1
|
Wenting E, Siepel H, Jansen PA. Variability of the Ionome of Wild Boar (Sus scrofa) and Red Deer (Cervus elaphus) in a Dutch National Park, with Implications for Biomonitoring. Biol Trace Elem Res 2024; 202:2518-2546. [PMID: 37814170 PMCID: PMC11052835 DOI: 10.1007/s12011-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
The ionome-an important expression of the physiological state of organisms-is poorly known for mammals. The focus on particular tissues-such as liver, kidney, and bones-in biomonitoring of environmental pollution and potential deficiencies is based on widely held assumptions rather than solid knowledge of full mammalian ionomes. We examined the full ionome of Red deer (Cervus elaphus) and Wild boar (Sus scrofa), two commonly used mammals for biomonitoring, in a Dutch protected nature reserve (Veluwezoom). We used four individuals per species. We dissected 13 tissues and organs from each individuals (eight in total) of each species and measured 22 elemental concentrations in each. We assessed, for each element, how concentrations varied across tissues within and between individuals. Based on existing literature, we put our findings in the context of their function in the mammalian body. We found that the ionome was highly variable between as well as within the two species. For most elements, tissues containing the highest and lowest concentration differed between individuals. No single tissue accurately represented the accumulation of toxic elements or potential deficiencies in the bodies. Our assessment of the element's biological roles revealed a serious lack of reference values. Our findings imply that analyses of commonly used tissues in biomonitoring do not necessarily capture bioaccumulation of toxins or potential deficiencies. We recommend establishing a centralized database of mammalian ionomes to derive reference values in future. To our knowledge, our study is one of the most complete assessments of mammalian ionomes to date.
Collapse
Affiliation(s)
- Elke Wenting
- Department of Environmental Sciences, Wageningen University and Research, Box 47, 6700 AA, Wageningen, the Netherlands.
- Radboud Institute for Biological and Environmental Sciences, Department of Animal Ecology and Physiology, Radboud University, Box 9010, 6500 GL, Nijmegen, the Netherlands.
| | - Henk Siepel
- Department of Environmental Sciences, Wageningen University and Research, Box 47, 6700 AA, Wageningen, the Netherlands
- Radboud Institute for Biological and Environmental Sciences, Department of Animal Ecology and Physiology, Radboud University, Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University and Research, Box 47, 6700 AA, Wageningen, the Netherlands
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| |
Collapse
|
2
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
3
|
Hu Y, Li Y, Li M, Zhao T, Zhang W, Wang Y, He Y, Zhao H, Li H, Wang T, Zhao Y, Wang J, Wang J. Calcium supplementation attenuates fluoride-induced bone injury via PINK1/Parkin-mediated mitophagy and mitochondrial apoptosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133411. [PMID: 38181596 DOI: 10.1016/j.jhazmat.2023.133411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.
Collapse
Affiliation(s)
- Yingjun Hu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yuanyuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Meng Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Tianrui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Wenhui Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yinghui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yang He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China.
| |
Collapse
|
4
|
Lindsay SE, Smith S, Yang S, Yoo J. Community Water Fluoridation and Rate of Pediatric Fractures. J Am Acad Orthop Surg Glob Res Rev 2023; 7:01979360-202310000-00001. [PMID: 37796978 PMCID: PMC10558222 DOI: 10.5435/jaaosglobal-d-22-00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The effect of community water fluoridation on bone fragility and fracture has been inconclusive in the literature. The null hypothesis of this study was that no association was observed between water fluoride level and risk of fracture in children. METHODS Community fluoridation data were obtained from the Centers for Disease Control and Prevention while data on fracture rates were obtained from the PearlDiver database. The rate of fracture type for each state was then compared with state-level fluoridation data using Pearson correlation coefficients and Wilcoxon rank-sum tests. RESULTS Positive correlations were found between the percentage of state water fluoridation and fracture rates for both bone forearm fracture (BBFFx) and femur fracture. Fluoride levels had positive correlations with fracture rates for all fracture types. Increased fracture rates were found between states in the highest quartiles of percentage of state water fluoridation and fluoride water levels for supracondylar humerus fracture and BBFFx. CONCLUSIONS A higher level of water fluoridation was associated with higher rates of supracondylar humerus fracture and BBFFx in children aged 4 to 10 years. These findings do not imply causality, but they suggest that additional investigation into the effect of fluoride on pediatric bone health may be indicated.
