1
|
Robertson RP. Antioxidants for Early Treatment of Type 2 Diabetes in Rodents and Humans: Lost in Translation? Diabetes 2024; 73:653-658. [PMID: 38387049 PMCID: PMC11043055 DOI: 10.2337/db23-0901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Reactive oxygen species (ROS) are formed by virtually all tissues. In normal concentrations they facilitate many physiologic activities, but in excess they cause oxidative stress and tissue damage. Local antioxidant enzyme synthesis in cells is regulated by the cytoplasmic KEAP-1/Nrf2 complex, which is stimulated by ROS, to release Nrf2 for entry into the nucleus, where it upregulates antioxidant gene expression. Major antioxidant enzymes include glutathione peroxidase (GPx), catalase (CAT), superoxide dismutases (SOD), hemoxygenases (HO), and peroxiredoxins (Prdx). Notably, the pancreatic islet β-cell does not express GPx or CAT, which puts it at greater risk for ROS damage caused by postprandial hyperglycemia. Experimentally, overexpression of GPx in β-cell lines and isolated islets, as well as in vivo studies using genetic models of type 2 diabetes (T2D), has demonstrated enhanced protection against hyperglycemia and oxidative stress. Oral treatment of diabetic rodents with ebselen, a GPx mimetic that is approved for human clinical use, reproduced these findings. Prdx detoxify hydrogen peroxide and reduce lipid peroxides. This suggests that pharmacologic development of more potent, β-cell-specific antioxidants could be valuable as a treatment for oxidative stress due to postprandial hyperglycemia in early T2D in humans. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- R. Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Stancill JS, Hansen PA, Mathison AJ, Schmidt EE, Corbett JA. Deletion of Thioredoxin Reductase Disrupts Redox Homeostasis and Impairs β-Cell Function. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac034. [PMID: 35873655 PMCID: PMC9301323 DOI: 10.1093/function/zqac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as mediators of pancreatic β-cell damage. While β-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in β-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and β-cell survival in vivo remains unclear. Here, we generated mice with a β-cell specific knockout of thioredoxin reductase 1 (Txnrd1fl/fl; Ins1Cre/+ , βKO). Despite blunted glucose-stimulated insulin secretion, knockout mice maintain normal whole-body glucose homeostasis. Unlike pancreatic islets with acute Txnrd1 inhibition, βKO islets do not demonstrate increased sensitivity to ROS. RNA-sequencing analysis revealed that Txnrd1-deficient β-cells have increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and altered expression of genes involved in heme and glutathione metabolism, suggesting an adaptive response. Txnrd1-deficient β-cells also have decreased expression of factors controlling β-cell function and identity which may explain the mild functional impairment. Together, these results suggest that Txnrd1-knockout β-cells compensate for loss of this essential antioxidant pathway by increasing expression of Nrf2-regulated antioxidant genes, allowing for protection from excess ROS at the expense of normal β-cell function and identity.
Collapse
Affiliation(s)
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Edward E Schmidt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MN 59717, USA,Redox Biology Laboratory, University of Veterinary Medicine, Budapest 1078, Hungary
| | | |
Collapse
|
3
|
Renken S, Nakajima T, Magalhaes I, Mattsson J, Lundqvist A, Arnér ESJ, Kiessling R, Wickström SL. Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. J Immunother Cancer 2022; 10:jitc-2021-004458. [PMID: 35738800 PMCID: PMC9226989 DOI: 10.1136/jitc-2021-004458] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Adoptive cell therapy using cytotoxic lymphocytes is an efficient immunotherapy against solid and hematological cancers. However, elevated levels of reactive oxygen species (ROS) in the hostile tumor microenvironment can impair NK cell and T cell function. Auranofin, a gold (I)-containing phosphine compound, is a strong activator of the transcription factor Nrf2. Nrf2 controls a wide range of downstream targets important for the cells to obtain increased resistance to ROS. In this study, we present a strategy using auranofin to render human cytotoxic lymphocytes resistant toward oxidative stress. Methods Melanoma patient-derived tumor infiltrating lymphocytes (TIL) and healthy donor-derived NK cells and CD19-directed CAR T cells were pretreated with a low dose of auranofin. Their resistance toward oxidative stress was assessed by measuring antitumoral responses (killing-assay, degranulation/CD107a, cytokine production) and intracellular ROS levels (flow cytometry) in conditions of oxidative stress. To confirm that the effects were Nrf2 dependent, the transcription level of Nrf2-driven target genes was analyzed by qPCR. Results Pretreatment of human TIL and NK cells ex vivo with a low-dose auranofin significantly lowered their accumulation of intracellular ROS and preserved their antitumoral activity despite high H2O2 levels or monocyte-derived ROS. Furthermore, auranofin pretreatment of CD19 CAR-T cells or TIL increased their elimination of CD19 +tumor cells or autologous tumor spheroids, respectively, especially during ROS exposure. Analysis of Nrf2-driven target genes revealed that the increased resistance against ROS was Nrf2 dependent. Conclusion These novel findings suggest that Nrf2 activation in human cytotoxic lymphocytes could be used to enhance the efficacy of adoptive cell therapy.
Collapse
Affiliation(s)
- Stefanie Renken
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Takahiro Nakajima
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Selenoprotein Research and National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Stina Linnea Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden .,Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Stancill JS, Happ JT, Broniowska KA, Hogg N, Corbett JA. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1004-R1013. [PMID: 32292063 DOI: 10.1152/ajpregu.00011.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both reactive nitrogen and oxygen species (RNS and ROS), such as nitric oxide, peroxynitrite, and hydrogen peroxide, have been implicated as mediators of pancreatic β-cell damage during the pathogenesis of autoimmune diabetes. While β-cells are thought to be vulnerable to oxidative damage due to reportedly low levels of antioxidant enzymes, such as catalase and glutathione peroxidase, we have shown that they use thioredoxin reductase to detoxify hydrogen peroxide. Thioredoxin reductase is an enzyme that participates in the peroxiredoxin antioxidant cycle. Peroxiredoxins are expressed in β-cells and, when overexpressed, protect against oxidative stress, but the endogenous roles of peroxiredoxins in the protection of β-cells from oxidative damage are unclear. Here, using either glucose oxidase or menadione to continuously deliver hydrogen peroxide, or the combination of dipropylenetriamine NONOate and menadione to continuously deliver peroxynitrite, we tested the hypothesis that β-cells use peroxiredoxins to detoxify both of these reactive species. Either pharmacological peroxiredoxin inhibition with conoidin A or specific depletion of cytoplasmic peroxiredoxin 1 (Prdx1) using siRNAs sensitizes INS 832/13 cells and rat islets to DNA damage and death induced by hydrogen peroxide or peroxynitrite. Interestingly, depletion of peroxiredoxin 2 (Prdx2) had no effect. Together, these results suggest that β-cells use cytoplasmic Prdx1 as a primary defense mechanism against both ROS and RNS.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John T Happ
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Stancill JS, Broniowska KA, Oleson BJ, Naatz A, Corbett JA. Pancreatic β-cells detoxify H 2O 2 through the peroxiredoxin/thioredoxin antioxidant system. J Biol Chem 2019; 294:4843-4853. [PMID: 30659092 DOI: 10.1074/jbc.ra118.006219] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is thought to promote pancreatic β-cell dysfunction and contribute to both type 1 and type 2 diabetes. Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, are mediators of oxidative stress that arise largely from electron leakage during oxidative phosphorylation. Reports that β-cells express low levels of antioxidant enzymes, including catalase and GSH peroxidases, have supported a model in which β-cells are ill-equipped to detoxify ROS. This hypothesis seems at odds with the essential role of β-cells in the control of metabolic homeostasis and organismal survival through exquisite coupling of oxidative phosphorylation, a prominent ROS-producing pathway, to insulin secretion. Using glucose oxidase to deliver H2O2 continuously over time and Amplex Red to measure extracellular H2O2 concentration, we found here that β-cells can remove micromolar levels of this oxidant. This detoxification pathway utilizes the peroxiredoxin/thioredoxin antioxidant system, as selective chemical inhibition or siRNA-mediated depletion of thioredoxin reductase sensitized β-cells to continuously generated H2O2 In contrast, when delivered as a bolus, H2O2 induced the DNA damage response, depleted cellular energy stores, and decreased β-cell viability independently of thioredoxin reductase inhibition. These findings show that β-cells have the capacity to detoxify micromolar levels of H2O2 through a thioredoxin reductase-dependent mechanism and are not as sensitive to oxidative damage as previously thought.
