1
|
Guo QW, Lin J, Shen YL, Zheng YJ, Chen X, Su M, Zhang JC, Wang JH, Tang H, Su GM, Li ZK, Fang DZ. Reduced hepatic AdipoR2 by increased glucocorticoid mediates effect of psychosocial stress to elevate serum cholesterol. Mol Cell Endocrinol 2024; 592:112282. [PMID: 38815796 DOI: 10.1016/j.mce.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and AdipoR2 overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific AdipoR2 overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.
Collapse
Affiliation(s)
- Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yan Jiang Zheng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Mi Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Ji Cheng Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jin Hua Wang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Hui Tang
- Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University Chongqing, PR China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Zheng Ke Li
- Department of Thoracic/Head and Neck Medical Oncology, The MD Anderson Cancer Center, University of Texas Houston, TX, USA
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Demko J, Saha B, Takagi E, Mannis A, Weber R, Pearce D. Coordinated Regulation of Renal Glucose Reabsorption and Gluconeogenesis by mTORC2 and Potassium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600201. [PMID: 38979219 PMCID: PMC11230149 DOI: 10.1101/2024.06.22.600201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background The kidney proximal tubule is uniquely responsible for reabsorption of filtered glucose and gluconeogenesis (GNG). Insulin stimulates glucose transport and suppresses GNG in the proximal tubule, however, the signaling mechanisms and coordinated regulation of these processes remain poorly understood. The kinase complex mTORC2 is critical for regulation of growth, metabolism, solute transport, and electrolyte homeostasis in response to a wide array of inputs. Here we examined its role in the regulation of renal glucose reabsorption and GNG. Methods Rictor, an essential component of mTORC2, was knocked out using the Pax8-LC1 system to generate inducible tubule specific Rictor knockout (TRKO) mice. These animals were subjected to fasting, refeeding, and variation in dietary K + . Metabolic parameters including glucose homeostasis and renal function were assessed in balance cages. Kidneys and livers were also harvested for molecular analysis of gluconeogenic enzymes, mTORC2-regulated targets, and plasma membrane glucose transporters. Results On a normal chow diet, TRKO mice had marked glycosuria despite indistinguishable blood glucose relative to WT controls. Kidney plasma membrane showed lower SGLT2 and SGLT1 in the fed state, supporting reduced renal glucose reabsorption. Additional metabolic testing provided evidence for renal insulin resistance with elevated fasting insulin, impaired pyruvate tolerance, elevated hemoglobin A1c, and increased renal gluconeogenic enzymes in the fasted and fed states. These effects were correlated with reduced downstream phosphorylation of Akt and the transcription factor FOXO4, identifying a novel role of FOXO4 in the kidney. Interestingly, high dietary K + prevented glycosuria and excessive GNG in TRKO mice, despite persistent reduction in mTORC2 substrate phosphorylation. Conclusion Renal tubule mTORC2 is critical for coordinated regulation of sodium-glucose cotransport by SGLT2 and SGLT1 as well as renal GNG. Dietary K + promotes glucose reabsorption and suppresses GNG independently of insulin signaling and mTORC2, potentially providing an alternative signaling mechanism in states of insulin resistance. SIGNIFICANCE STATEMENT The kidney contributes to regulation of blood glucose through reabsorption of filtered glucose and gluconeogenesis. This study shows that mTORC2 and dietary potassium coordinate the regulation of sodium-glucose cotransport and glucose production in the kidney via independent mechanisms. New insights into the regulation of these processes in the kidney offer promising implications for diabetes mellitus management and treatment.
Collapse
|
3
|
Huang LK, Zeng XS, Jiang ZW, Peng H, Sun F. Echinacoside alleviates glucocorticoid induce osteonecrosis of femoral head in rats through PI3K/AKT/FOXO1 pathway. Chem Biol Interact 2024; 391:110893. [PMID: 38336255 DOI: 10.1016/j.cbi.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH), caused by glucocorticoid (GC) administration, is known to exhibit a high incidence worldwide. Although osteoblast apoptosis has been reported as an important cytological basis of SONFH, the precise mechanism remains elusive. Echinacoside (Ech), a natural phenylethanoid glycoside, exerts multiple beneficial effects, such as facilitation of cell proliferation and anti-inflammatory and anticancer activities. Herein, we aimed to explore the regulatory mechanism underlying glucocorticoid-induced osteoblast apoptosis and determine the protective efficacy of Ech against SONFH. We comprehensively surveyed multiple public databases to identify SONFH-related genes. Using bioinformatics analysis, we identified that the PI3K/AKT/FOXO1 signaling pathway was most strongly associated with SONFH. We examined the protective effect of Ech against SONFH using in vivo and in vitro experiments. Specifically, dexamethasone (Dex) decreased p-PI3K and p-AKT levels, which were reversed following Ech addition. Validation of the PI3K inhibitor (LY294002) and molecular docking of Ech and PI3K/AKT further indicated that Ech could directly enhance PI3K/AKT activity to alleviate Dex-induced inhibition. Interestingly, Dex upregulated the expression of FOXO1, Bax, cleaved-caspase-9, and cleaved-caspase-3 and enhanced MC3T3-E1 apoptosis; application of Ech and siRNA-FOXO1 reversed these effects. In vitro, Ech decreased the number of empty osteocytic lacunae, reduced TUNEL and FOXO1 positive cells, and improved bone microarchitecture. Our results provide robust evidence that PI3K/AKT/FOXO1 plays a crucial role in the development of SONFH. Moreover, Ech may be a promising candidate drug for the treatment of SONFH.
