1
|
Shibib L, Al-Qaisi M, Guess N, Miras AD, Greenwald SE, Pelling M, Ahmed A. Manipulation of Post-Prandial Hyperglycaemia in Type 2 Diabetes: An Update for Practitioners. Diabetes Metab Syndr Obes 2024; 17:3111-3130. [PMID: 39206417 PMCID: PMC11350065 DOI: 10.2147/dmso.s458894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
This review paper explores post-prandial glycemia in type 2 diabetes. Post-prandial glycemia is defined as the period of blood glucose excursion from immediately after the ingestion of food or drink to 4 to 6 hours after the end of the meal. Post-prandial hyperglycemia is an independent risk factor for cardiovascular disease with glucose "excursions" being more strongly associated with markers of oxidative stress than the fasting or pre-prandial glucose level. High blood glucose is a major promoter of enhanced free radical production and is associated with the onset and progression of type 2 diabetes. Oxidative stress impairs insulin action creating a vicious cycle where repeated post-prandial glucose spikes are key drivers in the pathogenesis of the vascular complications of type 2 diabetes, both microvascular and macrovascular. Some authors suggest post-prandial hyperglycemia is the major cause of death in type 2 diabetes. Proper management of post-prandial hyperglycemia could yield up to a 35% cut in overall cardiovascular events, and a 64% cut in myocardial infarction. The benefits of managing post-prandial hyperglycemia are similar in magnitude to those seen in type 2 diabetes patients receiving secondary prevention with statins - prevention which today is regarded as fundamental by all practitioners. Given all the evidence surrounding the impact of post-prandial glycemia on overall outcome, it is imperative that any considered strategy for the management of type 2 diabetes should include optimum dietary, pharma, and lifestyle interventions that address glucose excursion. Achieving a low post-prandial glucose response is key to prevention and progression of type 2 diabetes and cardiometabolic diseases. Further, such therapeutic interventions should be sustainable and must benefit patients in the short and long term with the minimum of intrusion and side effects. This paper reviews the current literature around dietary manipulation of post-prandial hyperglycemia, including novel approaches. A great deal of further work is required to optimize and standardize the dietary management of post-prandial glycemia in type 2 diabetes, including consideration of novel approaches that show great promise.
Collapse
Affiliation(s)
- Lina Shibib
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mo Al-Qaisi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nicola Guess
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, UK
| | | | - Steve E Greenwald
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marc Pelling
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ahmed Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
2
|
Lou X, Fan Z, Wei J, Peng X, Hu J, Lu X, Liu A. Timing and Nutrient Type of Isocaloric Snacks Impacted Postprandial Glycemic and Insulinemic Responses of the Subsequent Meal in Healthy Subjects. Nutrients 2024; 16:535. [PMID: 38398859 PMCID: PMC10891798 DOI: 10.3390/nu16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of the study was to explore the impact of both the macronutrient composition and snacking timing on the postprandial glycemic insulinemic responses and food intake. Seventeen healthy female volunteers completed the randomized crossover trials. The volunteers were provided a standard breakfast and lunch at 8:00 and 13:00, respectively, and an ad libitum dinner at 18:00. Provided at either 10:30 (midmorning) or 12:30 (preload), the glycemic effects of the three types of 70 kcal snacks, including chicken breast (mid-C and pre-C), apple (mid-A and pre-A), and macadamia nut (mid-M and pre-M), were compared with the non-snack control (CON), evaluated by continuous glucose monitoring (CGM). The mid-M showed increased insulin resistance after lunch compared with CON, while the pre-M did not. The pre-A stabilized the glycemic response in terms of all variability parameters after lunch, while the mid-A had no significant effect on postprandial glucose control. Both the mid-C and pre-C improved the total area under the glucose curve, all glycemic variability parameters, and the insulin resistance within 2 h after lunch compared with CON. The pre-C attained the lowest energy intake at dinner, while the mid-A and the mid-M resulted in the highest. In conclusion, the chicken breast snack effectively stabilized postprandial glycemic excursion and reduced insulin resistance while the macadamia snack did not, regardless of ingestion time. Only as a preload could the apple snack mitigate the glucose response after the subsequent meal.
Collapse
Affiliation(s)
- Xinling Lou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
| | - Zhihong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jinjie Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
| | - Xiyihe Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
| | - Jiahui Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
| | - Xuejiao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
| | - Anshu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.W.); (X.P.); (J.H.); (X.L.); (A.L.)
| |
Collapse
|
3
|
Tricò D, Masoni MC, Baldi S, Cimbalo N, Sacchetta L, Scozzaro MT, Nesti G, Mengozzi A, Nesti L, Chiriacò M, Natali A. Early time-restricted carbohydrate consumption vs conventional dieting in type 2 diabetes: a randomised controlled trial. Diabetologia 2024; 67:263-274. [PMID: 37971503 PMCID: PMC10789836 DOI: 10.1007/s00125-023-06045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
AIMS/HYPOTHESIS Early time-restricted carbohydrate consumption (eTRC) is a novel dietary strategy that involves restricting carbohydrate-rich food intake to the morning and early afternoon to align with circadian variations in glucose tolerance. We examined the efficacy, feasibility and safety of eTRC in individuals with type 2 diabetes under free-living conditions. METHODS In this randomised, parallel-arm, open label, controlled trial, participants with type 2 diabetes and overweight/obesity (age 67.2±7.9 years, 47.8% women, BMI 29.4±3.7 kg/m2, HbA1c 49±5 mmol/mol [6.6±0.5%]) were randomised, using computer-generated random numbers, to a 12 week eTRC diet or a Mediterranean-style control diet with matched energy restriction and macronutrient distribution (50% carbohydrate, 30% fat and 20% protein). The primary outcome was the between-group difference in HbA1c at 12 weeks. Body composition, 14 day flash glucose monitoring and food diary analysis were performed every 4 weeks. Mixed meal tolerance tests with mathematical beta cell function modelling were performed at baseline and after 12 weeks. RESULTS Twelve (85.7%) participants in the eTRC arm and 11 (84.6%) participants in the control arm completed the study, achieving similar reductions in body weight and fat mass. The two groups experienced comparable improvements in HbA1c (-3 [-6, -0.3] mmol/mol vs -4 [-6, -2] mmol/mol, corresponding to -0.2 [-0.5, 0]% and -0.3 [-0.5, -0.1]%, respectively, p=0.386), fasting plasma glucose, flash glucose monitoring-derived glucose variability and mixed meal tolerance test-derived glucose tolerance, insulin resistance, insulin clearance and plasma glucagon levels, without changes in model-derived beta cell function parameters, glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide and non-esterified fatty acid levels. The two diets similarly reduced liver function markers and triglyceride levels, being neutral on other cardiometabolic and safety variables. In exploratory analyses, diet-induced changes in body weight and glucometabolic variables were not related to the timing of carbohydrate intake. CONCLUSIONS/INTERPRETATION The proposed eTRC diet provides a feasible and effective alternative option for glucose and body weight management in individuals with type 2 diabetes, with no additional metabolic benefits compared with conventional dieting. TRIAL REGISTRATION ClinicalTrials.gov NCT05713058 FUNDING: This study was supported by the European Society for Clinical Nutrition and Metabolism (ESPEN) and the Italian Society of Diabetology (SID).
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy.
- Interdepartmental Research Center Nutrafood 'Nutraceuticals and Food for Health', University of Pisa, Pisa, Italy.
| | - Maria Chiara Masoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Noemi Cimbalo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Luca Sacchetta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Maria Tiziana Scozzaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Giulia Nesti
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Life Science, Sant'Anna School of Advanced Studies, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
| | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy
- Institute of Life Science, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa, Italy.
- Interdepartmental Research Center Nutrafood 'Nutraceuticals and Food for Health', University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Falkenhain K, Oliveira BF, Islam H, Neudorf H, Cen HH, Johnson JD, Madden K, Singer J, Walsh JJ, Little JP. The effect of acute and 14-day exogenous ketone supplementation on glycemic control in adults with type 2 diabetes: two randomized controlled trials. Am J Physiol Endocrinol Metab 2024; 326:E61-E72. [PMID: 37991451 DOI: 10.1152/ajpendo.00332.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Acute ingestion of the exogenous ketone monoester supplement [(R)-3-hydroxybutyl-(R)-3-hydroxybutyrate] lowers blood glucose, suggesting therapeutic potential in individuals with impaired glucose metabolism. However, it is unknown how acute or repeated ingestion of exogenous ketones affects blood glucose control in individuals with type 2 diabetes (T2D). We conducted two randomized, counterbalanced, double-blind, placebo-controlled crossover trials to determine if 1) acute exogenous ketone monoester (0.3 g/kg body mass; N = 18) or 2) 14-day thrice daily premeal exogenous ketone monoester (15 g; N = 15) supplementation could lower blood glucose in individuals living with T2D. A single dose of the ketone monoester supplement elevated blood β-OHB to ∼2 mM. There were no differences in the primary outcomes of plasma glucose concentration (acutely) or serum fructosamine (glycemic control across 14 days) between conditions. Ketone monoester ingestion acutely increased insulin and lowered nonesterified fatty acid concentrations; plasma metabolomics confirmed a reduction in multiple free fatty acids species and select gluconeogenic amino acids. In contrast, no changes were observed in fasting metabolic outcomes following 14 days of supplementation. In the context of these randomized controlled trials, acute or repeated ketone monoester ingestion in adults with T2D did not lower blood glucose when consumed acutely in a fasted state and did not improve glycemic control following thrice daily premeal ingestion across 14 days. Future studies exploring the mechanistic basis for the (lack of) glucose-lowering effect of exogenous ketone supplementation in T2D and other populations are warranted.NEW & NOTEWORTHY Exogenous ketone supplements can acutely lower blood glucose, suggesting therapeutic potential in individuals with impaired glucose metabolism. However, the effect of exogenous ketones on glucose metabolism in adults with type 2 diabetes has not been investigated in a controlled setting. In adults with type 2 diabetes, ketone monoester ingestion did not lower blood glucose acutely in a fasted state and did not improve glycemic control across thrice daily premeal ingestion across 14 days.
