1
|
Use of c-peptide as a measure of cephalic phase insulin release in humans. Physiol Behav 2022; 255:113940. [PMID: 35961609 PMCID: PMC9993810 DOI: 10.1016/j.physbeh.2022.113940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
Cephalic phase insulin release (CPIR) is a rapid pulse of insulin secreted within minutes of food-related sensory stimulation. Understanding the mechanisms underlying CPIR in humans has been hindered by its small observed effect size and high variability within and between studies. One contributing factor to these limitations may be the use of peripherally measured insulin as an indicator of secreted insulin, since a substantial portion of insulin is metabolized by the liver before delivery to peripheral circulation. Here, we investigated the use of c-peptide, which is co-secreted in equimolar amounts to insulin from pancreatic beta cells, as a proxy for insulin secretion during the cephalic phase period. Changes in insulin and c-peptide were monitored in 18 adults over two repeated sessions following oral stimulation with a sucrose-containing gelatin stimulus. We found that, on average, insulin and c-peptide release followed a similar time course over the cephalic phase period, but that c-peptide showed a greater effect size. Importantly, when insulin and c-peptide concentrations were compared across sessions, we found that changes in c-peptide were significantly correlated at the 2 min (r = 0.50, p = 0.03) and 4 min (r = 0.65, p = 0.003) time points, as well as when participants' highest c-peptide concentrations were considered (r = 0.64, p = 0.004). In contrast, no significant correlations were observed for changes in insulin measured from the sessions (r = -0.06-0.35, p > 0.05). Herein, we detail the individual variability of insulin and c-peptide concentrations measured during the cephalic phase period, and identify c-peptide as a valuable metric for insulin secretion alongside insulin concentrations when investigating CPIR.
Collapse
|
2
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1049] [Impact Index Per Article: 174.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
4
|
Gudmundsdottir V, Pedersen HK, Allebrandt KV, Brorsson C, van Leeuwen N, Banasik K, Mahajan A, Groves CJ, van de Bunt M, Dawed AY, Fritsche A, Staiger H, Simonis-Bik AMC, Deelen J, Kramer MHH, Dietrich A, Hübschle T, Willemsen G, Häring HU, de Geus EJC, Boomsma DI, Eekhoff EMW, Ferrer J, McCarthy MI, Pearson ER, Gupta R, Brunak S, 't Hart LM. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS One 2018; 13:e0189886. [PMID: 29293525 PMCID: PMC5749727 DOI: 10.1371/journal.pone.0189886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion.
Collapse
Affiliation(s)
- Valborg Gudmundsdottir
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helle Krogh Pedersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karla Viviani Allebrandt
- Department of Translational Bioinformatics, R&D Operations, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Caroline Brorsson
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nienke van Leeuwen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anubha Mahajan
- Oxford NIHR Biomedical Research Center, Oxford, United Kingdom
| | - Christopher J Groves
- Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Martijn van de Bunt
- Oxford NIHR Biomedical Research Center, Oxford, United Kingdom.,Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Adem Y Dawed
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Member of the German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Harald Staiger
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University, Tübingen, Germany
| | - Annemarie M C Simonis-Bik
- Department of Internal Medicine, Diabetes Center and Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joris Deelen
- Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mark H H Kramer
- Department of Internal Medicine, Diabetes Center and Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Axel Dietrich
- Department of Translational Bioinformatics, R&D Operations, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Thomas Hübschle
- Department GI Endocrinology, R&D Diabetes Division, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Member of the German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth M W Eekhoff
- Department of Internal Medicine, Diabetes Center and Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jorge Ferrer
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London, United Kingdom.,Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mark I McCarthy
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Center, Oxford, United Kingdom.,Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Ewan R Pearson
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Ramneek Gupta
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren Brunak
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leen M 't Hart
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Molnos S, Wahl S, Haid M, Eekhoff EMW, Pool R, Floegel A, Deelen J, Much D, Prehn C, Breier M, Draisma HH, van Leeuwen N, Simonis-Bik AMC, Jonsson A, Willemsen G, Bernigau W, Wang-Sattler R, Suhre K, Peters A, Thorand B, Herder C, Rathmann W, Roden M, Gieger C, Kramer MHH, van Heemst D, Pedersen HK, Gudmundsdottir V, Schulze MB, Pischon T, de Geus EJC, Boeing H, Boomsma DI, Ziegler AG, Slagboom PE, Hummel S, Beekman M, Grallert H, Brunak S, McCarthy MI, Gupta R, Pearson ER, Adamski J, 't Hart LM. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study. Diabetologia 2018; 61:117-129. [PMID: 28936587 PMCID: PMC6448944 DOI: 10.1007/s00125-017-4436-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/28/2017] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case-control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10-7). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10-3) and prevalent type 2 diabetes (ORVal_PC ae C32:2 2.64 [β 0.97 ± 0.09], p = 1.0 × 10-27). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HRVal_PC ae C32:2 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10-15), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors.
