1
|
Smithiseth K, Leurcharusmee P, Sawaddiruk P, Chattipakorn N, Chattipakorn S. Unraveling the link between magnesium and diabetic neuropathy: Evidence from in vitro to clinical studies. Nutr Res 2025; 135:13-31. [PMID: 39891959 DOI: 10.1016/j.nutres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Diabetic neuropathy (DN) is one of the major complications of diabetes and the most common cause of neuropathic pain. Although the underlying pathological mechanisms remain unclear, several studies have produced conflicting results regarding the link between magnesium (Mg) concentration and DN. This ambiguity raises questions about the potential benefits of Mg supplementation in individuals with DN. Therefore, this comprehensive review summarizes and discusses the evidence from clinical, in vitro, and in vivo studies on the association between Mg and DN. Several findings indicate that Mg depletion is linked to the presence of neuropathy in diabetic patients. Additionally, low Mg concentration may contribute to the onset or worsening of DN by promoting axonal degeneration through various pathways. Furthermore, multiple studies have shown that Mg supplementation can have neuroprotective effects. These findings suggest potential as an alternative or complementary therapy for preventing and treating DN in the future.
Collapse
Affiliation(s)
- Kannika Smithiseth
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Passakorn Sawaddiruk
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Bora S, Adole PS, Vinod KV, Pillai AA, Ahmed S. GC-MS validation and analysis of targeted plasma metabolites related to carbonyl stress in type 2 diabetes mellitus patients with and without acute coronary syndrome. Biomed Chromatogr 2024; 38:e5952. [PMID: 38966927 DOI: 10.1002/bmc.5952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Methylglyoxal (MG) is responsible for advanced glycation end-product formation, the mechanisms leading to diabetes pathogenesis and complications like acute coronary syndrome (ACS). Sugar metabolites, amino acids and fatty acids are possible substrates for MG. The study aimed to measure plasma MG substrate levels using a validated gas chromatography-mass spectrometry (GC-MS) method and explore their association with ACS risk in type 2 diabetes mellitus (T2DM). The study included 150 T2DM patients with ACS as cases and 150 T2DM without ACS as controls for the analysis of glucose, fructose, ribulose, sorbitol, glycerol, pyruvate, lactate, glycine, serine, threonine, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C22:6 by GC-MS. Validated GC-MS methods were accurate, precise and sensitive. Cases significantly differed in plasma MG and metabolite levels except for lactate, C16:0, C18:0, C18:2, and C18:3 levels compared with controls. On multivariable logistic regression, plasma C20:0, C18:1, glycine and glycerol levels had increased odds of ACS risk. On multivariate receiver operating characteristic analysis, a model containing plasma C20:0, C16:1, C18:1, C18:2, serine, glycerol, lactate and threonine levels had the highest area under the curve value (0.932) for ACS diagnosis. In conclusion, plasma C20:0, C16:1, C18:1, glycine, glycerol and sorbitol levels were associated with ACS risk in T2DM.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Prashant Shankarrao Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Kolar Vishwanath Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Ajith Ananthakrishna Pillai
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Shaheer Ahmed
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
3
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Dorenkamp M, Nasiry M, Semo D, Koch S, Löffler I, Wolf G, Reinecke H, Godfrey R. Pharmacological Targeting of the RAGE-NFκB Signalling Axis Impedes Monocyte Activation under Diabetic Conditions through the Repression of SHP-2 Tyrosine Phosphatase Function. Cells 2023; 12:cells12030513. [PMID: 36766855 PMCID: PMC9914555 DOI: 10.3390/cells12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 02/09/2023] Open
Abstract
Monocytes play a vital role in the development of cardiovascular diseases. Type 2 diabetes mellitus (T2DM) is a major CVD risk factor, and T2DM-induced aberrant activation and enhanced migration of monocytes is a vital pathomechanism that leads to atherogenesis. We recently reported the upregulation of SHP-2 phosphatase expression in mediating the VEGF resistance of T2DM patient-derived monocytes or methylglyoxal- (MG, a glucose metabolite and advanced glycation end product (AGE) precursor) treated monocytes. However, the exact mechanisms leading to SHP-2 upregulation in hyperglycemic monocytes are unknown. Since inflammation and accumulation of AGEs is a hallmark of T2DM, we hypothesise that inflammation and AGE-RAGE (Receptor-for-AGEs) signalling drive SHP-2 expression in monocytes and blockade of these pathways will repress SHP-2 function. Indeed, monocytes from T2DM patients revealed an elevated SHP-2 expression. Under normoglycemic conditions, the serum from T2DM patients strongly induced SHP-2 expression, indicating that the T2DM serum contains critical factors that directly regulate SHP-2 expression. Activation of pro-inflammatory TNFα signalling cascade drove SHP-2 expression in monocytes. In line with this, linear regression analysis revealed a significant positive correlation between TNFα expression and SHP-2 transcript levels in T2DM monocytes. Monocytes exposed to MG or AGE mimetic AGE-BSA, revealed an elevated SHP-2 expression and co-treatment with an NFκB inhibitor or genetic inhibition of p65 reversed it. The pharmacological inhibition of RAGE was sufficient to block MG- or AGE-BSA-induced SHP-2 expression and activity. Confirming the importance of RAGE-NFκB signalling in regulating SHP-2 expression, the elevated binding of NFκB to the SHP-2 promoter-induced by MG or AGE-BSA-was reversed by RAGE and NFκB inhibition. Besides, we detected elevated RAGE levels in human and murine T2DM monocytes and monocytes exposed to MG or AGE-BSA. Importantly, MG and AGE-BSA treatment of non-T2DM monocytes phenocopied the aberrant pro-migratory phenotype of T2DM monocytes, which was reversed entirely by either SHP-2- or RAGE inhibition. In conclusion, these findings suggest a new therapeutic approach to prevent accelerated atherosclerosis in T2DM patients since inhibiting the RAGE-NFκB-SHP-2 axis impeded the T2DM-driven, SHP-2-dependent monocyte activation.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Madina Nasiry
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Dilvin Semo
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Sybille Koch
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07743 Jena, Germany
| | - Holger Reinecke
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
| | - Rinesh Godfrey
- Vascular Signalling, Molecular Cardiology, Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-57089; Fax: +49-251-83-55747
| |
Collapse
|
5
|
Cruz N, Flores M, Urquiaga I, Ávila F. Modulation of 1,2-Dicarbonyl Compounds in Postprandial Responses Mediated by Food Bioactive Components and Mediterranean Diet. Antioxidants (Basel) 2022; 11:1513. [PMID: 36009232 PMCID: PMC9405221 DOI: 10.3390/antiox11081513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Glycoxidative stress with the consequent generation of advanced glycation end products has been implied in the etiology of numerous non-communicable chronic diseases. During the postprandial state, the levels of 1,2-dicarbonyl compounds can increase, depending on numerous factors, including characteristics of the subjects mainly related to glucose metabolism disorders and nutritional status, as well as properties related to the chemical composition of meals, including macronutrient composition and the presence of dietary bioactive molecules and macromolecules. In this review, we examine the chemical, biochemical, and physiological pathways that contribute to postprandial generation of 1,2-dicarbonyl compounds. The modulation of postprandial 1,2-dicarbonyl compounds is discussed in terms of biochemical pathways regulating the levels of these compounds, as well as the effect of phenolic compounds, dietary fiber, and dietary patterns, such as Mediterranean and Western diets.
Collapse
Affiliation(s)
- Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Inés Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile;
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| |
Collapse
|
6
|
Ursino G, Ramadori G, Höfler A, Odouard S, Teixeira PDS, Visentin F, Veyrat-Durebex C, Lucibello G, Firnkes R, Ricci S, Vianna CR, Jia L, Dirlewanger M, Klee P, Elmquist JK, Roth J, Vogl T, Schwitzgebel VM, Jornayvaz FR, Boland A, Coppari R. Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis. Nat Commun 2022; 13:4107. [PMID: 35840613 PMCID: PMC9287425 DOI: 10.1038/s41467-022-31803-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Unrestrained ketogenesis leads to life-threatening ketoacidosis whose incidence is high in patients with diabetes. While insulin therapy reduces ketogenesis this approach is sub-optimal. Here, we report an insulin-independent pathway able to normalize diabetic ketogenesis. By generating insulin deficient male mice lacking or re-expressing Toll-Like Receptor 4 (TLR4) only in liver or hepatocytes, we demonstrate that hepatic TLR4 in non-parenchymal cells mediates the ketogenesis-suppressing action of S100A9. Mechanistically, S100A9 acts extracellularly to activate the mechanistic target of rapamycin complex 1 (mTORC1) in a TLR4-dependent manner. Accordingly, hepatic-restricted but not hepatocyte-restricted loss of Tuberous Sclerosis Complex 1 (TSC1, an mTORC1 inhibitor) corrects insulin-deficiency-induced hyperketonemia. Therapeutically, recombinant S100A9 administration restrains ketogenesis and improves hyperglycemia without causing hypoglycemia in diabetic mice. Also, circulating S100A9 in patients with ketoacidosis is only marginally increased hence unveiling a window of opportunity to pharmacologically augment S100A9 for preventing unrestrained ketogenesis. In summary, our findings reveal the hepatic S100A9-TLR4-mTORC1 axis in non-parenchymal cells as a promising therapeutic target for restraining diabetic ketogenesis. Excess ketogenesis can lead to ketoacidosis, a serious complication in patients with diabetes. Here the authors report an insulin independent pathway, the hepatic nonparenchymal S100A9-TLR4-mTORC1 axis, that is able to normalize diabetic ketogenesis and pre-clinical data to suggest potential for development of S100A9 based adjunctive therapy to insulin.
