1
|
Ahmed SM, Elkhenany HA, Ahmed TA, Ghoneim NI, Elkodous MA, Mohamed RH, Magdeldin S, Osama A, Anwar AM, Gabr MM, El-Badri N. Diabetic microenvironment deteriorates the regenerative capacities of adipose mesenchymal stromal cells. Diabetol Metab Syndr 2024; 16:131. [PMID: 38880916 PMCID: PMC11181634 DOI: 10.1186/s13098-024-01365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Type 2 diabetes is an endocrine disorder characterized by compromised insulin sensitivity that eventually leads to overt disease. Adipose stem cells (ASCs) showed promising potency in improving type 2 diabetes and its complications through their immunomodulatory and differentiation capabilities. However, the hyperglycaemia of the diabetic microenvironment may exert a detrimental effect on the functionality of ASCs. Herein, we investigate ASC homeostasis and regenerative potential in the diabetic milieu. METHODS We conducted data collection and functional enrichment analysis to investigate the differential gene expression profile of MSCs in the diabetic microenvironment. Next, ASCs were cultured in a medium containing diabetic serum (DS) or normal non-diabetic serum (NS) for six days and one-month periods. Proteomic analysis was carried out, and ASCs were then evaluated for apoptosis, changes in the expression of surface markers and DNA repair genes, intracellular oxidative stress, and differentiation capacity. The crosstalk between the ASCs and the diabetic microenvironment was determined by the expression of pro and anti-inflammatory cytokines and cytokine receptors. RESULTS The enrichment of MSCs differentially expressed genes in diabetes points to an alteration in oxidative stress regulating pathways in MSCs. Next, proteomic analysis of ASCs in DS revealed differentially expressed proteins that are related to enhanced cellular apoptosis, DNA damage and oxidative stress, altered immunomodulatory and differentiation potential. Our experiments confirmed these data and showed that ASCs cultured in DS suffered apoptosis, intracellular oxidative stress, and defective DNA repair. Under diabetic conditions, ASCs also showed compromised osteogenic, adipogenic, and angiogenic differentiation capacities. Both pro- and anti-inflammatory cytokine expression were significantly altered by culture of ASCs in DS denoting defective immunomodulatory potential. Interestingly, ASCs showed induction of antioxidative stress genes and proteins such as SIRT1, TERF1, Clusterin and PKM2. CONCLUSION We propose that this deterioration in the regenerative function of ASCs is partially mediated by the induced oxidative stress and the diabetic inflammatory milieu. The induction of antioxidative stress factors in ASCs may indicate an adaptation mechanism to the increased oxidative stress in the diabetic microenvironment.
Collapse
Affiliation(s)
- Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Hoda A Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
- Department of surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Rania Hassan Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Aya Osama
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Ali Mostafa Anwar
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt.
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, 6th of October City, Egypt.
| |
Collapse
|
2
|
Badr OI, Kamal MM, El-Maraghy SA, Ghaiad HR. The effect of diabetes mellitus on differentiation of mesenchymal stem cells into insulin-producing cells. Biol Res 2024; 57:20. [PMID: 38698488 PMCID: PMC11067316 DOI: 10.1186/s40659-024-00502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure for DM up till now. Differentiating mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) is a promising approach for curing DM. Our study was conducted to investigate the effect of DM on MSCs differentiation into IPCs in vivo and in vitro. METHODS We isolated adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of normal and STZ-induced diabetic Sprague-Dawley male rats. Afterwards, the in vitro differentiation of normal-Ad-MSCs (N-Ad-MSCs) and diabetic-Ad-MSCs (DM-Ad-MSCs) into IPCs was compared morphologically then through determining the gene expression of β-cell markers including neurogenin-3 (Ngn-3), homeobox protein (Nkx6.1), musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin-1 (Ins-1) and eventually, through performing glucose-stimulated insulin secretion test (GSIS). Finally, the therapeutic potential of N-Ad-MSCs and DM-Ad-MSCs transplantation was compared in vivo in STZ-induced diabetic animals. RESULTS Our results showed no significant difference in the characteristics of N-Ad-MSCs and DM-Ad-MSCs. However, we demonstrated a significant difference in their abilities to differentiate into IPCs in vitro morphologically in addition to β-cell markers expression, and functional assessment via GSIS test. Furthermore, the abilities of both Ad-MSCs to control hyperglycemia in diabetic rats in vivo was assessed through measuring fasting blood glucose (FBGs), body weight (BW), histopathological examination of both pancreas and liver and immunoexpression of insulin in pancreata of study groups. CONCLUSION Our findings reveal the effectiveness of N-Ad-MSCs in differentiating into IPCs in vitro and controlling the hyperglycemia of STZ-induced diabetic rats in vivo compared to DM-Ad-MSCs.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shohda A El-Maraghy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
3
|
Badimon L, Arderiu G, Vilahur G, Padro T, Cordero A, Mendieta G. Perivascular and epicardial adipose tissue. Vascul Pharmacol 2024; 154:107254. [PMID: 38072220 DOI: 10.1016/j.vph.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Lina Badimon
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain.
| | - Gemma Arderiu
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Teresa Padro
- Cardiovascular-Program ICCC; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Ciber CV, Instituto Carlos III, Madrid, Spain; Red TERAV, Instituto Carlos III, Madrid, Spain
| | - Alberto Cordero
- Ciber CV, Instituto Carlos III, Madrid, Spain; Cardiology Department, Hospital IMED Elche, Alicante, Spain
| | - Guiomar Mendieta
- Cardiology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
4
|
Ashoobi MT, Hemmati H, Aghayan HR, Zarei-Behjani Z, Keshavarz S, Babaloo H, Maroufizadeh S, Yousefi S, Farzin M, Vojoudi E. Wharton's jelly mesenchymal stem cells transplantation for critical limb ischemia in patients with type 2 diabetes mellitus: a preliminary report of phase I clinical trial. Cell Tissue Res 2024; 395:211-220. [PMID: 38112806 DOI: 10.1007/s00441-023-03854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide, with approximately 11% of patients presenting with advanced-stage PAD or critical limb ischemia (CLI). To avoid or delay amputation, particularly in no-option CLI patients with infeasible or ineffective revascularization, new treatment strategies such as regenerative therapies should be developed. Mesenchymal stem cells (MSCs) are the most popular cell source in regenerative therapies. They possess significant characteristics such as angiogenic, anti-inflammatory, and immunomodulatory activities, which encourage their application in different diseases. This phase I clinical trial reports the safety, feasibility, and probable efficacy of the intramuscular administration of allogeneic Wharton's jelly-derived MSCs (WJ-MSCs) in type 2 diabetes patients with CLI. Out of six screened patients with CLI, five patients were administered WJ-MSCs into the gastrocnemius, soleus, and the proximal part of the tibialis anterior muscles of the ischemic lower limb. The safety of WJ-MSCs injection was considered a primary outcome. Secondary endpoints included wound healing, the presence of pulse at the disease site, the absence of amputation, and improvement in visual analogue scale (VAS), pain-free walking time, and foot and ankle disability index (FADI). No patient experienced adverse events and foot or even toe amputation during the 6-month follow-up. Six months after the intervention, there were a significantly lower VAS score and significantly higher pain-free walking time and FADI score than the baseline, but no statistically significant difference was seen between other time points. In conclusion, allogeneic WJ-MSC transplantation in patients with CLI seems to be safe and effective.
Collapse
Affiliation(s)
- Mohammad Taghi Ashoobi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamideh Babaloo
- Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saman Maroufizadeh
- Department of Biostatistics, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Yousefi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohaya Farzin
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Grobbelaar S, Mercier AE, van den Bout I, Durandt C, Pepper MS. Considerations for enhanced mesenchymal stromal/stem cell myogenic commitment in vitro. Clin Transl Sci 2024; 17:e13703. [PMID: 38098144 PMCID: PMC10787211 DOI: 10.1111/cts.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024] Open
Abstract
The generation of tissue from stem cells is an alluring concept as it holds a number of potential applications in clinical therapeutics and regenerative medicine. Mesenchymal stromal/stem cells (MSCs) can be isolated from a number of different somatic sources, and have the capacity to differentiate into adipogenic, osteogenic, chondrogenic, and myogenic lineages. Although the first three have been extensively investigated, there remains a paucity of literature on the latter. This review looks at the various strategies available in vitro to enhance harvested MSC commitment and differentiation into the myogenic pathway. These include chemical inducers, myogenic-enhancing cell culture substrates, and mechanical and dynamic culturing conditions. Drawing on information from embryonic and postnatal myogenesis from somites, satellite, and myogenic progenitor cells, the mechanisms behind the chemical and mechanical induction strategies can be studied, and the sequential gene and signaling cascades can be used to monitor the progression of myogenic differentiation in the laboratory. Increased understanding of the stimuli and signaling mechanisms in the initial stages of MSC myogenic commitment will provide tools with which we can enhance their differentiation efficacy and advance the process to clinical translation.