Collapse
Affiliation(s)
- Liang Kun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Shuang Zeng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ze Wen Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fei Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Wu T, Shao Y, Li X, Wu T, Yu L, Liang J, Zhang Y, Wang J, Sun T, Zhu Y, Chang X, Wang S, Chen F, Han X. NR3C1/Glucocorticoid receptor activation promotes pancreatic β-cell autophagy overload in response to glucolipotoxicity. Autophagy 2023; 19:2538-2557. [PMID: 37039556 PMCID: PMC10392762 DOI: 10.1080/15548627.2023.2200625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Diabetes is a complex and heterogeneous disorder characterized by chronic hyperglycemia. Its core cause is progressively impaired insulin secretion by pancreatic β-cell failures, usually upon a background of preexisting insulin resistance. Recent studies demonstrate that macroautophagy/autophagy is essential to maintain architecture and function of β-cells, whereas excessive autophagy is also involved in β-cell dysfunction and death. It has been poorly understood whether autophagy plays a protective or harmful role in β-cells, while we report here that it is dependent on NR3C1/glucocorticoid receptor activation. We proved that deleterious hyperactive autophagy happened only upon NR3C1 activation in β-cells under glucolipotoxic conditions, which eventually promoted diabetes. The transcriptome and the N6-methyladenosine (m6A) methylome revealed that NR3C1-enhancement upregulated the RNA demethylase FTO (fat mass and obesity associated) protein in β-cells, which caused diminished m6A modifications on mRNAs of four core Atg (autophagy related) genes (Atg12, Atg5, Atg16l2, Atg9a) and, hence, hyperactive autophagy and defective insulin output; by contrast, FTO inhibition, achieved by the specific FTO inhibitor Dac51, prevented NR3C1-instigated excessive autophagy activation. Importantly, Dac51 effectively alleviated impaired insulin secretion and glucose intolerance in hyperglycemic β-cell specific NR3C1 overexpression mice. Our results determine that the NR3C1-FTO-m6A modifications-Atg genes axis acts as a key mediator of balanced autophagic flux in pancreatic β-cells, which offers a novel therapeutic target for the treatment of diabetes.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; Ac: acetylation; Ad: adenovirus; AL: autolysosome; ATG: autophagy related; AUC: area under curve; Baf A1: bafilomycin A1; βNR3C1 mice: pancreatic β-cell-specific NR3C1 overexpression mice; cFBS: charcoal-stripped FBS; Ctrl: control; ER: endoplasmic reticulum; FTO: fat mass and obesity associated; GC: glucocorticoid; GRE: glucocorticoid response element; GSIS: glucose-stimulated insulin secretion assay; HFD: high-fat diet; HG: high glucose; HsND: non-diabetic human; HsT2D: type 2 diabetic human; i.p.: intraperitoneal injected; KSIS: potassium-stimulated insulin secretion assay; m6A: N6-methyladenosine; MeRIP-seq: methylated RNA immunoprecipitation sequencing; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NR3C1-Enhc.: NR3C1-enhancement; NC: negative control; Palm.: palmitate; RNA-seq: RNA sequencing; T2D: type 2 diabetes; TEM: transmission electron microscopy; UTR: untranslated region; WT: wild-type.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xirui Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaru Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Wang BYH, Hsiao AWT, Shiu HT, Wong N, Wang AYF, Lee CW, Lee OKS, Lee WYW. Mesenchymal stem cells alleviate dexamethasone-induced muscle atrophy in mice and the involvement of ERK1/2 signalling pathway. Stem Cell Res Ther 2023; 14:195. [PMID: 37542297 PMCID: PMC10403871 DOI: 10.1186/s13287-023-03418-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hoi Ting Shiu
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicodemus Wong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amanda Yu-Fan Wang
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chien-Wei Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, 404327, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong.
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
6
|
Wang BYH, Hsiao AWT, Wong N, Chen YF, Lee CW, Lee WYW. Is dexamethasone-induced muscle atrophy an alternative model for naturally aged sarcopenia model? J Orthop Translat 2023; 39:12-20. [PMID: 36605620 PMCID: PMC9793312 DOI: 10.1016/j.jot.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Primary sarcopenia is usually known as age-related skeletal muscle loss; however, other factors like endocrine, lifestyle and inflammation can also cause muscle loss, known as secondary sarcopenia. Although many studies have used different sarcopenia animal models for exploring the underlying mechanism and therapeutic approaches for sarcopenia, limited study has provided evidence of the relevance of these animal models. This study aims to investigate the similarity and difference in muscle qualities between primary and secondary sarcopenia mice models, using naturally aged mice and dexamethasone-induced mice. Methods 21-month-old mice were used as naturally aged primary sarcopenia mice and 3-month-old mice received daily intraperitoneal injection of dexamethasone (20 mg/ kg body weight) for 10 days were used as secondary sarcopenia model. This study provided measurements for muscle mass and functions, including Dual-energy X-ray absorptiometry (DXA) scanning, handgrip strength test and treadmill running to exhaustion test. Besides, muscle contraction, muscle fibre type measurements and gene expression were also performed to provide additional information on muscle qualities. Results The results suggest two sarcopenia animal models shared a comparable decrease in forelimb lean mass, muscle fibre size, grip strength and muscle contraction ability. Besides, the upregulation of protein degradation genes was also observed in two sarcopenia animal models. However, only primary sarcopenia mice were identified with an early stage of mtDNA deletion. Conclusion Collectively, this study evaluated that the dexamethasone-induced mouse model could be served as an alternative model for primary sarcopenia, according to the comparable muscle mass and functional changes. However, whether dexamethasone-induced mice can be used as an animal model when studying the molecular mechanisms of sarcopenia needs to be carefully evaluated. The translational potential of this article The purpose of sarcopenia research is to investigate appropriate treatments for reversing the loss of skeletal muscle mass and functions. Using animal models for the preclinical study could predict the safety and efficacy of the treatments. This study compared the typical age-related sarcopenia mice model and dexamethasone-induced secondary sarcopenia mice to provide evidence of the pathological and functional changes in the mice models.
