative Fox; p < 0.05), whereas controls showed no change. CONCLUSIONS Adopting a PUFA-rich diet initiates greater fat oxidation after eating occasional high SFA meals compared to a control diet, an effect achieved in 7 days.
Collapse
Affiliation(s)
- Jada L Stevenson
- Department of Nutritional Sciences, Texas Christian University, Fort Worth, TX, USA.,Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Mary K Miller
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Hannah E Skillman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chad M Paton
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.,Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA, 30622, USA
| | - Jamie A Cooper
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA, 30622, USA.
| |
Collapse
|
15
|
Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts 2016; 6:177-90. [PMID: 25945723 DOI: 10.1515/bmc-2015-0007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 11/15/2022] Open
Abstract
The liver X receptors (LXR) are crucial regulators of metabolism. After ligand binding, they regulate gene transcription and thereby mediate changes in metabolic pathways. Modulation of LXR and their downstream targets has appeared to be a promising treatment for metabolic diseases especially atherosclerosis and cholesterol metabolism. However, the complexity of LXR action in various metabolic tissues and the liver side effect of LXR activation have slowed down the interest for LXR drugs. In this review, we summarized the role of LXR in the main metabolically active tissues with a special focus on obesity and associated diseases in mammals. We will also discuss the dual interplay between the two LXR isoforms suggesting that they may collaborate to establish a fine and efficient system for the maintenance of metabolism homeostasis.
Collapse
|
16
|
Sim WC, Kim DG, Lee KJ, Choi YJ, Choi YJ, Shin KJ, Jun DW, Park SJ, Park HJ, Kim J, Oh WK, Lee BH. Cinnamamides, Novel Liver X Receptor Antagonists that Inhibit Ligand-Induced Lipogenesis and Fatty Liver. J Pharmacol Exp Ther 2015; 355:362-369. [DOI: 10.1124/jpet.115.226738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
17
|
Kase ET, Feng YZ, Badin PM, Bakke SS, Laurens C, Coue M, Langin D, Gaster M, Thoresen GH, Rustan AC, Moro C. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1194-201. [DOI: 10.1016/j.bbalip.2015.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 01/10/2023]
|
18
|
Gondcaille C, Genin EC, Lopez TE, Dias AMM, Geillon F, Andreoletti P, Cherkaoui-Malki M, Nury T, Lizard G, Weinhofer I, Berger J, Kase ET, Trompier D, Savary S. LXR antagonists induce ABCD2 expression. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:259-66. [PMID: 24239766 DOI: 10.1016/j.bbalip.2013.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 02/09/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a beta-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCDI gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their beta-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative therapy for X-ALD patients. Since LXR activation was shown to repress ABCD2 expression, we investigated the effects of LXR antagonists in different cell lines. Cells were treated with GSK(17) (a LXR antagonist recently discovered from the GlaxoSmithKline compound collection), 22(S)-hydroxycholesterol (22S-HC, another LXR antagonist) and 22R-HC (an endogenous LXR agonist). We observed up-regulation of ABCD2,ABCD3 and CTNNB1 (the gene encoding for beta-catenin, which was recently demonstrated to induce ABCD2 expression) in human HepG2 hepatoma cells and in X-ALD skin fibroblasts treated with LXR antagonists. Interestingly, induction in X-ALD fibroblasts was concomitant with a decrease in oxidative stress. Rats treated with 22S-HC showed hepatic induction of the 3 genes of interest. In human, we show by multiple tissue expression array that expression of ABCD2 appears to be inversely correlated with NR1H3 (LXRalpha) expression. Altogether, antagonists of LXR that are currently developed in the context of dyslipidemia may find another indication with X-ALD.