Collapse
Affiliation(s)
- Gloria Ursino
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland. .,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
| | - Anna Höfler
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Soline Odouard
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Pryscila D S Teixeira
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Florian Visentin
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Giulia Lucibello
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Raquel Firnkes
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Serena Ricci
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Claudia R Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Lin Jia
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Mirjam Dirlewanger
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Klee
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Johannes Roth
- Institute of Immunology, University of Munster, 48149, Munster, Germany.,Interdisciplinary Centre for Clinical Research, University of Munster, 48149, Munster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Munster, 48149, Munster, Germany.,Interdisciplinary Centre for Clinical Research, University of Munster, 48149, Munster, Germany
| | - Valérie M Schwitzgebel
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - François R Jornayvaz
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland. .,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
7
|
Sulaj A, Kopf S, von Rauchhaupt E, Kliemank E, Brune M, Kender Z, Bartl H, Cortizo FG, Klepac K, Han Z, Kumar V, Longo V, Teleman A, Okun JG, Morgenstern J, Fleming T, Szendroedi J, Herzig S, Nawroth PP. Six-Month Periodic Fasting in Patients With Type 2 Diabetes and Diabetic Nephropathy: A Proof-of-Concept Study. J Clin Endocrinol Metab 2022; 107:2167-2181. [PMID: 35661214 PMCID: PMC9282263 DOI: 10.1210/clinem/dgac197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 12/11/2022]
Abstract
CONTEXT Novel fasting interventions have gained scientific and public attention. Periodic fasting has emerged as a dietary modification promoting beneficial effects on metabolic syndrome. OBJECTIVE Assess whether periodic fasting reduces albuminuria and activates nephropathy-driven pathways. DESIGN/PARTICIPANTS Proof-of-concept study where individuals with type 2 diabetes (n = 40) and increased albumin-to-creatinine ratio (ACR) were randomly assigned to receive a monthly fasting-mimicking diet (FMD) or a Mediterranean diet for 6 months with 3-month follow-up. MAIN OUTCOMES MEASURES Change in ACR was assessed by analysis of covariance adjusted for age, sex, weight loss, and baseline value. Prespecified subgroup analysis for patients with micro- vs macroalbuminuria at baseline was performed. Change in homeostatic model assessment for insulin resistance (HOMA-IR), circulating markers of dicarbonyl detoxification (methylglyoxal-derived hydroimidazolone 1, glyoxalase-1, and hydroxyacetone), DNA-damage/repair (phosphorylated histone H2AX), lipid oxidation (acylcarnitines), and senescence (soluble urokinase plasminogen activator receptor) were assessed as exploratory endpoints. RESULTS FMD was well tolerated with 71% to 95% of the participants reporting no adverse effects. After 6 months, change in ACR was comparable between study groups [110.3 (99.2, 121.5) mg/g; P = 0.45]. FMD led to a reduction of ACR in patients with microalbuminuria levels at baseline [-30.3 (-35.7, -24.9) mg/g; P ≤ 0.05] but not in those with macroalbuminuria [434.0 (404.7, 463.4) mg/g; P = 0.23]. FMD reduced HOMA-IR [-3.8 (-5.6, -2.0); P ≤ 0.05] and soluble urokinase plasminogen activator receptor [-156.6 (-172.9, -140.4) pg/mL; P ≤ 0.05], while no change was observed in markers of dicarbonyl detoxification or DNA-damage/repair. Change in acylcarnitines was related to patient responsiveness to ACR improvement. At follow-up only HOMA-IR reduction [-1.9 (-3.7, -0.1), P ≤ 0.05]) was sustained. CONCLUSIONS Improvement of microalbuminuria and of markers of insulin resistance, lipid oxidation, and senescence suggest the potential beneficial effects of periodic fasting in type 2 diabetes.
Collapse
Affiliation(s)
- Alba Sulaj
- Correspondence: Alba Sulaj, MD, Clinic of Endocrinology, Diabetology, Metabolism and Clinical Chemistry, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Stefan Kopf
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Elisabeth Kliemank
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Maik Brune
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Hannelore Bartl
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Fabiola Garcia Cortizo
- German Cancer Research Center (DKFZ), Division of Signal Transduction in Cancer and Metabolism, Heidelberg, Germany
| | - Katarina Klepac
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Zhe Han
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Varun Kumar
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Valter Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy
| | - Aurelio Teleman
- German Cancer Research Center (DKFZ), Division of Signal Transduction in Cancer and Metabolism, Heidelberg, Germany
| | - Jürgen G Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University HospitalHeidelberg, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
8
|
Prevenzano I, Leone A, Longo M, Nicolò A, Cabaro S, Collina F, Panarese I, Botti G, Formisano P, Napoli R, Beguinot F, Miele C, Nigro C. Glyoxalase 1 knockdown induces age-related β-cell dysfunction and glucose intolerance in mice. EMBO Rep 2022; 23:e52990. [PMID: 35620868 PMCID: PMC9253754 DOI: 10.15252/embr.202152990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 09/09/2023] Open
Abstract
Tight control of glycemia is a major treatment goal for type 2 diabetes mellitus (T2DM). Clinical studies indicated that factors other than poor glycemic control may be important in fostering T2DM progression. Increased levels of methylglyoxal (MGO) associate with complications development, but its role in the early steps of T2DM pathogenesis has not been defined. Here, we show that MGO accumulation induces an age-dependent impairment of glucose tolerance and glucose-stimulated insulin secretion in mice knockdown for glyoxalase 1 (Glo1KD). This metabolic alteration associates with the presence of insular inflammatory infiltration (F4/80-positive staining), the islet expression of senescence markers, and higher levels of cytokines (MCP-1 and TNF-α), part of the senescence-activated secretory profile, in the pancreas from 10-month-old Glo1KD mice, compared with their WT littermates. In vitro exposure of INS832/13 β-cells to MGO confirms its casual role on β-cell dysfunction, which can be reverted by senolytic treatment. These data indicate that MGO is capable to induce early phenotypes typical of T2D progression, paving the way for novel prevention approaches to T2DM.
Collapse
Affiliation(s)
- Immacolata Prevenzano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Alessia Leone
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Michele Longo
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Antonella Nicolò
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Serena Cabaro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesca Collina
- Pathology UnitIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Iacopo Panarese
- Unità di Anatomia PatologicaDipartimento di Salute Mentale e Fisica e Medicina PreventivaUniversità degli Studi della Campania "L. Vanvitelli"NaplesItaly
| | - Gerardo Botti
- Scientific DirectionIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Pietro Formisano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Raffaele Napoli
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesco Beguinot
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Claudia Miele
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Cecilia Nigro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| |
Collapse
|
9
|
Buckert M, Hartmann M, Monzer N, Wolff K, Nawroth P, Fleming T, Streibel C, Henningsen N, Wild B. Pronounced cortisol response to acute psychosocial stress in type 2 diabetes patients with and without complications. Horm Behav 2022; 141:105120. [PMID: 35220091 DOI: 10.1016/j.yhbeh.2022.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
It is increasingly recognized that psychological stress is linked with type 2 diabetes mellitus and its late complications. Thus, the aim of the current study was to investigate the psychophysiological response to acute psychosocial stress in patients with type 2 diabetes. In total, 53 type 2 diabetes patients with complications, 16 type 2 diabetes patients without complications, and 47 age and gender matched non-diabetic participants underwent the Trier Social Stress Test. Subjective as well as biological parameters (i.e., blood levels of cortisol, adrenocorticotropic hormone (ACTH), norepinephrine, methylglyoxal) were assessed repeatedly before and after stress induction. Data were analyzed by means of multilevel regression. Patients with type 2 diabetes showed an exaggerated cortisol response to acute stress as compared to age matched control participants (diabetes*T2 est. = 1.23, p < .001), while stress-induced alterations of ACTH and subjective parameters did not differ. Norepinephrine levels were lower among patients (diabetes est. = -4.36, p = .044) and tended to decrease earlier than in controls. The subjective reaction of type 2 diabetes patients with complications was stronger than that of patients without complications (complication*T2 est. = -1.83, p = .032), while their endocrine response to stress was similar. Stress had no effect on methylglyoxal level, and there were no group differences regarding methylglyoxal response. These results show that the cortisol reactivity of patients with type 2 diabetes to acute psychosocial stress is increased compared to a control group. Thus, alterations of the hypothalamus-pituitary-adrenal axis - especially regarding its dynamic regulation - are a plausible link between psychological stress and type 2 diabetes and its complications.
