1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024; 20:2361-2372. [PMID: 38873924 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Gurlo T, Liu R, Wang Z, Hoang J, Ryazantsev S, Daval M, Butler AE, Yang X, Blencowe M, Butler PC. Dysregulation of cholesterol homeostasis is an early signal of β-cell proteotoxicity characteristic of type 2 diabetes. Physiol Genomics 2024; 56:621-633. [PMID: 38949617 DOI: 10.1152/physiolgenomics.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024] Open
Abstract
Type 2 diabetes (T2D) is a common metabolic disease due to insufficient insulin secretion by pancreatic β-cells in the context of insulin resistance. Islet molecular pathology reveals a role for protein misfolding in β-cell dysfunction and loss with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein coexpressed and cosecreted with insulin. The most toxic form of misfolded IAPP is intracellular membrane disruptive toxic oligomers present in β-cells in T2D and in β-cells of mice transgenic for human IAPP (hIAPP). Prior work revealed a high degree of overlap of transcriptional changes in islets from T2D and prediabetic 9- to 10-wk-old mice transgenic for hIAPP with most changes being pro-survival adaptations and therefore of limited therapeutic guidance. Here, we investigated islets from hIAPP transgenic mice at an earlier age (6 wk) to screen for potential mediators of hIAPP toxicity that precede predominance of pro-survival signaling. We identified early suppression of cholesterol synthesis and trafficking along with aberrant intra-β-cell cholesterol and lipid deposits and impaired cholesterol trafficking to cell membranes. These findings align with comparable lipid deposits present in β-cells in T2D and increased vulnerability to develop T2D in individuals taking medications that suppress cholesterol synthesis.NEW & NOTEWORTHY β-Cell failure in type 2 diabetes (T2D) is characterized by β-cell misfolded protein stress due to the formation of toxic oligomers of islet amyloid polypeptide (IAPP). Most transcriptional changes in islets in T2D are pro-survival adaptations consistent with the slow progression of β-cell loss. In the present study, investigation of the islet transcriptional signatures in a mouse model of T2D expressing human IAPP revealed decreased cholesterol synthesis and trafficking as a plausible early mediator of IAPP toxicity.
Collapse
Affiliation(s)
- Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Ruoshui Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
| | - Zhongying Wang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Jonathan Hoang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Sergey Ryazantsev
- Electron Imaging Center, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Marie Daval
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| |
Collapse
|
3
|
Wang W, Cen Y, Lu Z, Xu Y, Sun T, Xiao Y, Liu W, Li JJ, Wang C. scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data. Genome Biol 2024; 25:136. [PMID: 38783325 PMCID: PMC11112958 DOI: 10.1186/s13059-024-03284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.
Collapse
Affiliation(s)
- Weijian Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yihui Cen
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zezhen Lu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Yueqing Xu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Tianyi Sun
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Wanlu Liu
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, International Campus, ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang, 314400, China.
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China.
- Biomedical and Health Translational Research Centre, Zhejiang University, Haining, Zhejiang, 314400, China.
| |
Collapse
|
4
|
Yang T, Filippov I, Manathunga L, Baghai A, Maréchal A, Raleigh DP, Zhyvoloup A. On the importance of being amidated: Analysis of the role of the conserved C-terminal amide of amylin in amyloid formation and cytotoxicity. Biophys Chem 2024; 307:107168. [PMID: 38367541 PMCID: PMC11223093 DOI: 10.1016/j.bpc.2023.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 02/19/2024]
Abstract
The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to β-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion. The mature hormone contains an amidated C-terminus. Analysis of an alignment of vertebrate amylin sequences reveals that the processing signal for amidation is strictly conserved. Furthermore, the enzyme responsible for C-terminal amidation is found in all of these organisms. Comparison of the physiologically relevant amidated form to a variant with a free C-terminus (Amylin-COO-) shows that replacement of the C-terminal amide with a carboxylate slows, but does not prevent amyloid formation. Pre-fibrillar species produced by both variants are toxic to cultured β-cells, although hAmylin-COO- is moderately less so. Amyloid fibrils produced by either peptide are not toxic. Prior work (ACS Pharmacol. Translational. Sci. 1, 132-49 (2018)) shows that Amylin- COO- exhibits a 58-fold reduction in activation of the Amylin1 receptor and 20-fold reduction in activation of the Amylin3 receptor. Thus, hAmylin-COO- exhibits significant toxicity, but significantly reduced activity and offers a reagent for studies which aim to decouple hAmylin's toxic effects from its activity. The different behaviours of free and C-terminal amidated Amylin should be considered when designing systems to produce the polypeptide recombinantly.