Collapse
Affiliation(s)
- Jennifer S Stancill
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Katarzyna A Broniowska
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bryndon J Oleson
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Aaron Naatz
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
6
|
Ferrari SM, Elia G, Ragusa F, Paparo SR, Caruso C, Benvenga S, Fallahi P, Antonelli A. The protective effect of myo-inositol on human thyrocytes. Rev Endocr Metab Disord 2018; 19:355-362. [PMID: 30511181 DOI: 10.1007/s11154-018-9476-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Patients affected by autoimmune thyroiditis reached positive effects on indices of thyroid autoimmunity and/or thyroidal function, after following a treatment with selenomethionine (Se) alone, or Se in combination with Myo-inositol (Myo-Ins). Our purpose was to investigate if Myo-Ins alone, or a combination of Se + Myo-Ins, is effective in protecting thyroid cells from the effects given by cytokines, or hydrogen peroxide (H2O2). We assessed the interferon (IFN)-γ-inducible protein 10 (IP-10/CXCL10) secretion by stimulating primary thyrocytes (obtained from Hashimoto's thyroiditis or from control patients) with cytokines in presence/absence of H2O2. Our results confirm: 1) the toxic effect of H2O2 in primary thyrocytes that leads to an increase of the apoptosis, to a decrease of the proliferation, and to a slight reduction of cytokines-induced CXCL10 secretion; 2) the secretion of CXCL10 chemokine induced by IFN-γ + tumor necrosis factor alpha (TNF)-α has been decreased by Myo + Ins, both in presence or absence of H2O2; 3) no effect has been shown by the treatment with Se. Therefore, a protective effect of Myo-Ins on thyroid cells has been suggested by our data, which exact mechanisms are at the basis of this effect need to be furtherly investigated.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Claudia Caruso
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular and Clinical Endocrinology and Women's Endocrine Health, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', I-98125, Messina, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, Via Savi, 10, I-56126, Pisa, Italy.
| |
Collapse
|
7
|
Gerencser AA. Metabolic activation-driven mitochondrial hyperpolarization predicts insulin secretion in human pancreatic beta-cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:817-828. [PMID: 29886047 DOI: 10.1016/j.bbabio.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial metabolism plays a central role in insulin secretion in pancreatic beta-cells. Generation of protonmotive force and ATP synthesis from glucose-originated pyruvate are critical steps in the canonical pathway of glucose-stimulated insulin secretion. Mitochondrial metabolism is intertwined with pathways that are thought to amplify insulin secretion with mechanisms distinct from the canonical pathway, and the relative importance of these two pathways is controversial. Here I show that glucose-induced mitochondrial membrane potential (MMP) hyperpolarization is necessary for, and predicts, the rate of insulin secretion in primary cultured human beta-cells. When glucose concentration is elevated, increased metabolism results in a substantial MMP hyperpolarization, as well as in increased rates of ATP synthesis and turnover marked by faster cell respiration. Using modular kinetic analysis I explored what properties of cellular energy metabolism enable a large glucose-induced change in MMP in human beta-cells. I found that an ATP-dependent pathway activates glucose or substrate oxidation, acting as a positive feedback in energy metabolism. This activation mechanism is essential for concomitant fast respiration and high MMP, and for a high magnitude glucose-induced MMP hyperpolarization and therefore for insulin secretion.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States; Image Analyst Software, 43 Nova Lane, Novato, CA 94945, United States.
| |
Collapse
|
8
|
Mallek A, Movassat J, Ameddah S, Liu J, Semiane N, Khalkhal A, Dahmani Y. Experimental diabetes induced by streptozotocin in the desert gerbil, Gerbillus gerbillus , and the effects of short-term 20-hydroxyecdysone administration. Biomed Pharmacother 2018; 102:354-361. [DOI: 10.1016/j.biopha.2018.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022] Open
|
9
|
Amelioration of streptozotocin‑induced pancreatic β cell damage by morin: Involvement of the AMPK‑FOXO3‑catalase signaling pathway. Int J Mol Med 2017; 41:1409-1418. [PMID: 29286118 PMCID: PMC5819920 DOI: 10.3892/ijmm.2017.3357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/13/2017] [Indexed: 01/24/2023] Open
Abstract
Pancreatic β cells are sensitive to oxidative stress, which is one of the predominant causes of cell damage and the emergence of diabetes. The identification of effective therapeutic strategies to protect pancreatic cells from oxidative stress has increased interest in the screening of antioxidants from natural products. The present study aimed to investigate the protective effects of morin against streptozotocin (STZ)‑induced cell damage in a rat insulinoma cell line (RINm5F pancreatic β cells) and to identify the underlying mechanisms. The results indicated that morin inhibited the increase in intracellular reactive oxygen species, attenuated the activity of poly (ADP‑ribose) polymerase, restored intracellular nicotinamide adenine dinucleotide levels and reduced the apoptotic cell death of STZ‑treated pancreatic β cells. Treatment with morin significantly upregulated catalase in pancreatic β cells, and ameliorated the STZ‑induced loss of catalase at the genetic, protein and enzymatic level. In further experiments, morin induced the phosphorylation of 5' adenosine monophosphate‑activated protein kinase (AMPK), which subsequently promoted the translocation of forkhead box O3 (FOXO3) to the nucleus. Specific small interfering RNAs (siRNAs) against AMPK and FOXO3 suppressed morin‑induced catalase expression. Furthermore, catalase‑specific siRNA abolished the protective effects of morin against STZ‑stimulated cell death. Taken together, these results indicated that morin protected RINm5F cells from STZ‑induced cell damage by triggering the phosphorylation of AMPK, thus resulting in subsequent activation of FOXO3 and induction of catalase.
Collapse
|
10
|
Cabric S, Elgue G, Nilsson B, Korsgren O, Schmidt P. Adenovirus-Mediated Expression of the Anticoagulant Hirudin in Human Islets: A Tool to Make the Islets Biocompatible to Blood. Cell Transplant 2017; 15:759-67. [PMID: 17269446 DOI: 10.3727/000000006783464390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human islets induce an injurious clotting reaction at the time of transplantation. A potential strategy to counteract this reaction would be to allow the islets to express hirudin, a protein with direct anticoagulative activity. Human islets were transduced with an adenoviral vector encoding hirudin, an empty corresponding vector, or left untreated. Islet culture supernatants were analyzed for hirudin using an ELISA, a chromogenic substrate assay based on the thrombin-binding properties of hirudin and in a whole blood viscosimetry assay. Immunohistochemical evaluation and determination of hirudin content revealed an abundant expression of hirudin after transduction. Hirudin content in transduced islets was in the range of the insulin content levels. A delay in human whole blood clotting time could be observed after addition of supernatants taken from islet cultures expressing hirudin. However, transduced islets showed an impaired glucose-stimulated insulin release, but could readily be retrieved 6 weeks after transplantation to athymic mice. A marked expression and secretion of hirudin with functional capacity can be induced in human islets using an adenoviral vector. The impairment in glucose-stimulated insulin release in hirudin-secreting islets, compared to controls, indicates that the additional protein synthesis affects the functional capacity of the islets.