Collapse
Affiliation(s)
| | - Spencer Smith
- From the Oregon Health & Science University, Portland, OR
| | - Scott Yang
- From the Oregon Health & Science University, Portland, OR
| | - Jung Yoo
- From the Oregon Health & Science University, Portland, OR
| |
Collapse
|
5
|
Giménez-Forcada E, Luque-Espinar JA, López-Bahut MT, Grima-Olmedo J, Jiménez-Sánchez J, Ontiveros-Beltranena C, Díaz-Muñoz JÁ, Elster D, Skopljak F, Voutchkova D, Hansen B, Hinsby K, Schullehner J, Malcuit E, Gourcy L, Szőcs T, Gál N, Þorbjörnsson D, Tedd K, Borozdins D, Debattista H, Felter A, Cabalska J, Mikołajczyk A, Pereira A, Sampaio J, Perşa D, Petrović Pantic T, Rman N, Arnó G, Herms I, Rosenqvist L. Analysis of the geological control on the spatial distribution of potentially toxic concentrations of As and F - in groundwater on a Pan-European scale. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114161. [PMID: 36343451 DOI: 10.1016/j.ecoenv.2022.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The distribution of the high concentrations of arsenic (As) and fluoride (F-) in groundwater on a Pan-European scale could be explained by the geological European context (lithology and structural faults). To test this hypothesis, seventeen countries and eighteen geological survey organizations (GSOs) have participated in the dataset. The methodology has used the HydroGeoToxicity (HGT) and the Baseline Concentration (BLC) index. The results prove that most of the waters considered in this study are in good conditions for drinking water consumption, in terms of As and/or F- content. A low proportion of the analysed samples present HGT≥ 1 levels (4% and 7% for As and F-, respectively). The spatial distribution of the highest As and/or F- concentrations (via BLC values) has been analysed using GIS tools. The highest values are identified associated with fissured hard rock outcrops (crystalline rocks) or Cenozoic sedimentary zones, where basement fractures seems to have an obvious control on the distribution of maximum concentrations of these elements in groundwaters.
Collapse
Affiliation(s)
- Elena Giménez-Forcada
- CIDE-CSIC, Centro de Investigaciones sobre Desertificación, 46113 Moncada, Valencia, Spain; CN IGME-CSIC, Instituto Geológico y Minero de España, 37001 Salamanca, Spain.
| | | | | | - Juan Grima-Olmedo
- CN IGME-CSIC, Instituto Geológico y Minero de España, 46004 Valencia, Spain.
| | | | | | | | - Daniel Elster
- GBA, Geological Survey of Austria, A-1030 Vienna, Austria.
| | - Ferid Skopljak
- FZZG - Geological Survey of the Federation of Bosnia and Herzegovina, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Denitza Voutchkova
- GEUS, Geological Survey of Denmark and Greenland, 8000 Aarhus C, Denmark.
| | - Birgitte Hansen
- GEUS, Geological Survey of Denmark and Greenland, 8000 Aarhus C, Denmark.
| | - Klaus Hinsby
- GEUS, Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark.
| | - Jörg Schullehner
- AU, Aarhus University Department of Public Health, 8000 Aarhus C, Denmark.
| | - Eline Malcuit
- BRGM, Geological Survey of France, 45100 Orléans, France.
| | | | - Teodóra Szőcs
- MBFSZ, Mining and Geological Survey of Hungary, 1145 Budapest, Hungary.
| | - Nóra Gál
- MBFSZ, Mining and Geological Survey of Hungary, 1145 Budapest, Hungary.
| | | | - Katie Tedd
- GSI, Geological Survey Ireland, A94 N2R6 Dublin, Ireland.
| | - Dāvis Borozdins
- LEGMC, Latvian Environment, Geology and Meteorology Center, LV-1019 Riga, Latvia.
| | | | - Agnieszka Felter
- PGI, Polish Geological Institute - National Research Institute, 00-975 Warszawa, Poland.
| | - Jolanta Cabalska
- PGI, Polish Geological Institute - National Research Institute, 00-975 Warszawa, Poland.
| | - Anna Mikołajczyk
- PGI, Polish Geological Institute - National Research Institute, 00-975 Warszawa, Poland.
| | - Ana Pereira
- LNEG - National Laboratory of Energy and Geology, 2610-999 Amadora, Portugal.
| | - Jose Sampaio
- LNEG - National Laboratory of Energy and Geology, 2610-999 Amadora, Portugal.
| | - Diana Perşa
- IGR, Geological Institute of Romania, Bucharest, Romania.
| | | | - Nina Rman
- GeoZS, Geological Survey of Slovenia, 1000 Ljubljana, Slovenia.
| | - Georgina Arnó
- ICGC, Institut Cartogràfic i Geològic de Catalunya, 08038 Barcelona, Spain.
| | - Ignasi Herms
- ICGC, Institut Cartogràfic i Geològic de Catalunya, 08038 Barcelona, Spain.
| | - Lars Rosenqvist
- SGU, Geological Survey of Sweden, SE-751 28 Uppsala, Sweden.