Collapse
|
19
|
Høgmoen Åstrand OA, Gikling I, Sylte I, Rustan AC, Thoresen GH, Rongved P, Kase ET. Development of new LXR modulators that regulate LXR target genes and reduce lipogenesis in human cell models. Eur J Med Chem 2014; 74:258-63. [DOI: 10.1016/j.ejmech.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/13/2022]
|
20
|
Dib L, Bugge A, Collins S. LXRα fuels fatty acid-stimulated oxygen consumption in white adipocytes. J Lipid Res 2014; 55:247-57. [PMID: 24259533 PMCID: PMC3886663 DOI: 10.1194/jlr.m043422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/28/2013] [Indexed: 02/06/2023] Open
Abstract
Liver X receptors (LXRs) are transcription factors known for their role in hepatic cholesterol and lipid metabolism. Though highly expressed in fat, the role of LXR in this tissue is not well characterized. We generated adipose tissue LXRα knockout (ATaKO) mice and showed that these mice gain more weight and fat mass on a high-fat diet compared with wild-type controls. White adipose tissue (WAT) accretion in ATaKO mice results from both a decrease in WAT lipolytic and oxidative capacities. This was demonstrated by decreased expression of the β2- and β3-adrenergic receptors, reduced level of phosphorylated hormone-sensitive lipase, and lower oxygen consumption rates (OCRs) in WAT of ATaKO mice. Furthermore, LXR activation in vivo and in vitro led to decreased adipocyte size in WAT and increased glycerol release from primary adipocytes, respectively, with a concomitant increase in OCR in both models. Our findings show that absence of LXRα in adipose tissue results in elevated adiposity through a decrease in WAT oxidation, secondary to attenuated FA availability.
Collapse
Affiliation(s)
- Lea Dib
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Anne Bugge
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Sheila Collins
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL
| |
Collapse
|
21
|
Trompier D, Gondcaille C, Lizard G, Savary S. Regulation of the adrenoleukodystrophy-related gene (ABCD2): focus on oxysterols and LXR antagonists. Biochem Biophys Res Commun 2014; 446:651-5. [PMID: 24480443 DOI: 10.1016/j.bbrc.2014.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Abstract
The regulation of the ABCD2 gene is recognized as a possible therapeutic target for X-linked adrenoleukodystrophy, a rare neurodegenerative disease caused by mutations in the ABCD1 gene. Up-regulation of ABCD2 expression has indeed been demonstrated to compensate for ABCD1 deficiency, restoring peroxisomal β-oxidation of very-long-chain fatty acids. Besides the known inducers of the ABCD2 gene (phenylbutyrate and histone deacetylase inhibitors, fibrates, dehydroepiandrosterone, thyroid hormone and thyromimetics), this review will focus on LXR antagonists and 22S-hydroxycholesterol, recently described as inducers of ABCD2 expression. Several LXR antagonists have been identified and their possible indication for neurodegenerative disorders will be discussed.
Collapse
Affiliation(s)
- Doriane Trompier
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France
| | - Catherine Gondcaille
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France
| | - Gérard Lizard
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, EA7270 University of Bourgogne, 6 Bd Gabriel, Dijon F-21000, France.
| |
Collapse
|
22
|
Synthesis and initial biological evaluation of new mimics of the LXR-modulator 22(S)-hydroxycholesterol. Bioorg Med Chem 2014; 22:643-50. [DOI: 10.1016/j.bmc.2013.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 01/01/2023]
|
23
|
Pettersson AML, Stenson BM, Lorente-Cebrián S, Andersson DP, Mejhert N, Krätzel J, Aström G, Dahlman I, Chibalin AV, Arner P, Laurencikiene J. LXR is a negative regulator of glucose uptake in human adipocytes. Diabetologia 2013; 56:2044-54. [PMID: 23765184 DOI: 10.1007/s00125-013-2954-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/16/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Obesity increases the risk of developing type 2 diabetes mellitus, characterised by impaired insulin-mediated glucose uptake in peripheral tissues. Liver X receptor (LXR) is a positive regulator of adipocyte glucose transport in murine models and a possible target for diabetes treatment. However, the levels of LXRα are increased in obese adipose tissue in humans. We aimed to investigate the transcriptome of LXR and the role of LXR in the regulation of glucose uptake in primary human adipocytes. METHODS The insulin responsiveness of human adipocytes differentiated in vitro was characterised, adipocytes were treated with the LXR agonist GW3965 and global transcriptome profiling was determined by microarray, followed by quantitative RT-PCR (qRT-PCR), western blot and ELISA. Basal and insulin-stimulated glucose uptake was measured and the effect on plasma membrane translocation of glucose transporter 4 (GLUT4) was assayed. RESULTS LXR activation resulted in transcriptional suppression of several insulin signalling genes, such as AKT2, SORBS1 and CAV1, but caused only minor changes (<15%) in microRNA expression. Activation of LXR impaired the plasma membrane translocation of GLUT4, but not the expression of its gene, SLC2A4. LXR activation also diminished insulin-stimulated glucose transport and lipogenesis in adipocytes obtained from overweight individuals. Furthermore, AKT2 expression was reduced in obese adipose tissue, and AKT2 and SORBS1 expression was inversely correlated with BMI and HOMA index. CONCLUSIONS/INTERPRETATION In contrast to murine models, LXR downregulates insulin-stimulated glucose uptake in human adipocytes from overweight individuals. This could be due to suppression of Akt2, c-Cbl-associated protein and caveolin-1. These findings challenge the idea of LXR as a drug target in the treatment of diabetes.