Collapse
Affiliation(s)
- M Buckert
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany.
| | - M Hartmann
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - N Monzer
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - K Wolff
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - T Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - C Streibel
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - N Henningsen
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - B Wild
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Dang Y, Lai Y, Chen F, Sun Q, Ding C, Zhang W, Xu Z. Activatable NIR-II Fluorescent Nanoprobe for Rapid Detection and Imaging of Methylglyoxal Facilitated by the Local Nonpolar Microenvironment. Anal Chem 2022; 94:1076-1084. [DOI: 10.1021/acs.analchem.1c04076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fengping Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunyong Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Al-Saoudi E, Christensen MMB, Nawroth P, Fleming T, Hommel EE, Jørgensen ME, Fleischer J, Hansen CS. Advanced glycation end-products are associated with diabetic neuropathy in young adults with type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:891442. [PMID: 36303871 PMCID: PMC9592972 DOI: 10.3389/fendo.2022.891442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS/HYPOTHESIS Advanced glycation end-products (AGEs) may contribute to the development of diabetic neuropathy. In young adults with type 1 diabetes, we aimed to investigate the association between AGEs and cardiovascular autonomic neuropathy (CAN) and distal symmetric polyneuropathy (DSPN). METHODS This cross-sectional study comprised 151 young adults. CAN was assessed by cardiovascular autonomic reflex tests; lying-to-standing test, deep breathing test (E/I), Valsalva manoeuvre, and heart rate variability indices; and the mean square of the sum of the squares of differences between consecutive R-R intervals and standard deviation of normal-to-normal intervals (SDNN), high- (HF) and low-frequency (LF) power, total frequency power, and the LF/HF ratio. DSPN was assessed by light touch, pain and vibration perception threshold (VPT), neuropathy questionnaires, and objective measures. AGEs were analysed in four groups using z-scores adjusted for relevant confounders and multiple testing: i) "glycolytic dysfunction", ii) "lipid peroxidation", iii) "oxidative stress", and iv) "glucotoxicity". RESULTS A higher z-score of "glycolytic dysfunction" was associated with higher VPT (4.14% (95% CI 1.31; 7.04), p = 0.004) and E/I (0.03% (95% CI 0.01; 0.05), p = 0.005), "lipid peroxidation" was associated with higher LF/HF ratio (37.72% (95% CI 1.12; 87.57), p = 0.044), and "glucotoxicity" was associated with lower SDNN (-4.20% (95% CI -8.1416; -0.0896), p = 0.047). No significance remained after adjustment for multiple testing. CONCLUSIONS/INTERPRETATIONS In young adults with type 1 diabetes, increased levels of AGEs involving different metabolic pathways were associated with several measures of CAN and DSPN, suggesting that AGEs may play a diverse role in the pathogeneses of diabetic neuropathy.
Collapse
Affiliation(s)
- Elaf Al-Saoudi
- Department of Complication Research , Steno Diabetes Center Copenhagen, Herlev, Denmark
- *Correspondence: Elaf Al-Saoudi,
| | | | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programm, Helmholtz-Zentrum, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Marit E. Jørgensen
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | | | - Christian S. Hansen
- Department of Complication Research , Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
12
|
Donnellan L, Simpson BS, Dhillon VS, Costabile M, Fenech M, Deo P. OUP accepted manuscript. Mutagenesis 2022; 37:24-33. [PMID: 35079805 PMCID: PMC9186029 DOI: 10.1093/mutage/geac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with elevated frequencies of micronuclei (MNi) and other DNA damage biomarkers. Interestingly, individuals with T2D are more likely to be deficient in micronutrients (folic acid, pyridoxal-phosphate, cobalamin) that play key roles in one-carbon metabolism and maintaining genomic integrity. Furthermore, it has recently been shown that deficiencies in these nutrients, in particular folic acid leaves cells susceptible to glucose-induced DNA damage. Therefore, we sought to investigate if the B lymphoblastoid WIL2-NS cell line cultured under folic acid-deficient conditions was more sensitive to DNA damage induced by glucose, or the reactive glycolytic byproduct methylglyoxal (MGO) and subsequent advanced glycation endproduct formation. Here, we show that only WIL2-NS cultured under folic acid-deficient conditions (23 nmol/l) experience an increase in MNi frequency when exposed to high concentrations of glucose (45 mmol/l) or MGO (100 µmol/l). Furthermore, we showed aminoguanidine, a well-validated MGO and free radical scavenger was able to prevent further MNi formation in folic acid-deficient cells exposed to high glucose, which may be due to a reduction in MGO-induced oxidative stress. Interestingly, we also observed an increase in MGO and other dicarbonyl stress biomarkers in folic acid-deficient cells, irrespective of glucose concentrations. Overall, our evidence shows that folic acid-deficient WIL2-NS cells are more susceptible to glucose and/or MGO-induced MNi formation. These results suggest that individuals with T2D experiencing hyperglycemia and folic acid deficiency may be at higher risk of chromosomal instability.
Collapse
Affiliation(s)
- Leigh Donnellan
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide, SA 5000, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide, SA 5000, Australia
| | - Varinderpal S Dhillon
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide, SA 5000, Australia
| | - Maurizio Costabile
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide, SA 5000, Australia
- University of South Australia, Centre for Cancer Biology and SA Pathology, Frome Road, Adelaide, SA 5000, Australia
| | - Michael Fenech
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide, SA 5000, Australia
- Genome Health Foundation, North Brighton, SA 5048, Australia
| | - Permal Deo
- Corresponding author. University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, Adelaide, SA 5000, Australia. E-mail:
| |
Collapse
|
13
|
Li WY, Lee CY, Lee KM, Zhang G, Lyu A, Yue KKM. Advanced Glycation End-Product Precursor Methylglyoxal May Lead to Development of Alzheimer's Disease. Diabetes Metab Syndr Obes 2022; 15:3153-3166. [PMID: 36262805 PMCID: PMC9575592 DOI: 10.2147/dmso.s382927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is characterized by chronic hyperglycemia and diabetic complications. Exacerbated cortical neuronal degeneration was observed in Alzheimer's disease (AD) patients with DM. In fact, DM is now considered a risk factor of AD, as DM-induced activation of stress responses in the central nervous system (CNS) such as oxidative stress and neuroinflammation may lead to various neurodegenerative disorders. Methylglyoxal (MG) is one of the most reactive advanced glycation end-product (AGE) precursors. Abnormal accumulation of MG is observed in the serum of diabetic patients. As MG is reported to promote brain cells impairment in the CNS, and it is found that AGEs are abnormally increased in the brains of AD patients. Therefore, the effect of MG causing subsequent symptoms of AD was investigated. METHODS 5-week-old C57BL/6 mice were intraperitoneally injected with MG solution for 11 weeks. The Morris water maze (MWM) was used to examine the spatial learning ability and cognition of mice. After MG treatment, MTT assay, real-time PCR analyses, and Western blot were performed to assess the harvested astrocytes and hippocampi. RESULTS Significantly longer escape latency and reduced percentage time spent in the target quadrant were observed in the 9-week-MG-treated mice. We have found in both in vitro and in vivo models that MG induced astrogliosis, pro-inflammatory cytokines, AD-related markers, and ERK activation. Further, trend of normalization of the tested markers mRNA expressions were observed after ERK inhibition. CONCLUSION Our in vivo results suggested that MG could induce AD symptoms and in vitro results implied that ERK may regulate the promotion of inflammation and Aβ formation in MG-induced reactive astrocytes. Taken together, MG may participate in the dysfunction of brain cells resulting in possible diabetes-related neurodegeneration by promoting astrogliosis, Aβ production, and neuroinflammation through the ERK pathway. Our findings provide insight of targeting ERK as a therapeutic application for diabetes-induced AD.
Collapse
Affiliation(s)
- Wai Yin Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Cheuk Yan Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Kwan Ming Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Kevin Kin Man Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Correspondence: Kevin Kin Man Yue, 4/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, Tel +852 3411 2468, Email
| |
Collapse
|
14
|
Role of Advanced Glycation End-Products and Other Ligands for AGE Receptors in Thyroid Cancer Progression. J Clin Med 2021; 10:jcm10184084. [PMID: 34575195 PMCID: PMC8470575 DOI: 10.3390/jcm10184084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
To date, thyroid cancers (TCs) remain a clinical challenge owing to their heterogeneous nature. The etiopathology of TCs is associated not only with genetic mutations or chromosomal rearrangements, but also non-genetic factors, such as oxidative-, nitrosative-, and carbonyl stress-related alterations in tumor environment. These factors, through leading to the activation of intracellular signaling pathways, induce tumor tissue proliferation. Interestingly, the incidence of TCs is often coexistent with various simultaneous mutations. Advanced glycation end-products (AGEs), their precursors and receptors (RAGEs), and other ligands for RAGEs are reported to have significant influence on carcinogenesis and TCs progression, inducing gene mutations, disturbances in histone methylation, and disorders in important carcinogenesis-related pathways, such as PI3K/AKT/NF-kB, p21/MEK/MPAK, or JAK/STAT, RAS/ERK/p53, which induce synthesis of interleukins, growth factors, and cytokines, thus influencing metastasis, angiogenesis, and cancer proliferation. Precursors of AGE (such as methylglyoxal (MG)) and selected ligands for RAGEs: AS1004, AS1008, and HMGB1 may, in the future, become potential targets for TCs treatment, as low MG concentration is associated with less aggressive anaplastic thyroid cancer, whereas the administration of anti-RAGE antibodies inhibits the progression of papillary thyroid cancer and anaplastic thyroid cancer. This review is aimed at collecting the information on the role of compounds, engaged in glycation process, in the pathogenesis of TCs. Moreover, the utility of these compounds in the diagnosis and treatment of TCs is thoroughly discussed. Understanding the mechanism of action of these compounds on TCs pathogenesis and progression may potentially be the grounds for the development of new treatment strategies, aiming at quality-of-life improvements.