Collapse
Affiliation(s)
- Kaja Falkenhain
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Barbara F Oliveira
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Hashim Islam
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Helena Neudorf
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Haoning H Cen
- Department of Cellular & Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular & Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenneth Madden
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joel Singer
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy J Walsh
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan P Little
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Smith K, Taylor GS, Walker M, Brunsgaard LH, Bowden Davies KA, Stevenson EJ, West DJ. Pre-Meal Whey Protein Alters Postprandial Insulinemia by Enhancing β-Cell Function and Reducing Insulin Clearance in T2D. J Clin Endocrinol Metab 2023; 108:e603-e612. [PMID: 36734166 PMCID: PMC10807909 DOI: 10.1210/clinem/dgad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
CONTEXT Treatments that reduce postprandial glycemia (PPG) independent of stimulating insulin secretion are appealing for the management of type 2 diabetes (T2D). Consuming pre-meal whey protein (WP) reduces PPG by delaying gastric emptying and increasing plasma insulin concentrations. However, its effects on β-cell function and insulin kinetics remains unclear. OBJECTIVE To examine the PPG-regulatory effects of pre-meal WP by modeling insulin secretion rates (ISR), insulin clearance, and β-cell function. METHODS This was a single-blind, randomized, placebo-controlled, crossover design study in 18 adults with T2D (HbA1c, 56.7 ± 8.8 mmol/mol) who underwent 2 240-minute mixed-meal tolerance tests. Participants consumed WP (15 g protein) or placebo (0 g protein) 10 minutes before a mixed-macronutrient breakfast meal. PPG, pancreatic islet, and incretin hormones were measured throughout. ISR was calculated by C-peptide deconvolution. Estimates of insulin clearance and β-cell function were modeled from glucose, insulin, and ISR. Changes in PPG incremental area under the curve (iAUC; prespecified) and insulin clearance (post hoc) were measured. RESULTS β-cell function was 40% greater after WP (P = .001) and was accompanied with a -22% reduction in postprandial insulin clearance vs placebo (P < .0001). Both the peak change and PPG iAUC were reduced by WP (-1.5 mmol/L and -16%, respectively; both P < .05). Pre-meal WP augmented a 5.9-fold increase in glucagon and glucagon-like peptide 1 iAUC (both P < .0001), and a 1.5-fold increase in insulin iAUC (P < .001). Although the plasma insulin response was greater following WP, ISR was unaffected (P = .133). CONCLUSION In adults with T2D, pre-meal WP reduced PPG by coordinating an enhancement in β-cell function with a reduction in insulin clearance. This enabled an efficient postprandial insulinemic profile to be achieved without requiring further β-cell stimulation.Trial registry ISRCTN ID: ISRCTN17563146 Website link: www.isrctn.com/ISRCTN17563146.
Collapse
Affiliation(s)
- Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Guy S Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Walker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lise H Brunsgaard
- Health and Performance Nutrition, Arla Foods Ingredients Group P/S, Viby J 8260, Denmark
| | - Kelly A Bowden Davies
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 7EL, UK
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition and Exercise Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
6
|
Tricò D. Nutrients and Cardiometabolic Health in Type 2 Diabetes. Nutrients 2023; 15:nu15112517. [PMID: 37299480 DOI: 10.3390/nu15112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Paralleling the obesity pandemic, the prevalence and socioeconomic burden of type 2 diabetes are growing worldwide, requiring immediate attention and novel cost-effective preventive and therapeutic strategies [...].
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
7
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
8
|
Klammer C, Schindler K, Bugl R, Plazek D, Vötter M, Kirchner T, Martino C, Klammer-Martin J, Brix J, Dämon S, Hoppichler F, Kautzky-Willer A, Kruschitz R, Toplak H, Clodi M, Ludvik B. [Nutrition for diabetic patients (Update 2023)]. Wien Klin Wochenschr 2023; 135:62-77. [PMID: 37101026 PMCID: PMC10133079 DOI: 10.1007/s00508-023-02170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/28/2023]
Abstract
All patients with diabetes require individual and personalized nutritional consultation with professionals. The patient's needs should be the primary focus of the dietary therapy, taking their lifestyle and the type of diabetes into consideration. With the recommendations to the patient's diet, there need to be specific metabolic goals to reduce the disease's progression and to avoid long term health effects. Therefore, practical guidelines such as portion size and meal planning tips should be the main focus.According to the latest national and international standards, patients suffering from diabetes should have access to nutrition consulting and nutritional training. During consultation they can be supported on- how to manage their health condition and choosing food and beverage to improve their health.These practical recommendations sum up the latest literature on nutritional aspects of diabetes treatment.
Collapse
Affiliation(s)
- Carmen Klammer
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
- ICMR - Institute of Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Österreich
| | - Karin Schindler
- Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz, Wien, Österreich
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Rita Bugl
- Wiener Gesundheitsverband Klinik Ottakring, Wien, Österreich
| | | | | | - Tanja Kirchner
- Österreichische Gesundheitskasse Mein Peterhof Baden, Baden, Österreich
| | - Claudia Martino
- Österreichische Gesundheitskasse Mein Gesundheitszentrum Floridsdorf, Wien, Österreich
| | | | - Johanna Brix
- Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Klinik Landstraße, Wien, Österreich
| | - Sabine Dämon
- Special Institute for Preventive Cardiology and Nutrition, SIPCAN - Initiative für ein gesundes Leben, Elsbethen/Salzburg, Österreich
| | - Friedrich Hoppichler
- Special Institute for Preventive Cardiology and Nutrition, SIPCAN - Initiative für ein gesundes Leben, Elsbethen/Salzburg, Österreich
- Abteilung für Innere Medizin, Krankenhaus der Barmherzigen Brüder Salzburg, Salzburg, Österreich
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Renate Kruschitz
- Abteilung für Innere Medizin, Krankenhaus der Elisabethinen, Klagenfurt, Österreich
| | - Hermann Toplak
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | - Martin Clodi
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich.
- ICMR - Institute of Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Österreich.