Collapse
Affiliation(s)
- A M L Pettersson
- Department of Medicine Huddinge, Karolinska Institutet, Hälsovägen 7, Novum, 14186 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro. Acta Pharmacol Sin 2013; 34:1061-9. [PMID: 23770982 DOI: 10.1038/aps.2013.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/20/2013] [Indexed: 01/05/2023] Open
Abstract
AIM To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro. METHODS HepG2 and C2C12 cells were used. Cell viability was determined using MTT assay. Real-time PCR was performed to measure the gene expression. Western blotting assay was applied to investigate the protein phosphorylation level. Enzymatic assay kits were used to detect the total cholesterol (TC), triglyceride (TG) and glucose contents. RESULTS Danthron (0.1, 1, and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in both HepG2 and C2C12 cells. Meanwhile, danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions, and the TC and TG levels. In addition, danthron treatment efficiently increased glucose consumption. The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C. CONCLUSION Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.
Collapse
|
25
|
Aas V, Bakke SS, Feng YZ, Kase ET, Jensen J, Bajpeyi S, Thoresen GH, Rustan AC. Are cultured human myotubes far from home? Cell Tissue Res 2013; 354:671-82. [PMID: 23749200 DOI: 10.1007/s00441-013-1655-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Vigdis Aas
- Institute of Pharmacy and Biomedical Laboratory Science, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sodhi RK, Singh N. Liver X receptors: emerging therapeutic targets for Alzheimer's disease. Pharmacol Res 2013; 72:45-51. [PMID: 23542729 DOI: 10.1016/j.phrs.2013.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder, typified by the pathological accumulation of ß-amyloid peptides (Aß) and neurofibrillary tangles within the brain, culminating to cognitive impairment. Epidemiological and biochemical data have suggested a link between cholesterol content, APP (amyloid precursor protein) processing, Aß, inflammation and AD. The intricacy of the disease presents considerable challenges for the development of newer therapeutic agents. Liver X receptors (LXRa and LXRß) are oxysterol activated nuclear receptors that play essential role in lipid and glucose homeostasis, steroidogenesis and inflammatory responses. LXR signalling impacts the development of AD pathology through multiple pathways. Reports indicate that genetic loss of either lxra or lxrß in APP/PS1 transgenic mice results in increased amyloid plaque load. Studies also suggest that ligand activation of LXRs in Tg2576 mice enhanced, the expression of genes linked with cholesterol efflux e.g. apoe, abca-1, down regulated APP processing and Aß production with significant improvement in memory functions. LXR agonists have also depicted to inhibit neuroinflammation through modulation of microglial phagocytosis and by repressing the expression of cox2, mcp1 and iNos in glial cells. This review summarizes in brief the biology of LXRs, with an emphasis on their probable pathophysiological mechanisms that may elicit the defending role of these receptors in brains of AD patients.