Collapse
Affiliation(s)
- Sophie Molnos
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mark Haid
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - E Marelise W Eekhoff
- Department of Internal Medicine-Diabetes Center, VU University Medical Center, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Anna Floegel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Joris Deelen
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Daniela Much
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Breier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Harmen H Draisma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nienke van Leeuwen
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, the Netherlands
| | - Annemarie M C Simonis-Bik
- Department of Internal Medicine-Diabetes Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wolfgang Bernigau
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medical College in Qatar, Doha, Qatar
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mark H H Kramer
- Department of Internal Medicine-Diabetes Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Helle K Pedersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valborg Gudmundsdottir
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthias B Schulze
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine, Berlin Buch, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Anette G Ziegler
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandra Hummel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Marian Beekman
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Søren Brunak
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Ramneek Gupta
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ewan R Pearson
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Jerzy Adamski
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Experimental Genetics, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Leen M 't Hart
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, the Netherlands.
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Roussel M, Mathieu J, Dalle S. Molecular mechanisms redirecting the GLP-1 receptor signalling profile in pancreatic β-cells during type 2 diabetes. Horm Mol Biol Clin Investig 2017; 26:87-95. [PMID: 26953712 DOI: 10.1515/hmbci-2015-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
Abstract
Treatments with β-cell preserving properties are essential for the management of type 2 diabetes (T2D), and the new therapeutic avenues, developed over the last years, rely on the physiological role of glucagon-like peptide-1 (GLP-1). Sustained pharmacological levels of GLP-1 are achieved by subcutaneous administration of GLP-1 analogues, while transient and lower physiological levels of GLP-1 are attained following treatment with inhibitors of dipeptidylpeptidase 4 (DPP4), an endoprotease which degrades the peptide. Both therapeutic classes display a sustained and durable hypoglycaemic action in patients with T2D. However, the GLP-1 incretin effect is known to be reduced in patients with T2D, and GLP-1 analogues and DPP4 inhibitors were shown to lose their effectiveness over time in some patients. The pathological mechanisms behind these observations can be either a decrease in GLP-1 secretion from intestinal L-cells and, as a consequence, a reduction in GLP-1 plasma concentrations, combined or not with a reduced action of GLP-1 in the β-cell, the so-called GLP-1 resistance. Much evidence for a GLP-1 resistance of the β-cell in subjects with T2D have emerged. Here, we review the potential roles of the genetic background, the hyperglycaemia, the hyperlipidaemia, the prostaglandin E receptor 3, the nuclear glucocorticoid receptor, the GLP-1R desensitization and internalisation processes, and the β-arrestin-1 expression levels on GLP-1 resistance in β-cells during T2D.
Collapse
|
7
|
Zhou K, Pedersen HK, Dawed AY, Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol 2016; 12:337-46. [PMID: 27062931 DOI: 10.1038/nrendo.2016.51] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Genomic studies have greatly advanced our understanding of the multifactorial aetiology of type 2 diabetes mellitus (T2DM) as well as the multiple subtypes of monogenic diabetes mellitus. In this Review, we discuss the existing pharmacogenetic evidence in both monogenic diabetes mellitus and T2DM. We highlight mechanistic insights from the study of adverse effects and the efficacy of antidiabetic drugs. The identification of extreme sulfonylurea sensitivity in patients with diabetes mellitus owing to heterozygous mutations in HNF1A represents a clear example of how pharmacogenetics can direct patient care. However, pharmacogenomic studies of response to antidiabetic drugs in T2DM has yet to be translated into clinical practice, although some moderate genetic effects have now been described that merit follow-up in trials in which patients are selected according to genotype. We also discuss how future pharmacogenomic findings could provide insights into treatment response in diabetes mellitus that, in addition to other areas of human genetics, facilitates drug discovery and drug development for T2DM.