Collapse
Affiliation(s)
- Sanja Cabric
- Division of Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Jung S, Kim MH, Park JH, Jeong Y, Ko KS. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels. J Med Food 2017; 20:626-635. [DOI: 10.1089/jmf.2017.3935] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Soohan Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Min Hyung Kim
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, Korea
| | - Jae Hee Park
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, Korea
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan-si, Korea
- Research Center for Industrialization of Natural Nutraceuticals, Dankook University, Cheonan-si, Korea
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, Korea
| |
Collapse
|
12
|
Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem 2017; 118:3577-3585. [PMID: 28460155 DOI: 10.1002/jcb.26097] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been considered as a major hallmark for the pathogenesis and development of type 2 diabetes mellitus (T2DM), but still it is debatable whether it is a mere aggregation of inflammatory-induced responses or clinical entity that underlies with various pathophysiological factors. In this regard, the latest studies have shown the increasing trends for the involvement of reactive oxygen species (ROS) and oxidative stress in the pathogenesis and development of T2DM. ROS are highly reactive species and almost all cellular components are chemically changed due to the influence of ROS that ultimately results in the production of lipid peroxidation. Lipid peroxidation is a major causative factor for the development of oxidative stress that leads to overt T2DM and its associated micro- and macro-vascular complications. In this article, we have briefly described the role of various causative factors, transcriptional and metabolic pathways which are responsible to increase the production of oxidative stress, a most pivotal factor for the pathogenesis and development of T2DM. Therefore, we conclude that measurement of oxidative stress biomarkers may be one of the optional tool for the diagnosis and prediction of T2DM. Moreover, the key findings described in this article also provides a new conceptual framework for forthcoming investigations on the role of oxidative stress in pathogenesis of T2DM and drug discovery. J. Cell. Biochem. 118: 3577-3585, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
13
|
The Effectiveness of Various Salacca Vinegars as Therapeutic Agent for Management of Hyperglycemia and Dyslipidemia on Diabetic Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2017; 2017:8742514. [PMID: 28424779 PMCID: PMC5382423 DOI: 10.1155/2017/8742514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
The aim of this study was to explore the potency of salacca vinegar made from various Indonesian salacca fruit extracts as therapeutic agent for hyperglycemia and dyslipidemia for STZ-induced diabetic rats. The rats were grouped into untreated rats, STZ-induced diabetic rats without treatment, and STZ-induced diabetic rats treated with Pondoh salacca vinegar, Swaru salacca vinegar, Gula Pasir salacca vinegar, Madu salacca vinegar, or Madura salacca vinegar. Parameter observed included blood glucose, total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglyceride (TG), malondialdehyde (MDA), superoxide dismutase (SOD), and pancreas histopathology of the samples. The results demonstrated that all salacca vinegars were capable of reducing blood sugar (from 25.1 to 62%) and reducing LDL (from 9.5 to 14.8 mg/dL), TG (from 58.3 to 69.5 mg/dL), MDA (from 1.1 to 2.2 mg/dL), and TC (from 56.3 to 70.5 mg/dL) as well as increasing HDL blood sugar of STZ-induced diabetic Wistar rats (from 52.3 to 60 mg/dL). Various salacca vinegars were also capable of regenerating pancreatic cells. Nevertheless, the ability of Swaru salacca vinegar to manage hyperglycemia and dyslipidemia appeared to be superior to other salacca vinegars. Swaru salacca vinegar is a potential therapeutic agent to manage hyperglycemia and dyslipidemia of STZ-induced diabetic rats.
Collapse
|
14
|
Park MH, Ju JW, Kim M, Han JS. The protective effect of daidzein on high glucose-induced oxidative stress in human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2016; 71:21-8. [PMID: 26756092 DOI: 10.1515/znc-2015-0141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022]
Abstract
Endothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02-0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.
Collapse
|
15
|
Sato T, Kaneko YK, Sawatani T, Noguchi A, Ishikawa T. Obligatory Role of Early Ca(2+) Responses in H2O2-Induced β-Cell Apoptosis. Biol Pharm Bull 2016; 38:1599-605. [PMID: 26424020 DOI: 10.1248/bpb.b15-00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study using apoptosis analysis suggested that Ca(2+) release through inositol 1,4,5-trisphosphate (IP3) receptors and the subsequent Ca(2+) influx through store-operated channels (SOCs) constitute a triggering signal for H2O2-induced β-cell apoptosis. In the present study, we further examined the obligatory role of early Ca(2+) responses in β-cell apoptosis induction. H2O2 induced elevation of the cytosolic Ca(2+) concentration ([Ca(2+)]c) consisting of two phases: an initial transient [Ca(2+)]c elevation within 30 min and a slowly developing one thereafter. The first phase was almost abolished by 2-aminoethoxydiphenylborate (2-APB), which blocks IP3 receptors and cation channels including SOCs, while the second phase was only partially inhibited by 2-APB. The inhibition by 2-APB of the second phase was not observed when 2-APB was added 30 min after the treatment with H2O2. 2-APB also largely inhibited elevation of the mitochondrial Ca(2+) concentration ([Ca(2+)]m) induced by H2O2 when 2-APB was applied simultaneously with H2O2, but not when applied 30 min after H2O2 application. In addition, 2-APB inhibited the release of mitochondrial cytochrome c to the cytosol induced by H2O2 when 2-APB was applied simultaneously with H2O2 but not 30 min post-treatment. H2O2-induced [Ca(2+)]m elevation and cell death were not inhibited by Ru360, an inhibitor of the mitochondrial calcium uniporter (MCU). These results suggest that the H2O2-induced initial [Ca(2+)]c elevation, occurring within 30 min and mediated by Ca(2+) release through IP3 receptors and subsequent Ca(2+) influx through SOCs, leads to [Ca(2+)]m elevation, possibly through a mechanism independent of MCU, thereby inducing cytochrome c release and consequent apoptosis.
Collapse
Affiliation(s)
- Taiji Sato
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | |
Collapse
|
16
|
Eny KM, El-Sohemy A, Cornelis MC, Sung YK, Bae SC. Catalase and PPARg2 genotype and risk of systemic lupus erythematosus in Koreans. Lupus 2016; 14:351-5. [PMID: 15934434 DOI: 10.1191/0961203305lu2091oa] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Catalase (CAT) and peroxisome proliferator activated receptor-g2 (PPARg2) are important regulators of oxidative stress and inflammation, which may contribute to the development of systemic lupus erythematosus (SLE). The objective of this study was to investigate the effects of genetic polymorphisms of CAT and PPARg2 on risk and severity of SLE in a Korean population. DNA was isolated from blood samples collected from 345 patients with SLE and 400 controls. Genotyping for the 2262C!T polymorphism of CAT and the Pro12Ala polymorphism of PPARg2 were performed by PCR-RFLP analysis. The severity of SLE was assessed using the Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) damage index (SDI). No association was observed between genotypes for any of the clinical manifestations of SLE. CAT and PPARg2 genotypes were not associated with either risk or severity of SLE. For subjects who were carriers of the high activity Tallele for CATand have the Pro/Pro genotype for PPARg2, the odds ratio (95% confidence interval) for risk of SLE was 0.45 (0.23-1.08). Our results suggest that genetic polymorphisms of CAT and PPARg2 do not play a significant role in the development of SLE in a Korean population. A possible protective effect of a combined genotype warrants further investigation.
Collapse
Affiliation(s)
- K M Eny
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
17
|
Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with atorvastatin attenuates progression of insulin resistance and pancreatic fibrosis in the Otsuka Long-Evans Tokushima fatty rats. Metabolism 2016; 65:41-53. [PMID: 26773928 DOI: 10.1016/j.metabol.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/20/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE The effects of statins on insulin resistance (IR) and type 2 diabetes mellitus (T2DM) are still controversial and its effects on pancreatic fibrosis are poorly defined. The purpose of this study is to examine the effects of atorvastatin on these issues using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, an animal model of IR, T2DM and pancreatic fibrosis. METHODS Male OLETF rats were divided into 2 groups at 6weeks of age. The first group received a standard diet until the end of experimental period at age 28weeks. The second group was given a diet containing 0.05% atorvastatin from 6weeks of age, before the onset of IR and pancreatic fibrosis. The age-matched Long-Evans Tokushima Otsuka rats without presence of IR, T2DM and pancreatic fibrosis, received a standard diet and were used as a normal control. RESULTS Atorvastatin slightly decreased serum fasting glucose and insulin levels, but significantly improved index of IR compared with the untreated OLETF rats. In addition, atorvastatin markedly decreased transforming growth factor-β1 mRNA expression, myeloperoxidase activity and proportion of fibrotic area, and elevated superoxide dismutase activity in the pancreas compared with the untreated OLETF rats. CONCLUSIONS These findings suggest that atorvastatin exerts favorable influence on progression of IR and pancreatic inflammation and fibrosis via pleiotropic effect such as anti-oxidative property.