| |
Collapse
|
6
|
Du C, Xiao P, Gao S, Chen S, Chen B, Huang W, Zhao C. High Fluoride Ingestion Impairs Bone Fracture Healing by Attenuating M2 Macrophage Differentiation. Front Bioeng Biotechnol 2022; 10:791433. [PMID: 35669059 PMCID: PMC9164140 DOI: 10.3389/fbioe.2022.791433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fluorosis is still endemic in at least 25 countries around the world. In this study, we investigated the effect of high fluoride intake on fracture healing. Our in vitro experiments found that fluoride inhibited the osteogenic and angiogenic differentiation of MSCs in a dose-dependent manner. By constructing a bone fracture model, we found that high fluoride intake influences bone fracture by attenuating endochondral ossification and angiogenesis. In the mechanism, we clarified that high fluoride inhibits M2 differentiation rather than M1 differentiation in the fracture area, which may contribute to the delayed healing of the fracture. These findings provide an essential reference for the clinical treatment of bone fracture patients with a history of high fluoride intake or skeletal fluorosis patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Huang
- *Correspondence: Wei Huang, ; Chen Zhao,
| | - Chen Zhao
- *Correspondence: Wei Huang, ; Chen Zhao,
| |
Collapse
|
7
|
Rahim A, Essamadi A, El Amiri B. A comprehensive review on endemic and experimental fluorosis in sheep: Its diverse effects and prevention. Toxicology 2021; 465:153025. [PMID: 34748892 DOI: 10.1016/j.tox.2021.153025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 01/21/2023]
Abstract
Fluoride is a natural element widely distributed in the environment and plays an important role in the growth of humans and animals. However, in many species, high concentrations of fluoride induce several problems, such as dental, skeletal, and non-skeletal fluorosis. Sheep living in endemic areas are sensitive to the chronic toxicity of fluoride, and they have been found to suffer not only from teeth and bone problems but also from other organs. Studies indicating the chronic harmful effects of fluoride on teeth, bones, blood biochemical parameters, kidney, liver, heart, reproductive system and growth in sheep have been clearly summarized in this review. Besides, this work also includes updated progress in terms of prevention or reduction of fluoride toxicity in this species.
Collapse
Affiliation(s)
- Abdellatif Rahim
- Regional Center for Agricultural Research in Settat, National Institute for Agricultural Research (INRA), P.O. Box 589, Settat, 26000, Morocco; Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Abdelkhalid Essamadi
- Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Bouchra El Amiri
- Regional Center for Agricultural Research in Settat, National Institute for Agricultural Research (INRA), P.O. Box 589, Settat, 26000, Morocco.
| |
Collapse
|
8
|
Wang Y, Li A, Mehmood K, Hussain R, Abbas RZ, Javed MT, Chang YF, Hu L, Pan J, Li Y, Shi L, Tang Z, Zhang H. Long-term exposure to the fluoride blocks the development of chondrocytes in the ducks: The molecular mechanism of fluoride regulating autophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112225. [PMID: 33864983 DOI: 10.1016/j.ecoenv.2021.112225] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 05/15/2023]
Abstract
Long-term exposure to excessive fluoride causes chronic damage in the body tissues and could lead to skeletal and dental fluorosis. Cartilage damage caused by excessive fluoride intake has gained wide attention, but how fluoride accumulation blocks the development of chondrocytes is still unclear. Here, we report a negative correlation between the length and growth plate width after NaF treatments via apoptosis and autophagy, with shrinkage of cells, nuclear retraction, dissolution of chondrocytes. Whereas, fluoride exposure had no significant effect on the number and distribution of the osteoclasts which were well aligned. More importantly, fluoride exposure induced apoptosis of tibial bone through CytC/Bcl-2/P53 pathways via targeting Caspase3, Caspase9, Bak1, and Bax expressions. Meanwhile, the Beclin1, mTOR, Pakin, Pink, and p62 were elevated in NaF treatment group, which indicated that long-term excessive fluoride triggered the autophagy in the tibial bone and produced the chondrocyte injury. Altogether, fluoride exposure induced the chondrocyte injury by regulating the autophagy and apoptosis in the tibial bone of ducks, which demonstrates that fluoride exposure is a risk factor for cartilage development. These findings revealed the essential role of CytC/Bcl-2/P53 pathways in long-term exposure to fluoride pollution and block the development of chondrocytes in ducks, and CytC/Bcl-2/P53 can be targeted to prevent fluoride induced chondrocyte injury.
