1
|
Zhang D, Zhang YH, Liu B, Yang HX, Li GT, Zhou HL, Wang YS. Role of peroxisomes in the pathogenesis and therapy of renal fibrosis. Metabolism 2025:156173. [PMID: 39993498 DOI: 10.1016/j.metabol.2025.156173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Renal fibrosis is a pathological consequence of end-stage chronic kidney disease, driven by factors such as oxidative stress, dysregulated fatty acid metabolism, extracellular matrix (ECM) imbalance, and epithelial-to-mesenchymal transition. Peroxisomes play a critical role in fatty acid β-oxidation and the scavenging of reactive oxygen species, interacting closely with mitochondrial functions. Nonetheless, current research often prioritizes the mitochondrial influence on renal fibrosis, often overlooking the contribution of peroxisomes. This comprehensive review systematically elucidates the fundamental biological functions of peroxisomes and delineates the molecular mechanisms underlying peroxisomal dysfunction in renal fibrosis pathogenesis. Here, we discuss the impact of peroxisome dysfunction and pexophagy on oxidative stress, ECM deposition, and renal fibrosis in various cell types including mesangial cells, endothelial cells, podocytes, epithelial cells, and macrophages. Furthermore, this review highlights the recent advancements in peroxisome-targeted therapeutic strategies to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Yang-He Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong-Xia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Guang-Tao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Sunilkumar S, Subrahmanian SM, Yerlikaya EI, Toro AL, Harhaj EW, Kimball SR, Dennis MD. REDD1 expression in podocytes facilitates renal inflammation and pyroptosis in streptozotocin-induced diabetic nephropathy. Cell Death Dis 2025; 16:79. [PMID: 39920111 PMCID: PMC11806006 DOI: 10.1038/s41419-025-07396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Sterile inflammation resulting in an altered immune response is a key determinant of renal injury in diabetic nephropathy (DN). In this investigation, we evaluated the hypothesis that hyperglycemic conditions augment the pro-inflammatory immune response in the kidney by promoting podocyte-specific expression of the stress response protein regulated in development and DNA damage response 1 (REDD1). In support of the hypothesis, streptozotocin (STZ)-induced diabetes increased REDD1 protein abundance in the kidney concomitant with renal immune cell infiltration. In diabetic mice, administration of the SGLT2 inhibitor dapagliflozin was followed by reductions in blood glucose concentration, renal REDD1 protein abundance, and immune cell infiltration. In contrast with diabetic REDD1+/+ mice, diabetic REDD1-/- mice did not exhibit albuminuria, increased pro-inflammatory factors, or renal macrophage infiltration. In cultured human podocytes, exposure to hyperglycemic conditions promoted REDD1-dependent activation of NF-κB signaling. REDD1 deletion in podocytes attenuated both the increase in chemokine expression and macrophage chemotaxis under hyperglycemic conditions. Notably, podocyte-specific REDD1 deletion prevented the pro-inflammatory immune cell infiltration in the kidneys of diabetic mice. Furthermore, exposure of podocytes to hyperglycemic conditions promoted REDD1-dependent pyroptotic cell death, evidenced by an NLRP3-mediated increase in caspase-1 activity and LDH release. REDD1 expression in podocytes was also required for an increase in pyroptosis markers in the glomeruli of diabetic mice. The data support that podocyte-specific REDD1 is necessary for chronic NF-κB activation in the context of diabetes and raises the prospect that therapies targeting podocyte-specific REDD1 may be helpful in DN.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Sandeep M Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Esma I Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Qi B, Chen Y, Chai S, Lu X, Kang L. O-linked β-N-acetylglucosamine (O-GlcNAc) modification: Emerging pathogenesis and a therapeutic target of diabetic nephropathy. Diabet Med 2025; 42:e15436. [PMID: 39279604 PMCID: PMC11733667 DOI: 10.1111/dme.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
AIMS O-Linked β-N-acetylglucosamine (O-GlcNAc) modification, a unique post-translational modification of proteins, is elevated in diabetic nephropathy. This review aims to summarize the current knowledge on the mechanisms by which O-GlcNAcylation of proteins contributes to the pathogenesis and progression of diabetic nephropathy, as well as the therapeutic potential of targeting O-GlcNAc modification for its treatment. METHODS Current evidence in the literature was reviewed and synthesized in a narrative review. RESULTS Hyperglycemia increases glucose flux into the hexosamine biosynthesis pathway, which activates glucosamino-fructose aminotransferase expression and activity, leading to the production of O-GlcNAcylation substrate UDP-GlcNAc and an increase in protein O-GlcNAcylation in kidney cells. Protein O-GlcNAcylation regulates the function of kidney cells including mesangial cells, podocytes, and proximal tubular cells, and promotes renal interstitial fibrosis, resulting in kidney damage. Current treatments for diabetic nephropathy, such as sodium-glucose cotransporter 2 (SGLT-2) inhibitors and renin-angiotensin-aldosterone system (RAAS) inhibitors, delay disease progression, and suppress protein O-GlcNAcylation. CONCLUSIONS Increased protein O-GlcNAcylation mediates renal cell damage and promotes renal interstitial fibrosis, leading to diabetic nephropathy. Although the full significance of inhibition of O-GlcNAcylation is not yet understood, it may represent a novel target for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Bingxue Qi
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Yang Chen
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Siyang Chai
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Xiaodan Lu
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Li Kang
- Division of Cellular and Systems MedicineSchool of Medicine, University of DundeeDundeeUK
| |
Collapse
|
4
|
Min L, Chen Y, Zhong F, Gu L, Lee K, He JC. Role and Mechanisms of Tyro3 in Podocyte Biology and Glomerular Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:398-406. [PMID: 39430290 PMCID: PMC11488836 DOI: 10.1159/000540452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
Background Podocyte loss occurs in both primary and secondary glomerular diseases, leading to the progression of kidney disease. A large body of evidence suggests that apoptosis and detachment are the mechanisms mediating the reduction in podocyte numbers in glomerular diseases. Recent studies demonstrate a renal protective effect of protein S (PS) through the activation of Tyro3, one of the TAM receptors. Tyro3 is predominantly expressed in podocytes within the kidney, and its expression increases in early diabetic kidney disease (DKD) but decreases in patients with progressive DKD and focal segmental glomerulosclerosis (FSGS). Glomerular expression of Tyro3 also correlates with the progression of DKD and predicts the progression of primary glomerular diseases. High glucose increases Tyro3 expression, while TNF-α suppresses the expression of PS and Tyro3. PS has anti-inflammatory and antiapoptotic effects in podocytes, likely via the activation of the Akt pathway and the inhibition of NF-kB activation. In vivo, the knockout of PS or Tyro3 exacerbates podocyte loss and glomerular disease, while the overexpression of PS and Tyro3 attenuates the injury in mice with DKD and FSGS. Tyro3 agonists have also been shown to protect podocytes from injury in these animal models. Summary Tyro3 plays a critical role in podocyte biology and glomerular disease. Tyro3 agonists could potentially be developed as a new therapy for glomerular disease. Key Message The aim of this review article was to summarize the role and mechanisms mediating the protective effects of Tyro3 in podocyte biology and glomerular disease. Additionally, we discuss the possibility of developing Tyro3 agonists as potential treatment for glomerular diseases.
Collapse
Affiliation(s)
- Lulin Min
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA
| |
Collapse
|
5
|
Yamashiro A, Satoh Y, Endo S, Oshima N. Extracellular signal-regulated kinase is activated in podocytes from patients with diabetic nephropathy. Hum Cell 2024; 37:1553-1558. [PMID: 39052150 DOI: 10.1007/s13577-024-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the past few decades, the global prevalence of diabetes has provided us with a warning about future chronic complications. Diabetic nephropathy (DN) is the main cause of end-stage kidney disease. Podocytes in the glomerulus play a critical role in regulating glomerular permeability, and podocyte injury is one of the main causes of DN. Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family that plays critical roles in intracellular signal transduction. In human patients with DN, phosphorylated ERK (pERK), the active form of ERK, is increased in the glomeruli. However, information on the expression of pERK, specifically in podocytes in DN, is limited. Meanwhile, high glucose induces ERK activation in immortalized podocyte cell lines, suggesting the involvement of podocytic ERK in DN. We performed an immunohistochemical study using Wilms' tumor-1 (WT-1) as a podocyte-specific marker to investigate whether podocytic pERK levels are increased in patients with DN. In the glomeruli of the DN group, we observed remarkable co-staining for WT-1 and pERK. In contrast, the glomeruli of the control group contained only a few pERK-positive podocytes. Statistical analyses revealed that, relative to healthy controls, patients with DN showed significantly increased pERK expression levels in cells that were positive for WT-1 (DN: 51.3 ± 13.1% vs. control: 7.3 ± 1.6%, p = 0.0158, t-test, n = 4 for each group). This suggests that ERK activation in podocytes is involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Aoi Yamashiro
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
6
|
Zhou Y, Hou S, Huang XY, Chang DY, Wang H, Nie L, Xiong ZY, Chen M, Zhao MH, Wang SX. Association of podocyte ultrastructural changes with proteinuria and pathological classification in type 2 diabetic nephropathy. DIABETES & METABOLISM 2024; 50:101547. [PMID: 38852840 DOI: 10.1016/j.diabet.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
AIMS Podocyte injury plays an essential role in the progression of diabetic nephropathy (DN). The associations between the ultrastructural changes of podocyte with proteinuria and the pathological classification of DN proposed by Renal Pathology Society (RPS) have not been clarified in patients with type 2 diabetic nephropathy (T2DN). METHODS We collected 110 patients with kidney biopsy-confirmed T2DN at Peking University First Hospital from 2017 to 2022. The morphometric analysis on the podocyte foot process width (FPW) and podocyte detachment (PD) as markers of podocyte injury was performed, and the correlations between the ultrastructural changes of podocytes with severity of proteinuria and the RPS pathological classification of DN were analyzed. RESULTS Mean FPW was significantly broader in the group of T2DN patients with nephrotic proteinuria (565.1 nm) than those with microalbuminuria (437.4 nm) or overt proteinuria (494.6 nm). The cut-off value of FPW (> 506 nm) could differentiate nephrotic proteinuria from non-nephrotic proteinuria with a sensitivity of 75.3% and a specificity of 75.8%. Percentage of PD was significantly higher in group of nephrotic proteinuria (3.2%) than that in microalbuminuria (0%) or overt proteinuria (0.2%). FPW and PD significantly correlated with proteinuria in T2DN (r = 0.473, p < 0.001 and r = 0.656, P < 0.001). FPW and PD correlated with RPS pathological classification of T2DN (r = 0.179, P = 0.014 and r = 0.250, P = 0.001). FPW value was increased significantly with more severe DN classification (P for trend =0.007). The percentage of PD tended to increase with more severe DN classification (P for trend = 0.017). CONCLUSIONS Podocyte injury, characterized by FPW broadening and PD, was associated with the severity of proteinuria and the pathological classification of DN.