Collapse
Affiliation(s)
- Limin Wei
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Mitsuyoshi Yamamoto
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | - Masaru Harada
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Makoto Otsuki
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan; Department of Internal Medicine, Kitasuma Hospital, Kobe, Japan
| |
Collapse
|
18
|
Hou X, Yang Y, Zhu S, Hua C, Zhou R, Mu Y, Tang Z, Li K. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Mol Genet Genomics 2015; 291:559-73. [PMID: 26458558 DOI: 10.1007/s00438-015-1126-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
The pig is an important source of animal protein, and is also an ideal model for human disease. There are significant differences in growth rate, muscle mass, and meat quality between different breeds. To understand the molecular mechanisms underlying porcine skeletal muscle phenotypes, we performed mRNA and miRNA profiling of muscle from three different breeds of pig, Landrace (lean-type), Tongcheng (obese-type), and Wuzhishan (mini-type) by Solexa sequencing. Forty-three genes and 106 miRNAs were differentially expressed between Landrace and Tongcheng pigs, 92 genes and 151 miRNAs were differentially expressed between Tongcheng and Wuzhishan pigs, and 145 genes and 156 miRNAs were differential expressed between Landrace and Wuzhishan pigs. Gene ontology analysis suggested that genes differentially expressed between Landrace and Tongcheng pigs were mainly involved in the biological processes of oxidative stress and muscle organ development. Meanwhile, for Tongcheng vs Wuzhishan and Landrace vs Wuzhishan pigs, the differentially expressed genes were involved in fatty acid metabolism, oxidative stress, muscle contraction, and muscle organ development, processes that are closely related to meat quality. To investigate the molecular mechanisms underlying meat quality diversity based on differentially expressed genes and miRNAs, interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down-regulated miRNAs or down-regulated genes with up-regulated miRNAs. Our findings identify candidate genes and miRNAs associated with muscle development and indicate their potential roles in muscle phenotype variance between different pig breeds. These results serve as a foundation for further studies on muscle development and molecular breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China
| | - Shiyun Zhu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chaoju Hua
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yulian Mu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
19
|
Park MH, Han JS. Padina arborescens extract protects high glucose-induced apoptosis in pancreatic β cells by reducing oxidative stress. Nutr Res Pract 2014; 8:494-500. [PMID: 25324927 PMCID: PMC4198960 DOI: 10.4162/nrp.2014.8.5.494] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/27/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study investigated whether Padina arborescens extract (PAE) protects INS-1 pancreatic β cells against glucotoxicity-induced apoptosis. MATERIALS/METHODS Assays, including cell viability, lipid peroxidation, generation of intracellular ROS, NO production, antioxidant enzyme activity and insulin secretion, were conducted. The expressions of Bax, Bcl-2, and caspase-3 proteins in INS-1 cells were evaluated by western blot analysis, and apoptosis/necrosis induced by high glucose was determined by analysis of FITC-Annexin V/PI staining. RESULTS Treatment with high concentrations of glucose induced INS-1 cell death, but PAE at concentrations of 25, 50 or 100 µg/ml significantly increased cell viability. The treatment with PAE dose dependently reduced the lipid peroxidation and increased the activities of antioxidant enzymes reduced by 30 mM glucose, while intracellular ROS levels increased under conditions of 30 mM glucose. PAE treatment improved the secretory responsiveness following stimulation with glucose. The results also demonstrated that glucotoxicity-induced apoptosis is associated with modulation of the Bax/Bcl-2 ratio. When INS-1 cells were stained with Annexin V/PI, we found that PAE reduced apoptosis by glucotoxicity. CONCLUSIONS In conclusion, the present study indicates that PAE protects against high glucose-induced apoptosis in pancreatic β cells by reducing oxidative stress.
Collapse
Affiliation(s)
- Mi Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Korea
| |
Collapse
|
20
|
Lortz S, Schröter S, Stückemann V, Mehmeti I, Lenzen S. Influence of cytokines on Dmt1 iron transporter and ferritin expression in insulin-secreting cells. J Mol Endocrinol 2014; 52:301-10. [PMID: 24850829 DOI: 10.1530/jme-13-0261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Free intracellular ferrous iron (Fe(2+)) is essential for the generation of the extremely toxic hydroxyl radicals, which contribute to β-cell destruction by cytokines. Therefore the expression of the different divalent metal transporter 1 (Dmt1) isoforms and ferritin (Ft) subunits, responsible for iron import and chelation, was analyzed under pro-inflammatory conditions (IL1β alone or together with TNFα+IFNγ). The Dmt1 isoforms (1A/1B and +IRE/-IRE) and the total Dmt1 expression in insulin-producing cells (RINm5F and INS-1E), in primary rat islets and, for comparison, in the neuroendocrine PC12 cell line were quantified by qRT-PCR. In addition, the expression of the light (L-Ft) and heavy Ft (H-Ft) subunits and the mitochondrial Ft isoform (Mtft) in insulin-producing cells under control conditions and after cytokine treatment was estimated. The 1B isoform was the predominant Dmt1 mRNA in all insulin-producing cells, accounting for almost 100% of the 1A/1B isoform expression. For the IRE variants, +IRE expression was higher than -IRE expression. Pro-inflammatory cytokines accelerated the expression of Dmt1 isoforms significantly with an overall 2.5- to 3-fold increase in the total Dmt1 expression. In contrast, the expression of the iron-buffering ferritin subunits L- and H-Ft was unaffected by IL1β and only slightly induced by the cytokine mixture. Mtft expression was also not increased. Dmt1 expression was significantly elevated through pro-inflammatory cytokines, whereas Ft expression was marginally increased. This imbalance between the increased iron transport capacity and the almost unaffected iron storage capacity can foster cytokine-mediated formation of hydroxyl radicals and thus pro-inflammatory cytokine toxicity through elevated free iron concentrations.
Collapse
Affiliation(s)
- S Lortz
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| | - S Schröter
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| | - V Stückemann
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| | - I Mehmeti
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| | - S Lenzen
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| |
Collapse
|
21
|
Kanak MA, Takita M, Kunnathodi F, Lawrence MC, Levy MF, Naziruddin B. Inflammatory response in islet transplantation. Int J Endocrinol 2014; 2014:451035. [PMID: 24883060 PMCID: PMC4021753 DOI: 10.1155/2014/451035] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022] Open
Abstract
Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.
Collapse
Affiliation(s)
- Mazhar A. Kanak
- Institute for Biomedical Studies, Baylor University, Waco, TX 76712, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | - Faisal Kunnathodi
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | | | - Marlon F. Levy
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| | - Bashoo Naziruddin
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| |
Collapse
|
22
|
Sparre T, Bergholdt R, Nerup J, Pociot F. Application of genomics and proteomics in Type 1 diabetes pathogenesis research. Expert Rev Mol Diagn 2014; 3:743-57. [PMID: 14628902 DOI: 10.1586/14737159.3.6.743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Type 1 diabetes is a polygenic, multifactorial autoimmune disease characterized by selective and irreversible destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. An exogenous supply of insulin is required to sustain life after the onset of Type 1 diabetes. Despite decades of intensive research into its pathogenesis, no single gene or protein has been found to be responsible for Type 1 diabetes. This review will describe the use of large-scale genomics and proteomics in studying the pathogenesis of Type 1 diabetes, and will discuss future directions of research in the field.