Collapse
Affiliation(s)
- Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Khalid Mehmood
- Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - M Tariq Javed
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Sangwan P, Rishi MS, Singh G. Assessment of drinking water quality and non-carcinogenic health risk associated with the feed and treated water of water treatment devices (WTDs) in southwest Punjab, India. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1906707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Priyanka Sangwan
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Madhuri S. Rishi
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Gagandeep Singh
- Department of Environment Studies, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y, Zhou G, Ba Y. Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: Non-negligible role of RUNX2 promoter methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111031. [PMID: 32888610 DOI: 10.1016/j.ecoenv.2020.111031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Bone mineral density (BMD) changes were reported to be associated with excessive fluoride exposure and abnormal expression of RUNX2. However, whether the alteration of methylation status, a most commonly used marker for the alteration of gene expression in epidemiological investigation, of RUNX2 is associated with low-to-moderate fluoride exposure and BMD changes has not been reported. Our study aims to explore the role of RUNX2 promoter methylation in BMD changes induced by low-to-moderate fluoride exposure. A total of 1124 adults (413 men and 711 women) were recruited from Kaifeng City in 2017. We measured BMD using ultrasound bone densitometer. Concentrations of urinary fluoride (UF) were measured using ion-selective electrode, and the participants were grouped into control group (CG) and excessive fluoride group (EFG) according to the concentration of UF. We extracted DNA from fasting peripheral blood samples and then detected the promoter methylation levels of RUNX2 using quantitative methylation-specific PCR. Relationships between UF concentration, RUNX2 promoter methylation and BMD changes were analyzed using generalized linear model and logistic regression. Results showed in EFG (UF concentration > 1.6 mg/L), BMD was negatively correlated with UF concentration (β: -0.14; 95%CI: -0.26, -0.01) and RUNX2 promoter methylation (β: -0.13; 95%CI: -0.22, -0.03) in women. The methylation rate of RUNX2 promoter increased by 2.16% for each 1 mg/L increment in UF concentration of women in EFG (95%CI: 0.37, 3.96). No any significant associations between UF concentration, RUNX2 promoter methylation, and BMD were observed in the individuals in CG. Mediation analysis showed that RUNX2 promoter methylation mediated 18.2% (95% CI: 4.2%, 53.2%) of the association between UF concentration and BMD of women in EFG. In conclusion, excessive fluoride exposure (>1.6 mg/L) is associated with changes of BMD in women, and this association is mediated by RUNX2 promoter methylation.
Collapse
Affiliation(s)
- Minghui Gao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Long Sun
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Kaihong Xu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Luoming Zhang
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475004, PR China.
| | - Yanli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Tongkun He
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Renjie Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Hui Huang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Jingyuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yawei Zhang
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06520, USA.
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
11
|
Rezaee T, Bouxsein ML, Karim L. Increasing fluoride content deteriorates rat bone mechanical properties. Bone 2020; 136:115369. [PMID: 32320892 PMCID: PMC7246161 DOI: 10.1016/j.bone.2020.115369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Elevation of bone fluoride levels due to drinking beverages with high fluoride content or other means such as inhalation can result in skeletal fluorosis and lead to increased joint pain, skeletal deformities, and fracture. Because skeletal fluorosis alters bone's mineral composition, it is likely to affect bone's tissue-level mechanical properties with consequent effects on whole bone mechanical behavior. To investigate this, we determined whether incubation with in vitro sodium fluoride (NaF) altered bone's mechanical behavior at both the tissue- and whole bone-levels using cyclic reference point indentation (cRPI) and traditional 3-point bending, respectively. Forty-two ulnas from female adult rats (5-6 months) were randomly divided into 5 groups (vehicle, 0.05 M NaF, 0.25 M NaF, 0.75 M NaF, and 1.5 M NaF). Bones were washed in a detergent solution to remove organic barriers to ion exchange and incubated in respective treatment solutions (12 h, 23 °C). Cortical tissue mineral density (TMD) and geometry at the mid-diaphysis were determined by microCT. cRPI was performed on the distal diaphysis (9 N, 2 Hz, 10 cycles), and then bones were tested in 3-point bending to assess whole bone mechanical properties. The incubations in vehicle (0 M) up to 1.5 M in vitro NaF concentrations achieved bone fluoride levels ranging from approximately 0.70 to 15.8 ppm. NaF-incubated bones had significantly greater indentation distances, higher displacement-to-maximum force, and lower estimated elastic modulus, ultimate stress, and bending rigidity with increasing NaF concentration compared to vehicle-incubated bones. cRPI variables were moderately correlated to whole bone mechanical properties such that higher indentation distances were associated with lower estimated elastic modulus, ultimate stress, and bending rigidity. In conclusion, in vitro NaF incubation mostly has a deleterious effect on bone mechanical behavior with increasing NaF levels that is independent of bone turnover and reflected, in part, by less resistance of the tissue to cRPI-based indentation.
Collapse
Affiliation(s)
- Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA.
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA.
