1
|
Yang J, Gu Y, Chen H, Wang H, Hong L, Li B, Yang L. Tirzepatide's innovative applications in the management of type 2 diabetes and its future prospects in cardiovascular health. Front Pharmacol 2024; 15:1453825. [PMID: 39263564 PMCID: PMC11387164 DOI: 10.3389/fphar.2024.1453825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Tirzepatide, a novel GLP-1/GIP dual receptor agonist, shows significant advantages in glycemic management and weight control. By summarizing the results of the SURMOUNT and SURPASS clinical trials, we evaluate the efficacy and safety of tirzepatide in reducing blood glucose and weight. These trials indicate that tirzepatide significantly lowers HbA1c levels (with a maximum reduction of 2.24%) and promotes weight loss (up to 11.2 kg) with good tolerability. However, there are still some challenges in its clinical application, including high treatment costs and gastrointestinal discomfort. Additionally, the safety and efficacy of tirzepatide in special populations, such as patients with renal impairment, require further investigation. Future large-scale clinical trials, such as SURPASS-CVOT and SUMMIT, are expected to further verify the long-term benefits of tirzepatide in cardiovascular health management, providing stronger evidence for its comprehensive treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Jingqi Yang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuncheng Gu
- Department of Science and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Huaigang Chen
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Wang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Liu Yang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Nishida K, Ueno S, Seino Y, Hidaka S, Murao N, Asano Y, Fujisawa H, Shibata M, Takayanagi T, Ohbayashi K, Iwasaki Y, Iizuka K, Okuda S, Tanaka M, Fujii T, Tochio T, Yabe D, Yamada Y, Sugimura Y, Hirooka Y, Hayashi Y, Suzuki A. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024; 16:2270. [PMID: 39064713 PMCID: PMC11280123 DOI: 10.3390/nu16142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
Collapse
Affiliation(s)
- Koki Nishida
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Shinji Ueno
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yuki Asano
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan;
| | - Shoei Okuda
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
- Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan;
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| |
Collapse
|
3
|
Lewandowski SL, El K, Campbell JE. Evaluating glucose-dependent insulinotropic polypeptide and glucagon as key regulators of insulin secretion in the pancreatic islet. Am J Physiol Endocrinol Metab 2024; 327:E103-E110. [PMID: 38775725 PMCID: PMC11390117 DOI: 10.1152/ajpendo.00360.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
The incretin axis is an essential component of postprandial insulin secretion and glucose homeostasis. There are two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert multiple actions throughout the body. A key cellular target for the incretins are pancreatic β-cells, where they potentiate nutrient-stimulated insulin secretion. This feature of incretins has made this system an attractive target for therapeutic interventions aimed at controlling glycemia. Here, we discuss the role of GIP in both β-cells and α-cells within the islet, to stimulate insulin and glucagon secretion, respectively. Moreover, we discuss how glucagon secretion from α-cells has important insulinotropic actions in β-cells through an axis termed α- to β-cell communication. These recent advances have elevated the potential of GIP and glucagon as a therapeutic targets, coinciding with emerging compounds that pharmacologically leverage the actions of these two peptides in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Sophie L Lewandowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
- Division of Endocrinology, Department of Medicine, Duke University, Durham, North Carolina, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
4
|
Hayashi Y. Advances in basic research on glucagon and alpha cells. Diabetol Int 2024; 15:348-352. [PMID: 39101161 PMCID: PMC11291817 DOI: 10.1007/s13340-024-00696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 08/06/2024]
Abstract
The regulation of plasma amino acid levels by glucagon in humans first attracted the attention of researchers in the 1980s. Recent basic research using animal models of glucagon deficiency suggested that a major physiological role of glucagon is the regulation of amino acid metabolism rather than to increase blood glucose levels. In this regard, novel feedback regulatory mechanisms that are mediated by glucagon and amino acids have recently been described between islet alpha cells and the liver. Increasingly, hyperglucagonemia in humans with diabetes and/or nonalcoholic fatty liver diseases is reported to likely be a compensatory response to hepatic glucagon resistance. Severe glucagon resistance due to a glucagon receptor mutation in humans causes hyperaminoacidemia and islet alpha cell expansion combined with pancreatic hypertrophy. Notably, a recent report showed that the restoration of glucagon resistance by liver transplantation resolved not only hyperglucagonemia, but also pancreatic hypertrophy and other metabolic disorders. The mechanisms that regulate islet cell proliferation by amino acids largely remain unelucidated. Clarification of such mechanisms will increase our understanding of the pathophysiology of diseases related to glucagon.