Collapse
Affiliation(s)
- Yue Zhou
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China; Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Shuang Hou
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Xiao-Yan Huang
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Dong-Yuan Chang
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China
| | - Hui Wang
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China; Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, PR China
| | - Lin Nie
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China; Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, PR China
| | - Zu-Ying Xiong
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Min Chen
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China
| | - Ming-Hui Zhao
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China
| | - Su-Xia Wang
- Division of Nephrology, Peking University First Hospital, Beijing, 100034, PR China; Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, PR China.
| |
Collapse
|
7
|
Fukuda A, Sato Y, Shibata H, Fujimoto S, Wiggins RC. Urinary podocyte markers of disease activity, therapeutic efficacy, and long-term outcomes in acute and chronic kidney diseases. Clin Exp Nephrol 2024; 28:496-504. [PMID: 38402504 PMCID: PMC11116200 DOI: 10.1007/s10157-024-02465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 02/26/2024]
Abstract
A critical degree of podocyte depletion causes glomerulosclerosis, and persistent podocyte loss in glomerular diseases drives the progression to end-stage kidney disease. The extent of podocyte injury at a point in time can be histologically assessed by measuring podocyte number, size, and density ("Biopsy podometrics"). However, repeated invasive renal biopsies are associated with increased risk and cost. A noninvasive method for assessing podocyte injury and depletion is required. Albuminuria and proteinuria do not always correlate with disease activity. Podocytes are located on the urinary space side of the glomerular basement membrane, and as they undergo stress or detach, their products can be identified in urine. This raises the possibility that urinary podocyte products can serve as clinically useful markers for monitoring glomerular disease activity and progression ("Urinary podometrics"). We previously reported that urinary sediment podocyte mRNA reflects disease activity in both animal models and human glomerular diseases. This includes diabetes and hypertension which together account for 60% of new-onset dialysis induction patients. Improving approaches to preventing progression is an urgent priority for the renal community. Sufficient evidence now exists to indicate that monitoring urinary podocyte markers could serve as a useful adjunctive strategy for determining the level of current disease activity and response to therapy in progressive glomerular diseases.
Collapse
Affiliation(s)
- Akihiro Fukuda
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu City, Oita, 879-5593, Japan.
| | - Yuji Sato
- Division of Nephrology, Department of Internal Medicine, National Health Insurance Takachiho Town Hospital, Takachiho, Miyazaki, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu City, Oita, 879-5593, Japan
| | - Shouichi Fujimoto
- Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Roger C Wiggins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Xie Y, Yuan Q, Tang B, Xie Y, Cao Y, Qiu Y, Zeng J, Wang Z, Su H, Zhang C. CPT1A Protects Podocytes From Lipotoxicity and Apoptosis In Vitro and Alleviates Diabetic Nephropathy In Vivo. Diabetes 2024; 73:879-895. [PMID: 38506804 DOI: 10.2337/db23-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yajuan Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Chen J, Wang X, He Q, Yang HC, Fogo AB, Harris RC. Inhibition of transcriptional coactivator YAP Impairs the expression and function of transcription factor WT1 in diabetic podocyte injury. Kidney Int 2024; 105:1200-1211. [PMID: 38423183 DOI: 10.1016/j.kint.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Podocyte injury and loss are hallmarks of diabetic nephropathy (DN). However, the molecular mechanisms underlying these phenomena remain poorly understood. YAP (Yes-associated protein) is an important transcriptional coactivator that binds with various other transcription factors, including the TEAD family members (nuclear effectors of the Hippo pathway), that regulate cell proliferation, differentiation, and apoptosis. The present study found an increase in YAP phosphorylation at S127 of YAP and a reduction of nuclear YAP localization in podocytes of diabetic mouse and human kidneys, suggesting dysregulation of YAP may play a role in diabetic podocyte injury. Tamoxifen-inducible podocyte-specific Yap gene knockout mice (YappodKO) exhibited accelerated and worsened diabetic kidney injury. YAP inactivation decreased transcription factor WT1 expression with subsequent reduction of Tead1 and other well-known targets of WT1 in diabetic podocytes. Thus, our study not only sheds light on the pathophysiological roles of the Hippo pathway in diabetic podocyte injury but may also lead to the development of new therapeutic strategies to prevent and/or treat DN by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA.
| | - Xiaoyong Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qian He
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Lei Q, Hou X, Liu X, Liang D, Fan Y, Xu F, Liang S, Liang D, Yang J, Xie G, Liu Z, Zeng C. Artificial intelligence assists identification and pathologic classification of glomerular lesions in patients with diabetic nephropathy. J Transl Med 2024; 22:397. [PMID: 38684996 PMCID: PMC11059590 DOI: 10.1186/s12967-024-05221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. METHODS A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. RESULTS Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. CONCLUSION Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.
Collapse
Affiliation(s)
- Qunjuan Lei
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Xiaoshuai Hou
- Ping An Healthcare Technology, 206 Kaibin Road, Shanghai, 200030, China
| | - Xumeng Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Dongmei Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Yun Fan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Jing Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China
| | - Guotong Xie
- Ping An Healthcare Technology, 206 Kaibin Road, Shanghai, 200030, China.
- Ping An Healthcare and Technology Company Limited, Shanghai, China.
- Ping An International Smart City Technology Co., Shanghai, China.
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China.
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210009, China.
| |
Collapse
|
11
|
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15:606-622. [PMID: 38680697 PMCID: PMC11045416 DOI: 10.4239/wjd.v15.i4.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.
Collapse
Affiliation(s)
- Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Komal Awasthi
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King Georges’ Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Institute of Advanced Molecular Genetics, and Infectious Diseases (IAMGID), University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
12
|
Wang T, Li C, Wang X, Liu F. MAGI2 ameliorates podocyte apoptosis of diabetic kidney disease through communication with TGF-β-Smad3/nephrin pathway. FASEB J 2023; 37:e23305. [PMID: 37950637 DOI: 10.1096/fj.202301058r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Podocytes, the key component of the glomerular filtration barrier (GFB), are gradually lost during the progression of diabetic kidney disease (DKD), severely compromising kidney functionality. The molecular mechanisms regulating the survival of podocytes in DKD are incompletely understood. Here, we show that membrane-associated guanylate kinase inverted 2 (MAGI2) is specifically expressed in renal podocytes, and promotes podocyte survival in DKD. We found that MAGI2 expression was downregulated in podocytes cultured with high-glucose in vitro, and in kidneys of db/db mice as well as DKD patients. Conversely, we found enforced expression of MAGI2 via AAV transduction protected podocytes from apoptosis, with concomitant improvement of renal functions. Mechanistically, we found that MAGI2 deficiency induced by high glucose levels activates TGF-β signaling to decrease the expression of anti-apoptotic proteins. These results indicate that MAGI2 protects podocytes from cell death, and can be harnessed therapeutically to improve renal function in diabetic kidney disease.