Collapse
|
23
|
Karunakaran U, Park KG. A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab J 2013; 37:106-12. [PMID: 23641350 PMCID: PMC3638220 DOI: 10.4093/dmj.2013.37.2.106] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in diabetic complications, especially β-cell dysfunction and failure. Under physiological conditions, reactive oxygen species serve as second messengers that facilitate signal transduction and gene expression in pancreatic β-cells. However, under pathological conditions, an imbalance in redox homeostasis leads to aberrant tissue damage and β-cell death due to a lack of antioxidant defense systems. Taking into account the vulnerability of islets to oxidative damage, induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed as a way to protect β-cells against diabetic insults. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions, as well as the therapeutic benefits of antioxidants, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with β-cell failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Departments of Internal Medicine, Biochemistry and Cell Biology, Research Institute of Aging and Metabolism and World Class University Program, Kyungpook National University School of Medicine, Daegu, Korea
| | - Keun-Gyu Park
- Departments of Internal Medicine, Biochemistry and Cell Biology, Research Institute of Aging and Metabolism and World Class University Program, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
24
|
Lee HA, Han JS. Anti-inflammatory Effect of Perilla frutescens (L.) Britton var. frutescens Extract in LPS-stimulated RAW 264.7 Macrophages. Prev Nutr Food Sci 2012; 17:109-15. [PMID: 24471071 PMCID: PMC3866756 DOI: 10.3746/pnf.2012.17.2.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/12/2012] [Indexed: 11/06/2022] Open
Abstract
This study was designed to investigate the inhibitory effects of Perilla frutescens (L.) Britton var. frutescens extract on the production of inflammation-related mediators (NO, ROS, NF-κB, iNOS and COX-2) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Perilla frutescents (L.) Britton var. frutescens was air-dried and extracted with ethanol. The extract dose-dependently decreased the generation of intracellular reactive oxygen species and dose-dependently increased antioxidant enzyme activities, such as superoxide dismutase, catalase and glutathione peroxidase in lipopolysaccharide stimulated RAW 264.7 macrophages. Also, Perilla frutescens (L.) Britton var. frutescens extract suppressed NO production in lipopolysaccharide-stimulated RAW 264.7 cells. The expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), NF-κB, iNOS and COX-2 were inhibited by the treatment with the extract. Thus, this study shows the Perilla frutescens (L.) Britton var. frutescens extract could be useful for inhibition of the inflammatory process.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
25
|
Ramesh B, Saralakumari D. Antihyperglycemic, hypolipidemic and antioxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats. J Physiol Biochem 2012; 68:573-82. [PMID: 22581434 DOI: 10.1007/s13105-012-0175-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/27/2012] [Indexed: 01/11/2023]
Abstract
High fructose feeding (66 % of fructose) induces type-2 diabetes in rats, which is associated with the insulin resistance, hyperinsulinemia, hypertriglyceridemia and oxidative stress. The present study was undertaken to evaluate the effect of ethanol extract of Commiphora mukul gum resin (CMEE) on blood glucose, plasma insulin, lipid profiles, reduced glutathione, lipid peroxidation, protein oxidation and enzymatic antioxidants like superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase in fructose-induced type-2 diabetic rats. A significant gain in body weight, hyperglycemia, hyperinsulinemia, increased lipid profiles, lipid peroxidation, protein oxidation and decreased reduced glutathione, activities of enzymatic antioxidants and insulin sensitivity (increased homeostasis assessment assay) were observed in high-fructose-induced diabetic rats. The administration of CMEE (200 mg/kg/day) daily for 60 days in high-fructose-induced diabetic rats reversed the above parameters significantly. CMEE has the ability to improve insulin sensitivity and delay the development of insulin resistance, aggravate antioxidant status in diabetic rats and may be used as an adjuvant therapy for patients with insulin resistance.
Collapse
Affiliation(s)
- B Ramesh
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | | |
Collapse
|
26
|
Lee HA, Han JS. Anti-Inflammatory Effect of Fermented Liriope platyphylla Extract in LPS-stimulated RAW 264.7 Macrophages. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.4.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Takada M, Noguchi A, Sayama Y, Kurohane Kaneko Y, Ishikawa T. Inositol 1,4,5-trisphosphate receptor-mediated initial Ca(2+) mobilization constitutes a triggering signal for hydrogen peroxide-induced apoptosis in INS-1 β-cells. Biol Pharm Bull 2011; 34:954-8. [PMID: 21719997 DOI: 10.1248/bpb.34.954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are known to induce β-cell apoptosis. The present study investigated the role of Ca(2+) in H(2)O(2)-induced apoptosis of the β-cell line INS-1. Annexin V assay with flow cytometry and DNA ladder assay demonstrated that treatment of INS-1 cells with 100 µM H(2)O(2) for 18 h significantly increased apoptotic cells. A comparable level of apoptosis was also observed after 18 h when the cells were treated with 100 µM H(2)O(2) only for initial 30 min. The H(2)O(2)-induced apoptosis was abolished by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA/AM), a chelator of intracellular Ca(2+), by 2-aminoethoxydiphenylborate (2-APB), a blocker of inositol 1,4,5-trisphosphate (IP(3)) receptors and cation channels, and by xestospongin D, a blocker of IP(3) receptors, and was partially blocked by SKF-96365, a non-selective cation channel blocker. However, nicardipine, an L-type voltage-dependent Ca(2+) channel blocker, or N-(p-amylcinnamoyl)anthranilic acid (ACA), a TRPM2 blocker, had little effect on the apoptosis. The inhibitory effect of BAPTA/AM or 2-APB on the H(2)O(2)-induced apoptosis was largely attenuated when the drug was added 30 min or 1 h after start of the treatment with H(2)O(2). These results suggest that the initial intracellular Ca(2+) elevation induced by H(2)O(2), which is mediated via IP(3) receptors and store-operated cation channels, plays an obligatory role in the induction of β-cell apoptosis.
Collapse
Affiliation(s)
- Masahiro Takada
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Surugaku, Shizuoka, Shizuoka 422–8526, Japan
| | | | | | | | | |
Collapse
|
28
|
Bellamkonda R, Rasineni K, Singareddy SR, Kasetti RB, Pasurla R, Chippada AR, Desireddy S. Antihyperglycemic and antioxidant activities of alcoholic extract of Commiphora mukul gum resin in streptozotocin induced diabetic rats. PATHOPHYSIOLOGY 2011; 18:255-61. [DOI: 10.1016/j.pathophys.2010.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 02/06/2023] Open
|
29
|
Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol 2011; 2011:593863. [PMID: 21647409 PMCID: PMC3102468 DOI: 10.1155/2011/593863] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
Abstract
Redox reactions are imperative to preserving cellular metabolism yet must be strictly regulated. Imbalances between reactive oxygen species (ROS) and antioxidants can initiate oxidative stress, which without proper resolve, can manifest into disease. In type 1 diabetes (T1D), T-cell-mediated autoimmune destruction of pancreatic β-cells is secondary to the primary invasion of macrophages and dendritic cells (DCs) into the islets. Macrophages/DCs, however, are activated by intercellular ROS from resident pancreatic phagocytes and intracellular ROS formed after receptor-ligand interactions via redox-dependent transcription factors such as NF-κB. Activated macrophages/DCs ferry β-cell antigens specifically to pancreatic lymph nodes, where they trigger reactive T cells through synapse formation and secretion of proinflammatory cytokines and more ROS. ROS generation, therefore, is pivotal in formulating both innate and adaptive immune responses accountable for islet cell autoimmunity. The importance of ROS/oxidative stress as well as potential for redox modulation in the context of T1D will be discussed.
Collapse
|
30
|
Cytokine toxicity in insulin-producing cells is mediated by nitro-oxidative stress-induced hydroxyl radical formation in mitochondria. J Mol Med (Berl) 2011; 89:785-98. [PMID: 21487676 DOI: 10.1007/s00109-011-0747-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/22/2011] [Accepted: 03/07/2011] [Indexed: 01/27/2023]
Abstract
Although nitric oxide (NO) and oxidative stress both contribute to proinflammatory cytokine toxicity in pancreatic β-cells during type 1 diabetes mellitus (T1DM) development, the interactions between NO and reactive oxygen species (ROS) in cytokine-mediated β-cell death have not been clarified. Exposure of insulin-producing RINm5F cells to IL-1β generated NO, while exposure to a combination of IL-1β, TNF-α, and IFN-γ, which simulates T1DM conditions, generated both NO and ROS. In theory, two reactions between NO and ROS are possible, one with the superoxide radical yielding peroxynitrite, and the other with hydrogen peroxide (H(2)O(2)) yielding hydroxyl radicals. Results of the present work exclude peroxynitrite involvement in cytokine toxicity to β-cells because its generation did not correlate with the toxic action of cytokines. On the other hand, we show that H(2)O(2), produced upon exposure of insulin-producing cell clones and primary rat islet cells to cytokines almost exclusively in the mitochondria, reacted in the presence of trace metal (Fe(++)) with NO forming highly toxic hydroxyl radicals, thus explaining the severe toxicity that causes apoptotic β-cell death. Expression of the H(2)O(2)-inactivating enzyme catalase in mitochondria protected against cytokine toxicity by preventing hydroxyl radical formation. We therefore conclude that proinflammatory cytokine-mediated β-cell death is due to nitro-oxidative stress-mediated hydroxyl radical formation in the mitochondria.