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, 464-8601 Japan
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Ueno S, Seino Y, Hidaka S, Nakatani M, Hitachi K, Murao N, Maeda Y, Fujisawa H, Shibata M, Takayanagi T, Iizuka K, Yabe D, Sugimura Y, Tsuchida K, Hayashi Y, Suzuki A. Blockade of glucagon increases muscle mass and alters fiber type composition in mice deficient in proglucagon-derived peptides. J Diabetes Investig 2023; 14:1045-1055. [PMID: 37300240 PMCID: PMC10445200 DOI: 10.1111/jdi.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
AIMS/INTRODUCTION Glucagon is secreted from pancreatic α-cells and plays an important role in amino acid metabolism in liver. Various animal models deficient in glucagon action show hyper-amino acidemia and α-cell hyperplasia, indicating that glucagon contributes to feedback regulation between the liver and the α-cells. In addition, both insulin and various amino acids, including branched-chain amino acids and alanine, participate in protein synthesis in skeletal muscle. However, the effect of hyperaminoacidemia on skeletal muscle has not been investigated. In the present study, we examined the effect of blockade of glucagon action on skeletal muscle using mice deficient in proglucagon-derived peptides (GCGKO mice). MATERIALS AND METHODS Muscles isolated from GCGKO and control mice were analyzed for their morphology, gene expression and metabolites. RESULTS GCGKO mice showed muscle fiber hypertrophy, and a decreased ratio of type IIA and an increased ratio of type IIB fibers in the tibialis anterior. The expression levels of myosin heavy chain (Myh) 7, 2, 1 and myoglobin messenger ribonucleic acid were significantly lower in GCGKO mice than those in control mice in the tibialis anterior. GCGKO mice showed a significantly higher concentration of arginine, asparagine, serine and threonine in the quadriceps femoris muscles, and also alanine, aspartic acid, cysteine, glutamine, glycine and lysine, as well as four amino acids in gastrocnemius muscles. CONCLUSIONS These results show that hyperaminoacidemia induced by blockade of glucagon action in mice increases skeletal muscle weight and stimulates slow-to-fast transition in type II fibers of skeletal muscle, mimicking the phenotype of a high-protein diet.