Collapse
Affiliation(s)
- Rupinder K Sodhi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | | |
Collapse
|
27
|
Independent and combined effects of acute physiological hyperglycaemia and hyperinsulinaemia on metabolic gene expression in human skeletal muscle. Clin Sci (Lond) 2013; 124:675-84. [DOI: 10.1042/cs20120481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Physiological hyperglycaemia and hyperinsulinaemia are strong modulators of gene expression, which underpins some of their well-known effects on insulin action and energy metabolism. The aim of the present study was to examine whether acute in vivo exposure of healthy humans to hyperinsulinaemia and hyperglycaemia have independent or additive effects on expression of key metabolic genes in skeletal muscle. On three randomized occasions, seven young subjects underwent a 4 h (i) hyperinsulinaemic (50 m-units·m−2·min−1) hyperglycaemic (10 mmol/l) clamp (HIHG), (ii) hyperglycaemic (10 mmol/l) euinsulinaemic (5 m-units·m−2·min−1) clamp (LIHG) and (iii) hyperinsulinaemic (50 m-units·m−2·min−1) euglycaemic (4.5 mmol/l) clamp (HING). Muscle biopsies were obtained before and after each clamp for the determination of expression of genes involved in energy metabolism, and phosphorylation of key insulin signalling proteins. Hyperinsulinaemia and hyperglycaemia exerted independent effects with similar direction of modulation on PI3KR1 (phosphatidylinositol 3-kinase, regulatory 1), LXRα (liver X receptor α), PDK4 (pyruvate dehydrogenase kinase 4) and FOXO1 (forkhead box O1A) and produced an additive effect on PI3KR1, the gene that encodes the p85α subunit of PI3K in human skeletal muscle. Acute hyperglycaemia itself altered the expression of genes involved in fatty acid transport and oxidation [fatty acid transporter (CD36), LCAD (long-chain acyl-CoA dehydrogenase) and FOXO1], and lipogenesis [LXRα, ChREBP (carbohydrate-responseelement-binding protein), ABCA1 (ATP-binding cassette transporter A1) and G6PD (glucose-6-phosphate dehydrogenase). Surperimposing hyperinsulinaemia on hyperglycaemia modulated a number of genes involved in insulin signalling, glucose metabolism and intracellular lipid accumulation and exerted an additive effect on PI3KR1. These may be early molecular events that precede the development of glucolipotoxicity and insulin resistance normally associated with more prolonged periods of hyperglycaemia and hyperinsulinaemia.
Collapse
|
28
|
Rébé C, Filomenko R, Raveneau M, Chevriaux A, Ishibashi M, Lagrost L, Junien JL, Gambert P, Masson D. Identification of biological markers of liver X receptor (LXR) activation at the cell surface of human monocytes. PLoS One 2012. [PMID: 23185273 PMCID: PMC3504056 DOI: 10.1371/journal.pone.0048738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Liver X receptor (LXR) α and LXR β (NR1H3 and NR1H2) are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they express LXR α and β and respond to LXR agonist stimulation in vitro. The aim of our study was to identify cell surface markers of LXR agonists on monocytes. For this, we focused on clusters of differentiation (CD) markers because they are well characterized and accessible cell surface molecules allowing easy immuno-phenotyping. Methodology/Principal Findings By using microarray analysis of monocytes treated or not with an LXR agonist in vitro, we selected three CD, i.e. CD82, CD226, CD244 for further analysis by real time PCR and flow cytometry. The three CD were up-regulated by LXR agonist treatment in vitro in a time- and dose- dependent manner and this induction was LXR specific as assessed by a SiRNA or LXR antagonist strategy. By using flow cytometry, we could demonstrate that the expression of these molecules at the cell surface of monocytes was significantly increased after LXR agonist treatment. Conclusions/Significance We have identified three new cell surface markers that could be useful to monitor LXR activation. Future studies will be required to confirm the biological and diagnostic significance of the markers.
Collapse
Affiliation(s)
- Cédric Rébé
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Rodolphe Filomenko
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Magalie Raveneau
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Angélique Chevriaux
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Minako Ishibashi
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Laurent Lagrost
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Jean Louis Junien
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
| | - Philippe Gambert
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Hospitalier Universitaire Dijon, Dijon, France
| | - David Masson
- Centre de Recherche Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Université de Bourgogne, Dijon, France
- Structure Fédérative de Recherche Santé-Sciences et Techniques de l'Information et de la Communication, Université de Bourgogne, Dijon, France
- Centre Hospitalier Universitaire Dijon, Dijon, France
- * E-mail:
| |
Collapse
|
29
|
Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J Neurosci 2012; 32:10117-28. [PMID: 22836247 DOI: 10.1523/jneurosci.5268-11.2012] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease is associated with a disruption of amyloid β (Aβ) homeostasis, resulting in the accumulation and subsequent deposition of Aβ peptides within the brain. The peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor that acts in a coupled metabolic cycle with Liver X Receptors (LXRs) to increase brain apolipoprotein E (apoE) levels. apoE functions to promote the proteolytic clearance of soluble forms of Aβ, and we found that the synthetic PPARγ agonist, pioglitazone, stimulated Aβ degradation by both microglia and astrocytes in an LXR and apoE-dependent manner. Remarkably, a brief 9 d oral treatment of APPswe/PS1Δe9 mice with pioglitazone resulted in dramatic reductions in brain levels of soluble and insoluble Aβ levels which correlated with the loss of both diffuse and dense-core plaques within the cortex. The removal of preexisting amyloid deposits was associated with the appearance of abundant Aβ-laden microglia and astrocytes. Pioglitazone treatment resulted in the phenotypic polarization of microglial cells from a proinflammatory M1 state, into an anti-inflammatory M2 state that was associated with enhanced phagocytosis of deposited forms of amyloid. The reduction in amyloid levels was associated with a reversal of contextual memory deficits in the drug-treated mice. These data provide a mechanistic explanation for how PPARγ activation facilitates amyloid clearance and supports the therapeutic utility of PPARγ agonists for the treatment of Alzheimer's disease.