Collapse
Affiliation(s)
- Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anne E. Mercier
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Iman van den Bout
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Neuroendocrinology, Department of Immunology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
6
|
Arderiu G, Civit-Urgell A, Badimon L. Adipose-Derived Stem Cells to Treat Ischemic Diseases: The Case of Peripheral Artery Disease. Int J Mol Sci 2023; 24:16752. [PMID: 38069074 PMCID: PMC10706341 DOI: 10.3390/ijms242316752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Critical limb ischemia incidence and prevalence have increased over the years. However, there are no successful treatments to improve quality of life and to reduce the risk of cardiovascular and limb events in these patients. Advanced regenerative therapies have focused their interest on the generation of new blood vessels to repair tissue damage through the use of stem cells. One of the most promising sources of stem cells with high potential in cell-based therapy is adipose-derived stem cells (ASCs). ASCs are adult mesenchymal stem cells that are relatively abundant and ubiquitous and are characterized by a multilineage capacity and low immunogenicity. The proangiogenic benefits of ASCs may be ascribed to: (a) paracrine secretion of proangiogenic molecules that may stimulate angiogenesis; (b) secretion of microvesicles/exosomes that are also considered as a novel therapeutic prospect for treating ischemic diseases; and (c) their differentiation capability toward endothelial cells (ECs). Although we know the proangiogenic effects of ASCs, the therapeutic efficacy of ASCs after transplantation in peripheral artery diseases patients is still relatively low. In this review, we evidence the potential therapeutic use of ASCs in ischemic regenerative medicine. We also highlight the main challenges in the differentiation of these cells into functional ECs. However, significant efforts are still needed to ascertain relevant transcription factors, intracellular signaling and interlinking pathways in endothelial differentiation.
Collapse
Affiliation(s)
- Gemma Arderiu
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Facultat de Medicina i Ciències de la Salut—Campus Clínic, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Lina Badimon
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
8
|
Li Y, Li D, You L, Deng T, Pang Q, Meng X, Zhu B. dCas9-Based PDGFR-β Activation ADSCs Accelerate Wound Healing in Diabetic Mice through Angiogenesis and ECM Remodeling. Int J Mol Sci 2023; 24:ijms24065949. [PMID: 36983022 PMCID: PMC10057415 DOI: 10.3390/ijms24065949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The chronic wound represents a serious disease characterized by a failure to heal damaged skin and surrounding soft tissue. Mesenchymal stem cells (MSCs) derived from adipose tissue (ADSCs) are a promising therapeutic strategy, but their heterogeneity may result in varying or insufficient therapeutic capabilities. In this study, we discovered that all ADSCs populations expressed platelet-derived growth factor receptor β (PDGFR-β), while the expression level decreased dynamically with passages. Thus, using a CRISPRa-based system, we endogenously overexpressed PDGFR-β in ADSCs. Moreover, a series of in vivo and in vitro experiments were conducted to determine the functional changes in PDGFR-β activation ADSCs (AC-ADSCs) and to investigate the underlying mechanisms. With the activation of PDGFR-β, AC-ADSCs exhibited enhanced migration, survival, and paracrine capacity relative to control ADSCs (CON-ADSCs). In addition, the secretion components of AC-ADSCs contained more pro-angiogenic factors and extracellular matrix-associated molecules, which promoted the function of endothelial cells (ECs) in vitro. Additionally, in in vivo transplantation experiments, the AC-ADSCs transplantation group demonstrated improved wound healing rates, stronger collagen deposition, and angiogenesis. Consequently, our findings revealed that PDGFR-β overexpression enhanced the migration, survival, and paracrine capacity of ADSCs and improved therapeutic effects after transplantation to diabetic mice.
Collapse
Affiliation(s)
- Yumeng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Deyong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Murata Y, Obinata D, Matsumoto T, Ikado Y, Kano K, Fukuda N, Yamaguchi K, Takahashi S. Urethral injection of dedifferentiated fat cells ameliorates sphincter damage and voiding dysfunction in a rat model of persistence stress urinary incontinence. Int Urol Nephrol 2022; 54:789-797. [PMID: 35175498 PMCID: PMC8924144 DOI: 10.1007/s11255-021-03083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Purpose Dedifferentiated fat (DFAT) cells are mature adipocyte-derived multipotent cells that can be applicable to cell-based therapy for stress urinary incontinence (SUI). This study developed a persistence SUI model that allows long-term evaluation using a combination of vaginal distention (VD) and bilateral ovariectomy (OVX) in rats. Then, the therapeutic effects of DFAT cell transplantation in the persistence SUI model was examined. Methods In total, 48 Sprague–Dawley rats were divided into four groups and underwent VD (VD group), bilateral OVX (OVX group), VD and bilateral OVX (VD + OVX group), or sham operation (Control group). At 2, 4, and 6 weeks after injury, leak point pressure (LPP) and histological changes of the urethral sphincter were evaluated. Next, 14 rats undergoing VD and bilateral OVX were divided into two groups and administered urethral injection of DFAT cells (DFAT group) or fibroblasts (Fibroblast group). At 6 weeks after the injection, LPP and histology of the urethral sphincter were evaluated. Results The VD + OVX group retained a decrease in LPP with sphincter muscle atrophy at least until 6 weeks after injury. The LPP and urethral sphincter muscle atrophy in the DFAT group recovered better than those in the fibroblast group. Conclusions The persistence SUI model was created by a combination of VD and bilateral OVX in rats. Urethral injection of DFAT cells inhibited sphincter muscle atrophy and improved LPP in the persistence SUI model. These findings suggest that the DFAT cells may be an attractive cell source for cell-based therapy to treat SUI.
Collapse
Affiliation(s)
- Yasutaka Murata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yuichiro Ikado
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Soria-Juan B, Garcia-Arranz M, Llanos Jiménez L, Aparicio C, Gonzalez A, Mahillo Fernandez I, Riera Del Moral L, Grochowicz L, Andreu EJ, Marin P, Castellanos G, Moraleda JM, García-Hernández AM, Lozano FS, Sanchez-Guijo F, Villarón EM, Parra ML, Yañez RM, de la Cuesta Diaz A, Tejedo JR, Bedoya FJ, Martin F, Miralles M, Del Rio Sola L, Fernández-Santos ME, Ligero JM, Morant F, Hernández-Blasco L, Andreu E, Hmadcha A, Garcia-Olmo D, Soria B. Efficacy and safety of intramuscular administration of allogeneic adipose tissue derived and expanded mesenchymal stromal cells in diabetic patients with critical limb ischemia with no possibility of revascularization: study protocol for a randomized controlled double-blind phase II clinical trial (The NOMA Trial). Trials 2021; 22:595. [PMID: 34488845 PMCID: PMC8420067 DOI: 10.1186/s13063-021-05430-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background Chronic lower limb ischemia develops earlier and more frequently in patients with type 2 diabetes mellitus. Diabetes remains the main cause of lower-extremity non-traumatic amputations. Current medical treatment, based on antiplatelet therapy and statins, has demonstrated deficient improvement of the disease. In recent years, research has shown that it is possible to improve tissue perfusion through therapeutic angiogenesis. Both in animal models and humans, it has been shown that cell therapy can induce therapeutic angiogenesis, making mesenchymal stromal cell-based therapy one of the most promising therapeutic alternatives. The aim of this study is to evaluate the feasibility, safety, and efficacy of cell therapy based on mesenchymal stromal cells derived from adipose tissue intramuscular administration to patients with type 2 diabetes mellitus with critical limb ischemia and without possibility of revascularization. Methods A multicenter, randomized double-blind, placebo-controlled trial has been designed. Ninety eligible patients will be randomly assigned at a ratio 1:1:1 to one of the following: control group (n = 30), low-cell dose treatment group (n = 30), and high-cell dose treatment group (n = 30). Treatment will be administered in a single-dose way and patients will be followed for 12 months. Primary outcome (safety) will be evaluated by measuring the rate of adverse events within the study period. Secondary outcomes (efficacy) will be measured by assessing clinical, analytical, and imaging-test parameters. Tertiary outcome (quality of life) will be evaluated with SF-12 and VascuQol-6 scales. Discussion Chronic lower limb ischemia has limited therapeutic options and constitutes a public health problem in both developed and underdeveloped countries. Given that the current treatment is not established in daily clinical practice, it is essential to provide evidence-based data that allow taking a step forward in its clinical development. Also, the multidisciplinary coordination exercise needed to develop this clinical trial protocol will undoubtfully be useful to conduct academic clinical trials in the field of cell therapy in the near future. Trial registration ClinicalTrials.govNCT04466007. Registered on January 07, 2020. All items from the World Health Organization Trial Registration Data Set are included within the body of the protocol.