Collapse
|
15
|
Wang J, Zhang L, Qu Y, Yang Y, Cao T, Cao Y, Iqbal A, Qin W, Liu Y. Long-Wavelength Ratiometric Fluorescent Probe for the Early Diagnosis of Diabetes. Anal Chem 2021; 93:11461-11469. [PMID: 34369744 DOI: 10.1021/acs.analchem.1c01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetes is a metabolic disease caused by high blood sugar. Patients are often suffering from high blood pressure and arteriosclerosis, which may even evolve into liver disease, kidney disease, and other diabetic complications. Dipeptide peptidase IV (DPP-IV) plays an important role in regulating blood sugar levels and is one of the targets for the diagnosis and treatment of diabetes. Here, a long-wavelength ratiometric fluorescent probe DCDHFNH2-dpp4 for detecting DPP-IV was designed and synthesized. DCDHFNH2-dpp4 was used to detect DPP-IV in healthy, tumor-bearing, and diabetic mice, and only diabetic mice showed strong fluorescence signals. In organ imaging, it is found that DPP-IV is relatively enriched in the liver of diabetic mice. In addition, probe DCDHFNH2-dpp4 also exhibited a significant ratiometric fluorescence signal in the serum of diabetic mice. Therefore, the fluorescent probe DCDHFNH2-dpp4 has shown outstanding potential in the early diagnosis of diabetes, and DCDHFNH2-dpp4 is hopeful to be applied to actual clinical medicine.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yi Qu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Anam Iqbal
- Department of Chemistry, University of Baluchistan, 87300 Quetta, Pakistan
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| |
Collapse
|
16
|
Vercelli C, Tursi M, Miretti S, Giusto G, Gandini M, Re G, Valle E. Effect of sugar metabolite methylglyoxal on equine lamellar explants: An ex vivo model of laminitis. PLoS One 2021; 16:e0253840. [PMID: 34314429 PMCID: PMC8315528 DOI: 10.1371/journal.pone.0253840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Laminitis is one of the most devastating diseases in equine medicine, and although several etiopathogenetic mechanisms have been proposed, few clear answers have been identified to date. Several lines of evidence point towards its underlying pathology as being metabolism-related. In the carbonyl stress pathway, sugars are converted to methylglyoxal (MG)-a highly reactive α-oxoaldehyde, mainly derived during glycolysis in eukaryotic cells from the triose phosphates: D-glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. One common hypothesis is that MG could be synthesized during the digestive process in horses, and excessive levels absorbed into peripheral blood could be delivered to the foot and lead to alterations in the hoof lamellar structure. In the present study, employing an ex vivo experimental design, different concentrations of MG were applied to hoof explants (HE), which were then incubated and maintained in a specific medium for 24 and 48 h. Macroscopic and histological analyses and a separation force test were performed at 24 and 48 h post-MG application. Gene expression levels of matrix metalloproteinase (MMP)-2 and -14 and tissue inhibitor of metalloproteinase (TIMP)-2 were also measured at each time point for all experimental conditions. High concentrations of MG induced macroscopic and histological changes mimicking laminitis. The separation force test revealed that hoof tissue samples incubated for 24 h in a high concentration of MG, or with lower doses but for a longer period (48 h), demonstrated significant weaknesses, and samples were easily separated. All results support that high levels of MG could induce irreversible damage in HEs, mimicking laminitis in an ex vivo model.
Collapse
Affiliation(s)
- Cristina Vercelli
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
- * E-mail:
| | - Massimiliano Tursi
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - Gessica Giusto
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - Marco Gandini
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - Giovanni Re
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - Emanuela Valle
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| |
Collapse
|
17
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
18
|
Chen J, Fleming T, Katz S, Dewenter M, Hofmann K, Saadatmand A, Kronlage M, Werner MP, Pokrandt B, Schreiter F, Lin J, Katz D, Morgenstern J, Elwakiel A, Sinn P, Gröne HJ, Hammes HP, Nawroth PP, Isermann B, Sticht C, Brügger B, Katus HA, Hagenmueller M, Backs J. CaM Kinase II-δ Is Required for Diabetic Hyperglycemia and Retinopathy but Not Nephropathy. Diabetes 2021; 70:616-626. [PMID: 33239449 DOI: 10.2337/db19-0659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/17/2020] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes has become a pandemic and leads to late diabetic complications of organs, including kidney and eye. Lowering hyperglycemia is the typical therapeutic goal in clinical medicine. However, hyperglycemia may only be a symptom of diabetes but not the sole cause of late diabetic complications; instead, other diabetes-related alterations could be causative. Here, we studied the role of CaM kinase II-δ (CaMKIIδ), which is known to be activated through diabetic metabolism. CaMKIIδ is expressed ubiquitously and might therefore affect several different organ systems. We crossed diabetic leptin receptor-mutant mice to mice lacking CaMKIIδ globally. Remarkably, CaMKIIδ-deficient diabetic mice did not develop hyperglycemia. As potential underlying mechanisms, we provide evidence for improved insulin sensing with increased glucose transport into skeletal muscle and also reduced hepatic glucose production. Despite normoglycemia, CaMKIIδ-deficient diabetic mice developed the full picture of diabetic nephropathy, but diabetic retinopathy was prevented. We also unmasked a retina-specific gene expression signature that might contribute to CaMKII-dependent retinal diabetic complications. These data challenge the clinical concept of normalizing hyperglycemia in diabetes as a causative treatment strategy for late diabetic complications and call for a more detailed analysis of intracellular metabolic signals in different diabetic organs.
Collapse
Affiliation(s)
- Jessy Chen
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sylvia Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Kai Hofmann
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Alireza Saadatmand
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Mariya Kronlage
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Moritz P Werner
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Friederike Schreiter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Peter Sinn
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
- Institute of Pathology, University of Marburg, Marburg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC) Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Neuherberg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Hugo A Katus
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Marco Hagenmueller
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| |
Collapse
|
19
|
Strom A, Strassburger K, Schmuck M, Shevalye H, Davidson E, Zivehe F, Bönhof G, Reimer R, Belgardt BF, Fleming T, Biermann B, Burkart V, Müssig K, Szendroedi J, Yorek MA, Fritsche E, Nawroth PP, Roden M, Ziegler D. Interaction between magnesium and methylglyoxal in diabetic polyneuropathy and neuronal models. Mol Metab 2020; 43:101114. [PMID: 33166742 PMCID: PMC7704399 DOI: 10.1016/j.molmet.2020.101114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022] Open
Abstract
Objective The lack of effective treatments against diabetic sensorimotor polyneuropathy demands the search for new strategies to combat or prevent the condition. Because reduced magnesium and increased methylglyoxal levels have been implicated in the development of both type 2 diabetes and neuropathic pain, we aimed to assess the putative interplay of both molecules with diabetic sensorimotor polyneuropathy. Methods In a cross-sectional study, serum magnesium and plasma methylglyoxal levels were measured in recently diagnosed type 2 diabetes patients with (n = 51) and without (n = 184) diabetic sensorimotor polyneuropathy from the German Diabetes Study baseline cohort. Peripheral nerve function was assessed using nerve conduction velocity and quantitative sensory testing. Human neuroblastoma cells (SH-SY5Y) and mouse dorsal root ganglia cells were used to characterize the neurotoxic effect of methylglyoxal and/or neuroprotective effect of magnesium. Results Here, we demonstrate that serum magnesium concentration was reduced in recently diagnosed type 2 diabetes patients with diabetic sensorimotor polyneuropathy and inversely associated with plasma methylglyoxal concentration. Magnesium, methylglyoxal, and, importantly, their interaction were strongly interrelated with methylglyoxal-dependent nerve dysfunction and were predictive of changes in nerve function. Magnesium supplementation prevented methylglyoxal neurotoxicity in differentiated SH-SY5Y neuron-like cells due to reduction of intracellular methylglyoxal formation, while supplementation with the divalent cations zinc and manganese had no effect on methylglyoxal neurotoxicity. Furthermore, the downregulation of mitochondrial activity in mouse dorsal root ganglia cells and consequently the enrichment of triosephosphates, the primary source of methylglyoxal, resulted in neurite degeneration, which was completely prevented through magnesium supplementation. Conclusions These multifaceted findings reveal a novel putative pathophysiological pathway of hypomagnesemia-induced carbonyl stress leading to neuronal damage and merit further investigations not only for diabetic sensorimotor polyneuropathy but also other neurodegenerative diseases associated with magnesium deficiency and impaired energy metabolism. Magnesium and methylglyoxal levels were inversely associated in individuals with type 2 diabetes and distal sensorimotor polyneuropathy. Magnesium, methylglyoxal, and their interaction were associated with methylglyoxal-dependent nerve dysfunction. Under experimental conditions, magnesium supplementation prevented methylglyoxal-mediated neurotoxicity. Magnesium downregulates intracellular methylglyoxal production.