Collapse
|
30
|
Kruse MS, Rey M, Vega MC, Coirini H. Alterations of LXRα and LXRβ expression in the hypothalamus of glucose-intolerant rats. J Endocrinol 2012; 215:51-8. [PMID: 22836489 DOI: 10.1530/joe-12-0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Liver X receptor (LXR) α and β are nuclear receptors that are crucial for the regulation of carbohydrate and lipid metabolism. Activation of LXRs in the brain facilitates cholesterol clearance and improves cognitive deficits, thus they are considered as promising drug targets to treat diseases such as atherosclerosis and Alzheimer's disease. Nevertheless, little is known about the function and localization of LXRs in the brain. Here, we studied the expression of LXR in the brains of rats that received free access to 10% (w/v) fructose group (FG) in their beverages or water control drinks (control group (CG)). After 6 weeks rats in the FG presented with hypertriglyceridemia, hyperinsulinemia, and became glucose intolerant, suggesting a progression toward type 2 diabetes. We found that hypothalamic LXR expression was altered in fructose-fed rats. Rats in the FG presented with a decrease in LXRβ levels while showing an increase in LXRα expression in the hypothalamus but not in the hippocampus, cerebellum, or neocortex. Moreover, both LXRα and β expression correlated negatively with insulin and triglyceride levels. Interestingly, LXRβ showed a negative correlation with the area under the curve during the glucose tolerance test in the CG and a positive correlation in the FG. Immunocytochemistry revealed that the paraventricular and ventromedial nuclei express mainly LXRα whereas the arcuate nucleus expresses LXRβ. Both LXR immunosignals were found in the median preoptic area. This is the first study showing a relationship between glucose and lipid homeostasis and the expression of LXRs in the hypothalamus, suggesting that LXRs may trigger neurochemical and neurophysiological responses for the control of food intake and energy expenditure through these receptors.
Collapse
Affiliation(s)
- María Sol Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
31
|
Nikolić N, Bakke SS, Kase ET, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V. Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One 2012; 7:e33203. [PMID: 22457744 PMCID: PMC3310863 DOI: 10.1371/journal.pone.0033203] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022] Open
Abstract
Background and Aims Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes. Methods Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting. Results High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells. Conclusions Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.
Collapse
Affiliation(s)
- Nataša Nikolić
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kase ET, Nikolić N, Hessvik NP, Fjeldheim ÅK, Jensen J, Thoresen GH, Rustan AC. Dietary Supplementation with 22-S-Hydroxycholesterol to Rats Reduces Body Weight Gain and the Accumulation of Liver Triacylglycerol. Lipids 2012; 47:483-93. [DOI: 10.1007/s11745-012-3663-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/29/2012] [Indexed: 01/08/2023]
|
33
|
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor family and are present in two isoforms, α and β, encoded by two separate genes. Originally described in the liver, LXRs have in the last 15 years been implicated in central metabolic pathways, including bile acid synthesis, lipid and glucose homeostasis. Although the vast majority of studies have been performed in non-adipose cells/tissues, results in recent years suggest that LXRs may have important modulatory roles in adipose tissue and adipocytes. Although several authors have published reviews on LXR, there have been no attempts to summarize the effects reported specifically in adipose systems. This overview gives a brief introduction to LXR and describes the sometimes-contradictory results obtained in murine cell systems and in rodent adipose tissue. The so far very limited number of studies performed in human adipocytes and adipose tissue are also presented. It should be apparent that although LXR may impact on several different pathways in metabolism, the clinical role of LXR modulation in adipose tissue is still not clear.