Collapse
Affiliation(s)
- Barbara Soria-Juan
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain
| | - Mariano Garcia-Arranz
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain
| | - Lucía Llanos Jiménez
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain.
| | - César Aparicio
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain
| | - Alejandro Gonzalez
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain
| | - Ignacio Mahillo Fernandez
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain
| | | | | | | | - Pedro Marin
- Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | | | | | - Francisco S Lozano
- IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Fermin Sanchez-Guijo
- IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva María Villarón
- IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Miriam Lopez Parra
- IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Rosa María Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | - Francisco J Bedoya
- University of Pablo de Olavide, Sevilla, Spain.,Network Center for Research in Diabetes and Associated Metabolic Diseases (Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | - José Manuel Ligero
- Institute for Health Research Gregorio Marañón (IISGM), General University Gregorio Marañón Hospital, Madrid, Spain
| | - Francisco Morant
- Institute for Health Research-ISABIAL, General University Hospital, Alicante, Spain
| | | | - Etelvina Andreu
- Institute for Health Research-ISABIAL, General University Hospital, Alicante, Spain.,University Miguel Hernández de Elche, Alicante, Spain
| | - Abdelkrim Hmadcha
- University of Pablo de Olavide, Sevilla, Spain.,The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.,University of Alicante, Alicante, Spain
| | - Damian Garcia-Olmo
- Jimenez Diaz Foundation University Hospital, FJD Health Research Institute, IIS-FJD UAM, Madrid, Spain
| | - Bernat Soria
- University of Pablo de Olavide, Sevilla, Spain.,Institute for Health Research-ISABIAL, General University Hospital, Alicante, Spain.,University Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
13
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
14
|
Yin M, Zhang Y, Yu H, Li X. Role of Hyperglycemia in the Senescence of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:665412. [PMID: 33968939 PMCID: PMC8099107 DOI: 10.3389/fcell.2021.665412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
The regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs) have laid a sound foundation for their clinical application in various diseases. However, the clinical efficiency of MSC treatments varies depending on certain cell characteristics. Among these, the roles of cell aging or senescence cannot be excluded. Despite their stemness, evidence of senescence in MSCs has recently gained attention. Many factors may contribute to the senescence of MSCs, including MSC origin (biological niche), donor conditions (age, obesity, diseases, or unknown factors), and culture conditions in vitro. With the rapidly increasing prevalence of diabetes mellitus (DM) and gestational diabetes mellitus (GDM), the effects of hyperglycemia on the senescence of MSCs should be evaluated to improve the application of autologous MSCs. This review aims to present the available data on the senescence of MSCs, its relationship with hyperglycemia, and the strategies to suppress the senescence of MSCs in a hyperglycemic environment.
Collapse
Affiliation(s)
- Min Yin
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Ni X, Shan X, Xu L, Yu W, Zhang M, Lei C, Xu N, Lin J, Wang B. Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects. Stem Cell Res Ther 2021; 12:226. [PMID: 33823915 PMCID: PMC8022317 DOI: 10.1186/s13287-021-02257-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background Wound healing is impaired in patients with diabetes due to the multifactorial etiology of the disease, which limits the therapeutic efficacy of various approaches. This study hypothesizes that the combination of adipose-derived stem cells (ADSCs) and platelet-rich plasma (PRP) might achieve optimally efficient diabetic wound healing. Methods ADSCs were isolated from the adipose tissues of Sprague-Dawley (SD) rats. PRP was prepared by using a two-step centrifugation technique. A diabetic wound model was established on the backs of SD rats to evaluate the effect of ADSCs incorporated into PRP. Hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry were performed to observe the changes in neovascularization. ELISA and Western blot were utilized to detect the angiogenesis-related protein expression levels. The proliferation of endothelial cells was assessed by the MTS assay. Results ADSCs incorporated into PRP induced a higher wound closure rate than ADSCs, PRP, and negative control. The expression levels of VEGF, p-STAT3, and SDF-1 in the ADSC+PRP group were higher than those in the other groups. Moreover, the proliferation of endothelial cells was strongly stimulated by treatment with the combination of ADSC-conditioned medium (ADSC-CM) and PRP. Conclusions PRP enhanced diabetic wound healing induced by ADSCs, and its promoting effect involved neovascularization.
Collapse
Affiliation(s)
- Xuejun Ni
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiuying Shan
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Lili Xu
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Wenjun Yu
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Mingliang Zhang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chen Lei
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Nating Xu
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Junyu Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Biao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
16
|
Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
|
17
|
Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular Risk Factors and Differential Transcriptomic Profile of the Subcutaneous and Visceral Adipose Tissue and Their Resident Stem Cells. Cells 2020; 9:cells9102235. [PMID: 33022994 PMCID: PMC7600037 DOI: 10.3390/cells9102235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/18/2023] Open
Abstract
Background: The increase in the incidence of obesity and obesity-related cardiovascular risk factors (CVRFs) over the last decades has brought attention on adipose tissue (AT) pathobiology. The expansion of AT is associated with the development of new vasculature needed to perfuse the tissue; however, not all fat depots have the same ability to induce angiogenesis that requires recruitment of their own endothelial cells. In this study we have investigated the effect of different CVRFs, on the angiogenic capacity of the subcutaneous (SAT) and visceral (VAT) adipose tissue and on the function of their mesenchymal cell reservoir. Methods: A transcriptomic approach was used to compare the different angiogenic and inflammatory profiles of the subcutaneous and visceral fat depots from individuals with obesity, as well as their resident stem cells (ASCs). Influence of other risk factors on fat composition was also measured. Finally, the microvesicles (MVs) released by ASCs were isolated and their regenerative potential analyzed by molecular and cellular methodologies. Results: Obesity decreases the angiogenic capacity of AT. There are differences between SAT and VAT; from the 21 angiogenic-related genes analyzed, only three were decreased in SAT compared with those decreased in VAT. ASCs isolated from both fat depots showed significant differences; there was a significant up-regulation of the VEGF-pathway on visceral derived ASCs. ASCs release MVs that stimulate endothelial cell migration and angiogenic capacity. Conclusions: In patients with obesity, SAT expresses a greater number of angiogenic molecules than VAT, independent of the presence of other CVRFs.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
- Ciber CV, 28029 Madrid, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| | - Carmen Lambert
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
| | - Carlos Ballesta
- Centro Médico Teknon, 08025 Barcelona, Spain; (C.B.); (F.M.)
| | | | - Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
- Ciber CV, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (C.L.); (G.V.)
- Ciber CV, 28029 Madrid, Spain
- Cardiovascular Research Chair UAB, 08025 Barcelona, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| |
Collapse
|
18
|
Fan X, Li K, Zhu L, Deng X, Feng Z, Xu C, Liu S, Wu J. Prolonged therapeutic effects of photoactivated adipose-derived stem cells following ischaemic injury. Acta Physiol (Oxf) 2020; 230:e13475. [PMID: 32306486 DOI: 10.1111/apha.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Adipose-derived stem cells (ASCs) therapies are emerging as a promising approach to therapeutic angiogenesis. Therapeutic persistence and reduced primitive stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. METHODS Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Unilateral hindlimb ischaemia model was induced in high-fat diet (HFD)-fed mice by femoral artery interruption, after which photoactivated and non-light-treated ASCs were injected into the tail vein of mice. Laser Doppler imaging was conducted to measure the blood flow reperfusion. Capillary density was measured in the ischaemic gastrocnemius muscle. mRNA levels of angiogenic factors were determined by reverse-transcription polymerase chain reaction. Flow cytometry was used to determine the characterization of ASCs and endothelial progenitor cell (EPC). Human ASCs secretomes were analysed by liquid chromatography tandem mass spectrometry. RESULTS Our study demonstrated that photoactivated ND-ASCs prolonged functional blood flow perfusion and increased ASCs-derived EPC and neovascularization 38 days after ligation, when compared with saline-treated controls. Profiling analysis in ischaemic muscles showed upregulation of genes associated with pro-angiogenic factors after injection of photoactivated ND-ASCs when compared with the non-light-treated ASCs or saline treated HFD mice. Mass spectrometry revealed that light-treated ASCs conditioned medium retained a more complete pro-angiogenic activity with significant upregulation of angiogenesis related proteins. CONCLUSION Our data demonstrates that photoactivated ND-ASCs improve blood flow recovery and their injection may prove to be a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Kai Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Sijing Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| |
Collapse
|
19
|
Lambert C, Arderiu G, Bejar MT, Crespo J, Baldellou M, Juan-Babot O, Badimon L. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther 2019; 10:361. [PMID: 31783922 PMCID: PMC6884762 DOI: 10.1186/s13287-019-1460-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The composition and function of the adipose tissue covering the heart are poorly known. In this study, we have investigated the epicardial adipose tissue (EAT) covering the cardiac ventricular muscle and the EAT covering the left anterior descending artery (LAD) on the human heart, to identify their resident stem cell functional activity. METHODS EAT covering the cardiac ventricular muscle was isolated from the apex (avoiding areas irrigated by major vessels) of the heart (ventricular myocardium adipose tissue (VMAT)) and from the area covering the epicardial arterial sulcus of the LAD (PVAT) in human hearts excised during heart transplant surgery. Adipose stem cells (ASCs) from both adipose tissue depots were immediately isolated and phenotypically characterized by flow cytometry. The different behavior of these ASCs and their released secretome microvesicles (MVs) were investigated by molecular and cellular analysis. RESULTS ASCs from both VMAT (mASCs) and the PVAT (pASCs) were characterized by the expression of CD105, CD44, CD29, CD90, and CD73. The angiogenic-related genes VEGFA, COL18A1, and TF, as well as the miRNA126-3p and miRNA145-5p, were analyzed in both ASC types. Both ASCs were functionally able to form tube-like structures in three-dimensional basement membrane substrates. Interestingly, pASCs showed a higher level of expression of VEGFA and reduced level of COL18A1 than mASCs. Furthermore, MVs released by mASCs significantly induced human microvascular endothelial cell migration. CONCLUSION Our study indicates for the first time that the resident ASCs in human epicardial adipose tissue display a depot-specific angiogenic function. Additionally, we have demonstrated that resident stem cells are able to regulate microvascular endothelial cell function by the release of MVs.