Collapse
Affiliation(s)
- Kaixin Zhou
- School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Helle Krogh Pedersen
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Adem Y Dawed
- School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Ewan R Pearson
- School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
8
|
Lyssenko V, Groop L, Prasad RB. Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Rev Diabet Stud 2016; 12:233-42. [PMID: 27111116 DOI: 10.1900/rds.2015.12.233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) results from a co-occurrence of genes and environmental factors. There are more than 120 genetic loci suggested to be associated with T2D, or with glucose and insulin levels in European and multi-ethnic populations. Risk of T2D is higher in the offspring if the mother rather than the father has T2D. Genetically, this can be associated with a unique parent-of-origin (PoO) transmission of risk alleles, and it relates to genetic programming during the intrauterine period, resulting in the inability to increase insulin secretion in response to increased demands imposed by insulin resistance later in life. Such PoO transmission is seen for variants in the KLF14, KCNQ1, GRB10, TCF7L2, THADA, and PEG3 genes. Here we describe T2D susceptibility genes associated with defects in insulin secretion, and thereby risk of overt T2D. This review emphasizes the need to consider distorted parental transmission of risk alleles by exploring the genetic risk of T2D.
Collapse
Affiliation(s)
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Rashmi B Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Schwede F, Chepurny OG, Kaufholz M, Bertinetti D, Leech CA, Cabrera O, Zhu Y, Mei F, Cheng X, Manning Fox JE, MacDonald PE, Genieser HG, Herberg FW, Holz GG. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Mol Endocrinol 2015; 29:988-1005. [PMID: 26061564 DOI: 10.1210/me.2014-1330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.
Collapse
Affiliation(s)
- Frank Schwede
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Oleg G Chepurny
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Melanie Kaufholz
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Daniela Bertinetti
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Colin A Leech
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Over Cabrera
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Yingmin Zhu
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Fang Mei
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Xiaodong Cheng
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Jocelyn E Manning Fox
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Patrick E MacDonald
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Hans-G Genieser
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - Friedrich W Herberg
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| | - George G Holz
- BIOLOG Life Science Institute (F.S., H.-G.G.), 28199 Bremen, Germany; Departments of Medicine (O.G.C., C.A.L., G.G.H.) and Pharmacology (G.G.H.), State University of New York, Upstate Medical University, Syracuse, New York 13210; Department of Biochemistry (M.K., D.B., F.W.H.), University of Kassel, 34132 Kassel, Germany; Eli Lilly and Company (O.C.), Indianapolis, Indiana 46225; Department of Integrative Biology and Pharmacology (Y.Z., F.M., X.C.), Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030; Department of Pharmacology and the Alberta Diabetes Institute (J.E.M.F., P.E.M.), University of Alberta, Edmonton, Canada AB T6G 2E1
| |
Collapse
|
10
|
Gjesing AP, Hornbak M, Allin KH, Ekstrøm CT, Urhammer SA, Eiberg H, Pedersen O, Hansen T. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia 2014; 57:1173-81. [PMID: 24604100 DOI: 10.1007/s00125-014-3207-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to estimate the heritability of quantitative measures of glucose regulation obtained from a tolbutamide-modified frequently sampled IVGTT (t-FSIGT) and to correlate the heritability of the glucose-stimulated beta cell response to the tolbutamide-induced beta cell response. In addition, single nucleotide polymorphisms (SNPs) having an exclusive effect on either glucose- or tolbutamide-stimulated insulin release were identified. METHODS Two hundred and eighty-four non-diabetic family members of patients with type 2 diabetes underwent a t-FSIGT with intravenous injection of glucose at t = 0 min and tolbutamide at t = 20 min. Measurements of plasma glucose, serum insulin and serum C-peptide were taken at 33 time points from fasting to 180 min. Insulin secretion rate, acute insulin response (AIR), disposition index (DI) after glucose and disposition index after tolbutamide (DIT), insulin sensitivity (SI), glucose effectiveness (SG) and beta cell responsiveness to glucose were calculated. A polygenic variance component model was used to estimate heritability, genetic correlations and associations. RESULTS We found high heritabilities for acute insulin secretion subsequent to glucose stimulation (AIRglucose h (2) ± SE: 0.88 ± 0.14), but these were slightly lower after tolbutamide (AIRtolbutamide h (2) ± SE: 0.69 ± 0.14). We also estimated the heritabilities for SI (h (2) ± SE: 0.26 ± 0.12), SG (h (2) ± SE: 0.47 ± 0.13), DI (h (2) ± SE: 0.56 ± 0.14), DIT (h (2) ± SE: 0.49 ± 0.14) and beta cell responsiveness to glucose (h (2) ± SE: 0.66 ± 0.12). Additionally, strong genetic correlations were found between measures of beta cell response after glucose and tolbutamide stimulation, with correlation coefficients ranging from 0.77 to 0.88. Furthermore, we identified five SNPs with an exclusive effect on either glucose-stimulated (rs5215, rs1111875, rs11920090) or tolbutamide-stimulated (rs10946398, rs864745) insulin secretion. CONCLUSIONS/INTERPRETATION Our data demonstrate that both glucose- and tolbutamide-induced insulin secretions are highly heritable traits, which are largely under the control of the same genes.