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA.
| |
Collapse
|
12
|
Liu J, Yang S, Luo MJ, Chen T, Ma XJ, Tao N, Zhao X, Wang DH. Association Between Dietary Patterns and Fluorosis in Guizhou, China. Front Nutr 2020; 6:189. [PMID: 32039225 PMCID: PMC6985547 DOI: 10.3389/fnut.2019.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: Many studies have explored the effects of individual foods or nutrients on fluorosis, but no studies have focused on dietary patterns. This study examined the relationship between dietary patterns and coal-burning fluorosis in Guizhou, China. Methods: This 1:1 matched case-control study was conducted in Zhijin County of Guizhou province with a sample size of 200 cases of fluorosis and 200 age and gender matched controls. Habitual dietary intake was assessed by face-to-face interviews, using a validated 75-item food frequency questionnaire (FFQ) and various covariates using structured questionnaires. The dietary patterns were identified by factor analysis. Results: The factor analysis identified three major dietary patterns which were labeled healthy, easy-to-roast and high protein. After adjusting for various confounding factors, a decreased risk for fluorosis was observed in the highest tertile of the healthy dietary pattern relative to the lowest tertile (OR = 0.47, 95% CI = 0.27–0.84, P-trend = 0.003) and a positive association was observed between the easy-to-roast dietary pattern and fluorosis risk (OR = 2.05, 95% CI = 1.15–3.66), with a significant linear trend (P = 0.017). We did not find an association between fluorosis risk and the high protein dietary pattern. The relationships remained significant when the analyses were stratified by gender and fluorosis subtypes. Conclusion: The healthy dietary pattern may lower coal-burning fluorosis risk; in contrast, the easy-to-roast dietary pattern significantly increases the risk of coal-burning fluorosis.
Collapse
Affiliation(s)
- Jun Liu
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Sheng Yang
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Ming-Jiang Luo
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Ting Chen
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xiao-Juan Ma
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Disease, Center of Disease Control and Prevention of Zhijin County, Zhijin, China
| | - Dong-Hong Wang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Wang J, Yang J, Cheng X, Xiao R, Zhao Y, Xu H, Zhu Y, Yan Z, Ommati MM, Manthari RK, Wang J. Calcium Alleviates Fluoride-Induced Bone Damage by Inhibiting Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10832-10843. [PMID: 31464433 DOI: 10.1021/acs.jafc.9b04295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive fluoride mainly causes skeletal lesions. Recently, it has been reported that an appropriate level of calcium can alleviate fluorosis. However, the appropriate concentration and mechanism of calcium addition is unclear. Hence, we evaluated the histopathology and ultrastructure, DNA fragmentation, hormonal imbalances, biomechanical levels, and expression of apoptosis-related genes after treating the rats with 150 mg/L NaF and different concentrations of CaCO3. Our results suggested that NaF induced the histopathological and ultrastructural injury, with a concomitant increase in the DNA fragmentation (P < 0.05) and serum OC (17.5 ± 0.89 pmoL/L) at 120 days. In addition, the qRT-PCR and western blotting results indicated that NaF exposure upregulated the mRNA and protein expression of Bax, Calpain, Caspase 12, Caspase 9, Caspase 7, Caspase 3, CAD, PARP, and AIF while downregulated Bcl-2 (P < 0.01) and decreased the bone ultimate load by 27.1%, the ultimate stress by 10.1%, and the ultimate deformity by 23.3% at 120 days. However, 1% CaCO3 supplementation decreased the serum OC (14.7 ± 0.65 pmoL/L), bone F content (P < 0.01), and fracture and breakage of collagen fibers and changed the expression of endoplasmic reticulum pathway-related genes and proteins at 120 days. Further, 1% CaCO3 supplementation increased the bone ultimate load by 20.9%, the ultimate stress by 4.89%, and the ultimate deformity by 21.6%. In summary, we conclude that 1% CaCO3 supplementation alleviated fluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
|
14
|
Schmidt FN, Delsmann MM, Mletzko K, Yorgan TA, Hahn M, Siebert U, Busse B, Oheim R, Amling M, Rolvien T. Ultra-high matrix mineralization of sperm whale auditory ossicles facilitates high sound pressure and high-frequency underwater hearing. Proc Biol Sci 2019; 285:20181820. [PMID: 30963901 DOI: 10.1098/rspb.2018.1820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The auditory ossicles-malleus, incus and stapes-are the smallest bones in mammalian bodies and enable stable sound transmission to the inner ear. Sperm whales are one of the deepest diving aquatic mammals that produce and perceive sounds with extreme loudness greater than 180 dB and frequencies higher than 30 kHz. Therefore, it is of major interest to decipher the microstructural basis for these unparalleled hearing abilities. Using a suite of high-resolution imaging techniques, we reveal that auditory ossicles of sperm whales are highly functional, featuring an ultra-high matrix mineralization that is higher than their teeth. On a micro-morphological and cellular level, this was associated with osteonal structures and osteocyte lacunar occlusions through calcified nanospherites (i.e. micropetrosis), while the bones were characterized by a higher hardness compared to a vertebral bone of the same animals as well as to human auditory ossicles. We propose that the ultra-high mineralization facilitates the unique hearing ability of sperm whales. High matrix mineralization represents an evolutionary conserved or convergent adaptation to middle ear sound transmission.