Collapse
|
34
|
Hessvik NP, Bakke SS, Smith R, Ravna AW, Sylte I, Rustan AC, Thoresen GH, Kase ET. The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism. J Steroid Biochem Mol Biol 2012; 128:154-64. [PMID: 22051079 DOI: 10.1016/j.jsbmb.2011.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/23/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
The aim of this study was to explore the effects of 22(S)-hydroxycholesterol (22(S)-HC) on lipid and glucose metabolism in human-derived cells from metabolic active tissues. Docking of T0901317 and 22(S)-HC showed that both substances fitted into the ligand binding domain of liver X receptors (LXR). Results show that while several lipogenic genes were induced by T0901317 in myotubes, HepG2 cells and SGBS cells, effect of 22(S)-HC varied more between cell types. In myotubes, most lipogenic genes were downregulated or unchanged by 22(S)-HC, whereas a more diverse pattern was found in HepG2 and SGBS cells. Treatment with 22(S)-HC induced sterol regulatory element binding transcription factor 1 in SGBS and HepG2 cells, but not in myotubes. Fatty acid synthase was downregulated by 22(S)-HC in myotubes, upregulated in SGBS and unchanged in HepG2 cells. De novo lipogenesis was increased by T0901317 in all cell models, whereas differently affected by 22(S)-HC depending on the cell type; decreased in myotubes and HepG2 cells, whereas increased in SGBS cells. Oxidation of linoleic acid was reduced by 22(S)-HC in all cell models while glucose uptake increased and tended to increase in myotubes and SGBS cells, respectively. Cholesterol efflux was unaffected by 22(S)-HC treatment. These results show that 22(S)-HC affects LXR-regulated processes differently in various cell types. Ability of 22(S)-HC to reduce lipogenesis and lipid accumulation in myotubes and hepatocytes indicate that 22(S)-HC might reduce lipid accumulation in non-adipose tissues, suggesting a potential role for 22(S)-HC or a similar LXR modulator in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Thoresen GH, Hessvik NP, Bakke SS, Aas V, Rustan AC. Metabolic switching of human skeletal muscle cells in vitro. Prostaglandins Leukot Essent Fatty Acids 2011; 85:227-34. [PMID: 21549583 DOI: 10.1016/j.plefa.2011.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted.
Collapse
Affiliation(s)
- G H Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
Overexpression of PGC-1α increases fatty acid oxidative capacity of human skeletal muscle cells. Biochem Res Int 2011; 2012:714074. [PMID: 21904680 PMCID: PMC3166714 DOI: 10.1155/2012/714074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/29/2011] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) overexpression on the oxidative capacity of human skeletal muscle cells ex vivo. PGC-1α overexpression increased the oxidation rate of palmitic acid and mRNA expression of genes regulating lipid metabolism, mitochondrial biogenesis, and function in human myotubes. Basal and insulin-stimulated deoxyglucose uptake were decreased, possibly due to upregulation of PDK4 mRNA. Expression of fast fiber-type gene marker (MHCIIa) was decreased. Compared to skeletal muscle in vivo, PGC-1α overexpression increased expression of several genes, which were downregulated during the process of cell isolation and culturing. In conclusion, PGC-1α overexpression increased oxidative capacity of cultured myotubes by improving lipid metabolism, increasing expression of genes involved in regulation of mitochondrial function and biogenesis, and decreasing expression of MHCIIa. These results suggest that therapies aimed at increasing PGC-1α expression may have utility in treatment of obesity and obesity-related diseases.
Collapse
|
37
|
PPARα–LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem J 2011; 437:521-30. [DOI: 10.1042/bj20110702] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
LXR (liver X receptor) and PPARα (peroxisome-proliferator-activated receptor α) are nuclear receptors that control the expression of genes involved in glucose and lipid homoeostasis. Using wild-type and PPARα-null mice fed on an LXR-agonist-supplemented diet, the present study analysed the impact of pharmacological LXR activation on the expression of metabolically important genes in skeletal muscle, testing the hypothesis that LXR activation can modulate PPAR action in skeletal muscle in a manner dependent on nutritional status. In the fed state, LXR activation promoted a gene profile favouring lipid storage and glucose oxidation, increasing SCD1 (stearoyl-CoA desaturase 1) expression and down-regulating PGC-1α (PPARγ co-activator-1α) and PDK4 (pyruvate dehydrogenase kinase 4) expression. PPARα deficiency enhanced LXR stimulation of SCD1 expression, and facilitated elevated SREBP-1 (sterol-regulatory-element-binding protein-1) expression. However, LXR-mediated down-regulation of PGC-1α and PDK4 was opposed and reversed by PPARα deficiency. During fasting, prior LXR activation augmented PPARα signalling to heighten FA (fatty acid) oxidation and decrease glucose oxidation by augmenting fasting-induced up-regulation of PGC-1α and PDK4 expression, effects opposed by PPARα deficiency. Starvation-induced down-regulation of SCD1 expression was opposed by antecedent LXR activation in wild-type mice, an effect enhanced further by PPARα deficiency, which may elicit increased channelling of FA into triacylglycerol to limit lipotoxicity. Our results also identified potential regulatory links between the protein deacetylases SIRT1 (sirtuin 1) and SIRT3 and PDK4 expression in muscle from fasted mice, with a requirement for PPARα. In summary, we therefore propose that a LXR–PPARα signalling axis acts as a metabolostatic regulatory mechanism to optimize substrate selection and disposition in skeletal muscle according to metabolic requirement.