Collapse
Affiliation(s)
- Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1-3, 2100, Copenhagen Ø, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Goodarzi MO, Langefeld CD, Xiang AH, Chen YDI, Guo X, Hanley AJG, Raffel LJ, Kandeel F, Buchanan TA, Norris JM, Fingerlin TE, Lorenzo C, Rewers MJ, Haffner SM, Bowden DW, Rich SS, Bergman RN, Rotter JI, Watanabe RM, Wagenknecht LE. Insulin sensitivity and insulin clearance are heritable and have strong genetic correlation in Mexican Americans. Obesity (Silver Spring) 2014; 22:1157-64. [PMID: 24124113 PMCID: PMC3968231 DOI: 10.1002/oby.20639] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The GUARDIAN (Genetics UndeRlying DIAbetes in HispaNics) consortium is described, along with heritability estimates and genetic and environmental correlations of insulin sensitivity and metabolic clearance rate of insulin (MCRI). METHODS GUARDIAN is comprised of seven cohorts, consisting of 4,336 Mexican-American individuals in 1,346 pedigrees. Insulin sensitivity (SI ), MCRI, and acute insulin response (AIRg) were measured by frequently sampled intravenous glucose tolerance test in four cohorts. Insulin sensitivity (M, M/I) and MCRI were measured by hyperinsulinemic-euglycemic clamp in three cohorts. Heritability and genetic and environmental correlations were estimated within the family cohorts (totaling 3,925 individuals) using variance components. RESULTS Across studies, age, and gender-adjusted heritability of insulin sensitivity (SI , M, M/I) ranged from 0.23 to 0.48 and of MCRI from 0.35 to 0.73. The ranges for the genetic correlations were 0.91 to 0.93 between SI and MCRI; and -0.57 to -0.59 for AIRg and MCRI (all P < 0.0001). The ranges for the environmental correlations were 0.54 to 0.74 for SI and MCRI (all P < 0.0001); and -0.16 to -0.36 for AIRg and MCRI (P < 0.0001-0.06). CONCLUSIONS These data support a strong familial basis for insulin sensitivity and MCRI in Mexican Americans. The strong genetic correlations between MCRI and SI suggest common genetic determinants.
Collapse
Affiliation(s)
- Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- the Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California Medical Group, Pasadena, California
| | - Yii-Der I. Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Anthony J. G. Hanley
- Departments of Nutritional Sciences and Medicine and Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Leslie J. Raffel
- the Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Fouad Kandeel
- Department of Diabetes, Endocrinology and Metabolism, City of Hope, Duarte, California
| | - Thomas A. Buchanan
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Tasha E. Fingerlin
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Carlos Lorenzo
- Division of Clinical Epidemiology, University of Texas Health Sciences Center, San Antonio, Texas
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Donald W. Bowden
- Department of Biochemistry, Centers for Diabetes Research and Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Richard M. Watanabe
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Lynne E. Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
12
|
van Genugten RE, van Raalte DH, Muskiet MH, Heymans MW, Pouwels PJW, Ouwens DM, Mari A, Diamant M. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial. Eur J Endocrinol 2014; 170:429-39. [PMID: 24297090 DOI: 10.1530/eje-13-0610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Anti-inflammatory glucocorticoid (GC) therapy often induces hyperglycemia due to insulin resistance and islet-cell dysfunction. Incretin-based therapies may preserve glucose tolerance and pancreatic islet-cell function. In this study, we hypothesized that concomitant administration of the dipeptidyl peptidase-4 inhibitor sitagliptin and prednisolone in men at high risk to develop type 2 diabetes could protect against the GC-induced diabetogenic effects. DESIGN AND METHODS Men with the metabolic syndrome but without diabetes received prednisolone 30 mg once daily plus sitagliptin 100 mg once daily (n=14), prednisolone (n=12) or sitagliptin alone (n=14) or placebo (n=12) for 14 days in a double-blind 2 × 2 randomized-controlled study. Glucose, insulin, C-peptide, and glucagon were measured in the fasted state and following a standardized mixed-meal test. β-cell function parameters were assessed both from a hyperglycemic-arginine clamp procedure and from the meal test. Insulin sensitivity (M-value) was measured by euglycemic clamp. RESULTS Prednisolone increased postprandial area under the curve (AUC)-glucose by 17% (P<0.001 vs placebo) and postprandial AUC-glucagon by 50% (P<0.001). Prednisolone reduced 1st and 2nd phase glucose-stimulated- and combined hyperglycemia-arginine-stimulated C-peptide secretion (all P ≤ 0.001). When sitagliptin was added, both clamp-measured β-cell function (P=NS for 1st and 2nd phase vs placebo) and postprandial hyperglucagonemia (P=NS vs placebo) remained unaffected. However, administration of sitagliptin could not prevent prednisolone-induced increment in postprandial glucose concentrations (P<0.001 vs placebo). M-value was not altered by any treatment. CONCLUSION Fourteen-day treatment with high-dose prednisolone impaired postprandial glucose metabolism in subjects with the metabolic syndrome. Concomitant treatment with sitagliptin improved various aspects of pancreatic islet-cell function, but did not prevent deterioration of glucose tolerance by GC treatment.