Collapse
Affiliation(s)
- Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, USA
| | - Eric Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, USA
| | - Fariba Zivehe
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Gidon Bönhof
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Rudolph Reimer
- Microscopy and Image Analysis Technology Platform, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Bengt-Frederik Belgardt
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Biermann
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, USA; Iowa City VA Healthcare System, Iowa City, USA
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Peter P Nawroth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
20
|
Kim D, Kim KA, Kim JH, Kim EH, Bae ON. Methylglyoxal-Induced Dysfunction in Brain Endothelial Cells via the Suppression of Akt/HIF-1α Pathway and Activation of Mitophagy Associated with Increased Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9090820. [PMID: 32899154 PMCID: PMC7554889 DOI: 10.3390/antiox9090820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Methylglyoxal (MG) is a dicarbonyl compound, the level of which is increased in the blood of diabetes patients. MG is reported to be involved in the development of cerebrovascular complications in diabetes, but the exact mechanisms need to be elucidated. Here, we investigated the possible roles of oxidative stress and mitophagy in MG-induced functional damage in brain endothelial cells (ECs). Treatment of MG significantly altered metabolic stress as observed by the oxygen-consumption rate and barrier-integrity as found in impaired trans-endothelial electrical resistance in brain ECs. The accumulation of MG adducts and the disturbance of the glyoxalase system, which are major detoxification enzymes of MG, occurred concurrently. Reactive oxygen species (ROS)-triggered oxidative damage was observed with increased mitochondrial ROS production and the suppressed Akt/hypoxia-inducible factor 1 alpha (HIF-1α) pathway. Along with the disturbance of mitochondrial bioenergetic function, parkin-1-mediated mitophagy was increased by MG. Treatment of N-acetyl cysteine significantly reversed mitochondrial damage and mitophagy. Notably, MG induced dysregulation of tight junction proteins including occludin, claudin-5, and zonula occluden-1 in brain ECs. Here, we propose that diabetic metabolite MG-associated oxidative stress may contribute to mitochondrial damage and autophagy in brain ECs, resulting in the dysregulation of tight junction proteins and the impairment of permeability.
Collapse
|
21
|
Schlotterer A, Masri B, Humpert M, Krämer BK, Hammes HP, Morcos M. Sulforaphane and Vitamin E Protect From Glucotoxic Neurodegeneration and Lifespan Reduction In C. Elegans. Exp Clin Endocrinol Diabetes 2020; 129:887-894. [PMID: 32503075 DOI: 10.1055/a-1158-9248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Caenorhabditis elegans is an established model organism in neurodegeneration and aging research. Oxidative stress and formation of advanced glycation endproducts (AGEs), as they occur under hyperglycemic conditions in diabetes mellitus, contribute to neuronal damage and lifespan reduction. Sulforaphane (SFN) is an indirect antioxidant, alpha-tocopherol (vitamin E) is a direct antioxidant that acts as a free radical scavenger. Aim of this study is to investigate the protective effects of SFN and vitamin E against glucotoxic damages to the neuronal system and lifespan in C. elegans. Culture conditions that mimic clinical hyperglycemia increased the formation of reactive oxygen species (ROS) (p<0.001) and the accumulation of methylglyoxal-derived advanced glycation endproducts (MG-derived AGEs) (p<0.01) with subsequent neuronal damage and neuronal dysfunction, ultimately leading to a significant shortening of lifespan (p<0.01). Treatment with both, 20 µmol/l SFN and 200 µg/ml vitamin E, completely prevented the increase in ROS and MG-derived AGEs, abolished the glucotoxic effects on neuronal structure and function, and preserved lifespan, resulting in a life expectancy similar to untreated controls. These data emphasize the relevance of indirect and direct antioxidants as potential therapeutic options for the prevention of glucotoxic pathologies.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Benan Masri
- Department of Medicine I, Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernhard Karl Krämer
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Michael Morcos
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
22
|
Dimitropoulos A, Rosado CJ, Thomas MC. Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol 2020; 33:909-915. [DOI: 10.1007/s40620-020-00718-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
|
23
|
Schön M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, Ukropcová B, de Courten B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019; 11:nu11061196. [PMID: 31141890 PMCID: PMC6627134 DOI: 10.3390/nu11061196] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Victoria 3220, Australia.
- Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Wern L Chia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Barbara Ukropcová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
- Faculty of Physical Education and Sports, Comenius University, 81469 Bratislava, Slovakia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
24
|
Wang H, Xu Y, Rao L, Yang C, Yuan H, Gao T, Chen X, Sun H, Xian M, Liu C, Liu C. Ratiometric Fluorescent Probe for Monitoring Endogenous Methylglyoxal in Living Cells and Diabetic Blood Samples. Anal Chem 2019; 91:5646-5653. [DOI: 10.1021/acs.analchem.8b05426] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Yulin Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Li Rao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Chuntao Yang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Xin Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| |
Collapse
|
25
|
Notoginsenoside R1 Protects db/db Mice against Diabetic Nephropathy via Upregulation of Nrf2-Mediated HO-1 Expression. Molecules 2019; 24:molecules24020247. [PMID: 30634720 PMCID: PMC6359411 DOI: 10.3390/molecules24020247] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal failure, and no effective treatment is available. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng, and our previous studies showed the cardioprotective and neuroprotective effects of NGR1. However, its role in protecting against DN remains unexplored. Herein, we established an experimental model in db/db mice and HK-2 cells exposed to advanced glycation end products (AGEs). The in vivo investigation showed that NGR1 treatment increased serum lipid, β2-microglobulin, serum creatinine, and blood urea nitrogen levels of db/db mice. NGR1 attenuated histological abnormalities of kidney, as evidenced by reducing the glomerular volume and fibrosis in diabetic kidneys. In vitro, NGR1 treatment was further found to decrease AGE-induced mitochondria injury, limit an increase in reactive oxygen species (ROS), and reduce apoptosis in HK-2 cells. Mechanistically, NGR1 promoted nucleus nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions to eliminate ROS that induced apoptosis and transforming growth factor beta (TGF-β) signaling. In summary, these observations demonstrate that NGR1 exerts renoprotective effects against DN through the inhibition of apoptosis and renal fibrosis caused by oxidative stress. NGR1 might be a potential therapeutic medicine for the treatment of DN.
Collapse
|
26
|
Sibbersen C, Schou Oxvig AM, Bisgaard Olesen S, Nielsen CB, Galligan JJ, Jørgensen KA, Palmfeldt J, Johannsen M. Profiling of Methylglyoxal Blood Metabolism and Advanced Glycation End-Product Proteome Using a Chemical Probe. ACS Chem Biol 2018; 13:3294-3305. [PMID: 30508371 DOI: 10.1021/acschembio.8b00732] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methylglyoxal (MG) is quantitatively the most important precursor to advanced glycation end-products (AGEs), and evidence is accumulating that it is also a causally linked to diabetes and aging related diseases. Living systems primarily reside on the glyoxalase system to detoxify MG into benign d-lactate. The flux to either glycation or detoxification, accordingly, is a key parameter for how well a system handles the ubiquitous glyoxal burden. Furthermore, insight into proteins and in particular their individual modification sites are central to understanding the involvement of MG and AGE in diabetes and aging related diseases. Here, we present a simple method to simultaneously monitor the flux of MG both to d-lactate and to protein AGE formation in a biological sample by employing an alkyne-labeled methylglyoxal probe. We apply the method to blood and plasma to demonstrate the impact of blood cell glyoxalase activity on plasma protein AGE formation. We move on to isolate proteins modified by the MG probe and accordingly can present the first general inventory of more than 100 proteins and 300 binding sites of the methylglyoxal probe on plasma as well as erythrocytic proteins. Some of the data could be validated against a number of in vivo and in vitro targets for advanced glycation previously known from the literature; the majority of proteins and specific sites however were previously unknown and may guide future research into MG and AGE to elucidate how these are functionally linked to diabetic disease and aging.
Collapse
Affiliation(s)
- Christian Sibbersen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Anne-Mette Schou Oxvig
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Sarah Bisgaard Olesen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | | | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
| |
Collapse
|
27
|
Schumacher D, Morgenstern J, Oguchi Y, Volk N, Kopf S, Groener JB, Nawroth PP, Fleming T, Freichel M. Compensatory mechanisms for methylglyoxal detoxification in experimental & clinical diabetes. Mol Metab 2018; 18:143-152. [PMID: 30287091 PMCID: PMC6308908 DOI: 10.1016/j.molmet.2018.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. METHODS CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1-/-) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. RESULTS Glo1-/- mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1-/- mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. CONCLUSIONS These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.