| | - Bernhard Ludvik
- Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Klinik Landstraße, Wien, Österreich
| |
Collapse
|
9
|
Tricò D, Mengozzi A, Baldi S, Bizzotto R, Olaniru O, Toczyska K, Huang GC, Seghieri M, Frascerra S, Amiel SA, Persaud S, Jones P, Mari A, Natali A. Lipid-induced glucose intolerance is driven by impaired glucose kinetics and insulin metabolism in healthy individuals. Metabolism 2022; 134:155247. [PMID: 35760117 DOI: 10.1016/j.metabol.2022.155247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
AIMS Hypertriglyceridemia is associated with an increased risk of type 2 diabetes. We aimed to comprehensively examine the effects of hypertriglyceridemia on major glucose homeostatic mechanisms involved in diabetes progression. METHODS In this randomized, cross-over, single-blinded study, two dual-labeled, 3-hour oral glucose tolerance tests were performed during 5-hour intravenous infusions of either 20 % Intralipid or saline in 12 healthy subjects (age 27.9 ± 2.6 years, 11 men, BMI 22.6 ± 1.4 kg/m2) to evaluate lipid-induced changes in insulin metabolism and glucose kinetics. Insulin sensitivity, β cell secretory function, and insulin clearance were assessed by modeling glucose, insulin and C-peptide data. Intestinal glucose absorption, endogenous glucose production, and glucose clearance were assessed from glucose tracers. The effect of triglycerides on β-cell secretory function was examined in perifusion experiments in murine pseudoislets and human pancreatic islets. RESULTS Mild acute hypertriglyceridemia impaired oral glucose tolerance (mean glucose: +0.9 [0.3, 1.5] mmol/L, p = 0.008) and whole-body insulin sensitivity (Matsuda index: -1.67 [-0.50, -2.84], p = 0.009). Post-glucose hyperinsulinemia (mean insulin: +99 [17, 182] pmol/L, p = 0.009) resulted from reduced insulin clearance (-0.16 [-0.32, -0.01] L min-1 m-2, p = 0.04) and enhanced hyperglycemia-induced total insulin secretion (+11.9 [1.1, 22.8] nmol/m2, p = 0.02), which occurred despite a decline in model-derived β cell glucose sensitivity (-41 [-74, -7] pmol min-1 m-2 mmol-1 L, p = 0.04). The analysis of tracer-derived glucose metabolic fluxes during lipid infusion revealed lower glucose clearance (-96 [-152, -41] mL/kgFFM, p = 0.005), increased 2-hour oral glucose absorption (+380 [42, 718] μmol/kgFFM, p = 0.04) and suppressed endogenous glucose production (-448 [-573, -123] μmol/kgFFM, p = 0.005). High-physiologic triglyceride levels increased acute basal insulin secretion in murine pseudoislets (+11 [3, 19] pg/aliquot, p = 0.02) and human pancreatic islets (+286 [59, 512] pg/islet, p = 0.02). CONCLUSION Our findings support a critical role for hypertriglyceridemia in the pathogenesis of type 2 diabetes in otherwise healthy individuals and dissect the glucose homeostatic mechanisms involved, encompassing insulin sensitivity, β cell function and oral glucose absorption.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Bizzotto
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Oladapo Olaniru
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Klaudia Toczyska
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marta Seghieri
- Diabetes and Metabolic Diseases Unit, "San Giovanni Di Dio" Hospital, Florence, Italy
| | - Silvia Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stephanie A Amiel
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shanta Persaud
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Smith K, Taylor GS, Brunsgaard LH, Walker M, Bowden Davies KA, Stevenson EJ, West DJ. Thrice daily consumption of a novel, premeal shot containing a low dose of whey protein increases time in euglycemia during 7 days of free-living in individuals with type 2 diabetes. BMJ Open Diabetes Res Care 2022; 10:10/3/e002820. [PMID: 35618446 PMCID: PMC9137348 DOI: 10.1136/bmjdrc-2022-002820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION During acute feeding trials, consuming a large dose of whey protein (WP) before meals improves postprandial glucose regulation in people with type 2 diabetes. It is unclear if the reported benefits of premeal WP supplementation are translatable to everyday care or are associated with clinically meaningful, real-world glycemic outcomes. This study examined the application of a novel, premeal shot containing a low dose of WP on parameters of free-living glycemic control in people with type 2 diabetes. RESEARCH DESIGN AND METHODS In a randomized, placebo-controlled, single-blind crossover design, 18 insulin naive individuals with type 2 diabetes ((mean±SD) age, 50±6 years; HbA1c (glycated hemoglobin), 7.4%±0.8%; duration of diabetes, 6±5 years) consumed a ready-to-drink WP shot (15 g of protein) or a nutrient-depleted placebo beverage 10 min before breakfast, lunch, and dinner over a 7-day free-living period. Free-living glucose control was measured by blinded continuous glucose monitoring and determined by the percentage of time spent above range (>10 mmol/L), in euglycemic range (3.9-10.0 mmol/L), below range (<3.9 mmol/L) and mean glucose concentrations. RESULTS Mealtime WP supplementation reduced the prevalence of daily hyperglycemia by 8%±19% (30%±25% vs 38%±28%, p<0.05), thereby enabling a 9%±19% (~2 hours/day) increase in the time spent in euglycemia (p<0.05). Mean 24-hour blood glucose concentrations were 0.6±1.2 mmol/L lower during WP compared with placebo (p<0.05). Similar improvements in glycemic control were observed during the waken period with premeal WP supplementation (p<0.05), whereas nocturnal glycemic control was unaffected (p>0.05). Supplemental compliance/acceptance was high (>98%), and no adverse events were reported. CONCLUSIONS Consuming a novel premeal WP shot containing 15 g of protein before each main meal reduces the prevalence of daily hyperglycemia, thereby enabling a greater amount of time spent in euglycemic range per day over 7 days of free-living in people with type 2 diabetes. TRIAL REGISTRATION NUMBER ISRCTN17563146; www.isrctn.com/ISRCTN17563146.
Collapse
Affiliation(s)
- Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Guy S Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lise H Brunsgaard
- Health and Performance Nutrition, Arla Foods Ingredients Group P/S, Viby J, Denmark
| | - Mark Walker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kelly A Bowden Davies
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022; 14:823. [PMID: 35215472 PMCID: PMC8878449 DOI: 10.3390/nu14040823] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
As years progress, we are found more often in a postprandial than a postabsorptive state. Chrononutrition is an integral part of metabolism, pancreatic function, and hormone secretion. Eating most calories and carbohydrates at lunch time and early afternoon, avoiding late evening dinner, and keeping consistent number of daily meals and relative times of eating occasions seem to play a pivotal role for postprandial glycemia and insulin sensitivity. Sequence of meals and nutrients also play a significant role, as foods of low density such as vegetables, salads, or soups consumed first, followed by protein and then by starchy foods lead to ameliorated glycemic and insulin responses. There are several dietary schemes available, such as intermittent fasting regimes, which may improve glycemic and insulin responses. Weight loss is important for the treatment of insulin resistance, and it can be achieved by many approaches, such as low-fat, low-carbohydrate, Mediterranean-style diets, etc. Lifestyle interventions with small weight loss (7-10%), 150 min of weekly moderate intensity exercise and behavioral therapy approach can be highly effective in preventing and treating type 2 diabetes. Similarly, decreasing carbohydrates in meals also improves significantly glycemic and insulin responses, but the extent of this reduction should be individualized, patient-centered, and monitored. Alternative foods or ingredients, such as vinegar, yogurt, whey protein, peanuts and tree nuts should also be considered in ameliorating postprandial hyperglycemia and insulin resistance. This review aims to describe the available evidence about the effects of diet, chrononutrition, alternative dietary interventions and exercise on postprandial glycemia and insulin resistance.
Collapse
Affiliation(s)
- Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Christina Oikonomou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - George Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, 11855 Athens, Greece;
| | - George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
12
|
New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Perspectives of glycemic variability in diabetic neuropathy: a comprehensive review. Commun Biol 2021; 4:1366. [PMID: 34876671 PMCID: PMC8651799 DOI: 10.1038/s42003-021-02896-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic neuropathy is one of the most prevalent chronic complications of diabetes, and up to half of diabetic patients will develop diabetic neuropathy during their disease course. Notably, emerging evidence suggests that glycemic variability is associated with the pathogenesis of diabetic complications and has emerged as a possible independent risk factor for diabetic neuropathy. In this review, we describe the commonly used metrics for evaluating glycemic variability in clinical practice and summarize the role and related mechanisms of glycemic variability in diabetic neuropathy, including cardiovascular autonomic neuropathy, diabetic peripheral neuropathy and cognitive impairment. In addition, we also address the potential pharmacological and non-pharmacological treatment methods for diabetic neuropathy, aiming to provide ideas for the treatment of diabetic neuropathy. Zhang et al. describe metrics for evaluating glycaemic variability (GV) in clinical practice and summarize the role and related mechanisms of GV in diabetic neuropathy, including cardiovascular autonomic neuropathy, diabetic peripheral neuropathy and cognitive impairment. They aim to stimulate ideas for the treatment of diabetic neuropathy.
Collapse
|
14
|
Sayour AA, Ruppert M, Oláh A, Benke K, Barta BA, Zsáry E, Merkely B, Radovits T. Effects of SGLT2 Inhibitors beyond Glycemic Control-Focus on Myocardial SGLT1. Int J Mol Sci 2021; 22:9852. [PMID: 34576016 PMCID: PMC8468664 DOI: 10.3390/ijms22189852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Selective sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced the risk of hospitalization for heart failure in patients with or without type 2 diabetes (T2DM) in large-scale clinical trials. The exact mechanism of action is currently unclear. The dual SGLT1/2 inhibitor sotagliflozin not only reduced hospitalization for HF in patients with T2DM, but also lowered the risk of myocardial infarction and stroke, suggesting a possible additional benefit related to SGLT1 inhibition. In fact, several preclinical studies suggest that SGLT1 plays an important role in cardiac pathophysiological processes. In this review, our aim is to establish the clinical significance of myocardial SGLT1 inhibition through reviewing basic research studies in the context of SGLT2 inhibitor trials.