Collapse
Affiliation(s)
- Belle Yu-Hsuan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
| | - Allen Wei-Ting Hsiao
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicodemus Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
7
|
Ladke VS, Kumbhar GM, Joshi K, Kheur S. Systemic explanation of Glycyrrhiza glabra's analyzed compounds and anti-cancer mechanism based on network pharmacology in oral cancer. J Oral Biosci 2022; 64:452-460. [PMID: 36113760 DOI: 10.1016/j.job.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Several studies suggest that Glycyrrhiza glabra (GG) extract could be a useful supplemental source for various cancer treatments. However, very few studies on oral cancer (OC) have been conducted. The present study was aimed at exploring the bioactive compounds (bioactives) along with the mode of action of GG against OC using network pharmacology. METHODS Liquid chromatography-mass spectrometry/mass spectrometry was used to identify and analyze compounds from GG. Public databases were used to identify genes associated with the selected bioactives and OC. With the help of Cytoscape software, the association between bioactive and common genes was built, visualized, and investigated. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to investigate protein-protein interactions for intergenic interactions. Finally, the pathway enrichment analysis of common genes was done using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. RESULTS Overall, 378 bioactives were identified in GG. Using public databases, an entire 254 bioactive-related genes and 734 OC-related genes were recognized, with 48 common genes. Cytoscape analysis showed wortmannin as the key bioactive and androgen receptor as the hub gene. The DAVID results revealed that the significant mechanism of action of GG against OC may be to induce apoptosis of cancer cells by deactivating the PI3K-AKT signaling pathway. CONCLUSION The key active components and mechanisms of action of GG against OC were investigated. The present study provides scientific suggestions to support the clinical outcome of GG for OC along with a research foundation for additional elaboration on the important bioactives and mechanisms of GG against OC.
Collapse
Affiliation(s)
- Vaibhav S Ladke
- Interdisciplinary School of Health Sciences, SPPU, India; Research Associate, Central Research Facility, Dr. D. Y. Patil Medical College, Hospital and Research Center, India.
| | - Gauri M Kumbhar
- Research Associate, Central Research Facility, Dr. D. Y. Patil Medical College, Hospital and Research Center, India.
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, India.
| | - Supriya Kheur
- Research Associate, Central Research Facility, Dr. D. Y. Patil Medical College, Hospital and Research Center, India.
| |
Collapse
|
8
|
Jeon DY, Jeong SY, Lee JW, Kim J, Kim JH, Chu HS, Jeong WJ, Lee BJ, Ahn B, Kim J, Choi SH, Park JW. FOXO1 Is a Key Mediator of Glucocorticoid-Induced Expression of Tristetraprolin in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232213673. [PMID: 36430156 PMCID: PMC9693238 DOI: 10.3390/ijms232213673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The mRNA destabilizing factor tristetraprolin (TTP) functions as a tumor suppressor by down-regulating cancer-associated genes. TTP expression is significantly reduced in various cancers, which contributes to cancer processes. Enforced expression of TTP impairs tumorigenesis and abolishes maintenance of the malignant state, emphasizing the need to identify a TTP inducer in cancer cells. To search for novel candidate agents for inducing TTP in cancer cells, we screened a library containing 1019 natural compounds using MCF-7 breast cancer cells transfected with a reporter vector containing the TTP promoter upstream of the luciferase gene. We identified one molecule, of which the enantiomers are betamethasone 21-phosphate (BTM-21-P) and dexamethasone 21-phosphate (BTM-21-P), as a potent inducer of TTP in cancer cells. We confirmed that BTM-21-P, DXM-21-P, and dexamethasone (DXM) induced the expression of TTP in MDA-MB-231 cells in a glucocorticoid receptor (GR)-dependent manner. To identify potential pathways linking BTM-21-P and DXM-21-P to TTP induction, we performed an RNA sequencing-based transcriptome analysis of MDA-MB-231 cells at 3 h after treatment with these compounds. A heat map analysis of FPKM expression showed a similar expression pattern between cells treated with the two compounds. The KEGG pathway analysis results revealed that the upregulated DEGs were strongly associated with several pathways, including the Hippo signaling pathway, PI3K-Akt signaling pathway, FOXO signaling pathway, NF-κB signaling pathway, and p53 signaling pathway. Inhibition of the FOXO pathway using a FOXO1 inhibitor blocked the effects of BTM-21-P and DXM-21-P on the induction of TTP in MDA-MB-231 cells. We found that DXM enhanced the binding of FOXO1 to the TTP promoter in a GR-dependent manner. In conclusion, we identified a natural compound of which the enantiomers are DXM-21-P and BTM-21-P as a potent inducer of TTP in breast cancer cells. We also present new insights into the role of FOXO1 in the DXM-21-P- and BTM-21-P-induced expression of TTP in cancer cells.