Collapse
Affiliation(s)
- Tingli Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Kobayashi H, Satake E, Murata Y, Otsuka H, Tsunemi A, Azuma M, Nakamura Y, Saito T, Abe M. Neuroblastoma suppressor of tumorigenicity 1 is associated with the severity of interstitial fibrosis and kidney function decline in IgA nephropathy. J Nephrol 2023; 36:2245-2256. [PMID: 37436574 DOI: 10.1007/s40620-023-01704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION Recently, circulating neuroblastoma suppressor of tumorigenicity 1 (NBL1) was shown to be strongly associated with kidney disease progression and histological lesions in patients with diabetic kidney disease. This study aimed to examine whether serum NBL1 level was also associated with kidney function and renal histological findings in patients with IgA nephropathy. METHODS We evaluated the levels of NBL1 in 109 patients with newly diagnosed biopsy-proven primary IgAN, between 2009 and 2018, at the Nihon University School of Medicine Itabashi Hospital, Tokyo, Japan, using serum obtained immediately before the renal biopsy, and examined the relationship between serum NBL1, renal function and renal histological findings assessed using the Oxford Classification (MEST score). Furthermore, we analyzed the association of serum NBL1 with kidney function decline over time in patients with IgA nephropathy who had follow-up data on the estimated glomerular filtration rate (n = 76). RESULTS Serum NBL1 levels in patients with newly diagnosed IgA nephropathy were elevated, as compared to those in healthy individuals (n = 93). Logistic regression analysis demonstrated that the serum NBL1 level was independently and significantly associated with tubular atrophy/interstitial fibrosis. Immunohistochemical staining revealed that NBL1 was highly expressed in the tubulointerstitium. Furthermore, Spearman's rank correlation identified a significant correlation between serum NBL1 level and estimated glomerular filtration rate slope. CONCLUSIONS The serum NBL1 level was significantly associated with the severity of renal interstitial fibrosis and kidney disease progression in patients with newly diagnosed IgA nephropathy. Thus, circulating NBL1 may serve as a good biomarker for evaluating renal interstitial fibrosis and the risk of kidney disease progression.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yusuke Murata
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiromasa Otsuka
- Department of Emergency Room and General Medicine, Ageo Central General Hospital, Saitama, Japan
- Department of Internal Medicine, Hatogaya Hospital, Saitama, Japan
| | - Akiko Tsunemi
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masaki Azuma
- Department of Internal Medicine, Hatogaya Hospital, Saitama, Japan
| | - Yoshihiro Nakamura
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tomoyuki Saito
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masanori Abe
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
14
|
Lizotte F, Rousseau M, Denhez B, Lévesque D, Guay A, Liu H, Moreau J, Higgins S, Sabbagh R, Susztak K, Boisvert FM, Côté AM, Geraldes P. Deletion of protein tyrosine phosphatase SHP-1 restores SUMOylation of podocin and reverses the progression of diabetic kidney disease. Kidney Int 2023; 104:787-802. [PMID: 37507049 DOI: 10.1016/j.kint.2023.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Revised: 06/03/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Both clinical and experimental data suggest that podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD). Although the mechanisms underlying the development of podocyte loss are not completely understood, critical structural proteins such as podocin play a major role in podocyte survival and function. We have reported that the protein tyrosine phosphatase SHP-1 expression increased in podocytes of diabetic mice and glomeruli of patients with diabetes. However, the in vivo contribution of SHP-1 in podocytes is unknown. Conditional podocyte-specific SHP-1-deficient mice (Podo-SHP-1-/-) were generated to evaluate the impact of SHP-1 deletion at four weeks of age (early) prior to the onset of diabetes and after 20 weeks (late) of diabetes (DM; Ins2+/C96Y) on kidney function (albuminuria and glomerular filtration rate) and kidney pathology. Ablation of the SHP-1 gene specifically in podocytes prevented and even reversed the elevated albumin/creatinine ratio, glomerular filtration rate progression, mesangial cell expansion, glomerular hypertrophy, glomerular basement membrane thickening and podocyte foot process effacement induced by diabetes. Moreover, podocyte-specific deletion of SHP-1 at an early and late stage prevented diabetes-induced expression of collagen IV, fibronectin, transforming growth factor-β, transforming protein RhoA, and serine/threonine kinase ROCK1, whereas it restored nephrin, podocin and cation channel TRPC6 expression. Mass spectrometry analysis revealed that SHP-1 reduced SUMO2 post-translational modification of podocin while podocyte-specific deletion of SHP-1 preserved slit diaphragm protein complexes in the diabetic context. Thus, our data uncovered a new role of SHP-1 in the regulation of cytoskeleton dynamics and slit diaphragm protein expression/stability, and its inhibition preserved podocyte function preventing DKD progression.
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Denhez
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Guay
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - HongBo Liu
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Moreau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah Higgins
- Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert Sabbagh
- Department of Surgery, Université de Sherbrooke, Québec, Canada
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Anne Marie Côté
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
15
|
Paranjpe I, Wang X, Anandakrishnan N, Haydak JC, Van Vleck T, DeFronzo S, Li Z, Mendoza A, Liu R, Fu J, Forrest I, Zhou W, Lee K, O'Hagan R, Dellepiane S, Menon KM, Gulamali F, Kamat S, Gusella GL, Charney AW, Hofer I, Cho JH, Do R, Glicksberg BS, He JC, Nadkarni GN, Azeloglu EU. Deep learning on electronic medical records identifies distinct subphenotypes of diabetic kidney disease driven by genetic variations in the Rho pathway. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295120. [PMID: 37732187 PMCID: PMC10508814 DOI: 10.1101/2023.09.06.23295120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/22/2023]
Abstract
Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of ARHGEF18 in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.
Collapse
|
16
|
Abstract
Diabetes is a major public health challenge and diabetic kidney disease (DKD), a broader diagnostic term than diabetic nephropathy, is the leading cause of chronic kidney disease and end-stage kidney disease in the United States and worldwide. A better understanding of the underlying pathophysiological mechanisms of DKD, and recent clinical trials testing new therapeutic interventions, have shown promising results to curb this epidemic. Given the global health burden of DKD, it is extremely important to prioritize prevention, early recognition, referral, and aggressive management of DKD in the primary care setting.
Collapse
Affiliation(s)
- Sonali Gupta
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, 3411 Wayne Avenue, 5th Floor, Bronx, NY 10467, USA.
| | - Mary Dominguez
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, 3411 Wayne Avenue, 5th Floor, Bronx, NY 10467, USA
| | - Ladan Golestaneh
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, 3411 Wayne Avenue, 5th Floor, Bronx, NY 10467, USA
| |
Collapse
|
17
|
Ito M, Ducasa GM, Molina JD, Santos JV, Mallela SK, Kim JJ, Ge M, Mitrofanova A, Sloan A, Merscher S, Mimura I, Fornoni A. ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease. Sci Rep 2023; 13:9616. [PMID: 37316538 PMCID: PMC10267156 DOI: 10.1038/s41598-023-35499-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1β were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1β were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1β. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.
Collapse
Affiliation(s)
- Marie Ito
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Gloria Michelle Ducasa
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Judith David Molina
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Javier Varona Santos
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shamroop Kumar Mallela
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jin Ju Kim
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Mengyuan Ge
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alla Mitrofanova
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alexis Sloan
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sandra Merscher
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Alessia Fornoni
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Gao Y, Su X, Xue T, Zhang N. The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease. Biomed Pharmacother 2023; 163:114598. [PMID: 37150034 DOI: 10.1016/j.biopha.2023.114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xin Su
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Taiqi Xue
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
19
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Zhang X, Zhang L, Wen Y, Zhang M, Liu S, Xiao H. Vitamin D Ameliorates Podocyte Injury by Enhancing Autophagy Activity in Diabetic Kidney Disease. Kidney Blood Press Res 2023; 48:314-325. [PMID: 37054686 PMCID: PMC10308546 DOI: 10.1159/000530403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Restoration of podocyte autophagy is considered as a feasible strategy for the treatment of diabetic kidney disease (DKD). This study aimed at investigating the protective effect and potential mechanism of vitamin D on podocyte injury of DKD. METHODS Type 2 diabetic db/db mice received intraperitoneal injections of vitamin D analog paricalcitol 400 ng/kg per day for 16 weeks. Immortalized mouse podocytes were cultured in high glucose (HG) medium with active vitamin D3 calcitriol or autophagy inhibitor 3-methyladenine. Renal function and urine albumin creatinine ratio were assessed at week 24. HE, PAS staining, and electron microscopy were used to evaluate renal histopathology and morphological changes. Immunohistochemistry, immunofluorescence, and Western blot were used to evaluate protein expression of nephrin and podocin in kidney tissue and podocytes. The expression of autophagy-related proteins (LC3, Beclin-1, Vps34) and apoptosis-related proteins (cleaved caspase-3, Bax) was determined by Western blotting. Podocyte apoptosis was further evaluated by using flow cytometer. RESULTS Albuminuria in a db/db mouse model was markedly attenuated after treatment with paricalcitol. This was accompanied by alleviation of mesangial matrix expansion and podocyte injury. Besides, the impaired autophagy in podocytes under diabetic conditions was also markedly enhanced after paricalcitol or calcitriol treatment, accompanied by restored decreased podocyte slit diaphragm proteins podocin and nephrin. Furthermore, the protective effect of calcitriol against HG-induced podocyte apoptosis could be abated by autophagy inhibitor 3-methyladenine. CONCLUSION Vitamin D ameliorates podocyte injury of DKD by enhancing podocyte autophagy activity, which may become a potential candidate autophagy activator for the therapeutic interventions for DKD.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Nephrology, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,
| | - Yingzhen Wen
- Department of Endocrinology, The Third People's Hospital of Huizhou, Huizhou, China
| | - Mengxian Zhang
- Department of Nephrology, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Houqin Xiao
- Department of Nephrology, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
21
|
Yang Q, Yang S, Liang Y, Sun Q, Fang Y, Jiang L, Wen P, Yang J. UCP2 deficiency impairs podocyte autophagy in diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166705. [PMID: 37023910 DOI: 10.1016/j.bbadis.2023.166705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Podocytes have been indicated to be a critical factor for the development of diabetic kidney disease. Podocyte loss leads to irreversible glomerular injury and proteinuria in animal models. As terminal differentiated cells, autophagy is crucial for maintaining podocyte homeostasis. Previous studies have shown that Uncoupling proteins 2 (UCP2) regulate fatty acid metabolism, mitochondrial calcium uptake and reactive oxygen species (ROS) production. This study aimed to investigate whether UCP2 promote autophagy in podocyte and further explore the regulation mechanism of UCP2. METHODS For podocyte-specific UCP2-KO mice, we cross bred UCP2fl/fl mouse strain with the podocin-Cre mice. Diabetic mice were obtained by daily intraperitoneally injections of 40 mg/kg streptozotocin for 3 days. After 6 weeks, mice were scarified, and kidney tissues were analyzed by histological stain, Western blot, Immunofluorescence, and immunohistochemistry. Also, urine samples were collected for protein quantification. For in vitro study, podocytes were primary cultured from UCP2fl/fl mouse or transfected with adeno-associated virus (AAV)-UCP2. RESULTS Diabetic kidney showed elevated expression of UCP2 and specific ablation of UCP2 in podocyte aggravates diabetes-induced albuminuria and glomerulopathy. UCP2 protects hyperglycemia-induced podocyte injury by promoting autophagy in vivo and in vitro. Rapamycin treatment significantly ameliorates streptozotocin (STZ)-induced podocyte injury in UCP2-/- mice. CONCLUSION UCP2 expression in podocyte increased under diabetic condition and appeared to be an initial compensatory response. UCP2 deficiency in podocyte impaired autophagy and exacerbates podocyte injury and proteinuria in diabetic nephropathy.