Collapse
Affiliation(s)
- Shinji Ueno
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoKyotoJapan
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| | - Masashi Nakatani
- Faculty of RehabilitationSeijoh UniversityTokaiAichiJapan
- Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoKyotoJapan
| | - Yasuhiro Maeda
- Open Facility CenterFujita Health UniversityToyoakeAichiJapan
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| | - Katsumi Iizuka
- Department of Clinical NutritionFujita Health UniversityToyoakeAichiJapan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoKyotoJapan
- Department of Diabetes, Endocrinology and MetabolismGifu University Graduate School of MedicineGifuGifuJapan
- Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuGifuJapan
- Center for One Medicine Innovative Translational ResearchGifu University Graduate School of MedicineGifuGifuJapan
- Center for Healthcare Information TechnologyTokai National Higher Education and Research SystemNagoyaAichiJapan
- Division of Molecular and Metabolic MedicineKobe University Graduate School of MedicineKobeHyogoJapan
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeAichiJapan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental MedicineNagoya UniversityNagoyaAichiJapan
- Department of EndocrinologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and MetabolismFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
6
|
Seino Y, Yamazaki Y. Roles of glucose-dependent insulinotropic polypeptide in diet-induced obesity. J Diabetes Investig 2022; 13:1122-1128. [PMID: 35452190 PMCID: PMC9248429 DOI: 10.1111/jdi.13816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are incretins that play an important role in glucose metabolism, by increasing glucose-induced insulin secretion from pancreatic β-cells and help regulate bodyweight. Although they show a similar action on glucose-induced insulin secretion, two incretins are distinct in various aspects. GIP is secreted from enteroendocrine K cell mainly expressed in the upper small intestine, and GLP-1 is secreted from enteroendocrine L cells mainly expressed in the lower small intestine and colon by the stimulation of various nutrients. The mechanism of GIP secretion induced by nutrients, especially carbohydrates, is different from that of GLP-1 secretion. GIP promotes fat deposition in adipose tissue, and contributes to fat-induced obesity. In contrast, GLP-1 participates in reducing bodyweight by suppressing food consumption and/or slowing gastric emptying. There is substantial evidence that GIP and GLP-1 might differently contribute to bodyweight control. Although meal contents influence both glycemic and weight control, we do not fully understand whether incretin actions differ depending on the contents of the meal and what kind of signaling is involved in its context. We focus on the molecular mechanism of GIP secretion induced by nutrients, as well as the roles of GIP in weight changes caused by various diets.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Yuji Yamazaki
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKobeJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| |
Collapse
|
7
|
High Protein Diet Feeding Aggravates Hyperaminoacidemia in Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2022; 14:nu14050975. [PMID: 35267952 PMCID: PMC8912298 DOI: 10.3390/nu14050975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response to HPD feeding for 7 days was analyzed in mice deficient in proglucagon-derived peptides (GCGKO). (3) Results: In both control and GCGKO mice, food intake and body weight decreased with HPD and intestinal expression of Pepck increased. HPD also decreased plasma FGF21 levels, regardless of the presence of proglucagon-derived peptides. In control mice, HPD increased the hepatic expression of enzymes involved in amino acid metabolism without the elevation of plasma amino acid levels, except branched-chain amino acids. On the other hand, HPD-induced changes in the hepatic gene expression were attenuated in GCGKO mice, resulting in marked hyperaminoacidemia with lower blood glucose levels; the plasma concentration of glutamine exceeded that of glucose in HPD-fed GCGKO mice. (4) Conclusions: Increased plasma amino acid levels are a common feature in animal models with blocked GCG activity, and our results underscore that GCG plays essential roles in the homeostasis of amino acid metabolism in response to altered protein intake.
Collapse
|
8
|
Zhang Y, Xiang R, Fang S, Huang K, Fan Y, Liu T. Experimental Study on the Effect of Tibetan Medicine Triphala on the Proliferation and Apoptosis of Pancreatic Islet β Cells through Incretin–cAMP Signaling Pathway. Biol Pharm Bull 2020; 43:289-295. [DOI: 10.1248/bpb.b19-00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Yuan Fan
- Yunnan University of Chinese Medicine
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine
| | - Tao Liu
- Yunnan Traditional Chinese Medicine Hospital
| |
Collapse
|
9
|