Collapse
Affiliation(s)
- Dagmar Schumacher
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Yoko Oguchi
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Nadine Volk
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Benedikt Groener
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany; University Hospital Heidelberg University, Heidelberg, Germany; Germany Institute for Diabetes, Neuherberg, Germany; Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
28
|
Peters AS, Wortmann M, Fleming TH, Nawroth PP, Bruckner T, Böckler D, Hakimi M. Effect of metformin treatment in patients with type 2 diabetes with respect to glyoxalase 1 activity in atherosclerotic lesions. VASA 2018; 48:186-192. [PMID: 30421661 DOI: 10.1024/0301-1526/a000762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The enzyme glyoxalase1 (GLO1) is the main opponent in the degradation of the reactive metabolite methylglyoxal (MG), which by glycation of macromolecules is involved in atherogenesis. Reduced GLO1-activity in atherosclerotic tissue is known to be associated with diabetes. It has been shown that treatment of patients with type 2 diabetes with metformin leads to increased GLO1-activity in peripheral-blood-cells. The aim of this study was to evaluate whether metformin treatment increases GLO1-activity in atherosclerotic lesions of patients with type 2 diabetes. PATIENTS AND METHODS Patients with type 2 diabetes and carotid artery disease were included into the study prospectively. Type of diabetes-medication was documented upon admission along with demographic and clinical history. Using shock frozen endarterectomy-derived carotid artery plaques, GLO1-activity as well as protein expression was measured by a spectophotometric assay and western-blotting respectively. RESULTS 33 patients (76 % male, mean age 71 years) were included into the study and were divided according to treatment with metformin or not (15 vs. 18 patients). GLO1-activity was increased by the factor 1.36 when treated with metformin - however, not significantly (0.86 vs. 0.63 U/mg, p = 0.056). Normalisation of GLO1-activity onto GLO1-expression level lead to a significant increase by more than twofold (8.48 vs. 3.85, p = 0.044) while GLO1-protein levels did not differ significantly. GLO1-activity correlated positively with increasing HbA1c, especially under metformin treatment. CONCLUSIONS Treatment with metformin in patients with type 2 diabetes is associated with enhanced GLO1-activity in atherosclerotic lesions. Regarding the macro- and microvascular complications in these patients further studies are needed to gain more insight into the effect of metformin on the GLO/MG system.
Collapse
Affiliation(s)
- Andreas S Peters
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany.,4 Vaskuläre Biomaterialbank Heidelberg, VBBH (Vascular Biomaterialbank Heidelberg), University of Heidelberg, Germany
| | - Markus Wortmann
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany.,4 Vaskuläre Biomaterialbank Heidelberg, VBBH (Vascular Biomaterialbank Heidelberg), University of Heidelberg, Germany
| | - Thomas H Fleming
- 2 Department of Internal Medicine I and Clinical Chemistry Heidelberg, University Hospital Heidelberg, Germany.,5 German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter P Nawroth
- 2 Department of Internal Medicine I and Clinical Chemistry Heidelberg, University Hospital Heidelberg, Germany.,5 German Center for Diabetes Research (DZD), Neuherberg, Germany.,6 Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg; Center for Molecular Biology (ZMBH) and University Hospital Heidelberg; University, Heidelberg, Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Thomas Bruckner
- 3 Institute for Medical Biometry and Informatics (IMBI), University of Heidelberg, Germany
| | - Dittmar Böckler
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany
| | - Maani Hakimi
- 1 Department of Vascular and Endovascular Surgery Heidelberg, University Hospital Heidelberg, Germany.,4 Vaskuläre Biomaterialbank Heidelberg, VBBH (Vascular Biomaterialbank Heidelberg), University of Heidelberg, Germany
| |
Collapse
|
29
|
TRPA1 Antagonists for Pain Relief. Pharmaceuticals (Basel) 2018; 11:ph11040117. [PMID: 30388732 PMCID: PMC6316422 DOI: 10.3390/ph11040117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Here, we review the literature assessing the role of transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable non-selective cation channel, in various types of pain conditions. In the nervous system, TRPA1 is expressed in a subpopulation of nociceptive primary sensory neurons, astroglia, oligodendrocytes and Schwann cells. In peripheral terminals of nociceptive primary sensory neurons, it is involved in the transduction of potentially harmful stimuli and in their central terminals it is involved in amplification of nociceptive transmission. TRPA1 is a final common pathway for a large number of chemically diverse pronociceptive agonists generated in various pathophysiological pain conditions. Thereby, pain therapy using TRPA1 antagonists can be expected to be a superior approach when compared with many other drugs targeting single nociceptive signaling pathways. In experimental animal studies, pharmacological or genetic blocking of TRPA1 has effectively attenuated mechanical and cold pain hypersensitivity in various experimental models of pathophysiological pain, with only minor side effects, if any. TRPA1 antagonists acting peripherally are likely to be optimal for attenuating primary hyperalgesia (such as inflammation-induced sensitization of peripheral nerve terminals), while centrally acting TRPA1 antagonists are expected to be optimal for attenuating pain conditions in which central amplification of transmission plays a role (such as secondary hyperalgesia and tactile allodynia caused by various types of peripheral injuries). In an experimental model of peripheral diabetic neuropathy, prolonged blocking of TRPA1 has delayed the loss of nociceptive nerve endings and their function, thereby promising to provide a disease-modifying treatment.
Collapse
|
30
|
Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8:14684. [PMID: 30279491 PMCID: PMC6168515 DOI: 10.1038/s41598-018-33014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Kallipatti Sanjith Shanmuganathan
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nicolle Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich A Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| |
Collapse
|
31
|
Kim JH, Kim KA, Shin YJ, Kim H, Majid A, Bae ON. Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:266-277. [PMID: 29473788 DOI: 10.1080/15287394.2018.1440185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endothelial cells (ECs) maintain the structure and function of blood vessels and are readily exposed to exogenous and endogenous toxic substances in the circulatory system. Bone marrow-derived endothelial progenitor cells (EPCs) circulate in the blood and differentiate to EC, which are known to participate in angiogenesis and regeneration of injured vessels. Dysfunction in EPC contributes to cardiovascular complications in patients with diabetes, but the precise molecular mechanisms underlying diabetic EPC abnormalities are not completely understood. The aim of this study was to investigate the mechanisms underlying diabetic EPC dysfunction using methylglyoxal (MG), an endogenous toxic diabetic metabolite. Data demonstrated that MG decreased cell viability and protein expression of vascular endothelial growth factor receptor (VEGFR)-2 associated with functional impairment of tube formation in EPC. The generation of advanced glycation end (AGE) products was increased in EPC following exposure to MG. Blockage of receptor for AGE (RAGE) by FPS-ZM1, a specific antagonist for RAGE, significantly reversed the decrease of VEGFR-2 protein expression and angiogenic dysfunction in MG-incubated EPC. Taken together, data demonstrated that MG induced angiogenic impairment in EPC via alterations in the AGE/RAGE-VEGFR-2 pathway which may be utilized in the development of potential therapeutic and preventive targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Jeong-Hyeon Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Kyeong-A Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Young-Jun Shin
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Haram Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Arshad Majid
- b Sheffield Institute for Translational Neuroscience , University of Sheffield , Sheffield , England
| | - Ok-Nam Bae
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| |
Collapse
|
32
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
33
|
Malinska H, Škop V, Trnovska J, Markova I, Svoboda P, Kazdova L, Haluzik M. Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia. Physiol Res 2017; 67:181-189. [PMID: 29137475 DOI: 10.33549/physiolres.933606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reactive dicarbonyls stimulate production of advanced glycation endproducts, increase oxidative stress and inflammation and contribute to the development of vascular complications. We measured concentrations of dicarbonyls - methylglyoxal (MG), glyoxal (GL) and 3-deoxyglucosone (3-DG) - in the heart and kidney of a model of metabolic syndrome - hereditary hypertriglyceridemic rats (HHTg) and explored its modulation by metformin. Adult HHTg rats were fed a standard diet with or without metformin (300 mg/kg b.w.) and dicarbonyl levels and metabolic parameters were measured. HHTg rats had markedly elevated serum levels of triacylglycerols (p<0.001), FFA (p<0.01) and hepatic triacylglycerols (p<0.001) along with increased concentrations of reactive dicarbonyls in myocardium (MG: p<0.001; GL: p<0.01; 3-DG: p<0.01) and kidney cortex (MG: p<0.01). Metformin treatment significantly reduced reactive dicarbonyls in the myocardium (MG: p<0.05, GL: p<0.05, 3-DG: p<0.01) along with increase of myocardial concentrations of reduced glutathione (p<0.01) and glyoxalase 1 mRNA expression (p<0.05). Metformin did not have any significant effect on dicarbonyls, glutathione or on glyoxalase 1 expression in kidney cortex. Chronically elevated hypertriglyceridemia was associated with increased levels of dicarbonyls in heart and kidney. Beneficial effects of metformin on reactive dicarbonyls and glyoxalase in the heart could contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H Malinska
- Department of Cardio-Metabolic Research, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
34
|
Impact of Atherosclerosis- and Diabetes-Related Dicarbonyls on Vascular Endothelial Permeability: A Comparative Assessment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1625130. [PMID: 29098058 PMCID: PMC5643129 DOI: 10.1155/2017/1625130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/31/2017] [Accepted: 09/10/2017] [Indexed: 12/05/2022]
Abstract
Background Malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) levels increase in atherosclerosis and diabetes patients. Recent reports demonstrate that GO and MGO cause vascular endothelial barrier dysfunction whereas no evidence is available for MDA. Methods To compare the effects of MDA, GO, or MGO on endothelial permeability, we used human EA.hy926 endothelial cells as a standard model. To study cortical cytoplasm motility and cytoskeletal organization in endothelial cells, we utilized time-lapse microscopy and fluorescent microscopy. To compare dicarbonyl-modified protein band profiles in these cells, we applied Western blotting with antibodies against MDA- or MGO-labelled proteins. Results MDA (150–250 μM) irreversibly suppressed the endothelial cell barrier, reduced lamellipodial activity, and prevented intercellular contact formation. The motile deficiency of MDA-challenged cells was accompanied by alterations in microtubule and microfilament organization. These detrimental effects were not observed after GO or MGO (250 μM) administration regardless of confirmed modification of cellular proteins by MGO. Conclusions Our comparative study demonstrates that MDA is more damaging to the endothelial barrier than GO or MGO. Considering that MDA endogenous levels exceed those of GO or MGO and tend to increase further during lipoperoxidation, it appears important to reduce oxidative stress and, in particular, MDA levels in order to prevent sustained vascular hyperpermeability in atherosclerosis and diabetes patients.