Collapse
Affiliation(s)
- Carmen Lambert
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.
| | - Maria Teresa Bejar
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maribel Baldellou
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.
- Ciber CV, 28029, Madrid, Spain.
- Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
20
|
Lian K, Wang Q, Zhao S, Yang M, Chen G, Chen Y, Li C, Gao H, Li C. Pretreatment of Diabetic Adipose-derived Stem Cells with mitoTEMPO Reverses their Defective Proangiogenic Function in Diabetic Mice with Critical Limb Ischemia. Cell Transplant 2019; 28:1652-1663. [PMID: 31684763 PMCID: PMC6923552 DOI: 10.1177/0963689719885076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have the ability to migrate to injury sites and
facilitate tissue repair by promoting angiogenesis. However, the therapeutic effect of
ADSCs from patients with diabetes is impaired due to oxidative stress. Given that diabetes
is a group of metabolic disorders and mitochondria are a major source of reactive oxygen
species (ROS), it is possible that mitochondrial ROS plays an important role in the
induction of diabetic ADSC (dADSC) dysfunction. ADSCs isolated from diabetic mice were
treated with mitoTEMPO, a mitochondrial ROS scavenger, or TEMPO, a universal ROS
scavenger, for three passages. The results showed that pretreatment with mitoTEMPO
increased the proliferation, multidifferentiation potential, and the migration and
proangiogenic capacities of dADSCs to levels similar to those of ADSCs from control mice,
whereas pretreatment with TEMPO showed only minor effects. Mechanistically, mitoTEMPO
pretreatment enhanced the mitochondrial antioxidant capacity of dADSCs, and knockdown of
superoxide dismutase reduced the restored mitochondrial antioxidant capacity and
attenuated the proangiogenic effects induced by mitoTEMPO pretreatment. In addition,
mitoTEMPO pretreatment improved the survival of dADSCs in diabetic mice with critical limb
ischemia, showing protective effects similar to those of control ADSCs. Pretreatment of
dADSCs with mitoTEMPO decreased limb injury and improved angiogenesis in diabetic mice
with critical limb ischemia. These findings suggested that short-term pretreatment of
dADSCs with a mitochondrial ROS scavenger restored their normal functions, which may be an
effective strategy for improving the therapeutic effects of ADSC-based therapies in
patients with diabetes.
Collapse
Affiliation(s)
- Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Both the authors contributed equally to this article
| | - Qin Wang
- Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.,Both the authors contributed equally to this article
| | - Shuai Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Maosen Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Genrui Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Youhu Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chengxiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Aliakbari S, Mohammadi M, Rezaee MA, Amini AA, Fakhari S, Rahmani MR. Impaired immunomodulatory ability of type 2 diabetic adipose-derived mesenchymal stem cells in regulation of inflammatory condition in mixed leukocyte reaction. EXCLI JOURNAL 2019; 18:852-865. [PMID: 31645845 PMCID: PMC6806137 DOI: 10.17179/excli2019-1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
The immunomodulatory properties of type 2 diabetic patients' adipose-derived mesenchymal stem cells (D-ASCs) has not been extensively studied. In this study, we compared the immunomodulatory properties of D-ASCs and non-diabetic subjects mesenchymal stem cells (ND-ASCs) in co-culture with mixed leukocyte reaction (MLR). ASCs were isolated from adipose tissue samples of type 2 diabetic and non-diabetic subjects (age: 40-55). D-ASCs and ND-ASCs were co-cultured with two-way MLR. Peripheral blood mononuclear cells (PBMCs) proliferation ratio, protein levels of IFN-γ and IL-10, mRNA expression of COX-2, TNF-α, TGF-β1 and IL-6 genes in MLR, D-ASCs and ND-ASCs co-cultures were assessed using XTT, ELISA and Real-time qRT-PCR, respectively. PBMCs proliferation on days 2 and 4 of D-ASCs co-culture was higher than ND-ASCs co-culture of the same days (p < 0.001). IFN-γ level decreased on day 4 compared to day 2 of ND-ASCs co-culture, but its level had not changed in D-ASCs co-culture. COX-2 expression on days 2 and 4 of D-ASCs co-culture was lower than ND-ASCs co-culture of the same days (p < 0.05). The expression of TNF-α and IL-6 on days 2 and 4 of D-ASCs co-culture were higher than ND-ASCs co-culture of the same days (p < 0.001). TGF-β1 on day 4 of ND-ASCs co-culture showed a slightly higher expression than D-ASCs co-culture of the same day. Lower suppression of PBMCs proliferation, declined expression of anti-inflammatory and upregulated expression of pro-inflammatory factors in D-ASCs co-culture, indicated an impairment of these cells in modulation of the inflammatory condition.
Collapse
Affiliation(s)
- Sara Aliakbari
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Mohammadi
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ali Amini
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shohreh Fakhari
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
22
|
Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10:274. [PMID: 31455405 PMCID: PMC6712852 DOI: 10.1186/s13287-019-1362-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) and impaired insulin secretion. The chronic inflammatory process contributed to IR and could also hamper pancreatic β cell function. However, currently applied treatment cannot reverse β cell damage or alleviate inflammation. Mesenchymal stem cells (MSCs), the cell-based therapy for their self-renewable, differentiation potential, and immunosuppressive properties, have been demonstrated in displaying therapeutic effects in T2DM. Adipose-derived MSCs (AD-MSCs) attracted more attention due to less harvested inconvenience and ethical issues commonly accompany with bone marrow-derived MSCs (BM-MSCs) and fetal annex-derived MSCs. Both AD-MSC therapy studies and mechanism explorations in T2DM animals presented that AD-MSCs could translate to clinical application. However, hyperglycemia, hyperinsulinemia, and metabolic disturbance in T2DM are crucial for impairment of AD-MSC function, which may limit the therapeutical effects of MSCs. This review focuses on the outcomes and the molecular mechanisms of MSC therapies in T2DM which light up the hope of AD-MSCs as an innovative strategy to cure T2DM.