Collapse
|
31
|
Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and beta-cell dysfunction. Pflugers Arch 2010; 460:703-18. [PMID: 20652307 DOI: 10.1007/s00424-010-0862-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus type 1 and 2 (T1DM and T2DM) are complex multifactorial diseases. Loss of beta-cell function caused by reduced secretory capacity and enhanced apoptosis is a key event in the pathogenesis of both diabetes types. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of beta-cell function during the development of diabetes. Because of their low antioxidant capacity, beta-cells are extremely sensitive towards oxidative stress. In beta-cells, important targets for an oxidant insult are cell metabolism and K(ATP) channels. The oxidant-evoked alterations of K(ATP) channel activity seem to be critical for oxidant-induced dysfunction because genetic ablation of K(ATP) channels attenuates the effects of oxidative stress on beta-cell function. Besides the effects on metabolism, interference of oxidants with mitochondria induces key events in apoptosis. Consequently, increasing antioxidant defence is a promising strategy to delay beta cell failure in (pre)-diabetic patients or during islet transplantation. Knock-out of K(ATP) channels has beneficial effects on oxidant-induced inhibition of insulin secretion and cell death. Interestingly, these effects can be mimicked by sulfonylureas that have been used in the treatment of T2DM for many years. Loss of functional K(ATP) channels leads to up-regulation of antioxidant enzymes, a process that depends on cytosolic Ca(2+). These observations are of great importance for clinical intervention because they show a possibility to protect beta-cells at an early stage before dramatic changes of the secretory capacity and loss of cell mass become manifest and lead to glucose intolerance or even overt diabetes.
Collapse
Affiliation(s)
- Gisela Drews
- Department of Pharmacology and Clinical Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, Germany.
| | | | | |
Collapse
|
32
|
Gougoura S, Liakos P, Koukoulis GN. Effect of CRH on NO bioavailability, ROS production and antioxidant defense systems in endothelial EAhy926 cells. Free Radic Res 2010; 44:803-12. [DOI: 10.3109/10715762.2010.485988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. ANNALES D'ENDOCRINOLOGIE 2010; 71:291-6. [PMID: 20398890 DOI: 10.1016/j.ando.2010.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/27/2010] [Accepted: 03/08/2010] [Indexed: 11/21/2022]
Abstract
Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas.
Collapse
|
34
|
Modulation of Early Inflammatory Reactions to Promote Engraftment and Function of Transplanted Pancreatic Islets in Autoimmune Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:725-47. [DOI: 10.1007/978-90-481-3271-3_32] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, Guo L, Kulkarni RN, Loscalzo J, Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 2009; 24:1497-505. [PMID: 20032314 DOI: 10.1096/fj.09-136572] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with type 2 diabetes lose beta cells, but the underlying mechanisms are incompletely understood. Glucose-6-phosphate dehydrogenase (G6PD) is the principal source of the major intracellular reductant, NADPH, which is required by many enzymes, including enzymes of the antioxidant pathway. Previous work from our laboratory has shown that high glucose impairs G6PD activity in endothelial and kidney cells, which leads to decreased cell survival. Pancreatic beta cells are highly sensitive to increased ROS. This study aimed to determine whether G6PD and NADPH play central roles in beta-cell survival. Human and mouse islets, MIN6 cell line, and G6PD deficient mice were studied. High glucose inhibited G6PD expression and activity. Inhibition of G6PD with siRNA led to increased ROS and apoptosis, decreased proliferation, and impaired insulin secretion. High glucose decreased insulin secretion, which was improved by overexpressing G6PD. G6PD-deficient mice had smaller islets and impaired glucose tolerance compared with control mice, which suggests that G6PD deficiency per se leads to beta-cell dysfunction and death. G6PD plays an important role in beta-cell function and survival. High-glucose-mediated decrease in G6PD activity may provide a mechanistic explanation for the gradual loss of beta cells in patients with diabetes.
Collapse
Affiliation(s)
- Zhaoyun Zhang
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prevention of hepatic ischemia-reperfusion injury by pre-administration of catalase-expressing adenovirus vectors. J Control Release 2009; 142:431-7. [PMID: 19951728 DOI: 10.1016/j.jconrel.2009.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 12/30/2022]
Abstract
Liver ischemia/reperfusion (I/R) injury, which is mainly caused by the generation of reactive oxygen species (ROS) during the reperfusion, remains an important clinical problem associated with liver transplantation and major liver surgery. Therefore, ROS should be detoxified to prevent hepatic I/R-induced injury. Delivery of antioxidant genes into liver is considered to be promising for prevention of hepatic I/R injury; however, therapeutic effects of antioxidant gene transfer to the liver have not been fully examined. The aim of this study was to examine whether adenovirus (Ad) vector-mediated catalase gene transfer in the liver is an effective approach for scavenging ROS and preventing hepatic I/R injury. Intravenous administration of Ad vectors expressing catalase, which is an antioxidant enzyme scavenging H(2)O(2), resulted in a significant increase in catalase activity in the liver. Pre-injection of catalase-expressing Ad vectors dramatically prevented I/R-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and hepatic necrosis. The livers were also protected in another liver injury model, CCl(4)-induced liver injury, by catalase-expressing Ad vectors. Furthermore, the survival rates of mice subjected to both partial hepatectomy and I/R treatment were improved by pre-injection of catalase-expressing Ad vectors. On the other hand, control Ad vectors expressing beta-galactosidase did not show any significant preventive effects in the liver on the models of I/R-induced or CCl(4)-induced hepatic injury described above. These results indicate that hepatic delivery of the catalase gene by Ad vectors is a promising approach for the prevention of oxidative stress-induced liver injury.
Collapse
|
37
|
Lee BW, Kwon SJ, Chae HY, Kang JG, Kim CS, Lee SJ, Yoo HJ, Kim JH, Park KS, Ihm SH. Dose-related cytoprotective effect of alpha-lipoic acid on hydrogen peroxide-induced oxidative stress to pancreatic beta cells. Free Radic Res 2009; 43:68-77. [PMID: 19358002 DOI: 10.1080/10715760802590400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
alpha-Lipoic acid (alpha-LA), an antioxidant used for diabetic polyneuropathy, was reported to induce AMP-activated protein kinase activation and reductions in insulin secretion in pancreatic beta-cells at high concentrations (> or = 500 micromol/l). This study investigated whether alpha-LA has a protective role under oxidative stress in beta-cells and its effect is dose-related. In INS-1 cells treated with alpha-LA (150-1200 micromol/l) for 24 h, alpha-LA itself (> or = 300 micromol/l) induced apoptotic death dose-dependently. However, pre-treatment with 150 and 300 micromol/l alpha-LA reduced the hydrogen peroxide-induced apoptosis in INS-1 cells and isolated islets. alpha-LA alleviated hydrogen peroxide-induced reactive oxygen species production, mitochondrial membrane depolarization and c-JNK activation in beta-cells. alpha-LA induced phosphoinositide 3-kinase-dependent Akt phosphorylation in INS-1 cells. While alpha-LA is harmful to beta-cells at high concentrations in vitro, it has potential cytoprotective effects on beta-cells under oxidative stress as in diabetes by its antioxidant properties and possibly by Akt phosphorylation at clinically relevant concentrations.
Collapse
Affiliation(s)
- Byung Wan Lee
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Laurence JM, Allen RDM, McCaughan GW, Logan GJ, Alexander IE, Bishop GA, Sharland AF. Gene therapy in transplantation. Transplant Rev (Orlando) 2009; 23:159-70. [PMID: 19428235 DOI: 10.1016/j.trre.2009.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene therapy is an exciting and novel technology that offers the prospect of improving transplant outcomes beyond those achievable with current clinical protocols. This review explores both the candidate genes and ways in which they have been deployed to overcome both immune and non-immune barriers to transplantation success in experimental models. Finally, the major obstacles to implementing gene therapy in the clinic are considered.