Collapse
Affiliation(s)
- Felix N Schmidt
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Maximilian M Delsmann
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Kathrin Mletzko
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Timur A Yorgan
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Michael Hahn
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Ursula Siebert
- 2 Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover , Foundation, Werftstrasse 6, 25761 Buesum , Germany
| | - Björn Busse
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Ralf Oheim
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Michael Amling
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Tim Rolvien
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany.,3 Department of Orthopedics, University Medical Center Hamburg-Eppendorf , Martinistrasse 52, 20246 Hamburg , Germany
| |
Collapse
|
15
|
Wang HW, Liu J, Zhao WP, Zhang ZH, Li SQ, Li SH, Zhu SQ, Zhou BH. Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats. Biol Trace Elem Res 2019; 189:511-518. [PMID: 30215190 DOI: 10.1007/s12011-018-1503-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
This study aimed to determine the effect of excessive fluoride (F) on the morphological characteristics of the small intestine and the contents of serum cytokines in rats. A total of 48 3-week-old healthy female Sprague-Dawley rats were randomly divided into four groups (n = 12). The control group was given deionized distilled water, while the F treatment groups were treated with water containing 25, 50, and 100 mg F-/L. After 70 days of treatment, the duodenum, the jejunum, and the ileum were collected to measure the developmental parameters and the distribution of intestinal glycoproteins, goblet cells, and mast cells through Pannoramic Viewer, Periodic Acid-Schiff (PAS) staining, Alcian blue and periodic acid-Schiff (AB-PAS) staining, and toluidine blue staining, respectively. The contents of cytokines, namely, interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α, in serum were detected via enzyme-linked immunosorbent assay (ELISA). Results showed that the villus height, crypt depth, villus height to crypt depth ratio, goblet cells, glycoproteins, and mast cells of the small intestine significantly decreased (P < 0.05 or P < 0.01) in the F treatment group. The contents of IL-1β, IL-2, IL-6, and TNF-α were significantly lower in the F treatment group than in the control group (P < 0.05 or P < 0.01). In summary, excessive F intake impaired intestinal development and immune function by decreasing the developmental parameters and the distribution of immune cells, glycoproteins, and cytokines.
Collapse
Affiliation(s)
- Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Zi-Hao Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Si-Qi Li
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Si-Han Li
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
16
|
Zhang Y, Huang H, Gong B, Duan L, Sun L, He T, Cheng X, Li Z, Cui L, Ba Y. Do Environmental Fluoride Exposure and ESRα Genetic Variation Modulate Methylation Modification on Bone Changes in Chinese Farmers? Chem Res Toxicol 2017; 30:1302-1308. [DOI: 10.1021/acs.chemrestox.7b00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanli Zhang
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Hui Huang
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Biao Gong
- Kaifeng Center for Disease Prevention and Control, Kaifeng, Henan 475000, People’s Republic of China
| | - Leizhen Duan
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Long Sun
- Kaifeng Center for Disease Prevention and Control, Kaifeng, Henan 475000, People’s Republic of China
| | - Tongkun He
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Xuemin Cheng
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Zhiyuan Li
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Liuxin Cui
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Yue Ba
- Department
of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| |
Collapse
|
17
|
Rolvien T, Hahn M, Siebert U, Püschel K, Wilke HJ, Busse B, Amling M, Oheim R. Vertebral bone microarchitecture and osteocyte characteristics of three toothed whale species with varying diving behaviour. Sci Rep 2017; 7:1604. [PMID: 28487524 PMCID: PMC5431672 DOI: 10.1038/s41598-017-01926-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Although vertebral bone microarchitecture has been studied in various tetrapods, limited quantitative data are available on the structural and compositional changes of vertebrae in marine mammals. Whales exhibit exceptional swimming and diving behaviour, and they may not be immune to diving-associated bone pathologies. Lumbar vertebral bodies were analysed in three toothed whale species: the sperm whale (Physeter macrocephalus), orca (Orcinus orca) and harbour porpoise (Phocoena phocoena). The bone volume fraction (BV/TV) did not scale with body size, although the trabeculae were thicker, fewer in number and further apart in larger whale species than in the other two species. These parameters had a negative allometric scaling relationship with body length. In sperm whales and orcas, the analyses revealed a central ossification zone (“bone-within-bone”) with an increased BV/TV and trabecular thickness. Furthermore, a large number of empty osteocyte lacunae was observed in the sperm whales. Quantitative backscattered electron imaging showed that the lacunae were significantly smaller and less densely packed. Our results indicate that whales have a unique vertebral bone morphology with an inside-out appearance and that deep diving may result in a small number of viable osteocytes because of diving depth-related osteocyte death.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761, Buesum, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14 D, 89081, Ulm, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| |
Collapse
|
18
|
Death C, Coulson G, Kierdorf U, Kierdorf H, Ploeg R, Firestone SM, Dohoo I, Hufschmid J. Skeletal fluorosis in marsupials: A comparison of bone lesions in six species from an Australian industrial site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1198-1211. [PMID: 28185728 DOI: 10.1016/j.scitotenv.2017.01.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