Collapse
Affiliation(s)
- Yicheng Qi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Shengxian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
23
|
Badimon L, Bugiardini R, Cenko E, Cubedo J, Dorobantu M, Duncker DJ, Estruch R, Milicic D, Tousoulis D, Vasiljevic Z, Vilahur G, de Wit C, Koller A. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J 2019; 38:1951-1958. [PMID: 28873951 DOI: 10.1093/eurheartj/ehx181] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni M Claret 167, 08025 Barcelona, Spain.,Cardiovascular Research Chair UAB, Barcelona, Spain
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Maria Dorobantu
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila" of Bucharest, Emergency Clinical Hospital of Bucharest, 8, Calea Floreasca, Sector 1, 014461 Bucuresti, Romania
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Ramón Estruch
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain.,CIBER Obesity and Nutrition, Instituto de Salud Carlos III, Spain
| | - Davor Milicic
- Department for Cardiovascular Diseases, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, HR-10000 Zagreb, Croatia
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Vasilissis Sofias 114, TK 115 28 Athens, Greece
| | - Zorana Vasiljevic
- Clinical Center of Serbia, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC), CIBERCV, and Biomedical Research Institute Sant Pau (IIB-Sant Pau), c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrumfür Herz-Kreislauf-Forschung (DZHK) e.V., partner site: Hamburg/Kiel/Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Akos Koller
- Institute of Natural Sciences, University of Physical Education, Alkotas street, 44, 1123 Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
24
|
Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019; 38:323. [PMID: 31331376 PMCID: PMC6647277 DOI: 10.1186/s13046-019-1320-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have presented that curcumin could have a positive effect in the prevention of cancer and then in tumor therapy. Several hypotheses have highlighted that curcumin could decreases tumor growth and invasion by acting on both chronic inflammation and oxidative stress. This review focuses on the interest of use curcumin in cancer therapy by acting on the WNT/β-catenin pathway to repress chronic inflammation and oxidative stress. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. Curcumin administration participates to the downregulation of the WNT/β-catenin pathway and thus, through this action, in tumor growth control. Curcumin act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in an opposed manner. Chronic inflammation, oxidative stress and circadian clock disruption are common and co-substantial pathological processes accompanying and promoting cancers. Circadian clock disruption related to the upregulation of the WNT/β-catenin pathway is involved in cancers. By stimulating PPARγ expression, curcumin can control circadian clocks through the regulation of many key circadian genes. The administration of curcumin in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 1 place du Parvis de Notre-Dame, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| |
Collapse
|
25
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
26
|
Soria-Juan B, Escacena N, Capilla-González V, Aguilera Y, Llanos L, Tejedo JR, Bedoya FJ, Juan V, De la Cuesta A, Ruiz-Salmerón R, Andreu E, Grochowicz L, Prósper F, Sánchez-Guijo F, Lozano FS, Miralles M, Del Río-Solá L, Castellanos G, Moraleda JM, Sackstein R, García-Arranz M, García-Olmo D, Martín F, Hmadcha A, Soria B. Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Front Immunol 2019; 10:1151. [PMID: 31231366 PMCID: PMC6558400 DOI: 10.3389/fimmu.2019.01151] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases. To date, the safety and feasibility of autologous MSC-based therapy has been established; however, their indiscriminate use has resulted in mixed outcomes in preclinical and clinical studies. While MSCs derived from diverse tissues share common properties depending on the type of clinical application, they markedly differ within clinical trials in terms of efficacy, resulting in many unanswered questions regarding the application of MSCs. Additionally, our experience in clinical trials related to critical limb ischemia pathology (CLI) shows that the therapeutic efficacy of these cells in different animal models has only been partially reproduced in humans through clinical trials. Therefore, it is crucial to develop new research to identify pitfalls, to optimize procedures and to clarify the repair mechanisms used by these cells, as well as to be able to offer a next generation of stem cell that can be routinely used in a cost-effective and safe manner in stem cell-based therapies targeting CLI.
Collapse
Affiliation(s)
| | - Natalia Escacena
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yolanda Aguilera
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucía Llanos
- Fundación Jiménez Díaz Health Research Institute, Madrid, Spain
| | - Juan R Tejedo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Francisco J Bedoya
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | - Antonio De la Cuesta
- Unidad de Isquemia Crónica de Miembros Inferiores, Hospital Victoria Eugenia de la Cruz Roja, Sevilla, Spain
| | | | | | | | | | | | | | - Manuel Miralles
- Department of Surgery, University of Valencia, Valencia, Spain
| | | | - Gregorio Castellanos
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José M Moraleda
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Robert Sackstein
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | | | | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Bernat Soria
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
27
|
Di Stefano AB, Massihnia D, Grisafi F, Castiglia M, Toia F, Montesano L, Russo A, Moschella F, Cordova A. Adipose tissue, angiogenesis and angio-MIR under physiological and pathological conditions. Eur J Cell Biol 2019; 98:53-64. [DOI: 10.1016/j.ejcb.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
|
28
|
Alicka M, Major P, Wysocki M, Marycz K. Adipose-Derived Mesenchymal Stem Cells Isolated from Patients with Type 2 Diabetes Show Reduced "Stemness" through an Altered Secretome Profile, Impaired Anti-Oxidative Protection, and Mitochondrial Dynamics Deterioration. J Clin Med 2019; 8:E765. [PMID: 31151180 PMCID: PMC6617220 DOI: 10.3390/jcm8060765] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
The widespread epidemic of obesity and type 2 diabetes (T2D), suggests that both disorders are closely linked. Several pre-clinical and clinical studies have showed that adipose-derived mesenchymal stem cells (ASC) transplantation is efficient and safe. Moreover, scientists have already highlighted the therapeutic capacity of their secretomes. In this study, we used quantitative PCR, a flow cytometry-based system, the ELISA method, spectrophotometry, and confocal and scanning electron microscopy, to compare the differences in proliferation activity, viability, morphology, mitochondrial dynamics, mRNA and miRNA expression, as well as the secretory activity of ASCs derived from two donor groups-non-diabetic and T2D patients. We demonstrated that ASCs from T2D patients showed a reduced viability and a proliferative potential. Moreover, they exhibited mitochondrial dysfunction and senescence phenotype, due to excessive oxidative stress. Significant differences were observed in the expressions of miRNA involved in cell proliferations (miR-16-5p, miR-146a-5p, and miR-145-5p), as well as miRNA and genes responsible for glucose homeostasis and insulin sensitivity (miR-24-3p, 140-3p, miR-17-5p, SIRT1, HIF-1α, LIN28, FOXO1, and TGFβ). We have observed a similar correlation of miR-16-5p, miR-146a-5p, miR-24-3p, 140-3p, miR-17-5p, and miR-145-5p expression in extracellular vesicles fraction. Furthermore, we have shown that ASCT2D exhibited a lower VEGF, adiponectin, and CXCL-12 secretion, but showed an overproduction of leptin. We have shown that type 2 diabetes attenuated crucial functions of ASC, like proliferation, viability, and secretory activity, which highly reduced their therapeutic efficiency.
Collapse
Affiliation(s)
- Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-365 Wrocław, Poland.
| | - Piotr Major
- 2'nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21, 31-501 Kraków, Poland.
| | - Michał Wysocki
- 2'nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21, 31-501 Kraków, Poland.
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-365 Wrocław, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Gießen, Germany.
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
29
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
30
|
Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 2019; 11:147-166. [PMID: 30949294 PMCID: PMC6441940 DOI: 10.4252/wjsc.v11.i3.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases (such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue (WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations (subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adipose-derived stem/stromal cells (ASC; referred to as adipose progenitor cells, in vivo) with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morpho-functional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
Collapse
Affiliation(s)
- Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
31
|
Smith OJ, Jell G, Mosahebi A. The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence. Int Wound J 2018; 16:275-285. [PMID: 30460739 DOI: 10.1111/iwj.13029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Fat grafting is becoming a common procedure in regenerative medicine because of its high content of growth factors and adipose derived stem cells (ADSCs) and the ease of harvest, safety, and low cost. The high concentration of ADSCs found in fat has the potential to differentiate into a wide range of wound-healing cells including fibroblasts and keratinocytes as well as demonstrating proangiogenic qualities. This suggests that fat could play an important role in wound healing. However retention rates of fat grafts are highly variable due in part to inconsistent vascularisation of the transplanted fat. Furthermore, conditions such as diabetes, which have a high prevalence of chronic wounds, reduce the potency and regenerative potential of ADSCs. Platelet-rich plasma (PRP) is an autologous blood product rich in growth factors, cell adhesion molecules, and cytokines. It has been hypothesised that PRP may have a positive effect on the survival and retention of fat grafts because of improved proliferation and differentiations of ADSCs, reduced inflammation, and improved vascularisation. There is also increasing interest in a possible synergistic effect that PRP may have on the healing potential of fat, although the evidence for this is very limited. In this review, we evaluate the evidence in both in vitro and animal studies on the mechanistic relationship between fat and PRP and how this translates to a benefit in wound healing. We also discuss future directions for both research and clinical practice on how to enhance the regenerative potential of the combination of PRP and fat.