Collapse
Affiliation(s)
- Do Yong Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - So Yeon Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Ju Won Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeonghwan Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jee Hyun Kim
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Hun Su Chu
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Won Jin Jeong
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Junil Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Seong Hee Choi
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| |
Collapse
|
9
|
The Mechanism and Experimental Validation of Forsythoside A in the Treatment of Male Infertility Were Analyzed Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7723358. [PMID: 36248414 PMCID: PMC9560825 DOI: 10.1155/2022/7723358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
Chinese medicine extracts are currently the hotspot of new drug research and development. Herein, we report the mechanism of action of the traditional Chinese medicine extract Forsythiaside A in the treatment of male infertility and experimental verification. We first obtained 95 intersection genes between the target protein of Forsythiaside A and the target genes of male infertility and screened 13 key genes. In molecular docking, Forsythiaside A can each have a higher total docking score with 12 key genes and have a better combination. These 95 intersection genes are mainly related to biological processes such as response to peptide hormone, response to oxidative stress, and participation in the oxidative stress of the forkhead box O (FoxO) signaling pathway. Therefore, we use ornidazole to induce an experimental model of oligoasthenospermia in rats and use different concentrations of Forsythiaside A to intervene. We proved that the semen quality and superoxide dismutase (SOD) activities of model group rats were significantly lower than those of the blank group, and semen quality and SOD activities of the low-dose group and high-dose group were significantly higher than those of the model group. The malondialdehyde (MDA) level of model group rats was significantly higher than that of blank group, while the MDA levels of the low-dose group and high-dose group were significantly lower than that of the model group. Forsythoside A is a potential drug substance for male infertility and improves the semen quality, MDA levels, and SOD activities of rats with oligoasthenospermia.
Collapse
|
10
|
Salehidoost R, Korbonits M. Glucose and lipid metabolism abnormalities in Cushing's syndrome. J Neuroendocrinol 2022; 34:e13143. [PMID: 35980242 DOI: 10.1111/jne.13143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Prolonged excess of glucocorticoids (GCs) has adverse systemic effects leading to significant morbidities and an increase in mortality. Metabolic alterations associated with the high level of the GCs are key risk factors for the poor outcome. These include GCs causing excess gluconeogenesis via upregulation of key enzymes in the liver, a reduction of insulin sensitivity in skeletal muscle, liver and adipose tissue by inhibiting the insulin receptor signalling pathway, and inhibition of insulin secretion in beta cells leading to dysregulated glucose metabolism. In addition, chronic GC exposure leads to an increase in visceral adipose tissue, as well as an increase in lipolysis resulting in higher circulating free fatty acid levels and in ectopic fat deposition. Remission of hypercortisolism improves these metabolic changes, but very often does not result in full resolution of the abnormalities. Therefore, long-term monitoring of metabolic variables is needed even after the resolution of the excess GC levels.
Collapse
Affiliation(s)
- Rezvan Salehidoost
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Sun F, Zhou JL, Wei SX, Jiang ZW, Peng H. Glucocorticoids induce osteonecrosis of the femoral head in rats via PI3K/AKT/FOXO1 signaling pathway. PeerJ 2022; 10:e13319. [PMID: 35529482 PMCID: PMC9074886 DOI: 10.7717/peerj.13319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 01/15/2023] Open
Abstract
Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a disorder that causes severe disability in patients and has a high incidence worldwide. Although glucocorticoid (GC)-induced apoptosis of osteoblasts is an important cytological basis of SONFH, the detailed mechanism underlying SONFH pathogenesis remains elusive. PI3K/AKT signaling pathway was reported to involve in cell survival and apoptosis. Objective We explored the role of PI3K/AKT/FOXO1 signaling pathway and its downstream targets during glucocorticoid -induced osteonecrosis of the femoral head. Methods We obtained gene expression profile of osteoblasts subjected to dexamethasone (Dex) treatment from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out and functional enrichment analysis were conducted by bioinformatics analysis. In vitro, we analyzed Dex-induced apoptosis in MC3T3-E1 cells and explored the role of PI3K/AKT/FOXO1 signaling pathway in this phenomenon by employing siRNA-FOXO1 and IGF-1(PI3K/AKT agonist). Finally, we verified our results in a rat model of SONFH. Results In Dex-treated osteoblasts, DEGs were mainly enriched in the FOXO signaling pathway. Dex inhibited MC3T3-E1 cell viability in a dose-dependent effect and induced apoptosis by increasing the expression levels of FOXO1, Bax, cleaved-Caspase-3, and cleaved-Caspase-9, while reducing the expression of Bcl-2. Notably, these results were reversed by siRNA-FOXO1 treatment. Dex inhibited PI3K/AKT signaling pathway, upregulated FOXO1 expression and increased FOXO1 nuclear translocation, which were reversed by IGF-1. Compared to normal rats, the femoral head of SONFH showed increased expression of FOXO1, increased number of apoptotic cells, and empty osteocytic lacunas, as well as decreased bone tissue content and femoral head integrity. Significantly, the effects of GC-induced SONFH were alleviated following IGF-1 treatment. Conclusion Dex induces osteoblast apoptosis via the PI3K/AKT/FOXO1 signaling pathway. Our research offers new insights into the underlying molecular mechanisms of glucocorticoid-induced osteonecrosis in SONFH and proposes FOXO1 as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Fei Sun
- Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Si Xing Wei
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze Wen Jiang
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Peng
- Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Delangre E, Liu J, Tolu S, Maouche K, Armanet M, Cattan P, Pommier G, Bailbé D, Movassat J. Underlying mechanisms of glucocorticoid-induced β-cell death and dysfunction: a new role for glycogen synthase kinase 3. Cell Death Dis 2021; 12:1136. [PMID: 34876563 PMCID: PMC8651641 DOI: 10.1038/s41419-021-04419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in β-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of β-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced β-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3β isoform is sufficient to mediate the pro-apoptotic effects of GCs in β-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic β-cells.