Collapse
Affiliation(s)
- Tangweina Yang
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ivan Filippov
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lakshan Manathunga
- Laufer Center for Quantitative Biology, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States; Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States
| | - Aria Baghai
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Daniel P Raleigh
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Laufer Center for Quantitative Biology, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States; Department of Chemistry, Stony Brook University, Nicolls Road, Stony Brook, NY 11790, United States.
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Lu Y, Xu J, Li Y, Wang R, Dai C, Zhang B, Zhang X, Xu L, Tao Y, Han M, Guo R, Wu Q, Wu L, Meng Z, Tan M, Li J. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser 56 to diminish pancreatic β cell function upon overnutrition. Sci Transl Med 2024; 16:eade8647. [PMID: 38324636 DOI: 10.1126/scitranslmed.ade8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Impeded autophagy can impair pancreatic β cell function by causing apoptosis, of which DAP-related apoptosis-inducing kinase-2 (DRAK2) is a critical regulator. Here, we identified a marked up-regulation of DRAK2 in pancreatic tissue across humans, macaques, and mice with type 2 diabetes (T2D). Further studies in mice showed that conditional knockout (cKO) of DRAK2 in pancreatic β cells protected β cell function against high-fat diet feeding along with sustained autophagy and mitochondrial function. Phosphoproteome analysis in isolated mouse primary islets revealed that DRAK2 directly phosphorylated unc-51-like autophagy activating kinase 1 (ULK1) at Ser56, which was subsequently found to induce ULK1 ubiquitylation and suppress autophagy. ULK1-S56A mutation or pharmacological inhibition of DRAK2 preserved mitochondrial function and insulin secretion against lipotoxicity in mouse primary islets, Min6 cells, or INS-1E cells. In conclusion, these findings together indicate an indispensable role of the DRAK2-ULK1 axis in pancreatic β cells upon metabolic challenge, which offers a potential target to protect β cell function in T2D.
Collapse
Affiliation(s)
- Yuting Lu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Junyu Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yufeng Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ruoran Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Chengqiu Dai
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Lei Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ming Han
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Qingqian Wu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Linshi Wu
- Shanghai Jiaotong University, School of Medicine, Renji Hospital, Shanghai, 201112, P. R. China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Minjia Tan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingya Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Piron A, Szymczak F, Papadopoulou T, Alvelos MI, Defrance M, Lenaerts T, Eizirik DL, Cnop M. RedRibbon: A new rank-rank hypergeometric overlap for gene and transcript expression signatures. Life Sci Alliance 2024; 7:e202302203. [PMID: 38081640 PMCID: PMC10709657 DOI: 10.26508/lsa.202302203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
High-throughput omics technologies have generated a wealth of large protein, gene, and transcript datasets that have exacerbated the need for new methods to analyse and compare big datasets. Rank-rank hypergeometric overlap is an important threshold-free method to combine and visualize two ranked lists of P-values or fold-changes, usually from differential gene expression analyses. Here, we introduce a new rank-rank hypergeometric overlap-based method aimed at gene level and alternative splicing analyses at transcript or exon level, hitherto unreachable as transcript numbers are an order of magnitude larger than gene numbers. We tested the tool on synthetic and real datasets at gene and transcript levels to detect correlation and anticorrelation patterns and found it to be fast and accurate, even on very large datasets thanks to an evolutionary algorithm-based minimal P-value search. The tool comes with a ready-to-use permutation scheme allowing the computation of adjusted P-values at low time cost. The package compatibility mode is a drop-in replacement to previous packages. RedRibbon holds the promise to accurately extricate detailed information from large comparative analyses.