Collapse
|
13
|
't Hart LM, Fritsche A, Nijpels G, van Leeuwen N, Donnelly LA, Dekker JM, Alssema M, Fadista J, Carlotti F, Gjesing AP, Palmer CNA, van Haeften TW, Herzberg-Schäfer SA, Simonis-Bik AMC, Houwing-Duistermaat JJ, Helmer Q, Deelen J, Guigas B, Hansen T, Machicao F, Willemsen G, Heine RJ, Kramer MHH, Holst JJ, de Koning EJP, Häring HU, Pedersen O, Groop L, de Geus EJC, Slagboom PE, Boomsma DI, Eekhoff EMW, Pearson ER, Diamant M. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 2013; 62:3275-81. [PMID: 23674605 PMCID: PMC3749354 DOI: 10.2337/db13-0227] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incretin hormone glucagon-like peptide 1 (GLP-1) promotes glucose homeostasis and enhances β-cell function. GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which inhibit the physiological inactivation of endogenous GLP-1, are used for the treatment of type 2 diabetes. Using the Metabochip, we identified three novel genetic loci with large effects (30-40%) on GLP-1-stimulated insulin secretion during hyperglycemic clamps in nondiabetic Caucasian individuals (TMEM114; CHST3 and CTRB1/2; n = 232; all P ≤ 8.8 × 10(-7)). rs7202877 near CTRB1/2, a known diabetes risk locus, also associated with an absolute 0.51 ± 0.16% (5.6 ± 1.7 mmol/mol) lower A1C response to DPP-4 inhibitor treatment in G-allele carriers, but there was no effect on GLP-1 RA treatment in type 2 diabetic patients (n = 527). Furthermore, in pancreatic tissue, we show that rs7202877 acts as expression quantitative trait locus for CTRB1 and CTRB2, encoding chymotrypsinogen, and increases fecal chymotrypsin activity in healthy carriers. Chymotrypsin is one of the most abundant digestive enzymes in the gut where it cleaves food proteins into smaller peptide fragments. Our data identify chymotrypsin in the regulation of the incretin pathway, development of diabetes, and response to DPP-4 inhibitor treatment.
Collapse
Affiliation(s)
- Leen M 't Hart
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Berkelaar M, Eekhoff EMW, Simonis-Bik AMC, Boomsma DI, Diamant M, Ijzerman RG, Dekker JM, 't Hart LM, de Geus EJC. Effects of induced hyperinsulinaemia with and without hyperglycaemia on measures of cardiac vagal control. Diabetologia 2013; 56:1436-43. [PMID: 23404443 DOI: 10.1007/s00125-013-2848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS We examined the effects of serum insulin levels on vagal control over the heart and tested the hypothesis that higher fasting insulin levels are associated with lower vagal control. We also examined whether experimentally induced increases in insulin by beta cell secretagogues, including glucagon-like peptide-1 (GLP-1), will decrease vagal control. METHODS Respiration and ECGs were recorded for 130 healthy participants undergoing clamps. Three variables of cardiac vagal effects (the root mean square of successive differences [rMSSD] in the interbeat interval of the heart rate [IBI], heart-rate variability [HRV] caused by peak-valley respiratory sinus arrhythmia [pvRSA], and high-frequency power [HF]) and heart rate (HR) were obtained at seven time points during the clamps, characterised by increasing levels of insulin (achieved by administering insulin plus glucose, glucose only, glucose and GLP-1, and glucose and GLP-1 combined with arginine). RESULTS Serum insulin level was positively associated with HR at all time points during the clamps except the first-phase hyperglycaemic clamp. Insulin levels were negatively correlated with variables of vagal control, reaching significance for rMSSD and log10HF, but not for pvRSA, during the last four phases of the hyperglycaemic clamp (hyperglycaemic second phase, GLP-1 first and second phases, and arginine). These associations disappeared when adjusted for age, BMI and insulin sensitivity. Administration of the beta cell secretagogues GLP-1 and arginine led to a significant increase in HR, but this was not paired with a significant reduction in HRV measures. CONCLUSION/INTERPRETATION Experimentally induced hyperinsulinaemia is not correlated with cardiac vagal control or HR when adjusting for age, BMI and insulin sensitivity index. Our findings suggest that exposure to a GLP-1 during hyperglycaemia leads to a small acute increase in HR but not to an acute decrease in cardiac vagal control.