Collapse
Affiliation(s)
- Etienne Delangre
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Junjun Liu
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Stefania Tolu
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Kamel Maouche
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Mathieu Armanet
- Cell Therapy Unit, Saint-Louis hospital, AP-HP, and Université de Paris, Paris, France
| | - Pierre Cattan
- Cell Therapy Unit, Saint-Louis hospital, AP-HP, and Université de Paris, Paris, France
| | - Gaëlle Pommier
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Danielle Bailbé
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Jamileh Movassat
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France.
| |
Collapse
|
13
|
Li X, Wan T, Li Y. Role of FoxO1 in regulating autophagy in type 2 diabetes mellitus (Review). Exp Ther Med 2021; 22:707. [PMID: 34007316 PMCID: PMC8120662 DOI: 10.3892/etm.2021.10139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major chronic disease that is characterized by pancreatic β-cell dysfunction and insulin resistance. Autophagy is a highly conserved intracellular recycling pathway and is involved in regulating intracellular homeostasis. Transcription factor Forkhead box O1 (FoxO1) also regulates fundamental cellular processes, including cell differentiation, metabolism and apoptosis, and proliferation to cellular stress. Increasing evidence suggest that autophagy and FoxO1 are involved in the pathogenesis of T2DM, including β-cell viability, apoptosis, insulin secretion and peripheral insulin resistance. Recent studies have demonstrated that FoxO1 improves insulin resistance by regulating target tissue autophagy. The present review summarizes current literature on the role of autophagy and FoxO1 in T2DM. The participation of FoxO1 in the development and occurrence of T2DM via autophagy is also discussed.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tingting Wan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
14
|
Barroso Oquendo M, Siegel-Axel D, Gerst F, Lorza-Gil E, Moller A, Wagner R, Machann J, Fend F, Königsrainer A, Heni M, Häring HU, Ullrich S, Birkenfeld AL. Pancreatic fat cells of humans with type 2 diabetes display reduced adipogenic and lipolytic activity. Am J Physiol Cell Physiol 2021; 320:C1000-C1012. [PMID: 33788629 DOI: 10.1152/ajpcell.00595.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity, especially visceral fat accumulation, increases the risk of type 2 diabetes (T2D). The purpose of this study was to investigate the impact of T2D on the pancreatic fat depot. Pancreatic fat pads from 17 partial pancreatectomized patients (PPP) were collected, pancreatic preadipocytes isolated, and in vitro differentiated. Patients were grouped using HbA1c into normal glucose tolerant (NGT), prediabetic (PD), and T2D. Transcriptome profiles of preadipocytes and adipocytes were assessed by RNAseq. Insulin sensitivity was estimated by quantifying AKT phosphorylation on Western blots. Lipogenic capacity was assessed with oil red O staining, lipolytic activity via fatty acid release. Secreted factors were measured using ELISA. Comparative transcriptome analysis of preadipocytes and adipocytes indicates defective upregulation of genes governing adipogenesis (NR1H3), lipogenesis (FASN, SCD, ELOVL6, and FADS1), and lipolysis (LIPE) during differentiation of cells from T2D-PPP. In addition, the ratio of leptin/adiponectin mRNA was higher in T2D than in NGT-PPP. Preadipocytes and adipocytes of NGT-PPP were more insulin sensitive than T2D-PPP cells in regard to AKT phosphorylation. Triglyceride accumulation was similar in NGT and T2D adipocytes. Despite a high expression of the receptors NPR1 and NPR2 in NGT and T2D adipocytes, lipolysis was stimulated by ANP 1.74-fold in NGT cells only. This stimulation was further increased by the PDE5 inhibitor dipyridamole (3.09-fold). Dipyridamole and forskolin increased lipolysis receptor independently 1.88-fold and 1.48-fold, respectively, solely in NGT cells. In conclusion, the metabolic status persistently affects differentiation and lipolysis of pancreatic adipocytes. These alterations could aggravate the development of T2D.
Collapse
Affiliation(s)
- Morgana Barroso Oquendo
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Dorothea Siegel-Axel
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Felicia Gerst
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Estela Lorza-Gil
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Anja Moller
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls-University of Tübingen, Neuherberg, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Kim MJ, Park HS, Kim JW, Lee EY, Rhee M, You YH, Khang G, Park CG, Yoon KH. Suppression of Fibrotic Reactions of Chitosan-Alginate Microcapsules Containing Porcine Islets by Dexamethasone Surface Coating. Endocrinol Metab (Seoul) 2021; 36:146-156. [PMID: 33677936 PMCID: PMC7937851 DOI: 10.3803/enm.2021.879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The microencapsulation is an ideal solution to overcome immune rejection without immunosuppressive treatment. Poor biocompatibility and small molecular antigens secreted from encapsulated islets induce fibrosis infiltration. Therefore, the aims of this study were to improve the biocompatibility of microcapsules by dexamethasone coating and to verify its effect after xenogeneic transplantation in a streptozotocin-induced diabetes mice. METHODS Dexamethasone 21-phosphate (Dexa) was dissolved in 1% chitosan and was cross-linked with the alginate microcapsule surface. Insulin secretion and viability assays were performed 14 days after microencapsulation. Dexa-containing chitosan-coated alginate (Dexa-chitosan) or alginate microencapsulated porcine islets were transplanted into diabetic mice. The fibrosis infiltration score was calculated from the harvested microcapsules. The harvested microcapsules were stained with trichrome and for insulin and macrophages. RESULTS No significant differences in glucose-stimulated insulin secretion and islet viability were noted among naked, alginate, and Dexa-chitosan microencapsulated islets. After transplantation of microencapsulated porcine islets, nonfasting blood glucose were normalized in both the Dexa-chitosan and alginate groups until 231 days. The average glucose after transplantation were lower in the Dexa-chitosan group than the alginate group. Pericapsular fibrosis and inflammatory cell infiltration of microcapsules were significantly reduced in Dexa-chitosan compared with alginate microcapsules. Dithizone and insulin were positive in Dexa-chitosan capsules. Although fibrosis and macrophage infiltration was noted on the surface, some alginate microcapsules were stained with insulin. CONCLUSION Dexa coating on microcapsules significantly suppressed the fibrotic reaction on the capsule surface after transplantation of xenogenic islets containing microcapsules without any harmful effects on the function and survival of the islets.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heon-Seok Park