Collapse
Affiliation(s)
- Qianqian Yang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223001, China
| | - Shuqing Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Yuehong Liang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Qi Sun
- Technology Department, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Fang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China.
| | - Ping Wen
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
22
|
Looker HC, Chang DC, Baier LJ, Hanson RL, Nelson RG. Diagnostic criteria and etiopathogenesis of type 2 diabetes and its complications: Lessons from the Pima Indians. Presse Med 2023; 52:104176. [PMID: 37783422 PMCID: PMC10805453 DOI: 10.1016/j.lpm.2023.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Phoenix Epidemiology and Clinical Research Branch of the National Institute of Diabetes and Digestive and Kidney Diseases has conducted prospective studies of diabetes and its complications in the Pima Indians living in Arizona, USA for over 50 years. In this review we highlight areas in which these studies provided vital insights into the criteria used to diagnose type 2 diabetes, the pathophysiologic changes that accompany the development of type 2 diabetes, and the course and determinants of diabetes complications-focusing specifically on diabetic kidney disease. We include data from our longitudinal population-based study of diabetes and its complications, studies on the role of insulin resistance and insulin secretion in the pathophysiology of type 2 diabetes, and in-depth studies of diabetic kidney disease that include measures of glomerular function and research kidney biopsies. We also focus on the emerging health threat posed by youth-onset type 2 diabetes, which was first seen in the Pima Indians in the 1960s and is becoming an increasing issue worldwide.
Collapse
Affiliation(s)
- Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert L Hanson
- Diabetes Genetic Epidemiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.
| |
Collapse
|
23
|
Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023; 133:165654. [PMID: 36787250 PMCID: PMC9927939 DOI: 10.1172/jci165654] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/15/2023] Open
Abstract
Kidney disease is a major driver of mortality among patients with diabetes and diabetic kidney disease (DKD) is responsible for close to half of all chronic kidney disease cases. DKD usually develops in a genetically susceptible individual as a result of poor metabolic (glycemic) control. Molecular and genetic studies indicate the key role of podocytes and endothelial cells in driving albuminuria and early kidney disease in diabetes. Proximal tubule changes show a strong association with the glomerular filtration rate. Hyperglycemia represents a key cellular stress in the kidney by altering cellular metabolism in endothelial cells and podocytes and by imposing an excess workload requiring energy and oxygen for proximal tubule cells. Changes in metabolism induce early adaptive cellular hypertrophy and reorganization of the actin cytoskeleton. Later, mitochondrial defects contribute to increased oxidative stress and activation of inflammatory pathways, causing progressive kidney function decline and fibrosis. Blockade of the renin-angiotensin system or the sodium-glucose cotransporter is associated with cellular protection and slowing kidney function decline. Newly identified molecular pathways could provide the basis for the development of much-needed novel therapeutics.
Collapse
Affiliation(s)
- Samer Mohandes
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Tian H, Zheng X, Wang H. Isorhapontigenin ameliorates high glucose-induced podocyte and vascular endothelial cell injuries via mitigating oxidative stress and autophagy through the AMPK/Nrf2 pathway. Int Urol Nephrol 2023; 55:423-436. [PMID: 35960477 DOI: 10.1007/s11255-022-03325-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2021] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus and a primary reason for end-stage renal disease (ESRD). Isorhapontigenin (ISO), a natural derivative of stilbene, has significant anti-inflammatory and antioxidant effects. Nevertheless, its impact on DN remains elusive. METHODS Human vascular endothelial cells (HUVECs) and podocytes were damaged by high glucose (HG). Cell viability and apoptosis were testified by the cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The mRNA profiles of antioxidant factors HO-1, NQO1, and Prx1 were monitored by real-time quantitative polymerase chain reaction (RT-qPCR). Western blotting (WB) was implemented to verify the expression of apoptosis-related proteins (Bax, Bad, and Bcl-XL), antioxidant factors (HO-1, NQO1, and Prx1), autophagy-related proteins (Beclin-1, ATG5, p62), podocalyxin (podocin, nephrin, and synaptopodin) and the AMPK/Nrf2 pathway. The levels of oxidative stress-related markers MDA, SOD and CAT were assessed with the corresponding kits. Compound C (CC), an inhibitor of AMPK, was deployed to probe the effects of modulating the AMPK/Nrf2 pathway on ISO in oxidative stress and autophagy in HUVECs and podocytes. Streptozotocin (STZ) was injected intraperitoneally into mice to establish an animal model of diabetes mellitus and to clarify the impact of ISO on the renal parameters such as serum creatinine, urea nitrogen and urinary protein in diabetic mice. RESULTS ISO notably facilitated cell proliferation, impeded apoptosis, elevated the expression of antioxidant-related factors, alleviated HG-induced oxidative stress and activated autophagy in HUVECs and podocytes. ISO activated the AMPK/Nrf2 pathway. Attenuating AMPK diminished the protective effect of ISO on HUVECs and podocytes, curbed cell proliferation, intensified apoptosis and oxidative stress, and dampened autophagy. In-vivo experiments also displayed that ISO reduced histopathological damage, lowered serum creatinine, urea nitrogen and urinary ACR levels, and eased kidney damage in DN mice. CONCLUSION ISO attenuates HG-induced oxidative stress and activates autophagy by motivating the AMPK/Nrf2 pathway, exerting a protective effect on HUVECs and podocytes and reducing renal injury in DN mice.
Collapse
Affiliation(s)
- Hao Tian
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China.
| | - Xiang Zheng
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China
| | - Hui Wang
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China
| |
Collapse
|
25
|
Zhong F, Cai H, Fu J, Sun Z, Li Z, Bauman D, Wang L, Das B, Lee K, He JC. TYRO3 agonist as therapy for glomerular disease. JCI Insight 2023; 8:e165207. [PMID: 36454644 PMCID: PMC9870075 DOI: 10.1172/jci.insight.165207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts antiapoptotic and antiinflammatory effects to confer protection against podocyte loss. Among the 3 TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. Therefore, we posited that the agonistic PS/TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonists as an optimal therapeutic approach to glomerular disease. Among the small-molecule TYRO3 agonistic compounds screened, compound 10 (C-10) showed a selective activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of Adriamycin-induced nephropathy and a db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 were lost in Tyro3-knockout mice, indicating that C-10 is a selective agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.
Collapse
Affiliation(s)
- Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hong Cai
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Fu
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeguo Sun
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzhe Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Bauman
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lois Wang
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York, New York, USA
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Shi J, Hu Y, Shao G, Zhu Y, Zhao Z, Xu Y, Zhang Z, Wu H. Quantifying Podocyte Number in a Small Sample Size of Glomeruli with CUBIC to Evaluate Podocyte Depletion of db/db Mice. J Diabetes Res 2023; 2023:1901105. [PMID: 36776229 PMCID: PMC9908347 DOI: 10.1155/2023/1901105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/30/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.