Collapse
Affiliation(s)
- Anthony Piron
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Theodora Papadopoulou
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Maria Inês Alvelos
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Décio L Eizirik
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- https://ror.org/01r9htc13 Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Chaudhary R, Khanna J, Rohilla M, Gupta S, Bansal S. Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing. Endocr Metab Immune Disord Drug Targets 2024; 24:348-362. [PMID: 37608675 DOI: 10.2174/1871530323666230822095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease. OBJECTIVES The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance. METHODS Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose". RESULTS In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration. CONCLUSION Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Janvi Khanna
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Manni Rohilla
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
8
|
Li P, Zhang J, Wu J, Ma J, Huang W, Gong J, Xie Z, Chen Y, Liao Q. Integrating serum pharmacochemistry and network pharmacology to reveal the mechanism of chickpea in improving insulin resistance. Fitoterapia 2024; 172:105750. [PMID: 37977304 DOI: 10.1016/j.fitote.2023.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Although chickpea have great potential in the treatment of obesity and diabetes, the bioactive components and therapeutic targets of chickpea to prevent insulin resistance (IR) are still unclear. The purpose of this study was to investigate the chemical and pharmacological characteristics of chickpea on IR through serum pharmacochemistry and network pharmacology. The results revealed that compared with other polar fractions, the ethyl acetate extract of chickpea (CE) had the definitive performance on enhancing the capacities of glucose consumption and glycogen synthesis. In addition, we analyzed the components of CE in vivo and in vitro based on UPLC-Q-Orbitrap HRMS technology. There were 28 kinds of in vitro chemical components, among which the isoflavones included biochanin A, formononetin, ononin, sissotrin, and astragalin, etc. Concerningly, the chief prototype components of CE absorbed into the blood were biochanin A, formononetin, loliolide, and lenticin, etc. Furthermore, a total of 209 common targets between IR and active components of CE were screened out by network pharmacology, among which the key targets involved PI3K p85, NF-κB p65 and estrogen receptor 1, etc. Specifically, KEGG pathway analysis indicated that PI3K-AKT signaling pathway, HIF-1 signaling pathway, and AGE-RAGE signaling pathway may play critical roles in the IR remission by CE. Finally, the in vitro validation experiments disclosed that CE significantly balanced the oxidative stress state of IR-HepG2 cells and inhibited expressions of inflammatory cytokines. In conclusion, the present study will be an important reference for clarifying the pharmacodynamic substance basis and underlying mechanism of chickpea to alleviate IR.
Collapse
Affiliation(s)
- Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiaxian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
9
|
Asam K, Lewis KA, Kober K, Gong X, Kanaya AM, Aouizerat BE, Flowers E. Multi-Tiered Assessment of Gene Expression Provides Evidence for Mechanisms That Underlie Risk for Type 2 Diabetes. Diabetes Metab Syndr Obes 2023; 16:3445-3457. [PMID: 37929060 PMCID: PMC10625391 DOI: 10.2147/dmso.s428572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Integrated transcriptome and microRNA differential gene expression (DEG) analyses may help to explain type 2 diabetes (T2D) pathogenesis in at-risk populations. The purpose of this study was to characterize DEG in banked biospecimens from underactive adult participants who responded to a randomized clinical trial measuring the effects of lifestyle interventions on T2D risk factors. DEGs were further examined within the context of annotated biological pathways. Methods Participants (n = 52) in a previously completed clinical trial that assessed a 12-week behavioural intervention for T2D risk reduction were included. Participants who showed >6mg/dL decrease in fasting blood glucose were identified as responders. Gene expression was measured by RNASeq, and overrepresentation analysis within KEGG pathways and weighted gene correlation network analysis (WGCNA) were performed. Results No genes remained significantly differentially expressed after correction for multiple comparisons. One module derived by WGCNA related to body mass index was identified, which contained genes located in KEGG pathways related to known mechanisms underlying risk for T2D as well as pathways related to neurodegeneration and protein misfolding. A network analysis showed indirect connections between genes in this module and islet amyloid polypeptide (IAPP), which has previously been hypothesized as a mechanism for T2D. Discussion We validated prior studies that showed pathways related to metabolism, inflammation/immunity, and endocrine/hormone function are related to risk for T2D. We identified evidence for new potential mechanisms that include protein misfolding. Additional studies are needed to determine whether these are potential therapeutic targets to decrease risk for T2D.