Collapse
|
35
|
Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int J Mol Sci 2017; 18:ijms18050984. [PMID: 28475116 PMCID: PMC5454897 DOI: 10.3390/ijms18050984] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) are non-enzymatic protein and amino acid adducts as well as DNA adducts which form from dicarbonyls and glucose. AGE formation is enhanced in diabetes and is associated with the development of diabetic complications. In the current review, we discuss mechanisms that lead to enhanced AGE levels in the context of diabetes and diabetic complications. The methylglyoxal-detoxifying glyoxalase system as well as alternative pathways of AGE detoxification are summarized. Therapeutic approaches to interfere with different pathways of AGE formation are presented.
Collapse
|
36
|
Hipkiss AR. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson's Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine. Aging Dis 2017; 8:334-345. [PMID: 28580188 PMCID: PMC5440112 DOI: 10.14336/ad.2016.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022] Open
Abstract
Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD). Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG). It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms. MG can induce many of the macromolecular modifications (e.g. protein glycation) which characterise the aged-phenotype. MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD. MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms. It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD. Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity. The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Collapse
Affiliation(s)
- Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
37
|
Ziegler D, Schleicher E, Strom A, Knebel B, Fleming T, Nawroth P, Häring HU, Papanas N, Szendrödi J, Müssig K, Al-Hasani H, Roden M. Association of transketolase polymorphisms with measures of polyneuropathy in patients with recently diagnosed diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 27103086 DOI: 10.1002/dmrr.2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Shunting of glycolytic intermediates into the pentose phosphate pathway has been suggested to protect from hyperglycaemia-induced microvascular damage. We hypothesized that genetic variability in the gene encoding transketolase, a key pentose phosphate pathway enzyme, contributes to early nerve dysfunction in recent-onset diabetes. METHODS In this cross-sectional study, we assessed nine single nucleotide polymorphisms (SNPs) in the transketolase gene, plasma methylglyoxal concentrations, and clinical and quantitative measures of peripheral nerve function in 165 type 1 and 373 type 2 diabetic patients with a diabetes duration up to 1 year. RESULTS The Total Symptom Score was associated with transketolase SNPs rs7648309, rs62255988, and rs7633966, while peroneal motor nerve conduction velocity (MNCV) correlated only with rs7648309 (P < 0.01). Cold thermal detection threshold (TDT) (foot) was associated with transketolase SNPs rs11130362 and rs7648309, while warm TDT (hand) correlated with rs62255988 and rs7648309 (P < 0.01). After Bonferroni correction, the correlations of transketolase SNP rs7648309 with Total Symptom Score and rs62255988 with warm TDT (hand) remained statistically significant. Among subgroups, men with type 2 diabetes showed the strongest associations. No associations were observed between each of the nine tagged transketolase SNPs and plasma methylglyoxal concentrations. CONCLUSIONS The observed associations of genetic variation in transketolase enzyme with neuropathic symptoms and reduced thermal sensation in recent-onset diabetes suggest a role of pathways metabolizing glycolytic intermediates in early diabetic neuropathy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Erwin Schleicher
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Thomas Fleming
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Julia Szendrödi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
38
|
A scavenger peptide prevents methylglyoxal induced pain in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:654-662. [DOI: 10.1016/j.bbadis.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 12/04/2016] [Indexed: 11/23/2022]
|
39
|
Reduced glyoxalase 1 activity in carotid artery plaques of nondiabetic patients with increased hemoglobin A1c level. J Vasc Surg 2016; 64:990-4. [DOI: 10.1016/j.jvs.2016.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
|
40
|
Stress responses of human retinal pigment epithelial cells to glyoxal. Graefes Arch Clin Exp Ophthalmol 2016; 254:2361-2372. [PMID: 27520463 DOI: 10.1007/s00417-016-3463-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Intracellular formation of advanced glycation end products (AGEs) is a crucial pathological process in retinal diseases such as age-related macular degeneration (AMD) or diabetic retinopathy (DR). Glyoxal is a physiological metabolite produced during formation of AGEs and has also been shown to derive from photodegraded bisretinoid fluorophores in aging retinal pigment epithelial (RPE) cells. METHODS Flow cytometry was combined with either: 1) immunocytochemical staining to detect glyoxal induced formation of Nε-carboxymethyllysine (CML)-modifications of intracellular proteins (AGEs) and changes in the production of stress response proteins; or 2) vital staining to determine apoptosis rates (annexin V binding), formation of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and changes in intracellular pH upon treatment of cells with glyoxal. The percentage of apoptotic cells was further quantified by flow cytometry after staining of fixed cells with propidium iodide to determine cells with a subdiploid (fragmented) DNA content. Apoptosis related activation of caspase 3 was determined by Western blotting. Glyoxal induced changes in VEGF-A165a mRNA expression and protein production were determined by real-time PCR and by flow cytometry after immunocytochemical staining. RESULTS Increasing glyoxal concentrations resulted in enhanced formation of AGEs, such as CML modifications of proteins. This was associated with elevated levels of intracellular reactive oxygen species, a depolarized MMP, and a decreased intracellular pH, resulting in an increased number of apoptotic cells. Apoptosis related caspase 3 activation increased in a dose dependent manner after glyoxal incubation. In consequence, the cells activated compensatory mechanisms and increased the levels of the anti-oxidative and stress-related proteins heme oxygenase-1, osteopontin, heat shock protein 27, copper/zinc superoxide dismutase, manganese superoxide dismutase, and cathepsin D. Furthermore, VEGF-A165a mRNA expression and VEGF-A protein production were significantly increased after incubation with glyoxal in ARPE-19 cells. CONCLUSIONS The glyoxal-induced oxidative stress and apoptosis in ARPE-19 cells may provide a suitable in vitro model for studying RPE cellular reactions to AGEs that occur in AMD or in DR.
Collapse
|
41
|
Malínská H, Oliyarnyk O, Škop V, Šilhavý J, Landa V, Zídek V, Mlejnek P, Šimáková M, Strnad H, Kazdová L, Pravenec M. Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. PLoS One 2016; 11:e0150924. [PMID: 26963617 PMCID: PMC4786274 DOI: 10.1371/journal.pone.0150924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its "pleiotropic" effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP). We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS) and dicarbonyl stress (levels of methylglyoxal) in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action-studied by gene expression profiling in the liver-revealed deregulated genes from inflammatory and insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP, metformin protects against inflammation and oxidative and dicarbonyl stress in the heart, but not in the kidney. Accordingly, these cardioprotective effects of metformin might be especially effective in diabetic patients with high levels of CRP.
Collapse
Affiliation(s)
- Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Škop
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Landa
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Zídek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ludmila Kazdová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Ciobanu A, Selescu T, Gasler I, Soltuzu L, Babes A. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel. J Neurosci Res 2015; 94:282-94. [DOI: 10.1002/jnr.23700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- A.C. Ciobanu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - T. Selescu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - I. Gasler
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - L. Soltuzu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - A. Babes
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| |
Collapse
|
43
|
Jensen TM, Vistisen D, Fleming T, Nawroth PP, Jørgensen ME, Lauritzen T, Sandbæk A, Witte DR. Impact of intensive treatment on serum methylglyoxal levels among individuals with screen-detected type 2 diabetes: the ADDITION-Denmark study. Acta Diabetol 2015; 52:929-36. [PMID: 25808642 DOI: 10.1007/s00592-015-0739-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/11/2015] [Indexed: 11/25/2022]
Abstract
AIMS Methylglyoxal (MG) has been implicated in the development of micro- and macrovascular diabetic complications, but it remains unclear how current treatments of type 2 diabetes affect its circulating levels. METHODS In the Danish arm of the ADDITION trial, we (a) described serum MG levels at baseline and at 6-year follow-up among individuals with screen-detected type 2 diabetes, (b) examined the effect of intensive multifactorial treatment compared with routine care on MG, (c) examined the associations between MG and risk factors at baseline and at follow-up and (d) examined the associations between changes in MG and changes in risk factors. RESULTS Patients in both treatment arms experienced a significant decline in MG from baseline to follow-up, with no effect of allocation to intensive treatment. In cohort analyses, MG was associated with smoking and fasting glucose at baseline and smoking and LDL cholesterol at follow-up. Compared with patients receiving no lipid-lowering treatment, patients receiving lipid-lowering treatment had higher MG at follow-up, and those initiating lipid-lowering treatment experienced a less pronounced decline in MG. CONCLUSIONS Further studies are required to explore any possible effects of the observed decrease in MG in type 2 diabetes patients as well as the potential interplay between MG, lipids, lipid-lowering treatment and smoking.