Murase M, Seino Y, Maekawa R, Iida A, Hosokawa K, Hayami T, Tsunekawa S, Hamada Y, Yokoi N, Seino S, Hayashi Y, Arima H. Functional adenosine triphosphate-sensitive potassium channel is required in high-carbohydrate diet-induced increase in β-cell mass. J Diabetes Investig 2019; 10:238-250. [PMID: 30084544 PMCID: PMC6400177 DOI: 10.1111/jdi.12907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS/INTRODUCTION A high-carbohydrate diet is known to increase insulin secretion and induce obesity. However, whether or not a high-carbohydrate diet affects β-cell mass (BCM) has been little investigated. MATERIALS AND METHODS Both wild-type (WT) mice and adenosine triphosphate-sensitive potassium channel-deficient (Kir6.2KO) mice were fed normal chow or high-starch (ST) diets for 22 weeks. BCM and the numbers of islets were analyzed by immunohistochemistry, and gene expression levels in islets were investigated by quantitative real-time reverse transcription polymerase chain reaction. MIN6-K8 β-cells were stimulated in solution containing various concentrations of glucose combined with nifedipine and glimepiride, and gene expression was analyzed. RESULTS Both WT and Kir6.2KO mice fed ST showed hyperinsulinemia and body weight gain. BCM, the number of islets and the expression levels of cyclinD2 messenger ribonucleic acid were increased in WT mice fed ST compared with those in WT mice fed normal chow. In contrast, no significant difference in BCM, the number of islets or the expression levels of cyclinD2 messenger ribonucleic acid were observed between Kir6.2KO mice fed normal chow and those fed ST. Incubation of MIN6-K8 β-cells in high-glucose media or with glimepiride increased cyclinD2 expression, whereas nifedipine attenuated a high-glucose-induced increase in cyclinD2 expression. CONCLUSIONS These results show that a high-starch diet increases BCM in an adenosine triphosphate-sensitive potassium channel-dependent manner, which is mediated through upregulation of cyclinD2 expression.
Collapse
Affiliation(s)
- Masatoshi Murase
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Seino
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Ryuya Maekawa
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Atsushi Iida
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kaori Hosokawa
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohide Hayami
- Division of Molecular and Metabolic MedicineKobe University Graduate School of MedicineKobeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKobeJapan
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Shin Tsunekawa
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoji Hamada
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| | - Norihide Yokoi
- Division of Molecular and Metabolic MedicineKobe University Graduate School of MedicineKobeJapan
| | - Susumu Seino
- Division of Molecular and Metabolic MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshitaka Hayashi
- Division of Stress Adaptation and ProtectionDepartment of Genetics ResearchInstitute of Environmental MedicineNagoya UniversityNagoyaJapan
| | - Hiroshi Arima
- Departments of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
10
|
Maekawa R, Ogata H, Murase M, Harada N, Suzuki K, Joo E, Sankoda A, Iida A, Izumoto T, Tsunekawa S, Hamada Y, Oiso Y, Inagaki N, Arima H, Hayashi Y, Seino Y. Glucose-dependent insulinotropic polypeptide is required for moderate high-fat diet- but not high-carbohydrate diet-induced weight gain. Am J Physiol Endocrinol Metab 2018; 314:E572-E583. [PMID: 29406782 DOI: 10.1152/ajpendo.00352.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Both high-fat (HFD) and high-carbohydrate (ST) diets are known to induce weight gain. Glucose-dependent insulinotropic polypeptide (GIP) is secreted mainly from intestinal K cells upon stimuli by nutrients such as fat and glucose, and it potentiates glucose-induced insulin secretion. GIP is well known to contribute to HFD-induced obesity. In this study, we analyzed the effect of ST feeding on GIP secretion and metabolic parameters to explore the role of GIP in ST-induced weight gain. Both wild-type (WT) and GIP receptor deficient ( GiprKO) mice were fed normal chow (NC), ST, or moderate (m)HFD for 22 wk. Body weight was measured, and then glucose tolerance tests were performed. Insulin secretion from isolated islets also was analyzed. WT mice fed ST or mHFD displayed weight gain concomitant with increased plasma GIP levels compared with WT mice fed NC. WT mice fed mHFD showed improved glucose tolerance due to enhanced insulin secretion during oral glucose tolerance tests compared with WT mice fed NC or ST. GiprKO mice fed mHFD did not display weight gain. On the other hand, GiprKO mice fed ST showed weight gain and did not display obvious glucose intolerance. Glucose-induced insulin secretion was enhanced during intraperitoneal glucose tolerance tests and from isolated islets in both WT and GiprKO mice fed ST compared with those fed NC. In conclusion, enhanced GIP secretion induced by mHFD-feeding contributes to increased insulin secretion and body weight gain, whereas GIP is marginally involved in weight gain induced by ST-feeding.