Collapse
Affiliation(s)
- Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangze Shao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanyong Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Gazzard SE, van der Wolde J, Haruhara K, Bertram JF, Cullen‐McEwen LA. Nephron deficit and low podocyte density increase risk of albuminuria and glomerulosclerosis in a model of diabetes. Physiol Rep 2023; 11:e15579. [PMID: 36695822 PMCID: PMC9875819 DOI: 10.14814/phy2.15579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Podocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced. The aim of this study was to examine whether a suboptimal maternal environment would result in reduced podocyte endowment, increasing susceptibility to diabetes-induced renal injury. Female C57BL/6 mice were fed a low protein diet (LPD) to induce growth restriction or a normal protein diet (NPD) from 3 weeks before mating until weaning (postnatal Day 21, P21) when nephron and podocyte endowment were assessed in one male and one female offspring per litter. Littermates were administered streptozotocin or vehicle at 6 weeks of age. Urinary albumin excretion, glomerular size, and podometrics were assessed following 18 weeks of hyperglycemia. LPD offspring were growth restricted and had lower nephron and podocyte number at P21. However, by 24 weeks the podocyte deficit was no longer evident and despite low nephron endowment neither albuminuria nor glomerulosclerosis were observed. Podocyte number was unaffected by 18 weeks of hyperglycemia in NPD and LPD offspring. Diabetes increased glomerular volume reducing podocyte density, with more pronounced effects in LPD offspring. LPD and NPD diabetic offspring developed mild albuminuria with LPD demonstrating an earlier onset. LPD offspring also developed glomerular pathology. These findings indicate that growth-restricted LPD offspring with low nephron number and normalized podocyte endowment were more susceptible to alterations in glomerular volume and podocyte density leading to more rapid onset of albuminuria and renal injury than NPD offspring.
Collapse
Affiliation(s)
- Sarah E. Gazzard
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
- Division of Nephrology and Hypertension, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesMelbourneAustralia
| | - Luise A. Cullen‐McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| |
Collapse
|
28
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, Domínguez-Montero A. Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance. Curr Diabetes Rev 2023; 19:50-70. [PMID: 35346008 DOI: 10.2174/1573399818666220328145046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Lucía Adeva-Contreras
- University of Santiago de Compostela Medical School, Santiago de Compostela, Acoruna, Spain
| | - Carlos Fernández-Fernández
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
29
|
Wahab NAA, Giribabu N, Kilari EK, Salleh N. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154464. [PMID: 36215789 DOI: 10.1016/j.phymed.2022.154464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/01/2022] [Revised: 08/28/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Abietic acid (AA) has been reported to exhibit anti-inflammatory activity, however its protective effect against inflammation and its trigger factor i.e., oxidative stress and the related sequelae i.e., apoptosis and fibrosis in the kidney in diabetes mellitus (DM) is unknown. PURPOSE To identify the ability of AA to mitigate the inflammatory and inflammation-related insults to the kidney in DM. METHODS & STUDY DESIGN Adult male rats were induced type-2 DM by feeding with a high-fat diet for twelve weeks followed by injection with a single dose of streptozotocin (STZ) (30 mg/kg/bw) intraperitoneally at twelve weeks. Following DM confirmation, AA (10 and 20 mg/kg/day) was given orally for another four weeks. Then the fasting blood glucose (FBG) and renal profile were determined and oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) tests were performed. A day after the last treatment, rats were sacrificed and kidneys were harvested and subjected for histopathological and molecular biological analysis. RESULTS AA treatment was found to reduce the FBG, serum urea and creatinine levels (p < 0.05) while improving the OGTT and ITT (p < 0.05) in diabetic rats. Besides, AA treatment also mitigated kidney histopathological changes, reduces kidney oxidative stress as reflected by reduced levels of RAGE and Keap1 but increased levels of kidney antioxidants Nrf2, SOD, CAT, GPX, HO-1 & NQO-1 (p < 0.05). Additionally, AA treatment also decreases kidney inflammation (NF-kB p65, IL-1β, IL-6, TNF-α and iNOS) and fibrosis (TGF-β1 and GSK-3β) (p < 0/05). Kidney apoptosis decreased as reflected by decreased levels of Bax, caspase-3 and caspase-9 while its anti-apoptosis Bcl-2 protein levels increased (p < 0.05). CONCLUSION AA helps to mitigate nephropathy development in DM via counteracting oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Nur Ainina Abd Wahab
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Eswar Kumar Kilari
- Pharmacology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh 530 003, India
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Mitrofanova A, Fontanella A, Tolerico M, Mallela S, Molina David J, Zuo Y, Boulina M, Kim JJ, Santos J, Ge M, Sloan A, Issa W, Gurumani M, Pressly J, Ito M, Kretzler M, Eddy S, Nelson R, Merscher S, Burke G, Fornoni A. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. J Am Soc Nephrol 2022; 33:2153-2173. [PMID: 36198430 PMCID: PMC9731637 DOI: 10.1681/asn.2021101286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Accepted: 09/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthew Tolerico
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Shamroop Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Judith Molina David
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yiqin Zuo
- Department of Pathology, University of Miami Medical Group, Miller School of Medicine, Miami, Florida
| | - Marcia Boulina
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Wadih Issa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Gurumani
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marie Ito
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthias Kretzler
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sean Eddy
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Robert Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
31
|
Lizotte F, Robillard S, Lavoie N, Rousseau M, Denhez B, Moreau J, Higgins S, Sabbagh R, Côté AM, Geraldes P. Enhanced SHP-1 Expression in Podocyturia Is Associated with Kidney Dysfunction in Patients with Diabetes. KIDNEY360 2022; 3:1710-1719. [PMID: 36514736 PMCID: PMC9717659 DOI: 10.34067/kid.0002152022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Background Diabetic kidney disease (DKD) remains the leading cause of end stage kidney disease worldwide. Despite significant advances in kidney care, there is a need to improve noninvasive techniques to predict the progression of kidney disease better for patients with diabetes. After injury, podocytes are shed in urine and may be used as a biologic tool. We previously reported that SHP-1 is upregulated in the kidney of diabetic mice, leading to podocyte dysfunction and loss. Our objective was to evaluate the expression levels of SHP-1 in urinary podocytes and kidney tissues of patients with diabetes. Methods In this prospective study, patients with and without diabetes were recruited for the quantification of SHP-1 in kidney tissues, urinary podocytes, and peripheral blood monocytes. Immunochemistry and mass spectrometry techniques were applied for kidney tissues. Urinary podocytes were counted, and expression of SHP-1 and podocyte markers were measured by quantitative PCR. Results A total of 66 participants (diabetic n=48, nondiabetic n=18) were included in the analyses. Diabetes was associated with increased SHP-1 expression in kidney tissues (P=0.03). Nephrin and podocin mRNA was not significantly increased in urinary podocytes from patients with diabetes compared with those without diabetes, whereas levels of SHP-1 mRNA expression significantly correlated with HbA1c and estimated glomerular filtration rate (eGFR). Additionally, follow-up (up to 2 years post recruitment) evaluation indicated that SHP-1 mRNA expression continued to increase with eGFR decline. Conclusions Levels of SHP-1 in urinary podocytes may serve as an additional marker of glomerular disease progression in this population.
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Stéphanie Robillard
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Nicolas Lavoie
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Benoit Denhez
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Julie Moreau
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada
| | - Sarah Higgins
- Department of Medicine, Division of Nephrology, Université de Sherbrooke, Québec, Canada
| | - Robert Sabbagh
- Department of Surgery, Université de Sherbrooke, Québec, Canada
| | - Anne-Marie Côté
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada,Department of Medicine, Division of Nephrology, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center, Centre Hospitalier, Université de Sherbrooke, Québec, Canada,Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
32
|
Kobayashi H, Looker HC, Satake E, D’Addio F, Wilson JM, Saulnier PJ, Md Dom ZI, O’Neil K, Ihara K, Krolewski B, Badger HS, Petrazzuolo A, Corradi D, Galecki A, Wilson P, Najafian B, Mauer M, Niewczas MA, Doria A, Humphreys B, Duffin KL, Fiorina P, Nelson RG, Krolewski AS. Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes. Sci Transl Med 2022; 14:eabj2109. [PMID: 35947673 PMCID: PMC9531292 DOI: 10.1126/scitranslmed.abj2109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Circulating proteins associated with transforming growth factor-β (TGF-β) signaling are implicated in the development of diabetic kidney disease (DKD). It remains to be comprehensively examined which of these proteins are involved in the pathogenesis of DKD and its progression to end-stage kidney disease (ESKD) in humans. Using the SOMAscan proteomic platform, we measured concentrations of 25 TGF-β signaling family proteins in four different cohorts composed in total of 754 Caucasian or Pima Indian individuals with type 1 or type 2 diabetes. Of these 25 circulating proteins, we identified neuroblastoma suppressor of tumorigenicity 1 (NBL1, aliases DAN and DAND1), a small secreted protein known to inhibit members of the bone morphogenic protein family, to be most strongly and independently associated with progression to ESKD during 10-year follow-up in all cohorts. The extent of damage to podocytes and other glomerular structures measured morphometrically in 105 research kidney biopsies correlated strongly with circulating NBL1 concentrations. Also, in vitro exposure to NBL1 induced apoptosis in podocytes. In conclusion, circulating NBL1 may be involved in the disease process underlying progression to ESKD, and its concentration in circulation may identify subjects with diabetes at increased risk of progression to ESKD.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca D’Addio
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università di Milano and Endocrinology Division ASST Sacco-FBF, Milan, Italy
| | - Jonathan M. Wilson
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Pierre Jean. Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
- CHU Poitiers, University of Poitiers, Inserm, Clinical Investigation Center CIC1402, Poitiers, France
| | - Zaipul I. Md Dom
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kristina O’Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Katsuhito Ihara
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bozena Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hannah S. Badger
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Adriana Petrazzuolo
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università di Milano and Endocrinology Division ASST Sacco-FBF, Milan, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Andrzej Galecki
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Parker Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, USA
| | - Behzad Najafian
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Monika A. Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Kevin L. Duffin
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Paolo Fiorina
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università di Milano and Endocrinology Division ASST Sacco-FBF, Milan, Italy
- Nephrology Division, Boston Children’s Hospital, Boston, MA, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Andrzej S. Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Zhu Q, Yang S, Wei C, Lu G, Lee K, He JC, Liu R, Zhong Y. Puerarin attenuates diabetic kidney injury through interaction with Guanidine nucleotide-binding protein Gi subunit alpha-1 (Gnai1) subunit. J Cell Mol Med 2022; 26:3816-3827. [PMID: 35678269 PMCID: PMC9279604 DOI: 10.1111/jcmm.17414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
Radix puerariae, a traditional Chinese herbal medication, has been used to treat patients with diabetic kidney disease (DKD). Our previous studies demonstrated that puerarin, the active compound of radix puerariae, improves podocyte injury in type 1 DKD mice. However, the direct molecular target of puerarin and its underlying mechanisms in DKD remain unknown. In this study, we confirmed that puerarin also improved DKD in type 2 diabetic db/db mice. Through RNA-sequencing odf isolated glomeruli, we found that differentially expressed genes (DEGs) that were altered in the glomeruli of these diabetic mice but reversed by puerarin treatment were involved mostly in oxidative stress, inflammatory and fibrosis. Further analysis of these reversed DEGs revealed protein kinase A (PKA) was among the top pathways. By utilizing the drug affinity responsive target stability method combined with mass spectrometry analysis, we identified guanine nucleotide-binding protein Gi alpha-1 (Gnai1) as the direct binding partner of puerarin. Gnai1 is an inhibitor of cAMP production which is known to have protection against podocyte injury. In vitro, we showed that puerarin not only interacted with Gnai1 but also increased cAMP production in human podocytes and mouse diabetic kidney in vivo. Puerarin also enhanced CREB phosphorylation, a downstream transcription factor of cAMP/PKA. Overexpression of CREB reduced high glucose-induced podocyte apoptosis. Inhibition of PKA by Rp-cAMP also diminished the effects of puerarin on high glucose-induced podocyte apoptosis. We conclude that the renal protective effects of puerarin are likely through inhibiting Gnai1 to activate cAMP/PKA/CREB pathway in podocytes.