Collapse
Affiliation(s)
- Alex Ali Sayour
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor str. 68, H-1122 Budapest, Hungary; (M.R.); (A.O.); (K.B.); (B.A.B.); (E.Z.); (B.M.); (T.R.)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rao M, Zumbro EL, Broughton KS, LeMieux MJ. RETRACTED: Whey protein preload enhances the active GLP-1 response and reduces circulating glucose in women with polycystic ovarian syndrome. Nutr Res 2021; 92:84-98. [PMID: 34284269 DOI: 10.1016/j.nutres.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The article is a duplicate of a paper that has already been published in Nutrients: (Nutrients 2021, 13(7), 2451. https://doi.org/10.3390/nu13072451. Redundant publications overweigh the relative importance of published findings and distort the academic record of the authors. One of the conditions of submission of a paper for publication is therefore that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Manisha Rao
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Emily L Zumbro
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | | | - Monique J LeMieux
- Nutrition and Food Sciences Department, Texas Woman's University, Denton, TX, USA.
| |
Collapse
|
16
|
Lu X, Lu J, Fan Z, Liu A, Zhao W, Wu Y, Zhu R. Both Isocarbohydrate and Hypercarbohydrate Fruit Preloads Curbed Postprandial Glycemic Excursion in Healthy Subjects. Nutrients 2021; 13:nu13072470. [PMID: 34371978 PMCID: PMC8308803 DOI: 10.3390/nu13072470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the impact of fruit preloads on the acute postprandial glycemic response (PGR) and satiety response of a rice meal in healthy female subjects based on iso-carbohydrate (IC) and hyper-carbohydrate (HC) contents, respectively. The IC test meals including (1) rice preload (R + 35R), (2) orange preload (O + 35R), (3) apple preload (A + 35R) and (4) pear preload (P + 35R), contained 50.0 g available carbohydrates (AC) where the preload contributed 15.0 g and rice provided 35.0 g. The HC meals included (1) orange preload (O + 50R), (2) apple preload (A+50R) and (3) pear preload (P + 50R), each containing 65.0 g AC, where the fruits contributed 15.0 g and rice provided 50.0 g. Drinking water 30 min before the rice meal was taken as reference (W + 50R). All the preload treatments, irrespective of IC or HC meals, resulted in remarkable reduction (p < 0.001) in terms of incremental peak glucose (IPG) and the maximum amplitude of glycemic excursion in 180 min (MAGE0–180), also a significant decrease (p < 0.05) in the area of PGR contributed by per gram of AC (AAC), compared with the W + 50R. Apple elicited the lowest PGR among all test meals, as the A + 35R halved the IPG and slashed the incremental area under the curve in 180 min (iAUC0–180) by 45.7%, while the A + 50R reduced the IPG by 29.7%, compared with the W + 50R. All the preload meals and the reference meal showed comparable self-reported satiety in spite of the difference in AC. In conclusion, pre-meal consumption of three fruits effectively curbed post-meal glycemia even in the case of a 30% extra carbohydrate load.
Collapse
Affiliation(s)
- Xuejiao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Jiacan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Zhihong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62737717
| | - Anshu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Wenqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Yixue Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Ruixin Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| |
Collapse
|
17
|
Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients 2021; 13:nu13041345. [PMID: 33919503 PMCID: PMC8074206 DOI: 10.3390/nu13041345] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Low-calorie Mediterranean-style or low-carbohydrate dietary regimens are widely used nutritional strategies against obesity and associated metabolic diseases, including type 2 diabetes. The aim of this study was to compare the effectiveness of a balanced Mediterranean diet with a low-carbohydrate diet on weight loss and glucose homeostasis in morbidly obese individuals at high risk to develop diabetes. Insulin secretion, insulin clearance, and different β-cell function components were estimated by modeling plasma glucose, insulin and C-peptide profiles during 75-g oral glucose tolerance tests (OGTTs) performed at baseline and after 4 weeks of each dietary intervention. The average weight loss was 5%, being 58% greater in the low-carbohydrate-group than Mediterranean-group. Fasting plasma glucose and glucose tolerance were not affected by the diets. The two dietary regimens proved similarly effective in improving insulin resistance and fasting hyperinsulinemia, while enhancing endogenous insulin clearance and β-cell glucose sensitivity. In summary, we demonstrated that a low-carbohydrate diet is a successful short-term approach for weight loss in morbidly obese patients and a feasible alternative to the Mediterranean diet for its glucometabolic benefits, including improvements in insulin resistance, insulin clearance and β-cell function. Further studies are needed to compare the long-term efficacy and safety of the two diets.
Collapse
|
18
|
Yang M, Reimann F, Gribble FM. Chemosensing in enteroendocrine cells: mechanisms and therapeutic opportunities. Curr Opin Endocrinol Diabetes Obes 2021; 28:222-231. [PMID: 33449572 DOI: 10.1097/med.0000000000000614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Enteroendocrine cells (EECs) are scattered chemosensory cells in the intestinal epithelium that release hormones with a wide range of actions on intestinal function, food intake and glucose homeostasis. The mechanisms by which gut hormones are secreted postprandially, or altered by antidiabetic agents and surgical interventions are of considerable interest for future therapeutic development. RECENT FINDINGS EECs are electrically excitable and express a repertoire of G-protein coupled receptors that sense nutrient and nonnutrient stimuli, coupled to intracellular Ca2+ and cyclic adenosine monophosphate. Our knowledge of EEC function, previously developed using mouse models, has recently been extended to human cells. Gut hormone release in humans is enhanced by bariatric surgery, as well as by some antidiabetic agents including sodium-coupled glucose transporter inhibitors and metformin. SUMMARY EECs are important potential therapeutic targets. A better understanding of their chemosensory mechanisms will enhance the development of new therapeutic strategies to treat metabolic and gastrointestinal diseases.
Collapse
Affiliation(s)
- Ming Yang
- University of Cambridge, Institute of Metabolic Science and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
19
|
Dimitriadis GD, Maratou E, Kountouri A, Board M, Lambadiari V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021; 13:E159. [PMID: 33419065 PMCID: PMC7825450 DOI: 10.3390/nu13010159] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Glucose levels in blood must be constantly maintained within a tight physiological range to sustain anabolism. Insulin regulates glucose homeostasis via its effects on glucose production from the liver and kidneys and glucose disposal in peripheral tissues (mainly skeletal muscle). Blood levels of glucose are regulated simultaneously by insulin-mediated rates of glucose production from the liver (and kidneys) and removal from muscle; adipose tissue is a key partner in this scenario, providing nonesterified fatty acids (NEFA) as an alternative fuel for skeletal muscle and liver when blood glucose levels are depleted. During sleep at night, the gradual development of insulin resistance, due to growth hormone and cortisol surges, ensures that blood glucose levels will be maintained within normal levels by: (a) switching from glucose to NEFA oxidation in muscle; (b) modulating glucose production from the liver/kidneys. After meals, several mechanisms (sequence/composition of meals, gastric emptying/intestinal glucose absorption, gastrointestinal hormones, hyperglycemia mass action effects, insulin/glucagon secretion/action, de novo lipogenesis and glucose disposal) operate in concert for optimal regulation of postprandial glucose fluctuations. The contribution of the liver in postprandial glucose homeostasis is critical. The liver is preferentially used to dispose over 50% of the ingested glucose and restrict the acute increases of glucose and insulin in the bloodstream after meals, thus protecting the circulation and tissues from the adverse effects of marked hyperglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Eirini Maratou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Clinical Biochemistry, Medical School, “Attikon” University Hospital, Rimini 1, 12462 Chaidari, Greece
| | - Aikaterini Kountouri
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| | - Mary Board
- St. Hilda’s College, University of Oxford, Cowley, Oxford OX4 1DY, UK;
| | - Vaia Lambadiari
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| |
Collapse
|
20
|
Wu T, Rayner CK, Jones KL, Xie C, Marathe C, Horowitz M. Role of intestinal glucose absorption in glucose tolerance. Curr Opin Pharmacol 2020; 55:116-124. [PMID: 33227625 DOI: 10.1016/j.coph.2020.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Intestinal glucose absorption is integral to postprandial glucose homeostasis. Glucose absorption is dependent on a number of factors, including the exposure of carbohydrate to the mucosa of the upper gastrointestinal tract (determined particularly by the rates of gastric emptying and small intestinal transit), the digestion of complex carbohydrate into monosaccharides, and glucose sensing and transport by the intestinal mucosa. The absorption of glucose in the small intestine is not only a determinant of the appearance of exogenous glucose in the peripheral circulation, but is also coupled to the release of gastrointestinal hormones that in turn influence postprandial glucose metabolism through modulating gastrointestinal motor function, insulin and glucagon secretion, and subsequent energy intake. This review describes the physiology and pathophysiology of intestinal glucose absorption in health and type 2 diabetes, including its relevance to glucose tolerance and the management of postprandial hyperglycaemia.
Collapse
Affiliation(s)
- Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia; Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China.