Collapse
Affiliation(s)
- Ryuya Maekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hidetada Ogata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Masatoshi Murase
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Kazuyo Suzuki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Erina Joo
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Akiko Sankoda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Atsushi Iida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Takako Izumoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Shin Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yoji Hamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University , Nagoya , Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine , Nagoya , Japan
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
11
|
Delgado-León TG, Sálas-Pacheco JM, Vazquez-Alaniz F, Vértiz-Hernández ÁA, López-Guzmán OD, Lozano-Guzmán E, Martínez-Romero A, Úrtiz-Estrada N, Cervantes-Flores M. Apoptosis in pancreatic β-cells is induced by arsenic and atorvastatin in Wistar rats with diabetes mellitus type 2. J Trace Elem Med Biol 2018; 46:144-149. [PMID: 29413104 DOI: 10.1016/j.jtemb.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diabetes Mellitus type 2 (T2D) is a multifactorial disease. However, it is known that there is an important effect in pancreatic β-cells caused by apoptosis of pro-apoptotic proteins, possibly related to arsenic exposure and atorvastatin treatment. OBJECTIVE The goal of this study was to evaluate the effects of atorvastatin treatment on apoptosis of pancreatic β-cells in Wistar rats with induced diabetes type 2 exposed to arsenic. MATERIAL & METHODS T2D in Wistar rats was induced by administration of Streptozotocin. The plasmatic glucose concentrations were measured using the glucose oxidase method, and the concentration of glycated hemoglobin (HbA1c) in whole blood was determined. Exposure to arsenic was measured from urine using atomic absorption with hydride generation, and pro-apoptotic proteins in pancreatic β-cells were observed using the Western blotting technique. RESULTS Caspase-3 was present in rats that were treated with 10 mg/kg of oral atorvastatin and exposed to 0.01 and 0.025 mg/L of arsenic, but no others proteins were present, such as pro Caspase-8, bcl-2, and Fas. The glycemic levels were 129.2 ± 7.0 mg/dL in the control group and 161.8 ± 14.6 mg/dL and 198.3 ± 18.2 mg/dL (p < .05) in the study groups. HbA1c increased from 2.53% to 3.64% (p < .05) in the control and study groups. CONCLUSIONS Atorvastatin treatment and arsenic exposure alone are capable of generating apoptosis in pancreatic β-cells of Wistar rats with T2D. Together, all of these factors induce apoptosis in pancreatic cells.
Collapse
Affiliation(s)
- Tania Guadalupe Delgado-León
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - José Manuel Sálas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa s/n, C.P. 34000, Durango, Dgo, Mexico
| | - Fernando Vazquez-Alaniz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico; Hospital General 450 Servicios de Salud de Durango Blvd José María Patoni No. 403 Col El Cipres, CP 34206, Durango, Dgo, Mexico
| | - Ángel Antonio Vértiz-Hernández
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, carretera a Cedral Km 5+600, Ejido San José de las Trojes, CP: 78700, Matehuala, SLP, Mexico
| | - Olga Dania López-Guzmán
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - Eduardo Lozano-Guzmán
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - Aurora Martínez-Romero
- Facultad de Ciencias Químicas, Campus Gómez Palacio, Universidad Juárez del Estado de Durango, Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, 35010 Gómez Palacio, Dgo, Mexico
| | - Norma Úrtiz-Estrada
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - Maribel Cervantes-Flores
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico.