Collapse
Affiliation(s)
- Qingqing Zhu
- Division of NephrologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shumin Yang
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chengguo Wei
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Geming Lu
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount SinaiDiabetes, Obesity and Metabolism InstituteNew YorkNew YorkUSA,Icahn School of Medicine at Mount SinaiMindich Child Health and Development InstituteNew YorkNew YorkUSA
| | - Kyung Lee
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Cijiang He
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yifei Zhong
- Division of NephrologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
34
|
Rousseau M, Denhez B, Spino C, Lizotte F, Guay A, Côté AM, Burger D, Geraldes P. Reduction of DUSP4 contributes to podocytes oxidative stress, insulin resistance and diabetic nephropathy. Biochem Biophys Res Commun 2022; 624:127-133. [DOI: 10.1016/j.bbrc.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
|
35
|
Shahzad K, Fatima S, Khawaja H, Elwakiel A, Gadi I, Ambreen S, Zimmermann S, Mertens PR, Biemann R, Isermann B. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease. Kidney Int 2022; 102:766-779. [PMID: 35779608 DOI: 10.1016/j.kint.2022.06.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2021] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022]
Abstract
Efficient therapies for diabetic kidney disease (DKD), now the leading cause of kidney failure, are lacking. One hallmark of DKD is sterile inflammation (inflammation in absence of microorganisms), but the underlying molecular mechanisms remain poorly understood. The NLRP3 inflammasome (innate immune system receptors and sensors regulating activation of caspase-1) is a mechanism of sterile inflammation known to be activated by metabolic stimuli and reactive metabolites associated with DKD, including inflammasome activation in podocytes. However, whether NLRP3 inflammasome activation in podocytes contributes to sterile inflammation and glomerular damage in DKD remains unknown. Here, we found that kidney damage, as reflected by increased albuminuria, glomerular mesangial expansion and glomerular basement membrane thickness was aggravated in hyperglycemic mice with podocyte-specific expression of an Nlrp3 gain-of-function mutant (Nlrp3A350V). In contrast, hyperglycemic mice with podocyte-specific Nlrp3 or Caspase-1 deficiency showed protection against DKD. Intriguingly, podocyte-specific Nlrp3 deficiency was fully protective, while podocyte-specific caspase-1 deficiency was only partially protective. Podocyte-specific Nlrp3, but not caspase-1 deficiency, maintained glomerular autophagy in hyperglycemic mice, suggesting that podocyte Nlrp3 exerts both canonical and non-canonical effects. Thus, podocyte NLRP3 inflammasome activation is both sufficient and required for DKD and supports the concept that podocytes exert some immune cell-like functions. Hence, as podocyte NLRP3 exerts non-canonical and canonical effects, targeting NLRP3 may be a promising therapeutic approach in DKD.
Collapse
Affiliation(s)
- Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany.
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany; Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Hamzah Khawaja
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Leipzig, Germany.
| |
Collapse
|
36
|
Kostovska I, Trajkovska KT, Topuzovska S, Cekovska S, Labudovic D, Kostovski O, Spasovski G. Nephrinuria and podocytopathies. Adv Clin Chem 2022; 108:1-36. [PMID: 35659057 DOI: 10.1016/bs.acc.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The discovery of nephrin in 1998 has launched a new era in glomerular diseases research, emphasizing its crucial role in the structure and function of the glomerular filtration barrier. In the past 20 years, substantial advances have been made in understanding podocyte structure and function as well as the discovery of several podocyte-related proteins including nephrin. The glomerular filtration barrier is comprised of podocytes, the glomerular basement membrane and endothelial cells. Podocytes, with their specialized slit diaphragm, form the essential backbone of the glomerular filtration barrier. Nephrin is a crucial structural and functional feature of the slit diaphragm that prevents plasma protein, blood cell and macromolecule leakage into the urine. Podocyte damage results in nephrin release. Podocytopathies are kidney diseases in which podocyte damage drives proteinuria, i.e., nephrotic syndrome. Many kidney diseases involve podocytopathy including congenital nephrotic syndrome of Finnish type, diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, collapsing glomerulonephropathy, diabetic nephropathy, lupus nephropathy, hypertensive nephropathy and preeclampsia. Recently, urinary nephrin measurement has become important in the early detection of podocytopathies. In this chapter, we elaborate the main structural and functional features of nephrin as a podocyte-specific protein, pathomechanisms of podocytopathies which result in nephrinuria, highlight the most commonly used methods for detecting urinary nephrin and investigate the diagnostic, prognostic and potential therapeutic relevance of urinary nephrin in primary and secondary proteinuric kidney diseases.
Collapse
Affiliation(s)
- Irena Kostovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia.
| | - Katerina Tosheska Trajkovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Sonja Topuzovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Svetlana Cekovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Danica Labudovic
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Ognen Kostovski
- University Clinic of Abdominal Surgery, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Goce Spasovski
- University Clinic of Nephrology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
37
|
van der Wolde J, Haruhara K, Puelles VG, Nikolic-Paterson D, Bertram JF, Cullen-McEwen LA. The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell Tissue Res 2022; 388:439-451. [PMID: 35290515 PMCID: PMC9035415 DOI: 10.1007/s00441-022-03611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.
Collapse
Affiliation(s)
- James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
38
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
39
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
40
|
Schaub JA, O'Connor CL, Shi J, Wiggins RC, Shedden K, Hodgin JB, Bitzer M. Quantitative morphometrics reveals glomerular changes in patients with infrequent segmentally sclerosed glomeruli. J Clin Pathol 2022; 75:121-127. [PMID: 33431484 PMCID: PMC9295693 DOI: 10.1136/jclinpath-2020-207149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/03/2023]
Abstract
AIMS Detection of one segmentally sclerosed glomerulus (SSG) identifies patients with focal segmental glomerulosclerosis (FSGS) but rare SSGs may be missed in kidney biopsies. It is unknown whether alterations of unaffected glomeruli in patients with infrequent SSG can be detected by quantitative morphometrics. METHODS We determined SSG frequency and obtained quantitative morphometrics in glomeruli without a pathologic phenotype in large kidney sections of non-involved kidney tissue from 137 patients undergoing total nephrectomy. We used multivariate modelling to identify morphometrics independently associated with increasing frequency of SSG and Receiver Operator Curve (ROC) analysis to determine the ability of quantitative morphometrics to identify patients with FSGS. We used the geometric distribution to estimate the sensitivity and specificity of a needle biopsy to identify patients with FSGS. RESULTS In seventy-one patients (51.8%), at least one SSG was observed, and of those, 39 (54.9%) had an SSG lesion in less than 2% of all glomeruli (mean of 249 glomeruli per specimen). Increasing percent of SSG was independently associated with decreasing podocyte density and increasing mesangial index in multivariate modelling. For infrequent SSG lesions (<1% of glomeruli), kidney biopsy could miss FSGS diagnosis more than 74% of the time, and podocyte density had an area under the curve (AUC) of 0.77, and mesangial index, an AUC of 0.79 to identify patients with FSGS. CONCLUSIONS More than half of patients had FSGS, although 30% had infrequent SSG. Quantitative morphometrics in glomeruli without pathology, such as podocyte density and mesangial index, identified patients with infrequent SSG and may serve as clinical markers to identify patients with FSGS.