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Chinmay Marathe
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
21
|
Smith K, Bowden Davies KA, Stevenson EJ, West DJ. The Clinical Application of Mealtime Whey Protein for the Treatment of Postprandial Hyperglycaemia for People With Type 2 Diabetes: A Long Whey to Go. Front Nutr 2020; 7:587843. [PMID: 33195375 PMCID: PMC7607659 DOI: 10.3389/fnut.2020.587843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mitigating postprandial hyperglycaemic excursions may be effective in not only enhancing glycaemic control for people with type 2 diabetes but also reducing the onset of diabetes-related complications. However, there are growing concerns over the long-term efficacy of anti-hyperglycaemic pharmacotherapies, which coupled with their rising financial costs, underlines the need for further non-pharmaceutical treatments to regulate postprandial glycaemic excursions. One promising strategy that acutely improves postprandial glycaemia for people with type 2 diabetes is through the provision of mealtime whey protein, owing to the slowing of gastric emptying and increased secretion of insulin and the incretin peptides. The magnitude of this effect appears greater when whey protein is consumed before, rather than with, a meal. Herein, this dietary tool may offer a simple and inexpensive strategy in the management of postprandial hyperglycaemia for people with type 2 diabetes. However, there are insufficient long-term studies that have investigated the use of mealtime whey protein as a treatment option for individuals with type 2 diabetes. The methodological approaches applied in acute studies and outcomes reported may also not portray what is achievable long-term in practice. Therefore, studies are needed to refine the application of this mealtime strategy to maximize its clinical potential to treat hyperglycaemia and to apply these long-term to address key components of successful diabetes care. This review discusses evidence surrounding the provision of mealtime whey protein to treat postprandial hyperglycaemia in individuals with type 2 diabetes and highlights areas to help facilitate its clinical application.
Collapse
Affiliation(s)
- Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kelly A Bowden Davies
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Greaves G, Xiang R, Rafiei H, Malas A, Little JP. Prior ingestion of a ketone monoester supplement reduces postprandial glycemic responses in young healthy-weight individuals. Appl Physiol Nutr Metab 2020; 46:309-317. [PMID: 32941737 DOI: 10.1139/apnm-2020-0644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main objective of this study was to determine whether acute ingestion of a ketone monoester (KME) supplement impacted mixed-meal tolerance test (MMTT) glucose area under the curve (AUC). Nineteen healthy young volunteers (10 males/9 females; age, 24.7 ± 4.9 years; body mass index, 22.7 ± 2.4 kg/m2) participated in a double-blind, placebo-controlled crossover study. Following overnight fasting (≥10 h), participants consumed 0.45 mL/kg of a KME supplement or taste-matched placebo followed by an MMTT 15 min later. Blood samples were collected every 15-30 min over 2.5 h. KME supplementation acutely raised β-hydroxybutyrate AUC (590%, P < 0.0001, d = 2.4) and resulted in decreases in blood glucose AUC (-9.4%, P = 0.03, d = 0.56) and nonesterified fatty acid (NEFA) AUC (-27.3%, P = 0.023, d = 0.68) compared with placebo. No differences were found for plasma insulin AUC (P = 0.70) or gastric emptying estimated by co-ingested acetaminophen AUC (P = 0.96) between ketone and placebo. Overall, results indicate that KME supplementation attenuates postprandial glycemic and NEFA responses when taken 15 min prior to a mixed meal in young healthy individuals. Future studies are warranted to investigate whether KME supplementation may benefit individuals with impaired glycemic control. Novelty: Acute ketone monoester supplementation 15 min prior to a mixed meal decreased postprandial glucose and NEFA levels without significantly impacting postprandial insulin or estimates of gastric emptying. Glucose- and NEFA-lowering effects of ketone monoester supplementation are apparently not mediated by changes in insulin release or gastric emptying.
Collapse
Affiliation(s)
- Grant Greaves
- Faculty of Medicine, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Richard Xiang
- Faculty of Medicine, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Hossein Rafiei
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Adeeb Malas
- Faculty of Medicine, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
23
|
A Review of Recent Findings on Meal Sequence: An Attractive Dietary Approach to Prevention and Management of Type 2 Diabetes. Nutrients 2020; 12:nu12092502. [PMID: 32825124 PMCID: PMC7551485 DOI: 10.3390/nu12092502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
While adjustment of total energy and nutritional balance is critically important, meal sequence, a relatively simple method of correcting postprandial hyperglycemia, is becoming established as a practical dietary approach for prevention and management of diabetes and obesity. Meal sequence, i.e., consumption of protein and/or fat before carbohydrate, promotes secretion of glucagon-like peptide-1 (GLP-1) from the gut and ameliorates secretions of insulin and glucagon and delays gastric emptying, thereby improving postprandial glucose excursion. GLP-1 is known to suppress appetite by acting on the hypothalamus via the afferent vagus nerve. Thus, enhancement of GLP-1 secretion by meal sequence is expected to reduce body weight. Importantly, consumption of a diet rich in saturated fatty acids such as meat dishes before carbohydrate increases secretions of not only GLP-1 but also glucose-dependent insulinotropic polypeptide (GIP), which promotes energy storage in adipose tissue and may lead to weight gain in the long term. Dietary fiber intake before carbohydrate intake significantly reduces postprandial glucose elevation and may have a weight loss effect, but this dietary strategy does not enhance the secretion of GLP-1. Thus, it is suggested that their combination may have additive effects on postprandial glucose excursion and body weight. Indeed, results of some clinical research supports the idea that ingesting dietary fiber together with meal sequence of protein and/or fat before carbohydrate benefits metabolic conditions of individuals with diabetes and obesity.
Collapse
|
24
|
A Protein/Lipid Preload Attenuates Glucose-Induced Endothelial Dysfunction in Individuals with Abnormal Glucose Tolerance. Nutrients 2020; 12:nu12072053. [PMID: 32664350 PMCID: PMC7400934 DOI: 10.3390/nu12072053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Postprandial hyperglycemia interferes with vascular reactivity and is a strong predictor of cardiovascular disease. Macronutrient preloads reduce postprandial hyperglycemia in subjects with impaired glucose tolerance (IGT) or type 2 diabetes (T2D), but the effect on endothelial function is unknown. Therefore, we examined whether a protein/lipid preload can attenuate postprandial endothelial dysfunction by lowering plasma glucose responses in subjects with IGT/T2D. Endothelial function was assessed by the reactive hyperemia index (RHI) at fasting, 60 min and 120 min during two 75 g oral glucose tolerance tests (OGTTs) preceded by either water or a macronutrient preload (i.e., egg and parmesan cheese) in 22 volunteers with IGT/T2D. Plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucagon, free fatty acids, and amino acids were measured through each test. RHI negatively correlated with fasting plasma glucose. During the control OGTT, RHI decreased by 9% and its deterioration was associated with the rise in plasma glucose. The macronutrient preload attenuated the decline in RHI and markedly reduced postprandial glycemia. The beneficial effect of the macronutrient preload on RHI was proportional to the improvement in glucose tolerance and was associated with the increase in plasma GLP-1 and arginine levels. In conclusion, a protein/lipid macronutrient preload attenuates glucose-induced endothelial dysfunction in individuals with IGT/T2D by lowering plasma glucose excursions and by increasing GLP-1 and arginine levels, which are known regulators of the nitric oxide vasodilator system.
Collapse
|
25
|
Mengozzi A, Tricò D, Nesti L, Petrie J, Højlund K, Mitrakou A, Krebs M, Mari A, Natali A. Disruption of fasting and post-load glucose homeostasis are largely independent and sustained by distinct and early major beta-cell function defects: a cross-sectional and longitudinal analysis of the Relationship between Insulin Sensitivity and Cardiovascular risk (RISC) study cohort. Metabolism 2020; 105:154185. [PMID: 32061908 DOI: 10.1016/j.metabol.2020.154185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND/AIMS Uncertainty still exists on the earliest beta-cell defects at the bases of the type 2 diabetes. We assume that this depends on the inaccurate distinction between fasting and post-load glucose homeostasis and aim at providing a description of major beta-cell functions across the full physiologic spectrum of each condition. METHODS In 1320 non-diabetic individuals we performed an OGTT with insulin secretion modeling and a euglycemic insulin clamp, coupled in subgroups to glucose tracers and IVGTT; 1038 subjects underwent another OGTT after 3.5 years. Post-load glucose homeostasis was defined as mean plasma glucose above fasting levels (δOGTT). The analysis was performed by two-way ANCOVA. RESULTS Fasting plasma glucose (FPG) and δOGTT were weakly related variables (stβ = 0.12) as were their changes over time (r = -0.08). Disruption of FPG control was associated with an isolated and progressive decline (approaching 60%) of the sensitivity of the beta-cell to glucose values within the normal fasting range. Disruption of post-load glucose control was characterized by a progressive decline (approaching 60%) of the slope of the full beta-cell vs glucose dose-response curve and an early minor (30%) decline of potentiation. The acute dynamic beta-cell responses, neither per se nor in relation to the degree of insulin resistance appeared to play a relevant role in disruption of fasting or post-load homeostasis. Follow-up data qualitatively and quantitatively confirmed the results of the cross-sectional analysis. CONCLUSION In normal subjects fasting and post-load glucose homeostasis are largely independent, and their disruption is sustained by different and specific beta-cell defects.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Domenico Tricò
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy
| | - Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - John Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Asimina Mitrakou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Hira T, Pinyo J, Hara H. What Is GLP-1 Really Doing in Obesity? Trends Endocrinol Metab 2020; 31:71-80. [PMID: 31636017 DOI: 10.1016/j.tem.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone released in response to meal ingestion and enhances insulin secretion from pancreatic β cells. In several human studies, GLP-1 secretory responses to oral glucose load or a meal were decreased in subjects with obesity, glucose intolerance, or diabetes compared with those in healthy subjects. However, the results of meta-analysis and cohort studies do not necessarily support this concept. Results from animal studies are also inconsistent; in multiple studies, GLP-1 secretory responses to a meal were repeatedly higher in diet-induced obese rats than in control rats. Thus, the postprandial GLP-1 response is not necessarily decreased but rather enhanced during obesity development, which is likely to play a protective role against glucose intolerance.