Collapse
Affiliation(s)
- Kesava Asam
- Bluestone Center for Clinical Research, New York University, New York City, NY, USA
| | - Kimberly A Lewis
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Kord Kober
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Xingyue Gong
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Alka M Kanaya
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York City, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University, New York City, NY, USA
| | - Elena Flowers
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Liu H, Geravandi S, Grasso AM, Sikdar S, Pugliese A, Maedler K. Enteroviral infections are not associated with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1236574. [PMID: 38027145 PMCID: PMC10643152 DOI: 10.3389/fendo.2023.1236574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction For more than a century, enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D). Uncontrolled viral response pathways repeatedly presented during childhood highly correlate with autoimmunity and T1D. Virus responses evoke chemokines and cytokines, the "cytokine storm" circulating through the body and attack cells especially vulnerable to inflammatory destruction. Intra-islet inflammation is a major trigger of β-cell failure in both T1D and T2D. The genetic contribution of islet inflammation pathways is apparent in T1D, with several mutations in the interferon system. In contrast, in T2D, gene mutations are related to glucose homeostasis in β cells and insulin-target tissue and rarely within viral response pathways. Therefore, the current study evaluated whether enteroviral RNA can be found in the pancreas from organ donors with T2D and its association with disease progression. Methods Pancreases from well-characterized 29 organ donors with T2D and 15 age- and BMI-matched controls were obtained from the network for pancreatic organ donors with diabetes and were analyzed in duplicates. Single-molecule fluorescence in-situ hybridization analyses were performed using three probe sets to detect positive-strand enteroviral RNA; pancreas sections were co-stained by classical immunostaining for insulin and CD45. Results There was no difference in the presence or localization of enteroviral RNA in control nondiabetic and T2D pancreases; viral infiltration showed large heterogeneity in both groups ranging from 0 to 94 virus+ cells scattered throughout the pancreas, most of them in the exocrine pancreas. Very rarely, a single virus+ cell was found within islets or co-stained with CD45+ immune cells. Only one single T2D donor presented an exceptionally high number of viruses, similarly as seen previously in T1D, which correlated with a highly reduced number of β cells. Discussion No association of enteroviral infection in the pancreas and T2D diabetes could be found. Despite great similarities in inflammatory markers in islets in T1D and T2D, long-term enteroviral infiltration is a distinct pathological feature of T1D-associated autoimmunity and in T1D pancreases.
Collapse
Affiliation(s)
- Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Ausilia Maria Grasso
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Saheri Sikdar
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Alberto Pugliese
- The JDRF nPOD-Virus Group
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Miami, FL, United States
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| |
Collapse
|
11
|
Lu Z, Ding L, Zhang S, Jiang X, Wang Q, Luo Y, Tian X. Bioinformatics analysis of copper death gene in diabetic immune infiltration. Medicine (Baltimore) 2023; 102:e35241. [PMID: 37773841 PMCID: PMC10545334 DOI: 10.1097/md.0000000000035241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Copper plays an important role in the human body and is potentially related to the development of diabetes. The mechanism of copper death gene regulating immune infiltration in diabetes has not been studied. METHODS Download microarray data from healthy normal and diabetic patients from the GEO database. The identification of differentially expressed genes (DEGs) was analyzed by gene enrichment. Using String online database and Cytoscape software to interact with the protein interaction network and make visual analysis. Using Wilcox analyze the correlation between the copoer death gene and diabetic mellitus. Analysis of the correlation between immune penetration cells and functions, and the difference between the diabetes group and the control group, screening the copper death gene associated with diabetes, and predicting the upper top of microRNA (miRNA) through the Funrich software. RESULTS According to the identification of differential genes in 25 samples of GSE25724 and GSE95849 data sets, 328 differential genes were identified by consensus, including 190 up-regulated genes and 138 down-regulated genes (log2FC = 2, P < .01). KEGG results showed that neurodegeneration-multiple disease pathways were most significantly upregulated, followed by Huntington disease. According to Cytohubba, the TOP10 genes HCK, FPR1, MNDA, AQP9, TLR8, CXCR1, CSF3R, VNN2, TLR4, and CCR5 are down-regulated genes, which are mostly enriched in neutrophils. Immunoinfiltration-related heat maps show that Macrophage was strongly positively correlated with Activated dendritic cell, Mast cell, Neutrophil, and Regulatory T cell showed a strong positive correlation. Neutrophil was strongly positively correlated with Activated dendritic cell, Mast cell, and Regulatory T cell. Differential analysis of immune infiltration showed that Neutroph, Mast cell, Activated B cell, Macrophage and Eosinophil were significantly increased in the diabetic group. Central memory CD4 T cell (P < .001), Plasmacytoid dendritic cell, Immature dendritic cell, and Central memory CD8 T cell, etal were significantly decreased. DBT, SLC31A1, ATP7A, LIAS, ATP7B, PDHA1, DLST, PDHB, GCSH, LIPT1, DLD, FDX1, and DLAT genes were significantly associated with one or more cells and their functions in immune invasion. Forty-one miRNA. CONCLUSIONS Copper death is closely related to the occurrence of diabetes. Copper death genes may play an important role in the immune infiltration of diabetes.