Collapse
Affiliation(s)
- Oliver J Smith
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Gavin Jell
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Ash Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
32
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
33
|
PDGF Restores the Defective Phenotype of Adipose-Derived Mesenchymal Stromal Cells from Diabetic Patients. Mol Ther 2018; 26:2696-2709. [PMID: 30195725 DOI: 10.1016/j.ymthe.2018.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that affects 415 million people worldwide. This pathology is often associated with long-term complications, such as critical limb ischemia (CLI), which increases the risk of limb loss and mortality. Mesenchymal stromal cells (MSCs) represent a promising option for the treatment of diabetes complications. Although MSCs are widely used in autologous cell-based therapy, their effects may be influenced by the constant crosstalk between the graft and the host, which could affect the MSC fate potential. In this context, we previously reported that MSCs derived from diabetic patients with CLI have a defective phenotype that manifests as reduced fibrinolytic activity, thereby enhancing the thrombotic risk and compromising patient safety. Here, we found that MSCs derived from diabetic patients with CLI not only exhibit a prothrombotic profile but also have altered multi-differentiation potential, reduced proliferation, and inhibited migration and homing to sites of inflammation. We further demonstrated that this aberrant cell phenotype is reversed by the platelet-derived growth factor (PDGF) BB, indicating that PDGF signaling is a key regulator of MSC functionality. These findings provide an attractive approach to improve the therapeutic efficacy of MSCs in autologous therapy for diabetic patients.
Collapse
|
34
|
Fromer MW, Chang S, Hagaman AL, Koko KR, Nolan RS, Zhang P, Brown SA, Carpenter JP, Caputo FJ. The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. J Vasc Surg 2018; 68:234-244. [DOI: 10.1016/j.jvs.2017.05.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
35
|
Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells. Sci Rep 2017; 7:17595. [PMID: 29242640 PMCID: PMC5730612 DOI: 10.1038/s41598-017-18034-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
We investigated whether maternal metabolic environment affects mesenchymal stromal/stem cells (MSCs) from umbilical cord’s Wharton’s Jelly (WJ) on a molecular level, and potentially render them unsuitable for clinical use in multiple recipients. In this pilot study on umbilical cords post partum from healthy non-obese (BMI = 19–25; n = 7) and obese (BMI ≥ 30; n = 7) donors undergoing elective Cesarean section, we found that WJ MSC from obese donors showed slower population doubling and a stronger immunosuppressive activity. Genome-wide DNA methylation of triple positive (CD73+CD90+CD105+) WJ MSCs found 67 genes with at least one CpG site where the methylation difference was ≥0.2 in four or more obese donors. Only one gene, PNPLA7, demonstrated significant difference on methylome, transcriptome and protein level. Although the number of analysed donors is limited, our data suggest that the altered metabolic environment related to excessive body weight might bear consequences on the WJ MSCs.
Collapse
|
36
|
Wu YX, Jing XZ, Sun Y, Ye YP, Guo JC, Huang JM, Xiang W, Zhang JM, Guo FJ. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol Med Rep 2017; 16:8019-8028. [PMID: 28983600 PMCID: PMC5779886 DOI: 10.3892/mmr.2017.7616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Skeletal stem cells (SSCs) are a population of progenitor cells which give rise to postnatal skeletal tissues including bone, cartilage and bone marrow stroma, however not to adipose, haematopoietic or muscle tissue. Growth plate chondrocytes exhibit the ability of continuous proliferation and differentiation, which contributes to the continuous physiological growth. The growth plate has been hypothesized to contain SSCs which exhibit a desirable differentiation capacity to generate bone and cartilage. Due to the heterogeneity of the growth plate chondrocytes, SSCs in the growth plate are not well studied. The present study used cluster of differentiation (CD)146 and CD105 as markers to isolate purified SSCs. CD105+ SSCs and CD146+ SSCs were isolated using a magnetic activated cell sorting method. To quantitatively investigate the proliferation and differentiation ability, the colony-forming efficiency (CFE) and multi‑lineage differentiation capacity of CD105+ SSCs and CD146+ SSCs were compared with unsorted cells and adipose-derived stem cells (ASCs). It was revealed that CD105+ and CD146+ subpopulations represented subsets of SSCs which generated chondrocytes and osteocytes, however not adipocytes. Compared with CD105+ subpopulations and ASCs, the CD146+ subpopulation exhibited a greater CFE and continuous high chondrogenic differentiation capacity in vitro. Therefore, the present study suggested that the CD146+ subpopulation represented a chondrolineage‑restricted subpopulation of SSCs and may therefore act as a valuable cell source for cartilage regeneration.
Collapse
Affiliation(s)
- Ying-Xing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ya-Ping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia-Ming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng-Jing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
37
|
|
38
|
Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, Casaní L, Gutiérrez M, Capdevila A, Pons-Lladó G, Carreras F, Hidalgo A, Badimon L. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 2017; 8:52. [PMID: 28279225 PMCID: PMC5345145 DOI: 10.1186/s13287-017-0509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Myocardial microvascular loss after myocardial infarction (MI) remains a therapeutic challenge. Autologous stem cell therapy was considered as an alternative; however, it has shown modest benefits due to the impairing effects of cardiovascular risk factors on stem cells. Allogenic adipose-derived stem cells (ASCs) may overcome such limitations, and because of their low immunogenicity and paracrine potential may be good candidates for cell therapy. In the present study we investigated the effects of allogenic ASCs and their released products on cardiac rarefaction post MI. Methods Pig subcutaneous adipose tissue ASCs were isolated, expanded and GFP-labeled. ASC angiogenic function was assessed by the in-vivo chick chorioallantoic membrane (CAM) model. Pigs underwent MI induction and 7 days after were randomized to receive: allogenic ASCs (intracoronary infusion); conditioned media (CM; intravenous infusion); ASCs + CM; or PBS/placebo (control). Cardiac damage and function were monitored by 3-T cardiac magnetic resonance imaging upon infusion (baseline CMR) and 1 and 3 weeks thereafter. We assessed in the myocardium: microvessel density; angiogenic markers (CD105, CD31, TF, VEGFR2, VEGFR1, vWF, eNOS, CD62); collagen deposition; and reparative fibrosis (TGFβ/TβRII/collagen). Differential proteomics of ASCs and CM was performed to characterize the ASC protein signature. Results CAM indicated a significant ASC proangiogenic capacity. In pigs after MI, only PBS/placebo animals displayed an impaired cardiac function 3 weeks after infusion (p < 0.05 vs baseline). Administration of ASCs + CM significantly enhanced neovessel formation and favored cardiac repair post MI (p < 0.05 vs the other groups). Molecular markers of angiogenesis were significantly upregulated both at transcriptional and protein levels (p < 0.05). The in-silico bioinformatics analysis of the ASC and CM proteome (interactome) indicated activation of a coordinated protein network involved in the formation of microvessels and the resolution of rarefaction. Conclusion Coadministration of allogenic ASCs and their CM synergistically contribute to the neovascularization of the infarcted myocardium through a coordinated upregulation of the proangiogenic protein interactome. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0509-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Blanca Oñate
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Maria Teresa Béjar
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | - Laura Casaní
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain.,CIBERCV, ISCIII, Madrid, Spain
| | | | | | | | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC) Hospital de la Santa Creu i Sant Pau (HSCSP), c/Sant Antoni Ma Claret 167, 08025, Barcelona, Spain. .,CIBERCV, ISCIII, Madrid, Spain. .,Cardiovascular Research Chair, UAB (Autonomous University of Barcelona), Barcelona, Spain.
| |
Collapse
|
39
|
Varghese J, Griffin M, Mosahebi A, Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 2017; 8:45. [PMID: 28241882 PMCID: PMC5329955 DOI: 10.1186/s13287-017-0483-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The applications for fat grafting have increased recently, within both regenerative and reconstructive surgery. Although fat harvesting, processing and injection techniques have been extensively studied and standardised, this has not had a big impact on the variability of outcome following fat grafting. This suggests a possible larger role of patient characteristics on adipocyte and adipose-derived stem cell (ADSC) viability and function. This systematic review aims to collate current evidence on the effect of patient factors on adipocyte and ADSC behaviour. METHODS A systematic literature review was performed using MEDLINE, Cochrane Library and EMBASE. It includes outcomes observed in in vitro analyses, in vivo animal studies and clinical studies. Data from basic science work have been included in the discussion to enhance our understanding of the mechanism behind ADSC behaviour. RESULTS A total of 41 papers were included in this review. Accumulating evidence indicates decreased proliferation and differentiation potential of ADSCs with increasing age, body mass index, diabetes mellitus and exposure to radiotherapy and Tamoxifen, although this was not uniformly seen across all studies. Gender, donor site preference, HIV status and chemotherapy did not show a significant influence on fat retention. Circulating oestrogen levels have been shown to support both adipocyte function and graft viability. Evidence so far suggests no significant impact of total cholesterol, hypertension, renal disease, physical exercise and peripheral vascular disease on ADSC yield. CONCLUSIONS A more uniform comparison of all factors highlighted in this review, with the application of a combination of tests for each outcome measure, is essential to fully understand factors that affect adipocyte and ADSC viability, as well as functionality. As these patient factors interact, future studies looking at adipocyte viability need to take them into consideration for conclusions to be meaningful. This would provide crucial information for surgeons when deciding appropriate volumes of lipoaspirate to inject, improve patient selection, and counsel patient expectations with regards to outcomes and likelihood for repeat procedures. An improved understanding will also assist in identification of patient groups that would benefit from graft enrichment and cryopreservation techniques.