Collapse
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Jukkrapong Pinyo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hara
- Department of Food Science and Human Nutrition, Fuji Women's University, Ishikari, Hokkaido, Japan
| |
Collapse
|
27
|
Yabe D, Kuwata H, Fujiwara Y, Sakaguchi M, Moyama S, Makabe N, Murotani K, Asano H, Ito S, Mishima H, Takase H, Ota N, Seino Y, Hamamoto Y, Kurose T, Seino Y. Dietary instructions focusing on meal-sequence and nutritional balance for prediabetes subjects: An exploratory, cluster-randomized, prospective, open-label, clinical trial. J Diabetes Complications 2019; 33:107450. [PMID: 31648850 DOI: 10.1016/j.jdiacomp.2019.107450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although lifestyle modifications are known to be effective in type 2 diabetes (T2D) as well as in prediabetes, adherence to a healthy diet is difficult for some, and interventions of lifestyle modifications need to be revised occasionally. Meal sequence has been gaining attention as a part of a healthy diet among T2D individuals to improve glycemia and body weight. In addition, a dietary instruction program, SMART Washoku®, which can help individuals to consume a more nutritionally balanced diet, has been developed. METHODS The current exploratory trial was designed to examine the effects of dietary instructions focusing on meal sequence and nutritional balance in individuals with prediabetes in the Japanese national health check-up and guidance program. Participants were cluster-randomized into three groups: Group A, receiving a conventional health guidance program (n = 11); Group B, receiving health guidance with dietary instructions focusing on meal sequence (n = 18); and Group C, receiving health guidance with dietary instructions focusing on nutritional balance (n = 13). Participants received health guidance education and various measurements before and 6 months after the instructions. RESULTS Body weight in Group B was significantly reduced compared to that in Group A, with similar adherence, while the effects on glycemia were similar between the two Groups. Body weight reduction was greater in Group C compared to that in Group A, although adherence in Group C was significantly lower than that in Group A. CONCLUSION The group receiving health guidance with dietary instructions focusing on meal sequence exhibited similar adherence and greater reduction in body weight than the group receiving conventional health guidance.
Collapse
Affiliation(s)
- Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hitoshi Kuwata
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan; Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, Osaka, Japan
| | - Yuuka Fujiwara
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Mayuka Sakaguchi
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, Osaka, Japan
| | - Shota Moyama
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, Osaka, Japan
| | - Noboru Makabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, Osaka, Japan
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Fukuoka, Japan
| | | | - Sanae Ito
- Kansaimedicalnet Co., Ltd., Kyoto, Japan
| | | | | | | | - Yusuke Seino
- Department of Endocrinology and Metabolism, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Hamamoto
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| | - Takeshi Kurose
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Nakanoshima clinic, Osaka, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan; Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan.
| |
Collapse
|
28
|
Tricò D, Mengozzi A, Frascerra S, Scozzaro MT, Mari A, Natali A. Intestinal Glucose Absorption Is a Key Determinant of 1-Hour Postload Plasma Glucose Levels in Nondiabetic Subjects. J Clin Endocrinol Metab 2019; 104:2131-2139. [PMID: 30445459 DOI: 10.1210/jc.2018-02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT One-hour postload hyperglycemia, defined as 1-hour plasma glucose (1hPG) ≥ 155 mg/dL during an oral glucose tolerance test (OGTT), has been proposed as an independent predictor of type 2 diabetes. Recent evidence suggests that 1-hour hyperglycemia can be explained by enhanced duodenal glucose absorption, which in turn may increase the rate of appearance of oral glucose in the systemic circulation (RaO). However, the impact of RaO on 1hPG and 1-hour glucose excursions (incremental area under the curve calculated through the first hour after glucose ingestion; glucose iAUC1h) is still unknown. OBJECTIVE We quantified the relative contribution of postload RaO to 1hPG and glucose iAUC1h with respect to other major glucose homeostatic mechanisms in nondiabetic participants. PARTICIPANTS AND METHODS Model-derived β-cell function, insulin clearance, glucose metabolic fluxes, and peripheral and hepatic insulin sensitivity were measured during a 75-g OGTT by a double tracer method in 23 nondiabetic volunteers. RESULTS Early insulin secretion, whole-body insulin sensitivity, and plasma glucose disposal were significantly impaired in participants with 1hPG ≥ 155 mg/dL (n = 11), who also showed nominally greater RaO (19%; P = 0.10). In multivariable models, postload RaO showed an independent effect on both 1hPG and glucose iAUC1h (partial r2 = 0.26 and 0.48, respectively; P < 0.003). The relative contribution of RaO to 1hPG (23%) and glucose iAUC1h (30%) was similar to that of early insulin secretion and peripheral insulin sensitivity and greater than that of hepatic insulin sensitivity. CONCLUSIONS Our data highlight the primary role of RaO as a major determinant of 1-hour postprandial glucose excursions in nondiabetic participants.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Cefalo CMA, Cinti F, Moffa S, Impronta F, Sorice GP, Mezza T, Pontecorvi A, Giaccari A. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovasc Diabetol 2019; 18:20. [PMID: 30819210 PMCID: PMC6393994 DOI: 10.1186/s12933-019-0828-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Sotagliflozin is a dual sodium-glucose co-transporter-2 and 1 (SGLT2/1) inhibitor for the treatment of both type 1 (T1D) and type 2 diabetes (T2D). Sotagliflozin inhibits renal sodium-glucose co-transporter 2 (determining significant excretion of glucose in the urine, in the same way as other, already available SGLT-2 selective inhibitors) and intestinal SGLT-1, delaying glucose absorption and therefore reducing post prandial glucose. Well-designed clinical trials, have shown that sotagliflozin (as monotherapy or add-on therapy to other anti-hyperglycemic agents) improves glycated hemoglobin in adults with T2D, with beneficial effects on bodyweight and blood pressure. Similar results have been obtained in adults with T1D treated with either continuous subcutaneous insulin infusion or multiple daily insulin injections, even after insulin optimization. A still ongoing phase 3 study is currently evaluating the effect of sotagliflozin on cardiovascular outcomes (ClinicalTrials.gov NCT03315143). In this review we illustrate the advantages and disadvantages of dual SGLT 2/1 inhibition, in order to better characterize and investigate its mechanisms of action and potentialities.
Collapse
Affiliation(s)
- Chiara Maria Assunta Cefalo
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Impronta
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Pio Sorice
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. .,Istituto di Patologia Speciale Medica e Semeiotica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
30
|
Nesti L, Mengozzi A, Tricò D. Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications. Front Endocrinol (Lausanne) 2019; 10:144. [PMID: 30906282 PMCID: PMC6418004 DOI: 10.3389/fendo.2019.00144] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Pharmacological and dietary interventions targeting postprandial glycemia have proved effective in reducing the risk for type 2 diabetes and its cardiovascular complications. Besides meal composition and size, the timing of macronutrient consumption during a meal has been recently recognized as a key regulator of postprandial glycemia. Emerging evidence suggests that premeal consumption of non-carbohydrate macronutrients (i.e., protein and fat "preloads") can markedly reduce postprandial glycemia by delaying gastric emptying, enhancing glucose-stimulated insulin release, and decreasing insulin clearance. The same improvement in glucose tolerance is achievable by optimal timing of carbohydrate ingestion during a meal (i.e., carbohydrate-last meal patterns), which minimizes the risk of body weight gain when compared with nutrient preloads. The magnitude of the glucose-lowering effect of preload-based nutritional strategies is greater in type 2 diabetes than healthy subjects, being comparable and additive to current glucose-lowering drugs, and appears sustained over time. This dietary approach has also shown promising results in pathological conditions characterized by postprandial hyperglycemia in which available pharmacological options are limited or not cost-effective, such as type 1 diabetes, gestational diabetes, and impaired glucose tolerance. Therefore, preload-based nutritional strategies, either alone or in combination with pharmacological treatments, may offer a simple, effective, safe, and inexpensive tool for the prevention and management of postprandial hyperglycemia. Here, we survey these novel physiological insights and their therapeutic implications for patients with diabetes mellitus and altered glucose tolerance.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, Pisa, Italy
- *Correspondence: Domenico Tricò
| |
Collapse
|
31
|
The insulinotropic effect of a high-protein nutrient preload is mediated by the increase of plasma amino acids in type 2 diabetes. Eur J Nutr 2018; 58:2253-2261. [PMID: 30008106 DOI: 10.1007/s00394-018-1778-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/07/2018] [Indexed: 01/24/2023]
Abstract
AIMS Eating protein before carbohydrate reduces postprandial glucose excursions by enhancing insulin and glucagon-like peptide-1 (GLP-1) secretion in type 2 diabetes (T2D). We tested the hypothesis that this insulinotropic effect depends on the elevation of plasma amino acids (AA) after the digestion of food protein. METHODS In 16 T2D patients, we measured plasma AA levels through the course of two 75-g oral glucose tolerance tests (OGTT) preceded by either 500-ml water or a high-protein nutrient preload (50-g Parmesan cheese, one boiled egg, and 300-ml water). Changes in beta cell function were evaluated by measuring and modelling plasma glucose, insulin, and C-peptide through the OGTT. Changes in incretin hormone secretion were assessed by measuring plasma GLP-1. RESULTS Plasma AA levels were 24% higher after the nutrient preload (p < 0.0001). This increment was directly proportional to both the enhancement of beta cell function (r = 0.58, p = 0.02) and the plasma GLP-1 gradients (r = 0.57, p = 0.02) produced by the nutrient preload. Among single AA, glutamine showed the strongest correlation with changes in beta cell function (r = 0.61, p = 0.01), while leucine showed the strongest correlation with GLP-1 responses (r = 0.74, p = 0.001). CONCLUSIONS The elevation of circulating AA that occurs after a high-protein nutrient preload is associated with an enhancement of beta cell function and GLP-1 secretion in T2D. Manipulating the meal sequence of nutrient ingestion may reduce postprandial hyperglycaemia through a direct and GLP-1-mediated stimulation of insulin secretion by plasma AA. TRIAL REGISTRATION NUMBER NCT02342834.