Collapse
Affiliation(s)
- Zhimin Lu
- Shandong Sport University, Jinan, Shangdong Province, China
| | - Ling Ding
- Shandong Sport University, Jinan, Shangdong Province, China
| | - Sen Zhang
- Shandong Sport University, Jinan, Shangdong Province, China
| | - Xing Jiang
- Shandong Sport University, Jinan, Shangdong Province, China
| | - Qinglu Wang
- Shandong Sport University, Jinan, Shangdong Province, China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Xuewen Tian
- Shandong Sport University, Jinan, Shangdong Province, China
| |
Collapse
|
12
|
Li MH, Zhang X, London E, Raleigh DP. Impact of Ca 2+ on membrane catalyzed IAPP amyloid formation and IAPP induced vesicle leakage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184161. [PMID: 37121365 PMCID: PMC10735052 DOI: 10.1016/j.bbamem.2023.184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Human islet amyloid polypeptide (hIAPP, also known as amylin) is a 37 amino acid pancreatic polypeptide hormone that plays a role in regulating glucose levels, but forms pancreatic amyloid in type-2 diabetes. The process of amyloid formation by hIAPP contributes to β-cell death in the disease. Multiple mechanisms of hIAPP induced toxicity of β-cells have been proposed including disruption of cellular membranes. However, the nature of hIAPP membrane interactions and the effect of ions and other molecules on hIAPP membrane interactions are not fully understood. Many studies have used model membranes with a high content of anionic lipids, often POPS, however the concentration of anionic lipids in the β-cell plasma membrane is low. Here we study the concentration dependent effect of Ca2+ (0 to 50 mM) on hIAPP membrane interactions using large unilamellar vesicles (LUVs) with anionic lipid content ranging from 0 to 50 mol%. We find that Ca2+ does not effectively inhibit hIAPP amyloid formation and hIAPP induced membrane leakage from binary LUVs with a low percentage of POPS, but has a greater effect on LUVs with a high percentage of POPS. Mg2+ had very similar effects, and the effects of Ca2+ and Mg2+ can be largely rationalized by the neutralization of POPS charge. The implications for hIAPP-membrane interactions are discussed.