Collapse
Affiliation(s)
- M Berkelaar
- Diabetes Center, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Incretin dysfunction in type 2 diabetes: Clinical impact and future perspectives. DIABETES & METABOLISM 2013; 39:195-201. [DOI: 10.1016/j.diabet.2013.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023]
|
16
|
Herzberg-Schäfer S, Heni M, Stefan N, Häring HU, Fritsche A. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes Metab 2012; 14 Suppl 3:85-90. [PMID: 22928568 DOI: 10.1111/j.1463-1326.2012.01648.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One major risk factor of type 2 diabetes is the impairment of glucose-induced insulin secretion which is mediated by the individual genetic background and environmental factors. In addition to impairment of glucose-induced insulin secretion, impaired glucagon-like peptide (GLP)1-induced insulin secretion has been identified to be present in subjects with diabetes and impaired glucose tolerance, but little is known about its fundamental mechanisms. The state of GLP1 resistance is probably an important mechanism explaining the reduced incretin effect observed in type 2 diabetes. In this review, we address methods that can be used for the measurement of insulin secretion in response to GLP1 in humans, and studies showing that specific diabetes risk genes are associated with resistance of the secretory function of the β-cell in response to GLP1 administration. Furthermore, we discuss other factors that are associated with impaired GLP1-induced insulin secretion, for example, insulin resistance. Finally, we provide evidence that hyperglycaemia per se, the genetic background and their interaction result in the development of GLP1 resistance of the β-cell. We speculate that the response or the non-response to therapy with GLP1 analogues and/or dipeptidyl peptidase-4 (DPP-IV) inhibitors is critically dependent on GLP1 resistance.
Collapse
Affiliation(s)
- S Herzberg-Schäfer
- Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Gjesing AP, Ekstrøm CT, Eiberg H, Urhammer SA, Holst JJ, Pedersen O, Hansen T. Fasting and oral glucose-stimulated levels of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are highly familial traits. Diabetologia 2012; 55:1338-45. [PMID: 22349073 DOI: 10.1007/s00125-012-2484-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/17/2012] [Indexed: 02/03/2023]
Abstract
AIMS/HYPOTHESIS Heritability estimates have shown a varying degree of genetic contribution to traits related to type 2 diabetes. Therefore, the objective of this study was to investigate the familiality of fasting and stimulated measures of plasma glucose, serum insulin, serum C-peptide, plasma glucose-dependent insulinotropic polypeptide (GIP) and plasma glucagon-like peptide-1 (GLP-1) among non-diabetic relatives of Danish type 2 diabetic patients. METHODS Sixty-one families comprising 193 non-diabetic offspring, 29 non-diabetic spouses, 72 non-diabetic relatives (parent, sibling, etc.) and two non-related relatives underwent a 4 h 75 g OGTT with measurements of plasma glucose, serum insulin, serum C-peptide, plasma GIP and plasma GLP-1 levels at 18 time points. Insulin secretion rates (ISR) and beta cell responses to glucose, GIP and GLP-1 were calculated. Familiality was estimated based on OGTT-derived measures. RESULTS A high level of familiality was observed during the OGTT for plasma levels of GIP and GLP-1, with peak familiality values of 74 ± 16% and 65 ± 15%, respectively (h (2) ± SE). Familiality values were lower for plasma glucose, serum insulin and serum C-peptide during the OGTT (range 8-48%, 14-44% and 15-61%, respectively). ISR presented the highest familiality value at fasting reaching 59 ± 16%. Beta cell responsiveness to glucose, GLP-1 and GIP also revealed a strong genetic influence, with peak familiality estimates of 62 ± 13%, 76 ± 15% and 70 ± 14%, respectively. CONCLUSIONS/INTERPRETATION Our results suggest that circulating levels of GIP and GLP-1 as well as beta cell response to these incretins are highly familial compared with more commonly investigated measures of glucose homeostasis such as fasting and stimulated plasma glucose, serum insulin and serum C-peptide.