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Young Lee
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hye You
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Translational Xenotransplantation Research Centre, Cancer Research Institute, Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
16
|
Zhang B, Sun P, Shen C, Liu X, Sun J, Li D, Liu Z, Zhang W, Zhang K, Niu Y. Role and mechanism of PI3K/AKT/FoxO1/PDX-1 signaling pathway in functional changes of pancreatic islets in rats after severe burns. Life Sci 2020; 258:118145. [PMID: 32717270 DOI: 10.1016/j.lfs.2020.118145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
AIMS Studies on diabetes mellitus have shown that the phosphoinositide 3-kinase (PI3K)/serine threonine kinase (AKT)/forkhead box protein O1 (FoxO1) signaling pathway can regulate insulin secretion by modulating the expression of pancreatic and duodenal homeobox-1 (PDX-1). Therefore, it was hypothesized that the pathway also played an important role in functional abnormalities of pancreatic islets after severe burns. This study aimed to explore the role and mechanism of the PI3K/AKT/FoxO1/PDX-1 signaling pathway in functional changes of pancreatic islets in rats post severe burns. MAIN METHODS Rats were grouped, subjected to full thickness burn injuries involving 50% total body surface area (TBSA), and injected intraperitoneally with BPV (HOpic) (0.6 mg/kg) or DMSO (0.55 mg/kg) once a day for three days. Glucose metabolism related indexes were measured by the glucometer, transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA). PI3K/AKT/FoxO1/PDX-1 signaling pathway related indexes were detected through immunofluorescence, western blot and RT-qPCR analyses. KEY FINDINGS Dysglycemia and impaired insulin secretion occurred in rats, the activity of the PI3K/AKT/FoxO1/PDX-1 signaling pathway in the islets fell, and PDX-1 was translocated from the nucleus to the cytoplasm post severe burns. When BPV (HOpic) was used, glucose metabolism and insulin secretion were improved, the activity of the PI3K/AKT/FoxO1/PDX-1 signaling pathway in the islets was up-regulated, and PDX-1 was redistributed from the cytoplasm to the nucleus. SIGNIFICANCE The activity of the PI3K/AKT/FoxO1/PDX-1 signaling pathway declined following severe burns. When its activity was up-regulated, insulin secretion could be improved, thus ameliorating hyperglycemia.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Pengchao Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Chuan'an Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Xinzhu Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Jiachen Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Dawei Li
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Zhaoxing Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Wen Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Kun Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yuezeng Niu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
17
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
18
|
Miani M, Elvira B, Gurzov EN. Sweet Killing in Obesity and Diabetes: The Metabolic Role of the BH3-only Protein BIM. J Mol Biol 2018; 430:3041-3050. [DOI: 10.1016/j.jmb.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
|
19
|
Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, Kajantie E, Luoni A, Eriksson JG, Lahti J, Mondelli V, Dazzan P, Räikkönen K, Binder EB, Riva MA, Pariante CM. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry 2018; 23:2192-2208. [PMID: 29302075 PMCID: PMC6283860 DOI: 10.1038/s41380-017-0002-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 01/02/2023]
Abstract
To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-β1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-β1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK. .,Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy.
| | - Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Chiara Malpighi
- grid.419422.8Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Darina Czamara
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Anna Suarez
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Nicole Mariani
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Eero Kajantie
- 0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0409 6302grid.428673.cFolkhälsan Research Centre, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0410 2071grid.7737.4Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alessia Luoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Johan G. Eriksson
- 0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0000 9950 5666grid.15485.3dHospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland ,0000 0004 4685 4917grid.412326.0PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jari Lahti
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland ,0000 0004 0409 6302grid.428673.cFolkhälsan Research Centre, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,Helsinki Collegium for Advanced Studies, Helsinki, Finland
| | - Valeria Mondelli
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Paola Dazzan
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katri Räikkönen
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Elisabeth B. Binder
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany ,0000 0001 0941 6502grid.189967.8Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Marco A. Riva
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M. Pariante
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| |
Collapse
|
20
|
MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017; 8:12433-12450. [PMID: 27999212 PMCID: PMC5355356 DOI: 10.18632/oncotarget.14015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, metastasis and angiogenesis, thereby facilitating tumor initiation and progression. A complex network of protein and non-coding RNAs mediates the expression and activity of forkhead box transcription factors. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs and forkhead box transcription factors and describe the roles of microRNAs-forkhead box axis in various disease states including tumor initiation and progression. Additionally, we describe some of the technical challenges in the use of the microRNA-forkhead box signaling pathway in cancer treatment.
Collapse
|
21
|
Barrosa KH, Mecchi MC, Rando DG, Ferreira AJS, Sartorelli P, Valle MM, Bordin S, Caperuto LC, Lago JHG, Lellis-Santos C. Polygodial, a sesquiterpene isolated from Drimys brasiliensis (Winteraceae), triggers glucocorticoid-like effects on pancreatic β-cells. Chem Biol Interact 2016; 258:245-56. [DOI: 10.1016/j.cbi.2016.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
|
22
|
Gao Y, Liu C, Wan G, Wang X, Cheng X, Ou Y. Phycocyanin prevents methylglyoxal-induced mitochondrial-dependent apoptosis in INS-1 cells by Nrf2. Food Funct 2016; 7:1129-1137. [DOI: 10.1039/c5fo01548k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Phycocyanin prevents mitochondrial-dependent apoptosis in methylgiyoxal-induced INS-1 cells by activating Nrf2.