In this study we explored the prevalence, type, location and severity of skeletal lesions in six species of Australian marsupial (Macropus giganteus, Notamacropus rufogriseus, Wallabia bicolor, Phascolarctos cinereus, Trichosurus vulpecula and Pseudocheirus peregrinus) from high and low-fluoride environments. Lesions occurred to varying extents in all species, and lesion distribution varied with biomechanical differences in gait and mastication. Bone fluoride levels increased with severity of periosteal hyperostosis. The mean bone fluoride concentration of individuals lacking hyperostosis (across all species, from both high and low-fluoride environments) was 1100±260μgF-/g dry bone, compared to 4300±1200μgF-/g and 6300±1200μgF-/g in those with mild and severe grade hyperostosis, respectively. Multivariable modelling showed that the probability of observing a lesion varied across species, anatomical location, age and bone fluoride concentration (in a non-linear manner). The pathological changes reported in the marsupials are consistent with the range of fluoride-related lesions described in other mammals, and biomechanical differences among the studied marsupial species offer some explanation for the degree of interspecific variability in prevalence, type, anatomical location, and severity of the lesions.
Collapse
Affiliation(s)
- Clare Death
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Hwy, Werribee 3030, Victoria, Australia.
| | - Graeme Coulson
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany
| | - Richard Ploeg
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Hwy, Werribee 3030, Victoria, Australia
| | - Simon M Firestone
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Ian Dohoo
- University of Prince Edward Island, Charlottetown PEI C1A 4P3, Canada
| | - Jasmin Hufschmid
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Hwy, Werribee 3030, Victoria, Australia
| |
Collapse
|
19
|
Tian P, Peng F, Wang D, Liu X. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy. Regen Biomater 2017; 4:1-10. [PMID: 28149524 PMCID: PMC5274704 DOI: 10.1093/rb/rbw036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied by evaluating cytotoxicity, adhesion, proliferation and live-dead stain of osteoblast cells (MC3T3-E1). Furthermore, the corrosion morphologies in vivo were examined. The results showed that the fluoride could be incorporated into the coating to form MgF2 phase. In vitro and in vivo degradation tests revealed that the corrosion resistance of the coating could be improved by the incorporation of fluoride, which may attribute to the chemical stability of MgF2 phase. Moreover, good cytocompatibility of fluoride-incorporated coating was confirmed with no obvious cytotoxicity, enhanced cell adhesion and proliferation. However, when the fluoride content was high, a slight inhibition of cell growth was observed. The results indicate that although fluoride incorporation can enhance the corrosion resistance of the coatings, thus resulting a more suitable environment for cells, the high content of fluoride in the coating also kill cells ascribed to the high released of fluorine. If the content of fluoride is well controlled, the PEO coating with MgF2 phase is a promising surface modification of Mg alloys.
Collapse
Affiliation(s)
- Peng Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| |
Collapse
|
20
|
Riedel C, Zimmermann EA, Zustin J, Niecke M, Amling M, Grynpas M, Busse B. The incorporation of fluoride and strontium in hydroxyapatite affects the composition, structure, and mechanical properties of human cortical bone. J Biomed Mater Res A 2016; 105:433-442. [DOI: 10.1002/jbm.a.35917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Christoph Riedel
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Elizabeth A. Zimmermann
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Jozef Zustin
- Department of Pathology; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg 20246 Germany
| | - Manfred Niecke
- Institute of Experimental Physics, University of Hamburg; Luruper Chaussee 149 Hamburg 22761 Germany
| | - Michael Amling
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; 25 Orde Street Toronto Ontario M5T 3H7 Canada
| | - Björn Busse
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| |
Collapse
|
21
|
Bin G, Liu H, Zhao C, Zhou G, Ding X, Zhang N, Xu Y, Qi Y. Refractive Errors in Northern China Between the Residents with Drinking Water Containing Excessive Fluorine and Normal Drinking Water. Biol Trace Elem Res 2016; 173:259-67. [PMID: 26920734 DOI: 10.1007/s12011-016-0647-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to evaluate the refractive errors and the demographic associations between drinking water with excessive fluoride and normal drinking water among residents in Northern China. Of the 1843 residents, 1415 (aged ≥40 years) were divided into drinking-water-excessive fluoride (DWEF) group (>1.20 mg/L) and control group (≤1.20 mg/L) on the basis of the fluoride concentrations in drinking water. Of the 221 subjects in the DWEF group, with 1.47 ± 0.25 mg/L (fluoride concentrations in drinking water), the prevalence rates of myopia, hyperopia, and astigmatism were 38.5 % (95 % confidence interval [CI] = 32.1-45.3), 19.9 % (95 % CI = 15-26), and 41.6 % (95 % CI = 35.1-48.4), respectively. Of the 1194 subjects in the control group with 0.20 ± 0.18 mg/L, the prevalence of myopia, hyperopia, and astigmatism were 31.5 % (95 % CI = 28.9-34.2), 27.6 % (95 % CI = 25.1-30.3), and 45.6 % (95 % CI = 42.8-48.5), respectively. A statistically significant difference was not observed in the association of spherical equivalent and fluoride concentrations in drinking water (P = 0.84 > 0.05). This report provides the data of the refractive state of the residents consuming drinking water with excess amounts of fluoride in northern China. The refractive errors did not result from ingestion of mild excess amounts of fluoride in the drinking water.