Collapse
Affiliation(s)
- Jerome M Laurence
- Collaborative Transplantation Research Group, Bosch Insitute, Royal Prince Alfred Hospital and University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Ando T, Mimura K, Johansson CC, Hanson MG, Mougiakakos D, Larsson C, Martins da Palma T, Sakurai D, Norell H, Li M, Nishimura MI, Kiessling R. Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress. THE JOURNAL OF IMMUNOLOGY 2009; 181:8382-90. [PMID: 19050255 DOI: 10.4049/jimmunol.181.12.8382] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Patients with diseases characterized by chronic inflammation, caused by infection or cancer, have T cells and NK cells with impaired function. The underlying molecular mechanisms are diverse, but one of the major mediators in this immune suppression is oxidative stress caused by activated monocytes, granulocytes, or myeloid-derived suppressor cells. Reactive oxygen species can seriously hamper the efficacy of active immunotherapy and adoptive transfer of T and NK cells into patients. In this study, we have evaluated whether enhanced expression of the antioxidant enzyme catalase in human T cells can protect them against reactive oxygen species. Human CD4(+) and CD8(+) T cells retrovirally transduced with the catalase gene had increased intracellular expression and activity of catalase. Catalase transduction made CD4(+) T cells less sensitive to H(2)O(2)-induced loss-of-function, measured by their cytokine production and ability to expand in vitro following anti-CD3 stimulation. It also enhanced the resistance to oxidative stress-induced cell death after coculture with activated granulocytes, exposure to the oxidized lipid 4-hydroxynonenal, or H(2)O(2). Expression of catalase by CMV-specific CD8(+) T cells saved cells from cell death and improved their capacity to recognize CMV peptide-loaded target cells when exposed to H(2)O(2). These findings indicate that catalase-transduced T cells potentially are more efficacious for the immunotherapy of patients with advanced cancer or chronic viral infections.
Collapse
Affiliation(s)
- Takashi Ando
- Department of Oncology and Pathology, Immune and Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Glucotoxicity, lipotoxicity, and glucolipotoxicity are secondary phenomena that are proposed to play a role in all forms of type 2 diabetes. The underlying concept is that once the primary pathogenesis of diabetes is established, probably involving both genetic and environmental forces, hyperglycemia and very commonly hyperlipidemia ensue and thereafter exert additional damaging or toxic effects on the beta-cell. In addition to their contribution to the deterioration of beta-cell function after the onset of the disease, elevations of plasma fatty acid levels that often accompany insulin resistance may, as glucose levels begin to rise outside of the normal range, also play a pathogenic role in the early stages of the disease. Because hyperglycemia is a prerequisite for lipotoxicity to occur, the term glucolipotoxicity, rather than lipotoxicity, is more appropriate to describe deleterious effects of lipids on beta-cell function. In vitro and in vivo evidence supporting the concept of glucotoxicity is presented first, as well as a description of the underlying mechanisms with an emphasis on the role of oxidative stress. Second, we discuss the functional manifestations of glucolipotoxicity on insulin secretion, insulin gene expression, and beta-cell death, and the role of glucose in the mechanisms of glucolipotoxicity. Finally, we attempt to define the role of these phenomena in the natural history of beta-cell compensation, decompensation, and failure during the course of type 2 diabetes.
Collapse
Affiliation(s)
- Vincent Poitout
- Montreal Diabetes Research Center, CR-CHUM, Technopole Angus, 2901 Rachel Est, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
41
|
Efrat S. Beta-cell replacement for insulin-dependent diabetes mellitus. Adv Drug Deliv Rev 2008; 60:114-23. [PMID: 18022276 DOI: 10.1016/j.addr.2007.08.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 08/02/2007] [Indexed: 02/07/2023]
Abstract
Beta-cell replacement is considered the optimal treatment for type 1 diabetes, however, it is hindered by a shortage of human organ donors. Given the difficulty of expanding adult beta cells in vitro, stem/progenitor cells, which can be expanded in tissue culture and induced to differentiate into multiple cell types, represent an attractive source for generation of cells with beta-cell properties. In the absence of well-characterized human pancreas progenitor cells, investigators are exploring the use of embryonic stem cells and stem/progenitor cells from other tissues. Once abundant surrogate beta cells are available, the challenge will be to protect them from recurring autoimmunity.
Collapse
|
42
|
Lai Y, Drobinskaya I, Kolossov E, Chen C, Linn T. Genetic modification of cells for transplantation. Adv Drug Deliv Rev 2008; 60:146-59. [PMID: 18037530 DOI: 10.1016/j.addr.2007.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/02/2007] [Indexed: 01/16/2023]
Abstract
Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.
Collapse
|
43
|
Robertson R, Zhou H, Zhang T, Harmon JS. Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem Biophys 2007; 48:139-46. [PMID: 17709883 DOI: 10.1007/s12013-007-0026-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes is characterized by a relentless decline in pancreatic islet beta cell function and worsening hyperglycemia despite optimal medical treatment. Our central hypothesis is that residual hyperglycemia, especially after meals, generates reactive oxygen species (ROS), which in turn causes chronic oxidative stress on the beta cell. This hypothesis is supported by several observations. Exposure of isolated islets to high glucose concentrations induces increases in intracellular peroxide levels. The beta cell has very low intrinsic levels of antioxidant proteins and activities and thus is very vulnerable to ROS. Treatment with antioxidants protects animal models of type 2 diabetes against complete development of phenotypic hyperglycemia. The molecular mechanisms responsible for the glucose toxic effect on beta cell function involves disappearance of two important regulators of insulin promoter activity, PDX-1 and MafA. Antioxidant treatment in vitro prevents disappearance of these two transcription factors and normalizes insulin gene expression. These observations suggest that the ancillary treatment with antioxidants may improve outcomes of standard therapy of type 2 diabetes in humans.
Collapse
Affiliation(s)
- R Robertson
- Pacific Northwest Research Institute, Seattle, WA, USA.
| | | | | | | |
Collapse
|
44
|
Kalpakcioglu B, Senel K. The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis. Clin Rheumatol 2007; 27:141-5. [PMID: 17912575 DOI: 10.1007/s10067-007-0746-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/30/2007] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is the most common form of inflammatory arthritis, a systemic autoimmune disease characterized by chronic inflammation of the synovial joints, ultimately leading to joint destruction and permanent disability, affecting 1% of the world population. Oxidative stress in rheumatoid inflammation, due to the fact that antioxidant systems are impaired in RA and caused by fee radicals, might have an essential role in etiology of RA. This review includes the interrelation of antioxidants against free radicals in RA patients. There is much evidence that antioxidant team that covers glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phopshate destroy reactive oxygen species and other free radicals through enzymatic as well as nonenzymatic means. The change in relative levels of antioxidants vis-à-vis free radical formation and level could be used as indicators for effective and earlier diagnosis of RA.
Collapse
Affiliation(s)
- Banu Kalpakcioglu
- Physical Therapy and Rehabilitation, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey.
| | | |
Collapse
|
45
|
Smith PS, Zhao W, Spitz DR, Robbins ME. Inhibiting catalase activity sensitizes 36B10 rat glioma cells to oxidative stress. Free Radic Biol Med 2007; 42:787-97. [PMID: 17320761 DOI: 10.1016/j.freeradbiomed.2006.11.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/10/2006] [Accepted: 11/30/2006] [Indexed: 11/27/2022]
Abstract
Gliomas are extremely resistant to anticancer therapies resulting in poor patient survival, due, in part, to altered expression of antioxidant enzymes. The primary antioxidant enzyme, catalase, is elevated constitutively in gliomas compared to normal astrocytes. We hypothesized that downregulating catalase in glioma cells would sensitize these cells to oxidative stress. To test this hypothesis, we implemented two approaches. The first, a pharmacological approach, used 3-amino-1,2,4-triazole, an irreversible inhibitor that reduced catalase enzymatic activity by 75%. Pharmacological inhibition of catalase was not associated with a reduction in rat 36B10 glioma cell viability until the cells were challenged with additional oxidative stress, i.e., ionizing radiation or hydrogen peroxide (H(2)O(2)). In the second molecular approach, we generated 36B10 glioma cells stably expressing catalase shRNA; a stable cell line displayed a 75% reduction in catalase immunoreactive protein and enzymatic activity. This was accompanied by an increase in intracellular reactive oxygen species and extracellular H(2)O(2). These cells exhibited increased sensitivity to radiation and H(2)O(2), which was rescued by the antioxidant, N-acetylcysteine. These results support the hypothesis that catalase is a major participant in the defense of 36B10 glioma cells against oxidative stress mediated by anticancer agents capable of increasing steady-state levels of H(2)O(2).