Collapse
Affiliation(s)
- Yingnv Gao
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Chen Liu
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Guoqing Wan
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xinshuo Wang
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology
- Texas Therapeutics Institute
- The Brown Foundation Institute of Molecular Medicine
- The University of Texas Health Science Center
- Houston
| | - Yu Ou
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
23
|
Gerst F, Kaiser G, Panse M, Sartorius T, Pujol A, Hennige AM, Machicao F, Lammers R, Bosch F, Häring HU, Ullrich S. Protein kinase Cδ regulates nuclear export of FOXO1 through phosphorylation of the chaperone 14-3-3ζ. Diabetologia 2015; 58:2819-31. [PMID: 26363783 DOI: 10.1007/s00125-015-3744-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Forkhead box protein O1 (FOXO1) is a transcription factor essential for beta cell fate. Protein kinase B-dependent phosphorylation of FOXO1 at S256 (P-FOXO1) enables its binding to 14-3-3 dimers and nuclear export. Dephosphorylated FOXO1 enters nuclei and activates pro-apoptotic genes. Since our previous observations suggest that protein kinase C delta (PKCδ) induces nuclear accumulation of FOXO1, the underlying mechanism was examined. METHODS In human islets, genetically modified mice and INS-1E cells apoptosis was assessed by TUNEL staining. Subcellular translocation of proteins was examined by confocal microscopy and signalling pathways were analysed by western blotting and overlay assay. RESULTS In PKCδ-overexpressing (PKCδ-tg) mouse islet cells and INS-1E cells FOXO1 accumulated in nuclei, surprisingly, as P-FOXO1. PKCδ-tg decelerated IGF-1-dependent stimulation of nuclear export, indicating that changes in export caused nuclear retention of P-FOXO1. Nuclear accumulation of P-FOXO1 was accompanied by increased phosphorylation of 14-3-3ζ at S58 and reduced dimerisation of 14-3-3ζ. Palmitic acid further augmented phosphorylation of 14-3-3ζ and triggered nuclear accumulation of FOXO1 in both INS-1E and human islet cells. Furthermore, the overexpression of a phosphomimicking mutant of 14-3-3ζ (S58D) enhanced nuclear FOXO1. In accordance with the nuclear accumulation of P-FOXO1, PKCδ overexpression alone did not increase apoptotic cell death. Additionally, insulin secretion and glucose homeostasis in PKCδ-overexpressing mice remained unaffected. CONCLUSIONS/INTERPRETATION These results suggest that PKCδ-mediated phosphorylation of 14-3-3ζ contributes to the nuclear retention of FOXO1, even when FOXO1 is phosphorylated as under non-stress conditions. P-FOXO1 does not induce pro-apoptotic genes, but may rather exert beneficial effects on beta cells.
Collapse
Affiliation(s)
- Felicia Gerst
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Partner in the German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Gabriele Kaiser
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Partner in the German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Madhura Panse
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
| | - Tina Sartorius
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Partner in the German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Anita M Hennige
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
| | - Fausto Machicao
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Partner in the German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Reiner Lammers
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Hans-Ulrich Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Partner in the German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Susanne Ullrich
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, D-72076, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Partner in the German Center for Diabetes Research (DZD), Tübingen, Germany.
| |
Collapse
|
24
|
Gao Y, Liao G, Xiang C, Yang X, Cheng X, Ou Y. Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol 2015; 83:185-94. [PMID: 26616456 DOI: 10.1016/j.ijbiomac.2015.11.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
The level of methylglyoxal (MG), which is a side-product of metabolic pathways, particularly in glycolysis, is elevated in diabetes. Notably, the accumulation of MG causes a series of pathological changes. Phycocyanin (PC) has been demonstrated to show insulin-sensitizing effect, however, the underlying molecular mechanism remains elusive. The aim of this study was to investigate the protective effects of PC on INS-1 rat insulinoma β-cell against MG-induced cell dysfunction, as well as the underlying mechanisms. PC was preliminarily verified to time-dependently activate PI3-kinase (PI3K) pathway, but the PI3K-specific inhibitor Wortmannin blocked the effect of PC. Glucose-stimulated insulin secretion (GSIS) was impaired in MG-treated INS-1 cells. Furthermore, MG induced dephosphorylation of Akt and FoxO1, resulting in nuclear localization and transactivation of FoxO1. Nevertheless, these effects were all effectively attenuated by PC. The ameliorated insulin secretion was related to the changes of FoxO1 mediated by PC, which demonstrated by RNA interference. And, the dosage used in the above experiments did not affect β-cell viability and apoptosis, although long-term MG induced cell apoptosis and mitochondrial dysfunction. In conclusion, PC was capable to protect INS-1 pancreatic β-cell against MG-induced cell dysfunction through modulating PI3K/Akt pathway and the downstream FoxO1.
Collapse
Affiliation(s)
- Yingnv Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Gaoyong Liao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Chenxi Xiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xuegan Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, USA.
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Rong Guo X, Li Wang X, Chen Y, Hong Yuan Y, Mei Chen Y, Ding Y, Fang J, Jiao Bian L, Sheng Li D. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Exp Cell Res 2015; 345:158-67. [PMID: 26387753 DOI: 10.1016/j.yexcr.2015.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
Angiopoietin-like protein 8 (ANGPTL8)/betatrophin, a newly identified protein, is primarily expressed in the liver and regulates the glucose metabolic transition during fasting and re-feeding in mice with or without insulin resistance. These findings strongly suggest that ANGPTL8/betatrophin could be a novel glucose-lowering candidate medicine for type 2 diabetes. However, the molecular mechanisms by which ANGPTL8/betatrophin regulates glucose metabolism are poorly understood in human. Two sub-clones of HepG2 cells, ANGPTL8/betatrophin knockouts and ANGPTL8/betatrophin over-expressors, were established using TALENs (transcription activator-like effector nucleases) and through stable transfection, respectively. Over-expression of ANGPTL8/betatrophin enhanced the insulin-stimulated activation of the Akt-GSK3β or Akt-FoxO1 pathway, no matter whether the cells were present with insulin resistance or not. In contrast, knockout of ANGPTL8/betatrophin did not affect the Akt-GSK3β or Akt-FoxO1 pathway unless the HepG2 cells were preset with insulin resistance. Our results suggest that ANGPTL8/betatrophin might play an important role in glucose metabolism in the context of insulin resistance.