Collapse
Affiliation(s)
- Jennifer A Schaub
- Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | | | - Jian Shi
- Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | - Roger C Wiggins
- Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey B Hodgin
- Pathology, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | - Markus Bitzer
- Internal Medicine, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Yang Q, Xie W, Wang X, Luo J, Zhou Y, Cao H, Sun Q, Jiang L, Yang J. SS31 Ameliorates Podocyte Injury via Inhibiting OMA1-Mediated Hydrolysis of OPA1 in Diabetic Kidney Disease. Front Pharmacol 2022; 12:707006. [PMID: 36338294 PMCID: PMC9629008 DOI: 10.3389/fphar.2021.707006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is currently one of the leading causes of end-stage renal disease (ESRD). Mitochondrial dysfunction in podocyte is involve in DKD development. However, whether early mitochondrial stabilization delays or reverses DKD progression has not been elucidated. SS31 is a novel tetrapeptide compound that targets the inner mitochondrial membrane and protects mitochondria by reducing ROS and inhibiting cardiolipin oxidation. Our study discovered that SS31 might have a long-term podocyte protection in DKD. In this study, we examined the glomerular pathological damage and proteinuria at different stages of diabetes. Results revealed that podocyte mitochondrial injury appeared at the early stage of DKD. Early treatment with SS31 could protect podocyte and alleviate the development of DKD via inhibiting OMA1-mediated hydrolysis of OPA1. Those data indicate that SS31 might be a promising agent in delaying the development of DKD and OMA1-mediated hydrolysis of OPA1 in mitochondria, and SS31 is a novel therapeutic target for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi Sun
- Correspondence: Junwei Yang, ; Lei Jiang, ; Qi Sun,
| | - Lei Jiang
- Correspondence: Junwei Yang, ; Lei Jiang, ; Qi Sun,
| | - Junwei Yang
- Correspondence: Junwei Yang, ; Lei Jiang, ; Qi Sun,
| |
Collapse
|
42
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [DOI: https:/doi.org/10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/30/2023]
|
43
|
Jiang S, Xu CM, Yao S, Zhang R, Li XZ, Zhang RZ, Xie TY, Xing YQ, Zhang Q, Zhou XJ, Liao L, Dong JJ. Cdc42 upregulation under high glucose induces podocyte apoptosis and impairs β-cell insulin secretion. Front Endocrinol (Lausanne) 2022; 13:905703. [PMID: 36034435 PMCID: PMC9399854 DOI: 10.3389/fendo.2022.905703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2022] [Accepted: 07/15/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES The progressive impairment of β-cell function results in prolonged deterioration in patients with type 2 diabetes mellitus (T2DM). Interestingly, the finding on pancreatitis secondary to renal injury suggests that potential communication exists between kidney and pancreas. Therefore, we aimed to investigate cell division cycle 42 (Cdc42)-mediated podocyte apoptosis and its effect on insulin secretion in islet β-cells. METHODS Type 2 diabetic nephropathy mouse models were established to identify the expression of Cdc42 in podocytes by immunohistochemistry. An in vitro co-culture of mouse podocyte MPC5 and β-TC6 cells was preliminarily established. Subsequently, podocyte apoptosis induced by high glucose and Cdc42 was detected by TUNEL staining and western blotting. In addition, the JNK pathway was examined to determine the mechanism of apoptosis in MPC5 cells. Finally, insulin secretion and expression in β-TC6 cells as well as malondialdehyde (MDA) and superoxide dismutase (SOD) levels in both cell types were examined after the regulation of Cdc42 in MPC5 cells. RESULTS Cdc42 was highly expressed in the podocytes of diabetic nephropathy mice. Exposure to 25 mM glucose for 48 h induced a significant upregulation of Cdc42, Bax, and cleaved caspase-3 as well as a decreased Bcl-2 expression. In addition, marked apoptosis of MPC5 cells was observed compared to normal glucose treatment. After transfection with Cdc42 plasmid, apoptosis of MPC5 cells was enhanced with an increased expression of p-JNK, whereas inhibition of Cdc42 significantly alleviated podocyte apoptosis accompanied by a downregulation of p-JNK. The glucose-stimulated insulin secretion level of β-TC6 cells decreased after the upregulation of Cdc42 in MPC5 cells. Immunofluorescence staining for insulin showed that co-culture with MPC5 cells carrying the Cdc42 plasmid significantly reduced insulin expression, whereas inhibition of Cdc42 in MPC5 cells alleviated the above-mentioned abnormality of β-TC6 cells. The expression of Cdc42 and p-p38 in β-TC6 cells increased following the upregulation of Cdc42 in MPC5 cells; this was concurrent with augmented MDA levels and decreased SOD activity. The opposite result was observed for Cdc42 knockdown in MPC5 cells. CONCLUSIONS Cdc42 in podocytes plays a crucial role in insulin secretion by β-cells, which may provide a new therapeutic target to prevent the vicious cycle of β-cell dysfunction in T2DM.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun-mei Xu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xian-zhi Li
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ru-zhen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian-yue Xie
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-qian Xing
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-jun Zhou
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Jian-jun Dong, ; Xiao-jun Zhou,
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan Hospital, Shandong Institute of Nephrology, Jinan, China
- *Correspondence: Lin Liao, ; Jian-jun Dong, ; Xiao-jun Zhou,
| | - Jian-jun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Jian-jun Dong, ; Xiao-jun Zhou,
| |
Collapse
|
44
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [PMID: 34718120 DOI: 10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA), a chemical -xenoestrogen- used in the production of the plastic lining of food and beverage containers, is present in the urine of almost the entire population. Recent studies have shown that BPA exposure is associated with podocytopathy, increased urinary albumin excretion (UAE), and hypertension. Since these changes are characteristic of early diabetic nephropathy (DN), we explored the renal effects of BPA and diabetes including the potential role of sexual dimorphism. Male and female mice were included in the following animals' groups: control mice (C), mice treated with 21.2 mg/kg of BPA in the drinking water (BPA), diabetic mice induced by streptozotocin (D), and D mice treated with BPA (D + BPA). Male mice form the D + BPA group died by the tenth week of the study due probably to hydro-electrolytic disturbances. Although BPA treated mice did not show an increase in serum creatinine, as observed in D and D + BPA groups, they displayed similar alteration to those of the D group, including increased in kidney damage biomarkers NGAL and KIM-1, UAE, hypertension, podocytopenia, apoptosis, collapsed glomeruli, as well as TGF-β, CHOP and PCNA upregulation. UAE, collapsed glomeruli, PCNA staining, TGF-β, NGAL and animal survival, significantly impaired in D + BPA animals. Moreover, UAE, collapsed glomeruli and animal survival also displayed a sexual dimorphism pattern. In conclusion, oral administration of BPA is capable of promoting in the kidney alterations that resemble early DN. Further translational studies are needed to clarify the potential role of BPA in renal diseases, particularly in diabetic patients.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, Alcalá de Henares, Spain
| | - Carmen Muñoz-Moreno
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Nuria Olea-Herrero
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Paula Reventun
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adriana Izquierdo-Lahuerta
- University Rey Juan Carlos, Biochemistry and Molecular Biology Area, Department of Basic Sciences of Health, Alcorcon, Spain
| | - Alba Antón-Cornejo
- Clinical Analysis Service, Principe de Asturias Hospital, Alcalá de Henares, Spain
| | - Marta González-Santander
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)/Facultad de Medicina Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marta Saura
- Universidad de Alcalá, Laboratory of Pathophysiology of the Vascular Wall, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, IRICYS, Department of System Biology/Physiology Unit, Alcalá de Henares, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain.
| |
Collapse
|
45
|
Fukuda A, Minakawa A, Sato Y, Shibata H, Hara M, Fujimoto S. Excretion Patterns of Urinary Sediment and Supernatant Podocyte Biomarkers in Patients with CKD. KIDNEY360 2021; 3:63-73. [PMID: 35368571 PMCID: PMC8967611 DOI: 10.34067/kid.0004772021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Background Podocyte depletion causes glomerulosclerosis, and persistent podocyte loss drives progression to ESKD. Urinary sediment podocin (u-sed Pod) mRNA excretion and urinary supernatant podocalyxin (u-sup PCX) protein have been used to monitor disease activity in glomerular diseases. However, the differences in these markers among pathologies have not been investigated. We examined the roles of these markers in kidney diseases. Methods From January 2013 to March 2016, early morning urine samples were collected from 12 healthy controls and 172 patients with kidney disease (n=15 patients with minor glomerular abnormality with mild proteinuria and/or microscopic hematuria, n=15 with minimal change nephrotic syndrome [MCNS], n=15 with membranous nephropathy [MN], n=60 with IgA nephropathy [IgAN], n=19 with crescentic GN [Cres GN], n=10 with lupus nephritis [LN], and n=38 with other kidney diseases). We examined u-sed Pod mRNA excretion, u-sup PCX protein, and the urinary protein-creatinine ratio (u-PCR). Results u-sed Pod mRNA excretion was significantly correlated with u-sup PCX protein (r=0.37, P<0.001). Both u-sed Pod mRNA excretion and u-sup PCX protein were significantly correlated with u-PCR (r=0.53, P<0.001 and r=0.35, P<0.001, respectively). Interestingly, u-sed Pod mRNA excretion was significantly increased in proliferative-type GN-including IgAN with extracapillary proliferative lesions, Cres GN, and LN class IV-and significantly correlated with the rate of crescent formation, whereas u-sup PCX protein was significantly increased only in those with MN and subepithelial dense deposit-type LN compared with controls. Conclusions Higher u-sed Pod mRNA excretion and u-sup PCX protein were associated with proliferative-type GN, indicating podocyte detachment and subepithelial dense deposit-type GN, respectively. The results suggest that u-sed Pod mRNA excretion and u-sup PCX protein have usefulness for the diagnosis and measurement of disease activity with regard to glomerular diseases.