Collapse
Affiliation(s)
- Jajini Varghese
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
| | - Michelle Griffin
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Afshin Mosahebi
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter Butler
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
40
|
Abstract
Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which renders ADSC a culture "artefact." The medium constituents therefore impact the efficacy of ADSC. Little attention has been paid to the energy source in medium, i.e., glucose, which feeds the cell's power plants: mitochondria. The role of mitochondria in stem cell biology goes beyond their function in ATP synthesis, because it includes cell signaling, reactive oxygen species (ROS) production, regulation of apoptosis, and aging. Appropriate application of ADSC for stem cells therapy of cardiovascular disease warrants knowledge of their mitochondrial phenotype and function. We discuss several methodologies for assessing ADSC mitochondrial function and structural changes under environmental cues, in particular, increased ROS caused by hyperglycemia.
Collapse
|
41
|
Najafi A, Ghanei M, Jamalkandi SA. Airway remodeling: Systems biology approach, from bench to bedside. Technol Health Care 2016; 24:811-819. [PMID: 27315153 DOI: 10.3233/thc-161228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Airway Remodeling, a patho-physiologic process, is considered as a key feature of chronic airway diseases. In recent years, our understanding of the complex diseases has increased significantly by the use of combined approaches, including systems biology, which may contribute to the development of personalized and predictive medicine approaches. Integrative analysis, along with the cooperation of clinicians, computer scientists, research scientists, and bench scientists, has become an important part of the experimental design and therapeutic strategies in the era of omics. The airway remodeling process is the result of the dysregulation of several signaling pathways that modulate the airway regeneration; therefore, high-throughput experiments and systems biology approach can help to understand this process better. The study reviews related literature and is consistent with the existing clinical evidence.
Collapse
Affiliation(s)
- Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
42
|
Peña E, de la Torre R, Arderiu G, Slevin M, Badimon L. mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb Haemost 2016; 117:357-370. [PMID: 27808345 DOI: 10.1160/th16-07-0524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/16/2016] [Indexed: 01/18/2023]
Abstract
Inflammation contributes to vascular disease progression. However, the role of circulating inflammatory molecules on microvascular endothelial cell (mECs) is not fully elucidated. The aim of this study was to investigate the effects of the short pentraxin CRP on microvascular endothelial cell angiogenic function. Subcutaneously implanted collagen plugs seeded with human mECs exposed to monomeric CRP (mCRP) in mice showed formation of an extended network of microvessels both in the plug and the overlying skin tissue, while mECs exposure to pentameric native CRP (nCRP) induced a much milder effect. To understand the mechanisms behind this angiogenic effects, mECs were exposed to both CRP forms and cell migration, wound repair and tube-like formation were investigated. nCRP effects were moderate and of slow-onset whereas mCRP induced rapid, and highly significant effects. We investigated how circulating nCRP is transformed into mCRP by confocal microscopy and western blot. nCRP is transformed into mCRP on the mECs membranes in a time dependent fashion. This transformation is specific and in part receptor dependent, and the formed mCRP triggers F3 gene transcription and TF-protein expression in mECs to induce angiogenesis. F3-silenced mECs are unable to form angiotubes. In agreement, mCRP induced upregulation of the TF signalling pathway in mECs with downstream phosphorylation of AKT and activation of the transcription factor ETS1 leading to increased CCL2 release. The circulating pentraxin nCRP with little pro-angiogenic effect when dissociated into mCRP on the surface of mECs is able to trigger potent proangiogenic effects by inducing F3-gene upregulation and TF signalling.
Collapse
Affiliation(s)
| | | | | | | | - Lina Badimon
- Prof. Lina Badimon, Cardiovascular Research Center, Hospital de la Santa Creu i Sant Pau, C/ Sant Antoni Mª Claret 167, 08025 Barcelona, Spain, Tel.: +34 93 556 58 80, Fax: +34 93 556 55 59, E-mail:
| |
Collapse
|
43
|
Peng Z, Yang X, Qin J, Ye K, Wang X, Shi H, Jiang M, Liu X, Lu X. Glyoxalase-1 Overexpression Reverses Defective Proangiogenic Function of Diabetic Adipose-Derived Stem Cells in Streptozotocin-Induced Diabetic Mice Model of Critical Limb Ischemia. Stem Cells Transl Med 2016; 6:261-271. [PMID: 28170200 PMCID: PMC5442730 DOI: 10.5966/sctm.2015-0380] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/22/2016] [Indexed: 11/16/2022] Open
Abstract
Adipose‐derived stem cell (ADSC)‐based therapy is promising for critical limb ischemia (CLI) treatment, especially in patients with diabetes. However, the therapeutic effects of diabetic ADSCs (D‐ADSCs) are impaired by the diabetes, possibly through intracellular reactive oxygen species (ROS) accumulation. The objective of the present study was to detect whether overexpression of methylglyoxal‐metabolizing enzyme glyoxalase‐1 (GLO1), which reduces ROS in D‐ADSCs, can restore their proangiogenic function in a streptozotocin‐induced diabetic mice model of CLI. GLO1 overexpression in D‐ADSCs (G‐D‐ADSCs) was achieved using the lentivirus method. G‐D‐ADSCs showed a significant decrease in intracellular ROS accumulation, increase in cell viability, and resistance to apoptosis under high‐glucose conditions compared with D‐ADSCs. G‐D‐ADSCs also performed better in terms of migration, differentiation, and proangiogenic capacity than D‐ADSCs in a high‐glucose environment. Notably, these properties were restored to the same level as that of nondiabetic ADSCs under high‐glucose conditions. G‐D‐ADSC transplantation induced improved reperfusion and an increased limb salvage rate compared D‐ADSCs in a diabetic mice model of CLI. Histological analysis revealed higher microvessel densities and more G‐D‐ADSC‐incorporated microvessels in the G‐D‐ADSC group than in the D‐ADSC group, which was comparable to the nondiabetic ADSC group. Higher expression of vascular endothelial growth factor A and stromal cell‐derived factor‐1α and lower expression of hypoxia‐induced factor‐1α were also detected in the ischemic muscles from the G‐D‐ADSC group than that of the D‐ADSC group. The results of the present study have demonstrated that protection from ROS accumulation by GLO1 overexpression is effective in reversing the impaired biological function of D‐ADSCs in promoting neovascularization of diabetic CLI mice model and warrants the future clinical application of D‐ADSC‐based therapy in diabetic patients. Stem Cells Translational Medicine2017;6:261–271
Collapse
Affiliation(s)
- Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Huihua Shi
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Mier Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Vascular Center of Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Diet-induced obesity regulates adipose-resident stromal cell quantity and extracellular matrix gene expression. Stem Cell Res 2016; 17:181-90. [DOI: 10.1016/j.scr.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 01/10/2023] Open
|
45
|
Bejar MT, Ferrer-Lorente R, Peña E, Badimon L. Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells. FASEB J 2016; 30:2849-59. [PMID: 27150622 DOI: 10.1096/fj.201600204r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
The epicardial adipose tissue (EAT) is a reservoir of adipose-derived stem cells (ASCs), with as yet unknown effects on myocardial and coronary arteries homeostasis. The purpose of this study was to investigate the angiogenic function of epicardial ASCs and their regulation by the common cardiovascular risk factors (CVRFs) affecting heart disease. Epicardial fat was obtained from a rodent model with clustering of CVRFs [Zucker diabetic fatty (ZDF)-Lepr(fa)] rats and from their lean control (ZDF-Crl) littermates without CVRFs, ASCs were isolated, and their function was assessed by proliferation and differentiation assays, flow cytometry, gene expression, and in vivo Matrigel angiogenesis analysis. Epicardial ASCs from both groups showed adipogenic and osteogenic differentiation capacity; however, epicardial ASCs from CVRF animals had a lesser ability to form tubular structures in vitro after endothelial differentiation, as well as a reduced angiogenic potential in vivo compared to control animals. Epicardial ASCs from CVRF rats showed up-regulation of the downstream Notch signaling genes Hes7, Hey1, and Heyl compared with control animals. The inhibition of Notch signaling by conditioning epicardial ASCs from CVRF animals with a γ-secretase inhibitor induced a reduction in Hes/Hey gene expression and rescued their angiogenic function in vivo We report for the first time the impact of CVRF burden on the ASCs of EAT and that the defective function is in part caused by increased Notch signaling. Conditioning ASCs by blocking Notch signaling rescues their angiogenic potential.-Bejar, M. T., Ferrer-Lorente, R., Peña, E., Badimon, L. Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells.