Collapse
|
38
|
Hanke N, Scheibe RJ, Manukjan G, Ewers D, Umeda PK, Chang KC, Kubis HP, Gros G, Meissner JD. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:377-89. [PMID: 21215280 DOI: 10.1016/j.bbamcr.2010.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle.
Collapse
Affiliation(s)
- Nina Hanke
- Department of Physiology, Vegetative Physiology 4220, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease in the Western world, is tightly associated with obesity and metabolic syndrome. NAFLD entails an increased cardiometabolic and liver-related risk, the latter regarding almost exclusively non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD. Pathogenetic models encompass altered hepatic lipid partitioning and adipokine action, increased oxidative stress, free fatty acid lipotoxicity. On this basis, lifestyle-, drug- or surgically induced weight loss, insulin sensitizers, antioxidants, lipid-lowering drugs have been evaluated in NAFLD/NASH. Most trials are small, of short duration, nonrandomized, without histological end points, thus limiting assessment of long-term safety and efficacy of proposed treatments. All NAFLD patients should be evaluated for their metabolic, cardiovascular and liver-related risk. Liver biopsy remains the gold standard for staging NAFLD, but non-invasive methods are under intense development. Weight loss through lifestyle intervention is the initial approach, because of established efficacy on NAFLD-associated cardiometabolic abnormalities, and to emerging benefits on necroinflammation and overall disease activity in NASH. Bariatric surgery warrants further evaluation before it can be routinely considered in morbidly obese NASH. Larger- and longer-duration randomized trials assessing safety and benefits of drugs on patient-oriented outcomes are needed before pharmacological treatment can be routinely recommended for NASH.
Collapse
Affiliation(s)
- G Musso
- Gradenigo Hospital, Turin, Italy.
| | | | | |
Collapse
|
40
|
Hessvik NP, Bakke SS, Fredriksson K, Boekschoten MV, Fjørkenstad A, Koster G, Hesselink MK, Kersten S, Kase ET, Rustan AC, Thoresen GH. Metabolic switching of human myotubes is improved by n-3 fatty acids. J Lipid Res 2010; 51:2090-104. [PMID: 20363834 DOI: 10.1194/jlr.m003319] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition ("fed") to a high fatty acid, low glucose ("fasted") condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.
Collapse
Affiliation(s)
- N P Hessvik
- Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hessvik NP, Boekschoten MV, Baltzersen MA, Kersten S, Xu X, Andersén H, Rustan AC, Thoresen GH. LXR{beta} is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux. Am J Physiol Endocrinol Metab 2010; 298:E602-13. [PMID: 19996385 DOI: 10.1152/ajpendo.00553.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXRalpha and LXRbeta subtypes in skeletal muscle is at present unknown. To study the importance of each of the receptor subtypes, myotube cultures derived from wild-type (WT) and LXRalpha and LXRbeta knockout (KO) mice were established. The present study showed that treatment with the LXR agonist T0901317 increased lipogenesis and apoA1-dependent cholesterol efflux in LXRalpha KO and WT myotubes but not in LXRbeta KO cells. The functional studies were confirmed by T0901317-induced increase in mRNA levels of LXR target genes involved in lipid and cholesterol metabolism in myotubes established from WT and LXRalpha KO mice, whereas only minor changes were observed for these genes in myotubes from LXRbeta KO mice. Gene expression analysis using microarrays showed that very few genes other than the classical, well-known LXR target genes were regulated by LXR in skeletal muscle. The present study also showed that basal glucose uptake was increased in LXRbeta KO myotubes compared with WT myotubes, suggesting a role for LXRbeta in glucose metabolism in skeletal muscle. In conclusion, LXRbeta seems to be the main LXR subtype regulating lipogenesis and cholesterol efflux in skeletal muscle.