Collapse
Affiliation(s)
- A P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hopper MK, Brown GW, Funke KA, Pike Brown LR. Prevalence of hyperinsulinemia associated with body mass index, genetic predisposition, and lifestyle in college freshmen students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2012; 60:27-36. [PMID: 22171727 DOI: 10.1080/07448481.2011.562577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVE College lifestyle places an individual at greater risk for the development of insulin resistance (IR) and disease. The aim of this study was to establish a baseline measurement of insulin, and other variables influencing IR in college freshmen. PARTICIPANTS Twenty-two men and women, 18 to 19 years of age, during first month of college. METHODS Following 12-hour fast, subjects reported to the laboratory for determination of body mass index (BMI) and completion of questionnaire determining ethnicity, family history, and patterns of diet, exercise, and stress. Blood samples were obtained and analyzed for glucose and insulin. RESULTS Mean insulin value for men (14.9 ± 1.86 μU/mL) was normal, and that for women (17.3 ± 1.74 μU/mL) was slightly elevated. When subjects were grouped by BMI, genetic predisposition, and summated lifestyle risk, fasting insulin values were significantly different. Eight of 22 subjects were hyperinsulinemic (insulin >19 μU/mL). CONCLUSION Hyperinsulinemia is prevalent in this population and merits further investigation and intervention.
Collapse
Affiliation(s)
- Mari K Hopper
- Department of Biology, University of Southern Indiana, Evansville, Indiana 47712, USA.
| | | | | | | |
Collapse
|
19
|
Simonis-Bik AMC, Boomsma DI, Dekker JM, Diamant M, de Geus EJC, 't Hart LM, Heine RJ, Kramer MHH, Maassen JA, Mari A, Tura A, Willemsen G, Eekhoff EMW. The heritability of beta cell function parameters in a mixed meal test design. Diabetologia 2011; 54:1043-51. [PMID: 21311857 PMCID: PMC3071945 DOI: 10.1007/s00125-011-2060-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/04/2011] [Indexed: 01/26/2023]
Abstract
AIMS/HYPOTHESIS We estimated the heritability of individual differences in beta cell function after a mixed meal test designed to assess a wide range of classical and model-derived beta cell function parameters. METHODS A total of 183 healthy participants (77 men), recruited from the Netherlands Twin Register, took part in a 4 h protocol, which included a mixed meal test. Participants were Dutch twin pairs and their siblings, aged 20 to 49 years. All members within a family were of the same sex. Insulin sensitivity, insulinogenic index, insulin response and postprandial glycaemia were assessed, as well as model-derived parameters of beta cell function, in particular beta cell glucose sensitivity and insulin secretion rates. Genetic modelling provided the heritability of all traits. Multivariate genetic analyses were performed to test for overlap in the genetic factors influencing beta cell function, waist circumference and insulin sensitivity. RESULTS Significant heritabilities were found for insulinogenic index (63%), beta cell glucose sensitivity (50%), insulin secretion during the first 2 h postprandial (42-47%) and postprandial glycaemia (43-52%). Genetic factors influencing beta cell glucose sensitivity and insulin secretion during the first 30 postprandial min showed only negligible overlap with the genetic factors that influence waist circumference and insulin sensitivity. CONCLUSIONS/INTERPRETATION The highest heritability for postprandial beta cell function was found for the insulinogenic index, but the most specific indices of heritability of beta cell function appeared to be beta cell glucose sensitivity and the insulin secretion rate during the first 30 min after a mixed meal.
Collapse
Affiliation(s)
- A M C Simonis-Bik
- Diabetes Center, VU University Medical Center, ZH 4A62, PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Type 2 diabetic patients are insulin resistant as a result of obesity and a sedentary lifestyle. Nevertheless, it has been known for the past five decades that insulin response to nutrients is markedly diminished in type 2 diabetes. There is now a consensus that impaired glucose regulation cannot develop without insulin deficiency. First-phase insulin response to glucose is lost very early in the development of type 2 diabetes. Several prospective studies have shown that impaired insulin response to glucose is a predictor of future impaired glucose tolerance (IGT) and type 2 diabetes. Recently discovered type 2 diabetes-risk gene variants influence β-cell function, and might represent the molecular basis for the low insulin secretion that predicts future type 2 diabetes. We believe type 2 diabetes develops on the basis of normal but 'weak'β-cells unable to cope with excessive functional demands imposed by overnutrition and insulin resistance. Several laboratories have shown a reduction in β-cell mass in type 2 diabetes and IGT, whereas others have found modest reductions and most importantly, a large overlap between β-cell masses of diabetic and normoglycemic subjects. Therefore, at least initially, the β-cell dysfunction of type 2 diabetes seems more functional than structural. However, type 2 diabetes is a progressive disorder, and animal models of diabetes show β-cell apoptosis with prolonged hyperglycemia/hyperlipemia (glucolipotoxicity). β-Cells exposed in vitro to glucolipotoxic conditions show endoplasmic reticulum (ER) and oxidative stress. ER stress mechanisms might participate in the adaptation of β-cells to hyperglycemia, unless excessive. β-Cells are not deficient in anti-oxidant defense, thioredoxin playing a major role. Its inhibitor, thioredoxin-interacting protein (TXNIP), might be important in leading to β-cell apoptosis and type 2 diabetes. These topics are intensively investigated and might lead to novel therapeutic approaches. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00094.x, 2011).