Collapse
Affiliation(s)
- Ming-Hao Li
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Xiaoxue Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | - Erwin London
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794, United States; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Daniel P Raleigh
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794, United States; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
13
|
Caputo L, Amato G, De Martino L, De Feo V, Nazzaro F. Anti-Cholinesterase and Anti-α-Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int J Mol Sci 2023; 24:ijms24076073. [PMID: 37047044 PMCID: PMC10093841 DOI: 10.3390/ijms24076073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several researchers have demonstrated the health and pharmacological properties of carvacrol and p-cymene, monoterpenes of aromatic plants. This study investigated these compounds' possible anti-cholinesterase, anti-α-amylase, and neuroprotective effects. We evaluated the anti-acetylcholinesterase and anti-α-amylase activities at different concentrations of the compounds. The maximum non-toxic dose of carvacrol and p-cymene against SH-SY5Y neuroblastoma cells was determined using an MTT assay. The neuroprotective effects of the compounds were evaluated on H2O2-induced stress in SH-SY5Y cells, studying the expression of caspase-3 using Western blotting assays. Carvacrol showed inhibitory activities against acetylcholinesterase (IC50 = 3.8 µg/mL) and butyrylcholinesterase (IC50 = 32.7 µg/mL). Instead, the anti-α-amylase activity of carvacrol resulted in an IC50 value of 171.2 μg/mL After a pre-treatment with the maximum non-toxic dose of carvacrol and p-cymene, the expression of caspase-3 was reduced compared to cells treated with H2O2 alone. Carvacrol and p-cymene showed in vitro anti-enzymatic properties, and may act as neuroprotective agents against oxidative stress. Further studies are necessary to elucidate their possible use as coadjutants in preventing and treating AD in diabetic patients.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
14
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Blériot C, Dalmas É, Ginhoux F, Venteclef N. Inflammatory and immune etiology of type 2 diabetes. Trends Immunol 2023; 44:101-109. [PMID: 36604203 DOI: 10.1016/j.it.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes (T2D) represents a global threat affecting millions of patients worldwide. However, its causes remain incompletely dissected and we lack the tools to predict which individuals will develop T2D. Although there is a clear proven clinical association of T2D with metabolic disorders such as obesity and nonalcoholic fatty liver disease (NAFLD), the existence of a significant number of nondiabetic obese subjects suggests yet-uncovered features of such relationships. Here, we propose that a significant proportion of individuals may harbor an immune profile that renders them susceptible to developing T2D. We note the heterogeneity of circulating monocytes and tissue macrophages in organs that are key to metabolic disorders such as liver, white adipose tissue (WAT), and endocrine pancreas, as well as their contribution to T2D genesis.
Collapse
Affiliation(s)
- Camille Blériot
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France.
| | - Élise Dalmas
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), Singapore 138648, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| |
Collapse
|
16
|
Song Y, He C, Jiang Y, Yang M, Xu Z, Yuan L, Zhang W, Xu Y. Bulk and single-cell transcriptome analyses of islet tissue unravel gene signatures associated with pyroptosis and immune infiltration in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1132194. [PMID: 36967805 PMCID: PMC10034023 DOI: 10.3389/fendo.2023.1132194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a common chronic heterogeneous metabolic disorder. However, the roles of pyroptosis and infiltrating immune cells in islet dysfunction of patients with T2D have yet to be explored. In this study, we aimed to explore potential crucial genes and pathways associated with pyroptosis and immune infiltration in T2D. METHODS To achieve this, we performed a conjoint analysis of three bulk RNA-seq datasets of islets to identify T2D-related differentially expressed genes (DEGs). After grouping the islet samples according to their ESTIMATE immune scores, we identified immune- and T2D-related DEGs. A clinical prediction model based on pyroptosis-related genes for T2D was constructed. Weighted gene co-expression network analysis was performed to identify genes positively correlated with pyroptosis-related pathways. A protein-protein interaction network was established to identify pyroptosis-related hub genes. We constructed miRNA and transcriptional networks based on the pyroptosis-related hub genes and performed functional analyses. Single-cell RNA-seq (scRNA-seq) was conducted using the GSE153885 dataset. Dimensionality was reduced using principal component analysis and t-distributed statistical neighbor embedding, and cells were clustered using Seurat. Different cell types were subjected to differential gene expression analysis and gene set enrichment analysis (GSEA). Cell-cell communication and pseudotime trajectory analyses were conducted using the samples from patients with T2D. RESULTS We identified 17 pyroptosis-related hub genes. We determined the abundance of 13 immune cell types in the merged matrix and found that these cell types were correlated with the 17 pyroptosis-related hub genes. Analysis of the scRNA-seq dataset of 1892 islet samples from patients with T2D and controls revealed 11 clusters. INS and IAPP were determined to be pyroptosis-related and candidate hub genes among the 11 clusters. GSEA of the 11 clusters demonstrated that the myc, G2M checkpoint, and E2F pathways were significantly upregulated in clusters with several differentially enriched pathways. DISCUSSION This study elucidates the gene signatures associated with pyroptosis and immune infiltration in T2D and provides a critical resource for understanding of islet dysfunction and T2D pathogenesis.