Collapse
Affiliation(s)
- Maria Teresa Bejar
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas-Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Pérez LM, Suárez J, Bernal A, de Lucas B, San Martin N, Gálvez BG. Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss. Obesity (Silver Spring) 2016; 24:661-9. [PMID: 26833860 DOI: 10.1002/oby.21405] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The therapeutic potential of adipose-derived stem cells (ASCs) is reduced by various stress-inducing conditions that affect tissue homeostasis such as diabetes, aging, and obesity. Previous works have provided evidence of negative effects of obesity on ASC populations, but it is unclear whether this persists after a weight loss. This study evaluated whether weight loss can restore the attenuated properties found in ASCs derived from populations with obesity (oASCs). METHODS In vitro functional analyses were performed to investigate the possible recovery properties in mouse oASCs. Using ASCs isolated from subcutaneous tissue from formerly obese mice (dASCs) and control mice (cASCs), cell proliferation, viability, and some regenerative properties in these cells were analyzed compared with oASCs to evaluate the functional cell state. RESULTS Cell proliferation, viability, and some regenerative properties are strengthened in dASCs and cASCs compared with oASCs. Nevertheless, metabolic analysis reveals a mitochondrial load misbalance and function leading to impaired respiration in dASCs. CONCLUSIONS This study demonstrates that an initial obese environment triggers a detrimental state in ASCs that is not completely recovered after weight loss.
Collapse
Affiliation(s)
- Laura M Pérez
- Cardiac Development and Repair Department, Centro Nacional De Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Suárez
- Cardiac Development and Repair Department, Centro Nacional De Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Aurora Bernal
- Cardiac Development and Repair Department, Centro Nacional De Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz de Lucas
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Nuria San Martin
- Cardiac Development and Repair Department, Centro Nacional De Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz G Gálvez
- Cardiac Development and Repair Department, Centro Nacional De Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- School of Doctorate and Research, European University, Madrid, Spain
| |
Collapse
|
47
|
Oliva-Olivera W, Leiva Gea A, Lhamyani S, Coín-Aragüez L, Alcaide Torres J, Bernal-López MR, García-Luna PP, Morales Conde S, Fernández-Veledo S, El Bekay R, Tinahones FJ. Differences in the Osteogenic Differentiation Capacity of Omental Adipose-Derived Stem Cells in Obese Patients With and Without Metabolic Syndrome. Endocrinology 2015; 156:4492-501. [PMID: 26372179 PMCID: PMC4655209 DOI: 10.1210/en.2015-1413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple studies have suggested that the reduced differentiation capacity of multipotent adipose tissue-derived mesenchymal stem cells (ASCs) in obese subjects could compromise their use in cell therapy. Our aim was to assess the osteogenic potential of omental ASCs and to examine the status of the isolated CD34(negative)-enriched fraction of omental-derived ASCs from subjects with different metabolic profiles. Omental ASCs from normal-weight subjects and subjects with or without metabolic syndrome were isolated, and the osteogenic potential of omental ASCs was evaluated. Additionally, osteogenic and clonogenic potential, proliferation rate, mRNA expression levels of proteins involved in redox balance, and fibrotic proteins were examined in the CD34(negative)-enriched fraction of omental-derived ASCs. Both the omental ASCs and the CD34(negative)-enriched fraction of omental ASCs from subjects without metabolic syndrome have a greater osteogenic potential than those from subjects with metabolic syndrome. The alkaline phosphatase and osteonectin mRNA were negatively correlated with nicotinamide adenine dinucleotide phosphate oxidase-2 mRNA and the mRNA expression levels of the fibrotic proteins correlated positively with nicotinamide adenine dinucleotide phosphate oxidase-5 mRNA and the homeostasis model assessment. Although the population doubling time was significantly higher in subjects with a body mass index of 25 kg/m(2) or greater, only the CD34(negative)-enriched omental ASC fraction in the subjects with metabolic syndrome had a higher population doubling time than the normal-weight subjects. The osteogenic, clonogenic, fibrotic potential, and proliferation rate observed in vitro suggest that omental ASCs from subjects without metabolic syndrome are more suitable for therapeutic osteogenic applications than those from subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Wilfredo Oliva-Olivera
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Antonio Leiva Gea
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Said Lhamyani
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Leticia Coín-Aragüez
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Juan Alcaide Torres
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Maria Rosa Bernal-López
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Pedro Pablo García-Luna
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Salvador Morales Conde
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Sonia Fernández-Veledo
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Rajaa El Bekay
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Francisco José Tinahones
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| |
Collapse
|
48
|
Ferrer-Lorente R, Bejar MT, Badimon L. Notch signaling pathway activation in normal and hyperglycemic rats differs in the stem cells of visceral and subcutaneous adipose tissue. Stem Cells Dev 2015; 23:3034-48. [PMID: 25035907 DOI: 10.1089/scd.2014.0070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The precise mechanisms underlying the differential function and cardiometabolic risk of white adipose tissue (WAT) remain unclear. Visceral adipose tissue (VWAT) and subcutaneous adipose tissue (SCWAT) have different metabolic functions that seem to be ascribed to their different intrinsic expansion capacities. Here we have hypothesized that the WAT characteristics are determined by the resident adipose-derived stem cells (ASCs) found in the different WAT depots. Therefore, our objective has been to investigate adipogenesis in anatomically distinct fat depots. ASCs from five different WAT depots were characterized in both healthy lean and diabetic obese rats, showing significant differences in expression of some of genes governing the stemness and the earlier adipogenic differentiation steps. Notch-target genes [Hes (hairy and enhancer of split) and Hey (hairy/enhancer of split related with YRPW motif) families] were upregulated in ASCs derived from visceral depots. Upon adipogenic differentiation, adipocyte cell markers were downregulated in ASCs from VWAT in comparison to ASCs from SCWAT, revealing a lower adipogenic capacity in ASCs of visceral origin than in those of SCWAT in accordance with the differential activation of Notch signaling. Notch upregulation by its activator phenethyl isothiocyanate attenuated the adipogenic differentiation of ASCs from SCWAT whereas Notch inhibition by N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) increased the adipogenic differentiation of ASCs from visceral origin. In conclusion, the differential activation of Notch in ASCs is the origin of the different intrinsic WAT expansion capacities that contribute to the regional variations in WAT homeostasis and to its associated cardiometabolic risk.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- 1 Cardiovascular Research Center, CSIC-ICCC , Hospital de la Santa Creu i Sant Pau (UAB), Barcelona, Spain
| | | | | |
Collapse
|
49
|
Tobita M, Tajima S, Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res Ther 2015; 6:215. [PMID: 26541973 PMCID: PMC4635588 DOI: 10.1186/s13287-015-0217-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of their ease of isolation and relative abundance, adipose-derived mesenchymal stem cells (ASCs) are a particularly attractive autologous cell source for various therapeutic purposes. ASCs retain a high proliferation capacity in vitro and have the ability to undergo extensive differentiation into multiple cell lineages. Moreover, ASCs secrete a wide range of growth factors that can stimulate tissue regeneration. Therefore, the clinical use of ASCs is feasible. However, the potential of ASCs differs depending on the donor's medical condition, including diseases such as diabetes. Recent studies demonstrated that ASCs from diabetic donors exhibit reduced proliferative potential and a smaller proportion of stem cell marker-positive cells. Therefore, to ensure the success of regenerative medicine, tissue engineering methods must be improved by the incorporation of factors that increase the proliferation and differentiation of stem/progenitor cells when autologous cells are used. Platelet-rich plasma (PRP), which contains high levels of diverse growth factors that can stimulate stem cell proliferation and cell differentiation in the context of tissue regeneration, has recently been identified as a biological material that could be applied to tissue regeneration. Thus, co-transplantation of ASCs and PRP represents a promising novel approach for cell therapy in regenerative medicine. In this review, we describe the potential benefits of adding PRP to ASCs and preclinical and clinical studies of this approach in various medical fields. We also discuss the mechanisms of PRP action and future cell-based therapies using co-transplantation of ASCs and PRP.
Collapse
Affiliation(s)
- Morikuni Tobita
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 1138421, Japan
| | - Satoshi Tajima
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 1138421, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 1138421, Japan.
| |
Collapse
|
50
|
Jumabay M, Moon JH, Yeerna H, Boström KI. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J Cell Physiol 2015; 230:2821-8. [PMID: 25854185 PMCID: PMC4516692 DOI: 10.1002/jcp.25012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/03/2015] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Jeremiah H. Moon
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Huwate Yeerna
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
- Molecular Biology Institute, UCLA
| |
Collapse
|