Collapse
|
32
|
Kajiyama S, Imai S, Hashimoto Y, Yamane C, Miyawaki T, Matsumoto S, Ozasa N, Tanaka M, Kajiyama S, Fukui M. Divided consumption of late-night-dinner improves glucose excursions in young healthy women: A randomized cross-over clinical trial. Diabetes Res Clin Pract 2018; 136:78-84. [PMID: 29199002 DOI: 10.1016/j.diabres.2017.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/31/2023]
Abstract
AIMS Our aim was to explore the acute effect of the late-night-dinner and the divided-dinner on postprandial glucose levels in young healthy women. METHODS Fourteen women (22.6 ± 2.6 years, BMI 20.2 ± 1.5 kg/m2: mean ± SD) were randomly assigned to this crossover study. Each participant wore a continuous glucose monitor for 5 days and consumed identical test meals from the second to the fourth day at home. Each participant consumed the test meals of breakfast at 0800 h, lunch at 1300 h, and the half of the participants consumed dinner at 2100 h (D21) on the second day, 1800 h (D18) on the third day, and divided dinner (DD: vegetable and rice at 1800 h, and vegetable and the main dish at 2100 h) on the fourth day. The rest of the participants consumed DD on the second day, and D21 on the fourth day. RESULTS D21 demonstrated higher incremental glucose peak (IGP 2.74 ± 0.38 vs. 1.57 ± 0.23 mmol/L, p < .05, mean ± SEM) and incremental area under the curve for glucose (IAUC) 2300-0800 h (271 ± 63 vs. 111 ± 37 mmol/L × min, p < .05) than D18. On the other hand, DD ameliorated IGP (1.96 ± 0.29 mmol/L, p < .05), IAUC 2300-0800 h (80 ± 29 mmol/L × min, p < .001), and the mean amplitude of glycemic excursion (DD 2.34 ± 0.25 vs. D21 2.91 ± 0.28 mmol/L, p < .05) than D21. CONCLUSIONS Consuming late-night-dinner increased postprandial glucose levels, compared to DD, suggesting DD could be a practical strategy for reduction of postprandial glucose levels in young healthy women.
Collapse
Affiliation(s)
- Shizuo Kajiyama
- Kajiyama Clinic, Kyoto, Japan; Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saeko Imai
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan.
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Takashi Miyawaki
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Shinya Matsumoto
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Neiko Ozasa
- Department of Cardiovascular Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Muhei Tanaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Shintaro Kajiyama
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
33
|
Tricò D, Trifirò S, Mengozzi A, Morgantini C, Baldi S, Mari A, Natali A. Reducing Cholesterol and Fat Intake Improves Glucose Tolerance by Enhancing β Cell Function in Nondiabetic Subjects. J Clin Endocrinol Metab 2018; 103:622-631. [PMID: 29095990 DOI: 10.1210/jc.2017-02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT A diet low in cholesterol and fat is commonly recommended to prevent metabolic and cardiovascular diseases; however, its effect on glucose tolerance is largely unknown. OBJECTIVE We examined whether and by which mechanisms a chronic reduction of cholesterol and fat intake affects glucose tolerance in nondiabetic individuals, independently of weight changes. DESIGN AND PARTICIPANTS In this crossover, randomized clinical trial, 30 healthy subjects, including 15 with family history of type 2 diabetes (T2D) (T2D offspring), underwent a 75-g oral glucose tolerance test (OGTT) after two 14-day isocaloric high-cholesterol, high-fat (HChF) or low-cholesterol, and low-fat (LChF) diets. MAIN OUTCOME MEASURES We evaluated changes in glucose tolerance, β cell function, insulin clearance, and insulin sensitivity by modeling plasma glucose, insulin, and C-peptide levels during the OGTT. RESULTS The shift from the HChF to the LChF diet was neutral on body weight but increased glucose tolerance (mean glucose -5%, P = 0.01) and three components of β cell function: glucose sensitivity (+17%, P = 0.01), insulin secretion at fasting glucose (+20%, P = 0.02), and potentiation (+19%, P = 0.03). The LChF diet improved insulin sensitivity (+7%, P = 0.048) only in T2D offspring, who tended to be more susceptible to the positive effect of the diet on glucose tolerance. CONCLUSIONS A chronic and isocaloric decrease in dietary cholesterol and fat intake improves glucose tolerance by diffusely ameliorating β cell function in nondiabetic subjects. Individuals genetically predisposed to develop T2D tend to be more susceptible to the positive effect of this dietary intervention on glucose tolerance and insulin sensitivity.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Silvia Trifirò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Morgantini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Tricò D, Natali A. Modulation of postprandial glycemic responses by noncarbohydrate nutrients provides novel approaches to the prevention and treatment of type 2 diabetes. Am J Clin Nutr 2017; 106:701-702. [PMID: 28765387 PMCID: PMC5525123 DOI: 10.3945/ajcn.117.157255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Domenico Tricò
- From the Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (AN; DT, e-mail: )
| | - Andrea Natali
- From the Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (AN; DT, e-mail: )
| |
Collapse
|
35
|
Seghieri M, Tricò D, Natali A. The impact of triglycerides on glucose tolerance: Lipotoxicity revisited. DIABETES & METABOLISM 2017; 43:314-322. [PMID: 28693962 DOI: 10.1016/j.diabet.2017.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Elevated plasma triglycerides (TGs) are early key features of conditions associated with a dysregulation in glucose metabolism and may predict the development of type 2 diabetes (T2D) over time. Although the acute ingestion of lipid, either mixed with or shortly before the meal, is neutral or slightly beneficial on glucose tolerance, a short-term increase in plasma TGs induced by either an i.v. lipid infusion or a high-fat diet produces a deterioration of glucose control. Accordingly, chronic lowering of plasma TGs by fibrates improves glucose homeostasis and may also prevent T2D. The chronic effects of the elevation of dietary lipid intake are less clear, particularly in humans, being the quality of fat probably more important than total fat intake. Although on the bases of the available experimental and clinical evidence it cannot be easily disentangled, with respect to elevated non-esterified fatty acids (NEFA) the relative contribution of elevated TGs to glucose homeostasis disregulation seems to be greater and also more plausible. In conclusion, although the association between elevated plasma TGs and impaired glucose tolerance is commonly considered not causative or merely a consequence of NEFA-mediated lipotoxicity, the available data suggest that TGs per se may directly contribute to disorders of glucose metabolism.