Collapse
Affiliation(s)
- Gil Leibowitz
- Endocrine Services, Department of Medicine, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Nurit Kaiser
- Endocrine Services, Department of Medicine, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Erol Cerasi
- Endocrine Services, Department of Medicine, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Abstract
For the past two decades, genetics has been widely explored as a tool for unraveling the pathogenesis of diabetes. Many risk alleles for type 2 diabetes and hyperglycemia have been detected in recent years through massive genome-wide association studies and evidence exists that most of these variants influence pancreatic β-cell function. However, risk alleles in five loci seem to have a primary impact on insulin sensitivity. Investigations of more detailed physiologic phenotypes, such as the insulin response to intravenous glucose or the incretion hormones, are now emerging and give indications of more specific pathologic mechanisms for diabetes-related risk variants. Such studies have shed light on the function of some loci but also underlined the complex nature of disease mechanism. In the future, sequencing-based discovery of low-frequency variants with higher impact on intermediate diabetes-related traits is a likely scenario and identification of new pathways involved in type 2 diabetes predisposition will offer opportunities for the development of novel therapeutic and preventative approaches.
Collapse
Affiliation(s)
- Niels Grarup
- Diabetes Genetics, Hagedorn Research Institute, Gentofte, Denmark
| | - Thomas Sparsø
- Diabetes Genetics, Hagedorn Research Institute, Gentofte, Denmark
| | - Torben Hansen
- Hagedorn Research Institute, Niels Steensens Vej 1, 2820 Gentofte, Denmark
| |
Collapse
|
22
|
Current literature in diabetes. Diabetes Metab Res Rev 2010; 26:i-xi. [PMID: 20474064 DOI: 10.1002/dmrr.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
't Hart LM, Simonis-Bik AM, Nijpels G, van Haeften TW, Schäfer SA, Houwing-Duistermaat JJ, Boomsma DI, Groenewoud MJ, Reiling E, van Hove EC, Diamant M, Kramer MHH, Heine RJ, Maassen JA, Kirchhoff K, Machicao F, Häring HU, Slagboom PE, Willemsen G, Eekhoff EM, de Geus EJ, Dekker JM, Fritsche A. Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes 2010; 59:287-92. [PMID: 19808892 PMCID: PMC2797935 DOI: 10.2337/db09-0736] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE At least 20 type 2 diabetes loci have now been identified, and several of these are associated with altered beta-cell function. In this study, we have investigated the combined effects of eight known beta-cell loci on insulin secretion stimulated by three different secretagogues during hyperglycemic clamps. RESEARCH DESIGN AND METHODS A total of 447 subjects originating from four independent studies in the Netherlands and Germany (256 with normal glucose tolerance [NGT]/191 with impaired glucose tolerance [IGT]) underwent a hyperglycemic clamp. A subset had an extended clamp with additional glucagon-like peptide (GLP)-1 and arginine (n = 224). We next genotyped single nucleotide polymorphisms in TCF7L2, KCNJ11, CDKAL1, IGF2BP2, HHEX/IDE, CDKN2A/B, SLC30A8, and MTNR1B and calculated a risk allele score by risk allele counting. RESULTS The risk allele score was associated with lower first-phase glucose-stimulated insulin secretion (GSIS) (P = 7.1 x 10(-6)). The effect size was equal in subjects with NGT and IGT. We also noted an inverse correlation with the disposition index (P = 1.6 x 10(-3)). When we stratified the study population according to the number of risk alleles into three groups, those with a medium- or high-risk allele score had 9 and 23% lower first-phase GSIS. Second-phase GSIS, insulin sensitivity index and GLP-1, or arginine-stimulated insulin release were not significantly different. CONCLUSIONS A combined risk allele score for eight known beta-cell genes is associated with the rapid first-phase GSIS and the disposition index. The slower second-phase GSIS, GLP-1, and arginine-stimulated insulin secretion are not associated, suggesting that especially processes involved in rapid granule recruitment and exocytosis are affected in the majority of risk loci.
Collapse
Affiliation(s)
- Leen M 't Hart
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|