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Jiang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengshi Yang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingyan Yuan
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Zhang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yushan Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yushan Xu,
| |
Collapse
|
17
|
Liu J, Liu S, Yu Z, Qiu X, Jiang R, Li W. Uncovering the gene regulatory network of type 2 diabetes through multi-omic data integration. J Transl Med 2022; 20:604. [PMID: 36527108 PMCID: PMC9756634 DOI: 10.1186/s12967-022-03826-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) onset is a complex, organized biological process with multilevel regulation, and its physiopathological mechanisms are yet to be elucidated. This study aims to find out the key drivers and pathways involved in the pathogenesis of T2D through multi-omics analysis. METHODS The datasets used in the experiments comprise three groups: (1) genomic (2) transcriptomic, and (3) epigenomic categories. Then, a series of bioinformatics technologies including Marker set enrichment analysis (MSEA), weighted key driver analysis (wKDA) was performed to identify key drivers. The hub genes were further verified by the Receiver Operator Characteristic (ROC) Curve analysis, proteomic analysis, and Real-time quantitative polymerase chain reaction (RT-qPCR). The multi-omics network was applied to the Pharmomics pipeline in Mergeomics to identify drug candidates for T2D treatment. Then, we used the drug-gene interaction network to conduct network pharmacological analysis. Besides, molecular docking was performed using AutoDock/Vina, a computational docking program. RESULTS Module-gene interaction network was constructed using MSEA, which revealed a significant enrichment of immune-related activities and glucose metabolism. Top 10 key drivers (PSMB9, COL1A1, COL4A1, HLA-DQB1, COL3A1, IRF7, COL5A1, CD74, HLA-DQA1, and HLA-DRB1) were selected by wKDA analysis. Among these, COL5A1, IRF7, CD74, and HLA-DRB1 were verified to have the capability to diagnose T2D, and expression levels of PSMB9 and CD74 had significantly higher in T2D patients. We further predict the co-expression network and transcription factor (TF) binding specificity of the key driver. Besides, based on module interaction networks and key driver networks, 17 compounds are considered to possess T2D-control potential, such as sunitinib. CONCLUSIONS We identified signature genes, biomolecular processes, and pathways using multi-omics networks. Moreover, our computational network analysis revealed potential novel strategies for pharmacologic interventions of T2D.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of General Surgery, Third Xiangya Hospital Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China
- Xiangya Medical College, Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China
- The Center of Systems Biology and Data science, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Shenghua Liu
- Department of General Surgery, Third Xiangya Hospital Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China
- Xiangya Medical College, Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Zhaomei Yu
- Department of Thyroid and Breast Surgery, The Frist Afflicted Hospital of Fujian Medical University, No. 20 Chayzhong Road, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
| | - Xiaorui Qiu
- Xiangya Medical College, Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Rundong Jiang
- Department of General Surgery, Third Xiangya Hospital Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital Central South University, No. 138 Tongzipo Road Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Castillo JJ, Aplin AC, Hackney DJ, Hogan MF, Esser N, Templin AT, Akter R, Kahn SE, Raleigh DP, Zraika S, Hull RL. Islet amyloid polypeptide aggregation exerts cytotoxic and proinflammatory effects on the islet vasculature in mice. Diabetologia 2022; 65:1687-1700. [PMID: 35871651 PMCID: PMC10208275 DOI: 10.1007/s00125-022-05756-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