| |
Collapse
|
12
|
Mulvihill EE. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides 2018; 100:158-164. [PMID: 29412815 DOI: 10.1016/j.peptides.2017.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a widely expressed, serine protease which regulates the bioactivity of many peptides through cleavage and inactivation including the incretin hormones, glucagon like peptide -1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). Inhibitors of DPP4 are used therapeutically to treat patients with Type 2 Diabetes Mellitus (T2DM) as they potentiate incretin action to regulate islet hormone secretion and improve glycemia and post-prandial lipid excursions. The widespread clinical use of DPP4 inhibitors has increased interest in the molecular mechanisms by which these drugs mediate their beneficial effects. Traditionally, focus has remained on inhibiting the catalytic activity of DPP4 within the plasma compartment, however evidence is emerging on the importance of inactivation of membrane-bound DPP4 in selective tissue beds to potentiate local hormone gradients. Here we review the recent advances in identifying the cellular sources of both circulating and membrane-bound DPP4 important for cleavage of the incretin hormones and regulation of glucose and lipoprotein metabolism.
Collapse
Affiliation(s)
- Erin E Mulvihill
- University of Ottawa Heart Institute, University of Ottawa, Department of Biochemistry, Microbiology and Immunology, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada.
| |
Collapse
|
13
|
Hayashi Y, Seino Y. Regulation of amino acid metabolism and α-cell proliferation by glucagon. J Diabetes Investig 2018; 9:464-472. [PMID: 29314731 PMCID: PMC5934249 DOI: 10.1111/jdi.12797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Both glucagon and glucagon-like peptide-1 (GLP-1) are produced from proglucagon through proteolytic cleavage. Blocking glucagon action increases the circulating levels of glucagon and GLP-1, reduces the blood glucose level, and induces the proliferation of islet α-cells. Glucagon blockade also suppresses hepatic amino acid catabolism and increases the serum amino acid level. In animal models defective in both glucagon and GLP-1, the blood glucose level is not reduced, indicating that GLP-1 is required for glucagon blockade to reduce the blood glucose level. In contrast, hyperplasia of α-cells and hyperaminoacidemia are observed in such animal models, indicating that GLP-1 is not required for the regulation of α-cell proliferation or amino acid metabolism. These findings suggest that the regulation of amino acid metabolism is a more important specific physiological role of glucagon than the regulation of glucose metabolism. Although the effects of glucagon deficiency on glucose metabolism are compensated by the suppression of insulin secretion, the effects on amino acid metabolism are not. Recently, data showing a feedback regulatory mechanism between the liver and islet α-cells, which is mediated by glucagon and amino acids, are accumulating. However, a number of questions on the mechanism of this regulation remain to be addressed. The profile of glucagon as a regulator of amino acid metabolism must be carefully considered for glucagon blockade to be applied therapeutically in the treatment of patients with diabetes.
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Division of Stress Adaptation and ProtectionResearch Institute of Environmental MedicineNagoyaJapan
| | - Yusuke Seino
- Department of Endocrinology and DiabetesNagoya University Graduate School of MedicineNagoya UniversityNagoyaJapan
| |
Collapse
|
14
|
Yabe D, Seino Y, Seino Y. Incretin concept revised: The origin of the insulinotropic function of glucagon-like peptide-1 - the gut, the islets or both? J Diabetes Investig 2017; 9:21-24. [PMID: 28746743 PMCID: PMC5754537 DOI: 10.1111/jdi.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023] Open
Abstract
Incretins comprise a pair of gut hormones, glucose‐dependent insulinotropic polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1), which are secreted in response to food ingestion and enhance glucose‐dependent insulin secretion from pancreatic β‐cells. Immediately after secretion, GLP‐1 is degraded by dipeptidyl peptidase‐4 more rapidly than GIP, and circulating levels of biologically intact GLP‐1 are substantially lower than those of biologically intact GIP. Therefore, there has been a debate on how the gut‐derived GLP‐1 exerts insulinotropic actions. Recent publications have revealed two novel mechanisms by which GLP‐1 exerts insulinotropic actions: (i) the gut‐derived GLP‐1 activates receptors expressed in nodose ganglions, thereby potentiating glucose‐dependent insulin secretion through the vagus nerves; and (ii) the pancreatic α‐cell‐derived GLP‐1 activates receptors expressed in β‐cells in a paracrine manner. While the relative contributions of the two mechanisms under normal and pathological conditions remain unknown and mechanisms regulating GLP‐1 secretion from α‐cells need to be investigated, the available data strongly indicate that the effects of GLP‐1 on insulin secretion are far more complex than previously believed, and the classical incretin concept regarding GLP‐1 should be revised.