Collapse
Affiliation(s)
- M Seghieri
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - D Tricò
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - A Natali
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy.
| |
Collapse
|
36
|
Summer A, Formaggioni P, Franceschi P, Di Frangia F, Righi F, Malacarne M. Cheese as Functional Food: The Example of Parmigiano Reggiano and Grana Padano. Food Technol Biotechnol 2017; 55:277-289. [PMID: 29089844 DOI: 10.17113/ftb.55.03.17.5233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Italian hard cooked types of cheese, like Parmigiano Reggiano and Grana Padano, are characterised by positive nutritional qualities. In fact, they contain substances that have particular biological activities, and therefore they can be fully considered, according to the definition given by the European Unit, as 'functional' foods. This short review concisely describes these components and the beneficial effects related to their activities. The description of the biologically active components has been organised in the following paragraphs: protein and peptides, fat and lipids, carbohydrates and prebiotics, probiotic bacteria, vitamins, mineral salts, and components of dairy products active in disease prevention. In particular, several known bioactive peptides were found in Parmigiano Reggiano cheese samples: for example, phosphopeptides, which are known for their mineral-binding capacity and vehiculation activity, peptides with immunomodulatory activity, and angiotensin-converting enzyme-inhibitory peptides with anti-hypertensive effects. Among lipids, the role of conjugated linoleic acid and other fatty acids present in these cheese types was taken into consideration. The presence of oligosaccharides with prebiotic properties and probiotic bacteria was also described. Finally, particular emphasis was given to highly available calcium and its impact on bone health.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy.,MILC Center, University of Parma, Parco Area delle Scienze 59/A, IT-43124 Parma, Italy
| | - Paolo Formaggioni
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Piero Franceschi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Federica Di Frangia
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Federico Righi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Massimo Malacarne
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy.,MILC Center, University of Parma, Parco Area delle Scienze 59/A, IT-43124 Parma, Italy
| |
Collapse
|
37
|
Scazzina F, Dei Cas A, Del Rio D, Brighenti F, Bonadonna RC. The β-cell burden index of food: A proposal. Nutr Metab Cardiovasc Dis 2016; 26:872-878. [PMID: 27381989 DOI: 10.1016/j.numecd.2016.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 01/09/2023]
Abstract
The quantity and quality of dietary fat and/or carbohydrate may alter one or more of the basic components of the insulin-glucose system, which in turn affect the pathways leading to alterations in glucose homeostasis and, possibly, to cardiovascular disease. This viewpoint article, reviewing some of the currently available tools aiming at quantifying the impact of dietary carbohydrates on the glucose-insulin homeostatic loop, highlights the unmet need of a more thorough assessment of the complex interaction between dietary factors and the glucose-insulin system. A novel index, the "β-cell burden index", may turn out to be a valuable tool to quantify the role played by the diet in shaping the risk of type 2 diabetes, cardiovascular disease and other metabolic and degenerative disorders, ideally orienting their prevention with strategies based on dietary modifications.
Collapse
Affiliation(s)
- F Scazzina
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - A Dei Cas
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Division of Endocrinology, Azienda Ospedaliera Universitaria of Parma, Parma, Italy.
| | - D Del Rio
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - F Brighenti
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - R C Bonadonna
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Division of Endocrinology, Azienda Ospedaliera Universitaria of Parma, Parma, Italy.
| |
Collapse
|
38
|
Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under free-living conditions. Nutr Diabetes 2016; 6:e226. [PMID: 27548711 PMCID: PMC5022147 DOI: 10.1038/nutd.2016.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 01/10/2023] Open
Abstract
Lipid and protein ingested before carbohydrate reduce postprandial hyperglycemia. We tested feasibility, safety and clinical efficacy of manipulating the sequence of nutrient ingestion in patients with type 2 diabetes (T2D). After a 4-week run-in, 17 T2D patients were randomized to either a control diet (CD) or to an experimental diet (ED) allowing the consumption of high-carbohydrate foods only after high-protein and high-fat foods at each main meal (lunch+dinner). Both diets were accurately followed and neutral on arterial blood pressure, plasma lipids and indices of hepatic and kidney function. After 8 weeks, in spite of a similar reduction of body weight (ED −1.9 95% confidence interval (−3.4/−0.4)kg, P<0.03; CD −2.0 (−3.6/−0.5)kg, P<0.02) and waist circumference (ED −2.9 (−4.3/−1.5)cm, P<0.002; CD −3.3 (−5.9/−0.7)cm, P<0.02), the ED only was associated with significant reductions of HbA1c (−0.3 (−0.50/−0.02)%, P<0.04), fasting plasma glucose (−1.0 (−1.8/−0.3)mmol l−1, P<0.01), postprandial glucose excursions (lunch −1.8 (−3.2/−0.4)mmol l−1, P<0.01; dinner: −1.0 (−1.9/−0.1)mmol l−1, P<0.04) and other indices of glucose variability (s.d.: −0.5 (−0.7/−0.2)mmol l−1, P<0.02; Coefficient of variation: −6.6 (−10.4/−2.7)%, P<0.02). When compared with the CD, the ED was associated with lower post-lunch glucose excursions (P<0.02) and lower glucose coefficients of variation (P<0.05). Manipulating the sequence of nutrient ingestion might reveal a rapid, feasible, economic and safe strategy for optimizing glucose control in T2D.
Collapse
|
39
|
Monnier L, Bonnet F, Colette C. Tailoring nutrient sequence and content to improve glucose tolerance: Why and how to do it. DIABETES & METABOLISM 2016; 42:211-4. [PMID: 27184768 DOI: 10.1016/j.diabet.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
Affiliation(s)
- L Monnier
- Institute of Clinical Research, 641, avenue du Doyen-Giraud, 34093 Montpellier cedex 5, France.
| | - F Bonnet
- Departement of Endocrinology and Diabetology, University Hospital, Rennes, France
| | - C Colette
- Institute of Clinical Research, 641, avenue du Doyen-Giraud, 34093 Montpellier cedex 5, France
| |
Collapse
|
40
|
Tricò D, Filice E, Baldi S, Frascerra S, Mari A, Natali A. Sustained effects of a protein and lipid preload on glucose tolerance in type 2 diabetes patients. DIABETES & METABOLISM 2016; 42:242-8. [PMID: 27084589 DOI: 10.1016/j.diabet.2016.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Small amounts of nutrients given as a 'preload' can reduce post-meal hyperglycaemic peaks in type 2 diabetes (T2D) patients by activating a number of mechanisms involved in glucose homoeostasis. This study was undertaken to ascertain whether this positive effect extends to the late absorptive phase and to identify the main mechanisms involved. MATERIAL AND METHODS Eight well-controlled T2D patients, aged 40-70 years, were randomized to consume a 'preload' of either water or non-glucidic nutrients (50g of Parmesan cheese, one boiled egg) 30min before a 300-min oral glucose tolerance test. RESULTS After the nutrient preload, significant reductions were observed in peak glucose (-49%; P<0.02), total plasma glucose (iAUC: -28%; P<0.03), exogenous glucose (iAUC: -30%; P<0.03) and insulin clearance (-28%; P<0.04), with enhancement of insulin secretion (iAUC: +22%; P<0.003). These effects were associated with higher plasma levels of GLP-1 (iAUC: +463%; P<0.002), GIP (iAUC: +152%; P<0.0003) and glucagon (iAUC: +144%; P<0.0002). CONCLUSION In T2D patients, a protein and lipid preload improves glucose tolerance throughout the whole post-absorptive phase mainly by reducing the appearance of oral glucose, and improving both beta-cell function and insulin bioavailability.
Collapse
Affiliation(s)
- D Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - E Filice
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Mari
- National Research Council, Institute of Neuroscience, Padua, Italy
| | - A Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Wu T, Little TJ, Bound MJ, Borg M, Zhang X, Deacon CF, Horowitz M, Jones KL, Rayner CK. A Protein Preload Enhances the Glucose-Lowering Efficacy of Vildagliptin in Type 2 Diabetes. Diabetes Care 2016; 39:511-7. [PMID: 26786576 DOI: 10.2337/dc15-2298] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/24/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Nutrient "preloads" given before meals can attenuate postprandial glycemic excursions, at least partly by slowing gastric emptying and stimulating secretion of the incretins (i.e., glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic polypeptide [GIP]). This study was designed to evaluate whether a protein preload could improve the efficacy of the dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin to increase incretin concentrations, slow gastric emptying, and lower postprandial glycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS Twenty-two patients with type 2 diabetes treated with metformin were studied on four occasions, receiving either 50 mg vildagliptin (VILD) or placebo (PLBO) on both the evening before and the morning of each study day. The latter dose was followed after 60 min by a preload drink containing either 25 g whey protein (WHEY) or control flavoring (CTRL), and after another 30 min by a (13)C-octanoate-labeled mashed potato meal. Plasma glucose and hormones, and gastric emptying, were evaluated. RESULTS Compared with PLBO/CTRL, PLBO/WHEY reduced postprandial peak glycemia, increased plasma insulin, glucagon, and incretin hormones (total and intact), and slowed gastric emptying, whereas VILD/CTRL reduced both the peak and area under the curve for glucose, increased plasma intact incretins, and slowed gastric emptying but suppressed plasma glucagon and total incretins (P < 0.05 each). Compared with both PLBO/WHEY and VILD/CTRL, VILD/WHEY was associated with higher plasma intact GLP-1 and GIP, slower gastric emptying, and lower postprandial glycemia (P < 0.05 each). CONCLUSIONS In metformin-treated type 2 diabetes, a protein preload has the capacity to enhance the efficacy of vildagliptin to slow gastric emptying, increase plasma intact incretins, and reduce postprandial glycemia.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tanya J Little
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Malcolm Borg
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
| | - Xiang Zhang
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Carolyn F Deacon
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|