Collapse
Affiliation(s)
- Troels M Jensen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark.
| | - Dorte Vistisen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Marit E Jørgensen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Annelli Sandbæk
- Department of Public Health, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| |
Collapse
|
44
|
Patel SN, Parikh M, Lau-Cam CA. Impact of light ethanol intake and of taurine, separately and together, on pathways of glucose metabolism in the kidney of diabetic rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:279-303. [PMID: 25833505 DOI: 10.1007/978-3-319-15126-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sanket N Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, USA
| | | | | |
Collapse
|
45
|
Magalhaes I, Kiaf B, Lehuen A. iNKT and MAIT Cell Alterations in Diabetes. Front Immunol 2015; 6:341. [PMID: 26191063 PMCID: PMC4489333 DOI: 10.3389/fimmu.2015.00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/18/2015] [Indexed: 12/29/2022] Open
Abstract
Type 1 diabetes (T1D) and type 2 diabetes (T2D) are multifactorial diseases with different etiologies in which chronic inflammation takes place. Defects in invariant natural killer T (iNKT) cell populations have been reported in both T1D and T2D patients, mouse models and our recent study revealed mucosal-associated invariant T (MAIT) cell defects in T2D and obese patients. Regarding iNKT cells many studies in non-obese diabetic mice demonstrated their protective role against T1D whereas their potential role in human T1D is still under debate. Studies in mouse models and patients suggest that iNKT cells present in adipose tissue (AT) could exert a regulatory role against obesity and associated metabolic disorders, such as T2D. Scarce data are yet available on MAIT cells; however, we recently described MAIT cell abnormalities in the blood and ATs from obese and T2D patients. These data show that a link between MAIT cells and metabolic disorders pave the way for further investigations on MAIT cells in T1D and T2D in humans and mouse models. Furthermore, we hypothesize that the gut microbiota alterations associated with T1D and T2D could modulate iNKT and MAIT cell frequency and functions. The potential role of iNKT and MAIT cells in the regulation of metabolic pathways and their cross-talk with microbiota represent exciting new lines of research.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Badr Kiaf
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Agnès Lehuen
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Département de Diabétologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris , Paris , France
| |
Collapse
|
46
|
Abstract
Patients suffering from DN (diabetic neuropathy) suffer from the coexistence of positive (i.e. pain, hypersensitivity, tingling, cramps, cold feet, etc.) and negative (i.e. loss of sensory perception, delayed wound healing, etc.) symptoms. Elevated blood glucose alone cannot explain the development and progression of DN. Recently it has been shown that the endogenous reactive metabolite MG (methylglyoxal), elevated as a consequence of reduced Glo1 (glyoxalase I), can contribute to the gain of function via post-translational modification of neuronal ion channels involved in chemosensing and action potential generation in nociceptive nerve endings. The effects of dicarbonyls on the neuronal compartment provides a unifying mechanism for the development of DN. Targeting the accumulation and effects of MG may therefore provide new, more effective, therapeutic approaches for the treatment of DN.
Collapse
|
47
|
Hansen CS, Jensen TM, Jensen JS, Nawroth P, Fleming T, Witte DR, Lauritzen T, Sandbaek A, Charles M, Fleischer J, Vistisen D, Jørgensen ME. The role of serum methylglyoxal on diabetic peripheral and cardiovascular autonomic neuropathy: the ADDITION Denmark study. Diabet Med 2015; 32:778-85. [PMID: 25761542 DOI: 10.1111/dme.12753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/18/2022]
Abstract
AIMS Cardiovascular autonomic neuropathy and diabetic peripheral neuropathy are common diabetic complications and independent predictors of cardiovascular disease. The glucose metabolite methylglyoxal has been suggested to play a causal role in the pathogeneses of diabetic peripheral neuropathy and possibly diabetic cardiovascular autonomic neuropathy. The aim of this study was to investigate the cross-sectional association between serum methylglyoxal and diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in a subset of patients in the ADDITION-Denmark study with short-term screen-detected Type 2 diabetes (duration ~ 5.8 years). METHODS The patients were well controlled with regard to HbA(1c), lipids and blood pressure. Cardiovascular autonomic neuropathy was assessed by measures of resting heart rate variability and cardiovascular autonomic reflex tests. Diabetic peripheral neuropathy was assessed by vibration detection threshold (n = 319), 10 g monofilament (n = 543) and the Michigan Neuropathy Screening Instrument questionnaire (n = 966). Painful diabetic neuropathy was assessed using the Brief Pain Inventory short form (n = 882). RESULTS No associations between methylglyoxal and cardiovascular autonomic reflex tests or any measures of diabetic peripheral neuropathy or painful diabetic neuropathy were observed. However, a positive association between methylglyoxal and several heart rate variability indices was observed, although these associations were not statistically significant when corrected for multiple testing. CONCLUSION Serum methylglyoxal is not associated with cardiovascular autonomic neuropathy, diabetic peripheral neuropathy or painful diabetic neuropathy in this cohort of well-treated patients with short-term diabetes.
Collapse
Affiliation(s)
- C S Hansen
- Department of Clinical Epidemiology, Steno Diabetes Centre A/S, Gentofte, Denmark
| | - T M Jensen
- Department of Clinical Epidemiology, Steno Diabetes Centre A/S, Gentofte, Denmark
| | - J S Jensen
- Department of Cardiology, Gentofte Hospital, Denmark
| | - P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - T Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - D R Witte
- Centre for Health Studies, CRP-Santé, Strassen, Luxembourg
| | - T Lauritzen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - A Sandbaek
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - M Charles
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - J Fleischer
- Medical Research Laboratories, Clinical Institute of Medicine, Aarhus University, Aarhus, Denmark
| | - D Vistisen
- Department of Clinical Epidemiology, Steno Diabetes Centre A/S, Gentofte, Denmark
| | - M E Jørgensen
- Department of Clinical Epidemiology, Steno Diabetes Centre A/S, Gentofte, Denmark
| |
Collapse
|
48
|
Andersson DA, Filipović MR, Gentry C, Eberhardt M, Vastani N, Leffler A, Reeh P, Bevan S. Streptozotocin Stimulates the Ion Channel TRPA1 Directly: INVOLVEMENT OF PEROXYNITRITE. J Biol Chem 2015; 290:15185-96. [PMID: 25903127 DOI: 10.1074/jbc.m115.644476] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/01/2023] Open
Abstract
Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1(-/-) mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.
Collapse
Affiliation(s)
- David A Andersson
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom,
| | - Milos R Filipović
- the Bioinorganic Chemistry Division, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Clive Gentry
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Mirjam Eberhardt
- the Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany, and
| | - Nisha Vastani
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Andreas Leffler
- the Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany, and
| | - Peter Reeh
- the Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, D-91054 Erlangen, Germany
| | - Stuart Bevan
- From the Wolfson Centre for Age-related Diseases, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
49
|
Abstract
In healthy individuals, the endothelium plays a fundamental role in normal health in the maintenance of vascular homeostasis. Endothelial cell (EC) dysfunction results in the development of several pathologies. In diabetes, in particular, sustained hyperglycemia, a characteristic of diabetes, contributes to EC dysfunction and consequently mediates the pathogenesis of diabetes-associated micro- and macrovasculopathies. Hyperglycemia-induced EC dysfunction is triggered by elevated levels of oxidative stress derived from several mechanisms, with the mitochondria as a key source, and is exacerbated by a subsequent hyperglycemia-induced self-perpetuating cycle of oxidative stress and aberrant metabolic memory. Recent reports have highlighted the importance of metabolic pathways in EC and suggested the therapeutic potential of targeting EC metabolism. This review focuses on the current knowledge regarding differences in the metabolism of healthy ECs vs. diabetes-associated dysfunctional ECs, and outlines how EC metabolism may be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Pauline de Zeeuw
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, VIB
| | | | | |
Collapse
|
50
|
Mendler M, Schlotterer A, Ibrahim Y, Kukudov G, Fleming T, Bierhaus A, Riedinger C, Schwenger V, Herzig S, Hecker M, Tyedmers J, Nawroth PP, Morcos M. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia 2015; 58:393-401. [PMID: 25322843 DOI: 10.1007/s00125-014-3415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the protective effects of human insulin and its analogues, B28Asp human insulin (insulin aspart) and B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir), against glucose-induced lifespan reduction and neuronal damage in the model organism Caenorhabditis elegans and to elucidate the underlying mechanisms. METHODS Nematodes were cultivated under high glucose (HG) conditions comparable with the situation in diabetic patients and treated with human insulin and its analogues. Lifespan was assessed and neuronal damage was evaluated with regard to structural and functional impairment. Additionally, the activity of glyoxalase-1 and superoxide dismutase (SOD) and the formation of reactive oxygen species (ROS) and AGEs were determined. RESULTS Insulin and its analogues reversed the life-shortening effect of HG conditions and prevented the glucose-induced neuronal impairment. Insulin treatment under HG conditions was associated with reduced concentration of glucose, as well as a reduced formation of ROS and AGEs, and increased SOD activity. These effects were dependent on the Forkhead box O (FOXO) homologue abnormal dauer formation (DAF)-16. Furthermore, glyoxalase-1 activity, which was impaired under HG conditions, was restored by human insulin. This was essential for the insulin-induced lifespan extension under HG conditions, as no change in lifespan was observed following either suppression or overexpression of glyoxalase-1. CONCLUSIONS/INTERPRETATION Human insulin and its analogues prevent the reduction in lifespan and neuronal damage caused by HG conditions. The effect of human insulin is mediated by a daf-2/insulin receptor and daf-16/FOXO-dependent pathway and is mediated by upregulation of detoxifying mechanisms.
Collapse
Affiliation(s)
- Michael Mendler
- Department of Medicine 1 and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|