Collapse
Affiliation(s)
- Akihiro Fukuda
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan,Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akihiro Minakawa
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuji Sato
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Shouichi Fujimoto
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
46
|
Ahmad AA, Draves SO, Rosca M. Mitochondria in Diabetic Kidney Disease. Cells 2021; 10:cells10112945. [PMID: 34831168 PMCID: PMC8616075 DOI: 10.3390/cells10112945] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in the USA. The pathogenesis of DKD is multifactorial and involves activation of multiple signaling pathways with merging outcomes including thickening of the basement membrane, podocyte loss, mesangial expansion, tubular atrophy, and interstitial inflammation and fibrosis. The glomerulo-tubular balance and tubule-glomerular feedback support an increased glomerular filtration and tubular reabsorption, with the latter relying heavily on ATP and increasing the energy demand. There is evidence that alterations in mitochondrial bioenergetics in kidney cells lead to these pathologic changes and contribute to the progression of DKD towards ESRD. This review will focus on the dialogue between alterations in bioenergetics in glomerular and tubular cells and its role in the development of DKD. Alterations in energy substrate selection, electron transport chain, ATP generation, oxidative stress, redox status, protein posttranslational modifications, mitochondrial dynamics, and quality control will be discussed. Understanding the role of bioenergetics in the progression of diabetic DKD may provide novel therapeutic approaches to delay its progression to ESRD.
Collapse
|
47
|
Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Bastami M, Nariman-Saleh-Fam Z, Abediazar S, Khalilov R, Zununi Vahed S. Migrasomes and exosomes; different types of messaging vesicles in podocytes. Cell Biol Int 2021; 46:52-62. [PMID: 34647672 DOI: 10.1002/cbin.11711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
Podocytes, highly specified kidney epithelial cells, live under several pathological stimuli and stresses during which they adapt themselves to keep homeostasis. Nevertheless, under extreme stress, a complex scenario of podocyte damage and its consequences occur. Podocyte damage causes foot process effacement and their detachment from the glomerular basement membrane, leading to proteinuria. Podocyte-derived extracellular vesicles (pEVs), mainly microparticles and exosomes are considered as signaling mediators of intercellular communication. Recently, it has been shown that throughout the injury-related migration procedure, podocytes are capable of releasing the injury-related migrasomes. Evidence indicates that at the early stages of glomerular disorders, increased levels of pEVs are observed in urine. At the early stage of nephropathy, pEVs especially migrasomes seem to be more sensitive and reliable indicators of podocyte stress and/or damage than proteinuria. This review highlights the current knowledge of pEVs and their values for the diagnosis of different kidney diseases.
Collapse
Affiliation(s)
| | | | | | - Milad Bastami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine
| | | |
Collapse
|
48
|
Lu Q, Hou Q, Cao K, Sun X, Liang Y, Gu M, Xue X, Zhao AZ, Dai C. Complement factor B in high glucose-induced podocyte injury and diabetic kidney disease. JCI Insight 2021; 6:147716. [PMID: 34622800 PMCID: PMC8525650 DOI: 10.1172/jci.insight.147716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The role and mechanisms for upregulating complement factor B (CFB) expression in podocyte dysfunction in diabetic kidney disease (DKD) are not fully understood. Here, analyzing Gene Expression Omnibus GSE30528 data, we identified genes enriched in mTORC1 signaling, CFB, and complement alternative pathways in podocytes from patients with DKD. In mouse models, podocyte mTOR complex 1 (mTORC1) signaling activation was induced, while blockade of mTORC1 signaling reduced CFB upregulation, alternative complement pathway activation, and podocyte injury in the glomeruli. Knocking down CFB remarkably alleviated alternative complement pathway activation and DKD in diabetic mice. In cultured podocytes, high glucose treatment activated mTORC1 signaling, stimulated STAT1 phosphorylation, and upregulated CFB expression, while blockade of mTORC1 or STAT1 signaling abolished high glucose–upregulated CFB expression. Additionally, high glucose levels downregulated protein phosphatase 2Acα (PP2Acα) expression, while PP2Acα deficiency enhanced high glucose–induced mTORC1/STAT1 activation, CFB induction, and podocyte injury. Taken together, these findings uncover a mechanism by which CFB mediates podocyte injury in DKD.
Collapse
Affiliation(s)
| | | | - Kai Cao
- Center for Kidney Disease and
| | - Xiaoli Sun
- Department of Clinical Genetics, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | - Xian Xue
- Department of Clinical Genetics, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chunsun Dai
- Center for Kidney Disease and.,Department of Clinical Genetics, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells 2021; 10:cells10092497. [PMID: 34572148 PMCID: PMC8469825 DOI: 10.3390/cells10092497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic kidney disease is associated with many structural and functional alterations. Autophagy is a cellular mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation. Autophagy rate and flux alterations were described in several models of diabetic kidney disease. Some of them are closely linked with disease progression and severity. Some antidiabetic agents have shown significant effects on autophagy. A few of them have also demonstrated to modify disease progression and improved outcomes in affected patients. Other drugs also target autophagy and are being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy could be relevant for the pharmacological treatment and prevention of this disease in the future. Therefore, this is an evolving area that requires further experimental and clinical research. Here we discuss the relationship between autophagy and Diabetic kidney disease and the potential value of autophagy modulation as a target for pharmacological intervention.
Collapse
|
50
|
Liu L, Murray B, Tomaszewski JE. Lupus podocytopathy superimposed on diabetic glomerulosclerosis: A case report. Medicine (Baltimore) 2021; 100:e27077. [PMID: 34664831 PMCID: PMC8448049 DOI: 10.1097/md.0000000000027077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/02/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Lupus podocytopathy (LP) is an entity that is increasingly being reported in the literature on systemic lupus erythematosus (SLE). LP is characterized by nephrotic syndrome in SLE patients with diffuse glomerular podocyte foot process effacement and no immune complex deposits along the capillary loops. Histologically, LP typically mimics minimal change disease or primary focal segmental glomerulosclerosis (FSGS) on a background of ISN/RPS class I or II lupus nephritis. In situations where there are coexistent glomerular diseases, however, LP may be easily masked by background lesions and overlapping clinical symptoms. PATIENT CONCERNS We report the case of a 24-year-old woman with type I diabetes, hypertension, psoriasis/rash, and intermittent arthritis who presented with abrupt onset of severe nephrotic proteinuria and renal insufficiency. Renal biopsy revealed nodular glomerulosclerosis and FSGS. Immune deposits were not identified by immunofluorescence or electron microscopy. Ultrastructurally, there was diffuse glomerular basement membrane thickening and over 90% podocyte foot process effacement. With no prior established diagnosis of SLE, the patient was initially diagnosed with diabetic nephropathy with coexistent FSGS, and the patient was started on angiotensin-converting enzyme inhibitors (ACEI) and diuretics. However, nephrotic proteinuria persisted and renal function deteriorated. The patient concurrently developed hemolytic anemia with pancytopenia. DIAGNOSES Subsequent to the biopsy, serologic results showed positive autoantibodies against double strand DNA (dsDNA), Smith antigen, ribonucleoprotein (RNP), and Histone. A renal biopsy was repeated, revealing essentially similar findings to those of the previous biopsy. Integrating serology and clinical presentation, SLE was favored. The pathology findings were re-evaluated and considered to be most consistent with LP and coexistent diabetic nephropathy, with superimposed FSGS either as a component of LP or as a lesion secondary to diabetes or hypertension. INTERVENTIONS The patient was started on high-dose prednisone at 60 mg/day, with subsequent addition of mycophenolate mofetil and ACEI, while prednisone was gradually tapered. OUTCOMES The patient's proteinuria, serum creatinine, complete blood counts, skin rash, and arthritis were all significantly improved. CONCLUSION The diagnosis of LP when confounded by other glomerular diseases that may cause nephrotic syndrome can be challenging. Sufficient awareness of this condition is necessary for the appropriate diagnosis and treatment.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Brian Murray
- Department of Internal Medicine, Jacobs School of Medicine, University at Buffalo, State University of New York, Buffalo, NY
| | - John E. Tomaszewski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|