AIMS/HYPOTHESIS The islet vasculature, including its constituent islet endothelial cells, is a key contributor to the microenvironment necessary for normal beta cell health and function. In type 2 diabetes, islet amyloid polypeptide (IAPP) aggregates, forming amyloid deposits that accumulate between beta cells and islet capillaries. This process is known to be toxic to beta cells but its impact on the islet vasculature has not previously been studied. Here, we report the first characterisation of the effects of IAPP aggregation on islet endothelial cells/capillaries using cell-based and animal models. METHODS Primary and immortalised islet endothelial cells were treated with amyloidogenic human IAPP (hIAPP) alone or in the presence of the amyloid blocker Congo Red or the Toll-like receptor (TLR) 2/4 antagonist OxPAPc. Cell viability was determined0 along with mRNA and protein levels of inflammatory markers. Islet capillary abundance, morphology and pericyte coverage were determined in pancreases from transgenic mice with beta cell expression of hIAPP using conventional and confocal microscopy. RESULTS Aggregated hIAPP decreased endothelial cell viability in immortalised and primary islet endothelial cells (by 78% and 60%, respectively) and significantly increased expression of inflammatory markers Il6, Vcam1 and Edn1 mRNA relative to vehicle treatment in both cell types (p<0.05; n=4). Both cytotoxicity and the proinflammatory response were ameliorated by Congo Red (p<0.05; n=4); whereas TLR2/4-inhibition blocked inflammatory gene expression (p<0.05; n=6) without improving viability. Islets from high-fat-diet-fed amyloid-laden hIAPP transgenic mice also exhibited significantly increased expression of most markers of endothelial inflammation (p<0.05; n=5) along with decreased capillary density compared with non-transgenic littermates fed the same diet (p<0.01). Moreover, a 16% increase in capillary diameter was observed in amyloid-adjacent capillaries (p<0.01), accompanied by a doubling in pericyte structures positive for neuron-glial antigen 2 (p<0.001). CONCLUSIONS/INTERPRETATION Islet endothelial cells are susceptible to hIAPP-induced cytotoxicity and exhibit a TLR2/4-dependent proinflammatory response to aggregated hIAPP. Additionally, we observed amyloid-selective effects that decreased islet capillary density, accompanied by increased capillary diameter and increased pericyte number. Together, these data demonstrate that the islet vasculature is a target of the cytotoxic and proinflammatory effects of aggregated hIAPP that likely contribute to the detrimental effects of hIAPP aggregation on beta cell function and survival in type 2 diabetes.
Collapse
Affiliation(s)
- Joseph J Castillo
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alfred C Aplin
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Daryl J Hackney
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Meghan F Hogan
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nathalie Esser
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rehana Akter
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Sakeneh Zraika
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Brown MR, Matveyenko AV. It's What and When You Eat: An Overview of Transcriptional and Epigenetic Responses to Dietary Perturbations in Pancreatic Islets. Front Endocrinol (Lausanne) 2022; 13:842603. [PMID: 35355560 PMCID: PMC8960041 DOI: 10.3389/fendo.2022.842603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Our ever-changing modern environment is a significant contributor to the increased prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM). Although the modern era has ushered in numerous changes to our daily living conditions, changes in "what" and "when" we eat appear to disproportionately fuel the rise of T2DM. The pancreatic islet is a key biological controller of an organism's glucose homeostasis and thus plays an outsized role to coordinate the response to environmental factors to preserve euglycemia through a delicate balance of endocrine outputs. Both successful and failed adaptation to dynamic environmental stimuli has been postulated to occur due to changes in the transcriptional and epigenetic regulation of pathways associated with islet secretory function and survival. Therefore, in this review we examined and evaluated the current evidence elucidating the key epigenetic mechanisms and transcriptional programs underlying the islet's coordinated response to the interaction between the timing and the composition of dietary nutrients common to modern lifestyles. With the explosion of next generation sequencing, along with the development of novel informatic and -omic approaches, future work will continue to unravel the environmental-epigenetic relationship in islet biology with the goal of identifying transcriptional and epigenetic targets associated with islet perturbations in T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
20
|
Abstract
Pancreatic islets are the body's central rheostat that regulates glucose homeostasis through the production of different hormones, including β cell-derived insulin. During obesity-induced type 2 diabetes (T2D), islet β cells become dysfunctional and inadequate insulin secretion no longer ensures glycemic control. T2D is associated with a chronic low-grade inflammation that manifests in several metabolic organs including the pancreatic islets. Growing evidence suggests that components of the innate immune system, and especially macrophages, play a crucial role in regulating islet homeostasis. Yet, the phenotypes and functions of islet macrophages in physiology and during T2D have only started to attract attention and remain unclear. In this review, the current knowledge about islet inflammation and macrophages will be summarized in humans and rodent models. Recent findings on the cellular and molecular mechanisms involved in islet remodeling and β cell function during obesity and T2D will be discussed.
Collapse
Affiliation(s)
- Joyceline Cuenco
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|