Collapse
Affiliation(s)
- Pameeka S Smith
- Section of Radiation Biology, Department of Radiation Oncology, and Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
46
|
Téllez N, Montolio M, Estil-les E, Escoriza J, Soler J, Montanya E. Adenoviral overproduction of interleukin-1 receptor antagonist increases beta cell replication and mass in syngeneically transplanted islets, and improves metabolic outcome. Diabetologia 2007; 50:602-11. [PMID: 17221214 DOI: 10.1007/s00125-006-0548-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/18/2006] [Indexed: 01/27/2023]
Abstract
AIMS/HYPOTHESIS Interleukin-1 receptor antagonist (IL1RN, also known as IL1RA) is a naturally occurring inhibitor of IL-1 action and its overproduction protects pancreatic islets from the deleterious effects of IL-1beta on beta cell replication, apoptosis and function. The aim of this study was to determine whether viral gene transfer of the Il1rn gene into rat islets ex vivo had a beneficial effect on the outcome of the graft. MATERIALS AND METHODS Streptozotocin-diabetic Lewis rats were syngeneically transplanted with 500 or 800 Ad-Il1rn-infected or uninfected islets. Islet grafts were collected on day 3, 10 or 28 after transplantation and beta cell apoptosis, replication, size and mass were determined. RESULTS Animals transplanted with 500 islets remained hyperglycaemic throughout the follow-up, as expected. Beta cell replication increased in the Ad-Il1rn group on days 3, 10 and 28 after transplantation compared with normal pancreas. In uninfected islets, by contrast, beta cell replication was increased only on day 10. Beta cell apoptosis was increased in all transplanted groups; it was 25% lower in the Ad-Il1rn than in uninfected groups, but differences were not statistically significant. The initially transplanted beta cell mass was reduced on day 3, increasing subsequently in Ad-Il1rn grafts, but not in uninfected grafts. When 800 islets were transplanted, all animals grafted with Ad-Il1rn-infected islets, but only 40% of those transplanted with uninfected islets, achieved normoglycaemia 14 days after transplantation. CONCLUSIONS/INTERPRETATION Overproduction of IL1RN increased beta cell replication and mass of islet grafts and reduced the beta cell number required to achieve normoglycaemia.
Collapse
Affiliation(s)
- N Téllez
- Laboratory of Diabetes and Experimental Endocrinology, Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Dowling P, O'Driscoll L, O'Sullivan F, Dowd A, Henry M, Jeppesen PB, Meleady P, Clynes M. Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 2007; 6:6578-87. [PMID: 17163442 DOI: 10.1002/pmic.200600298] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glucose-sensitive insulin-secretion (GSIS) phenotype is relatively unstable in long-term culture of beta cells. The purpose of this study was to investigate relative changes in the proteome between glucose-responsive (low passage) and glucose non-responsive (high passage) murine MIN-6 pancreatic beta cells. The 2D-DIGE and subsequent DeCyder analysis detected 3351 protein spots in the pH range of 4-7. Comparing MIN-6(H) to MIN-6(L) and using a threshold of 1.2-fold, the number of proteins with a decrease in expression level was 152 (4.5%), similar was 3140 (93.7%) and increased 59 (1.8%). From the differentially expressed proteins identified in this study, groups of proteins associated with the endoplasmic reticulum (ER) and proteins involved in oxidative stress were found to be significantly decreased in the high-passage (H passage) cells. These proteins included endoplasmic reticulum protein 29 (ERp29); 78-kDa glucose-related protein, (GRP78); 94-kDa glucose-related protein (GRP94); protein disulphide isomerase; carbonyl reductase 3; peroxidoxin 4 and superoxide dismutase 1. These results suggest that non-GSIS MIN-6 cells do not have the same ability/capacity of glucose-responsive MIN-6 cells to successfully fold, modify or secrete proteins and counteract the problems associated with oxidative stress.
Collapse
Affiliation(s)
- Paul Dowling
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Moriscot C, Candel S, Sauret V, Kerr-Conte J, Richard MJ, Favrot MC, Benhamou PY. MnTMPyP, a metalloporphyrin-based superoxide dismutase/catalase mimetic, protects INS-1 cells and human pancreatic islets from an in vitro oxidative challenge. DIABETES & METABOLISM 2007; 33:44-53. [PMID: 17258921 DOI: 10.1016/j.diabet.2006.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 09/02/2006] [Indexed: 11/17/2022]
Abstract
AIMS Pancreatic islets can be lost early following allotransplantation from oxidative stress. Antioxidant enzyme overexpression could confer a beneficial effect on islets exposed to reactive oxygen species (ROS) and nitrogen species. Here, we tested the effect of MnTMPyP, a superoxide dismutase/catalase mimetic. METHODS INS-1 insulin-secreting cells or human islets were cultured with MnTMPyP and exposed to a superoxide donor (the hypoxanthine/xanthine oxidase (HX/XO) system), a nitric oxide donor [3-morpholinosydnonimine (SIN-1)] or menadione. Viability of INS-1 cells was assessed by WST-1 colorimetric assay and FACS analysis (Live/Dead test). ROS production was determined using fluorescent probes. Islet viability was estimated by WST-1 assay and endocrine function by static incubation. RESULTS Following MnTMPyP treatment, ROS production in INS-1 cells was reduced by 4- to 20-fold upon HX/XO challenge and up to 2-fold upon SIN-1 stress. This phenomenon correlated with higher viability measured by WST-1 or Live/Dead test. MnTMPyP preserved islet viability upon exposure to SIN-1 or menadione but not upon an HX/XO challenge. Similarly, decrease in insulin secretion tended to be less pronounced in MnTMPyP-treated islets than in control islet when exposed to SIN-1, but no changes were noticed during an HX/XO stress. CONCLUSIONS MnTMPyP was able to improve the viability of INS-1 cells and human islets exposed to oxidative challenges in vitro. Protection of INS-1 cells could be as high as 90%. This agent is therefore potentially attractive in situations involving the overproduction of ROS, such as islet transplantation.
Collapse
Affiliation(s)
- C Moriscot
- Institut national de la santé et de la recherche médicale (Inserm), unité 578, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Khaldi MZ, Elouil H, Guiot Y, Henquin JC, Jonas JC. Antioxidants N-acetyl-L-cysteine and manganese(III)tetrakis (4-benzoic acid)porphyrin do not prevent beta-cell dysfunction in rat islets cultured in high glucose for 1 wk. Am J Physiol Endocrinol Metab 2006; 291:E137-46. [PMID: 16464909 DOI: 10.1152/ajpendo.00145.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously showed that the stimulation of heme oxygenase-1 expression by high glucose and hydrogen peroxide (H(2)O(2)) in cultured rat islets is prevented by antioxidants and suggested that this effect of high glucose results from an oxidative stress. However, the role of oxidative stress in high-glucose-induced beta-cell dysfunction is unclear. We therefore compared the preventative effects of N-acetyl-l-cysteine (NAC), a free radical scavenger, and manganese(III)tetrakis (4-benzoic acid)porphyrin (MnTBAP), a superoxide dismutase/catalase mimetic agent, on the alteration of stimulus-secretion coupling induced in rat islets by overnight exposure to hydrogen peroxide (H(2)O(2)-treated islets) or 1-wk culture in 30 vs. 10 mmol/l glucose (High-glucose vs. Control islets). The features of beta-cell dysfunction differed between the two groups: reduced glucose-induced insulin secretion without changes in glucose sensitivity in H(2)O(2)-treated islets; increased sensitivity to glucose with parallel reductions in insulin content and maximal rate of glucose-induced insulin secretion in High-glucose islets. The latter alterations were accompanied by a decrease in preproinsulin without changes in pancreatic and duodenal homeobox gene 1 mRNA levels. The functional alterations induced by H(2)O(2) were significantly prevented by addition of NAC or MnTBAP in the culture medium. In contrast, neither NAC nor MnTBAP affected the functional alterations induced by high glucose. These results suggest that beta-cell dysfunction induced by 1-wk culture in high glucose does not result from an increase in oxidative stress.
Collapse
Affiliation(s)
- M Z Khaldi
- Endocrinology and Metabolism, Université catholique de Louvain, Ave. Hippocrate, 55-UCL 55.30, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
50
|
Narang AS, Mahato RI. Biological and biomaterial approaches for improved islet transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|