Collapse
Affiliation(s)
- N P Hessvik
- Dept. of Pharmaceutical Biosciences, Univ. of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fernández-Veledo S, Nieto-Vazquez I, Vila-Bedmar R, Garcia-Guerra L, Alonso-Chamorro M, Lorenzo M. Molecular mechanisms involved in obesity-associated insulin resistance: therapeutical approach. Arch Physiol Biochem 2009; 115:227-39. [PMID: 19673658 DOI: 10.1080/13813450903164330] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insulin resistance is an important contributor to the pathogenesis of T2D and obesity is a risk factor for its development. It has been demonstrated that these obesity-related metabolic disorders are associated with a state of chronic low-intensity inflammation. Several mediators released from adipocytes and macrophages, such as the pro-inflammatory cytokines TNF-alpha and IL-6, have been suggested to impair insulin action in peripheral tissues, including fat and skeletal muscle. Such insulin resistance can initially be compensated by increased insulin secretion, but the prolonged presence of the hormone is detrimental for insulin sensitivity. Stress and pro-inflammatory kinases as well as more recent players, phosphatases, seem to be involved in the molecular mechanisms by which pro-inflammatory cytokines and hyperinsulinemia disrupt insulin signalling at the level of IRSs. Pharmacological approaches, such as treatment with PPAR and LXR agonists, overcome such insulin resistance, exerting anti-inflammatory properties as well as controlling the expression of cytokines with tissular specificity.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Motoshima K, Ishikawa M, Sugita K, Hashimoto Y. Glycogen Phosphorylase a Inhibitors with a Phenethylphenylphthalimide Skeleton Derived from Thalidomide-Related .ALPHA.-Glucosidase Inhibitors and Liver X Receptor Antagonists. Biol Pharm Bull 2009; 32:1618-20. [DOI: 10.1248/bpb.32.1618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Minoru Ishikawa
- Institute of Molecular & Cellular Biosciences, The University of Tokyo
| | - Kazuyuki Sugita
- Institute of Molecular & Cellular Biosciences, The University of Tokyo
| | - Yuichi Hashimoto
- Institute of Molecular & Cellular Biosciences, The University of Tokyo
| |
Collapse
|
44
|
Rippmann JF, Schoelch C, Nolte T, Pavliska H, van Marle A, van Es H, Prestle J. Improved lipid profile through liver-specific knockdown of liver X receptor alpha in KKAy diabetic mice. J Lipid Res 2008; 50:22-31. [PMID: 18769020 DOI: 10.1194/jlr.m700571-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear hormone receptors liver X receptor (LXRalpha and LXRbeta) ligands are attractive approaches for the treatment of dyslipidemia and atherosclerosis. To further elucidate the function of LXRalpha in liver lipid metabolism in a disease-relevant animal model, the KKAy mouse, we used adenoviral vectors to selectively knock down LXRalpha gene expression. Out of five different short hairpin RNAs (shRNAs) that were tested in vitro, one construct was selected for detailed analysis of LXRalpha knockdown in vivo. Reduction of LXRalpha transcript levels to 48 +/- 13% compared with control virus transduction resulted in a significant downregulation of the LXRalpha-regulated lipogenic genes sterol-regulatory element binding protein-1c (SREBP1c) and stearoyl CoA desaturase 1 in vivo. Interestingly, ABCA1 and phoshoenolpyruvate carboxykinase 1 expression was not affected, whereas lipoprotein lipase (LPL) expression was found to be increased. In addition, 8 days after virus transduction, both plasma and liver triglycerides (TGs) were reduced by about 50%. Changes in TG levels were not due to reduced food intake in virus-treated animals, because pair-fed mice showed unchanged TG levels. Taken together, liver-specific knockdown of LXRalpha in vivo by shRNA reduced expression of lipogenic master genes, like SREBP1c, and improved the lipid profile of hypertriglyceridemic KKAy mice.
Collapse
Affiliation(s)
- Joerg F Rippmann
- Department of Pulmonary Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Hashimoto Y. Thalidomide as a Multi-Template for Development of Biologically Active Compounds. Arch Pharm (Weinheim) 2008; 341:536-47. [DOI: 10.1002/ardp.200700217] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
George J, Liddle C. Nonalcoholic Fatty Liver Disease: Pathogenesis and Potential for Nuclear Receptors as Therapeutic Targets. Mol Pharm 2007; 5:49-59. [DOI: 10.1021/mp700110z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob George
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Westmead Hospital, Westmead NSW 2145, Australia
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|