Collapse
Affiliation(s)
- Xing Rong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xiao Li Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yun Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ya Hong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yong Mei Chen
- Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Juan Fang
- Department of Pathology, Academic College, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Liu Jiao Bian
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China.
| | - Dong Sheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
26
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
27
|
Feng B, He Q, Xu H. FOXO1-dependent up-regulation of MAP kinase phosphatase 3 (MKP-3) mediates glucocorticoid-induced hepatic lipid accumulation in mice. Mol Cell Endocrinol 2014; 393:46-55. [PMID: 24946098 PMCID: PMC4130747 DOI: 10.1016/j.mce.2014.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/15/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
Long-term treatment with glucocorticoids (GCs) or dysregulation of endogenous GC levels induces a series of metabolic diseases, such as insulin resistance, obesity and type 2 diabetes. We previously showed that MAP kinase phosphatase-3 (MKP-3) plays an important role in glucose metabolism. The aim of this study is to investigate the role of MKP-3 in GC-induced metabolic disorders. Dexamethasone (Dex), a synthetic GC, increases MKP-3 protein expression both in cultured hepatoma cells and in the liver of lean mice. This effect is likely mediated by forkhead box protein O1 (FOXO1) because disruption of endogenous FOXO1 function by either interfering RNA mediated FOXO1 knockdown or overexpression of a dominant negative FOXO1 mutant blocks Dex-induced upregulation of MKP-3 protein. In addition, overexpression of FOXO1 is sufficient to induce MKP-3 protein expression. MKP-3 deficient mice are protected from several side effects of chronic Dex exposure, such as body weight gain, adipose tissue enlargement, hepatic lipid accumulation, and insulin resistance. The beneficial phenotypes in mice lacking MKP-3 are largely attributed to the absence of MKP-3 in the liver since only hepatic insulin signaling has been preserved among the three insulin target tissues (liver, muscle and adipose tissue).
Collapse
Affiliation(s)
- Bin Feng
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Qin He
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
28
|
Ren D, Sun J, Wang C, Ye H, Mao L, Cheng EH, Bell GI, Polonsky KS. Role of BH3-only molecules Bim and Puma in β-cell death in Pdx1 deficiency. Diabetes 2014; 63:2744-50. [PMID: 24658302 PMCID: PMC4113059 DOI: 10.2337/db13-1513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in pancreatic duodenal homeobox-1 (PDX1) are associated with diabetes in humans. Pdx1-haploinsufficient mice develop diabetes due to an increase in β-cell death leading to reduced β-cell mass. For definition of the molecular link between Pdx1 deficiency and β-cell death, Pdx1-haploinsufficient mice in which the genes for the BH3-only molecules Bim and Puma had been ablated were studied on a high-fat diet. Compared with Pdx1(+/-) mice, animals haploinsufficient for both Pdx1 and Bim or Puma genes showed improved glucose tolerance, enhanced β-cell mass, and reduction in the number of TUNEL-positive cells in islets. These results suggest that Bim and Puma ablation improves β-cell survival in Pdx1(+/-) mice. For exploration of the mechanisms responsible for these findings, Pdx1 gene expression was knocked down in mouse MIN6 insulinoma cells resulting in apoptotic cell death that was found to be associated with increased expression of BH3-only molecules Bim and Puma. If the upregulation of Bim and Puma that occurs during Pdx1 suppression was prevented, apoptotic β-cell death was reduced in vitro. These results suggest that Bim and Puma play an important role in β-cell apoptosis in Pdx1-deficient diabetes.
Collapse
Affiliation(s)
- Decheng Ren
- Department of Medicine, University of Chicago, Chicago, IL
| | - Juan Sun
- Department of Medicine, University of Chicago, Chicago, IL
| | | | - Honggang Ye
- Department of Medicine, University of Chicago, Chicago, IL
| | - Liqun Mao
- Department of Medicine, University of Chicago, Chicago, IL
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Graeme I Bell
- Department of Medicine, University of Chicago, Chicago, IL
| | | |
Collapse
|
29
|
Alismail H, Jin S. Microenvironmental stimuli for proliferation of functional islet β-cells. Cell Biosci 2014; 4:12. [PMID: 24594290 PMCID: PMC3974598 DOI: 10.1186/2045-3701-4-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022] Open
Abstract
Diabetes is characterized by high blood glucose level due to either autoimmune destruction of islet β-cells or insufficient insulin secretion or glucose non-responsive production of insulin by β-cells. It is highly desired to replace biological functional β-cells for the treatment of diabetes. Unfortunately, β-cells proliferate with an extremely low rate. This cellular property hinders cell-based therapy for clinical application. Many attempts have been made to develop techniques that allow production of large quantities of clinically relevant islet β-cells in vitro. A line of studies evidently demonstrate that β-cells can proliferate under certain circumstances, giving the hopes for generating and expanding these cells in vitro and transplanting them to the recipient. In this review, we discuss the requirements of microenvironmental stimuli that stimulate β-cell proliferation in cell cultures. We highlight advanced approaches for augmentation of β-cell expansion that have recently emerged in this field. Furthermore, knowing the signaling pathways and molecular mechanisms would enable manipulating cell proliferation and optimizing its insulin secretory function. Thus, signaling pathways involved in the enhancement of cell proliferation are discussed as well.
Collapse
Affiliation(s)
| | - Sha Jin
- Department of Bioengineering, Thomas J, Watson School of Engineering and Applied Sciences, State University of New York in Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|