Collapse
Affiliation(s)
- Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Seino
- Departments of Endocrinology and Diabetes Metabolic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| |
Collapse
|
15
|
Muscogiuri G, Balercia G, Barrea L, Cignarelli A, Giorgino F, Holst JJ, Laudisio D, Orio F, Tirabassi G, Colao A. Gut: A key player in the pathogenesis of type 2 diabetes? Crit Rev Food Sci Nutr 2017; 58:1294-1309. [PMID: 27892685 DOI: 10.1080/10408398.2016.1252712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible of the secretion of molecules that may impair insulin secretion/action. At the same time, intestinal milieu regulates the secretion of hormones such as GLP-1, GIP, ghrelin, gastrin, somatostatin, CCK, serotonin, peptide YY, GLP-2, all of which importantly influence metabolism in general and in particular glucose metabolism. Thus, the aim of this paper is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects.
Collapse
Affiliation(s)
| | - Giancarlo Balercia
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | | | - Angelo Cignarelli
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Francesco Giorgino
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Jens J Holst
- d NNF Center for Basic Metabolic Research and Department of Biomedical Sciences , Panum Institute, University of Copenhagen, Copenhagen , Denmark
| | | | - Francesco Orio
- e Endocrinology, Department of Sports Science and Wellness , "Parthenope" University Naples , Naples , Italy
| | - Giacomo Tirabassi
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | - Annamaria Colao
- f Department of Clinical Medicine and Surgery , "Federico II" University of Naples , Naples , Italy
| |
Collapse
|
16
|
Huan Y, Jiang Q, Li G, Bai G, Zhou T, Liu S, Li C, Liu Q, Sun S, Yang M, Guo N, Wang X, Wang S, Liu Y, Wang G, Huang H, Shen Z. The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo. Sci Rep 2017; 7:4351. [PMID: 28659588 PMCID: PMC5489512 DOI: 10.1038/s41598-017-04633-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/18/2017] [Indexed: 02/08/2023] Open
Abstract
Glucagon like peptide-1 (GLP-1) plays a vital role in glucose homeostasis and sustaining β-cell function. Currently there are two major methods to enhance endogenous GLP-1 activity; inhibiting dipeptidyl peptidase-4 (DPP4) or activating G protein-coupled receptor 119 (GPR119). Here we describe and validate a novel dual-target compound, HBK001, which can both inhibit DPP4 and activate GPR119 ex and in vivo. We show that HBK001 can promote glucose-stimulated insulin secretion in mouse and human primary islets. A single administration of HBK001 in ICR mice can increase plasma incretins levels much more efficiently than linagliptin, a classic DPP4 inhibitor. Long-term treatment of HBK001 in KKAy mice can ameliorate hyperglycemia as well as improve glucose tolerance, while linagliptin fails to achieve such glucose-lowing effects despite inhibiting 95% of serum DPP4 activity. Moreover, HBK001 can increase first-phase insulin secretion in KKAy mice, suggesting a direct effect on islet β-cells via GPR119 activation. Furthermore, HBK001 can improve islet morphology, increase β-cell proliferation and up-regulate genes involved in improved β-cell function. Thus, we have identified, designed and synthesized a novel dual-target compound, HBK001, which represents a promising therapeutic candidate for type 2 diabetes, especially for patients who are insensitive to current DPP4 inhibitors.
Collapse
Affiliation(s)
- Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoliang Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujuan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin, China.,Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Yaojuan Liu
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin, China.,Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Guanqiao Wang
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin, China.,Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Haihong Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|