Collapse
Affiliation(s)
- Ge Bin
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Haifeng Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Chunyuan Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Guangkai Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Xuchen Ding
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Na Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Yongfang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China.
| |
Collapse
|
22
|
Connor EE, Evock-Clover CM, Wall EH, Baldwin RL, Santin-Duran M, Elsasser TH, Bravo DM. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest Anim Endocrinol 2016; 56 Suppl:S56-65. [PMID: 27345324 DOI: 10.1016/j.domaniend.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of these enteric peptides are only beginning to be uncovered. One peptide in particular, glucagon-like peptide 2 (GLP-2) produced by enteroendocrine L cells, has been fairly well characterized in rodent and swine models in terms of its ability to improve nutrient absorption and healing of the gut after injury. In fact, a long-acting form of GLP-2 recently has been approved for the management and treatment of human conditions like inflammatory bowel disease and short bowel syndrome. However, novel functions of GLP-2 within the gut continue to be demonstrated, including its beneficial effects on intestinal barrier function and reducing intestinal inflammation. As knowledge continues to grow about GLP-2's effects on the gut and its mechanisms of release, the potential to use GLP-2 to improve gut function and health of food animals becomes increasingly more apparent. Thus, the purpose of this review is to summarize: (1) the current understanding of GLP-2's functions and mechanisms of action within the gut; (2) novel applications of GLP-2 (or stimulators of its release) to improve general health and production performance of food animals; and (3) recent findings, using dairy calves as a model, that suggest the therapeutic potential of GLP-2 to reduce the pathogenesis of intestinal protozoan infections.
Collapse
Affiliation(s)
- E E Connor
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA.
| | - C M Evock-Clover
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - R L Baldwin
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - M Santin-Duran
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - T H Elsasser
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - D M Bravo
- Pancosma S.A., CH-1218 Geneva, Switzerland
| |
Collapse
|
23
|
Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure. Clin Oral Investig 2016; 20:2361-2370. [PMID: 26818581 DOI: 10.1007/s00784-016-1727-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Health risks due to chronic exposure to highly fluoridated groundwater could be underestimated because fluoride might not only influence the teeth in an aesthetic manner but also seems to led to dentoalveolar structure changes. Therefore, we studied the tooth and alveolar bone structures of Dorper sheep chronically exposed to very highly fluoridated and low calcium groundwater in the Kalahari Desert in comparison to controls consuming groundwater with low fluoride and normal calcium levels within the World Health Organization (WHO) recommended range. MATERIALS AND METHODS Two flocks of Dorper ewes in Namibia were studied. Chemical analyses of water, blood and urine were performed. Mineralized tissue investigations included radiography, HR-pQCT analyses, histomorphometry, energy-dispersive X-ray spectroscopy and X-ray diffraction-analyses. RESULTS Fluoride levels were significantly elevated in water, blood and urine samples in the Kalahari group compared to the low fluoride control samples. In addition to high fluoride, low calcium levels were detected in the Kalahari water. Tooth height and mandibular bone quality were significantly decreased in sheep, exposed to very high levels of fluoride and low levels of calcium in drinking water. Particularly, bone volume and cortical thickness of the mandibular bone were significantly reduced in these sheep. CONCLUSIONS The current study suggests that chronic environmental fluoride exposure with levels above the recommended limits in combination with low calcium uptake can cause significant attrition of teeth and a significant impaired mandibular bone quality. CLINICAL RELEVANCE In the presence of high fluoride and low calcium-associated dental changes, deterioration of the mandibular bone and a potential alveolar bone loss needs to be considered regardless whether other signs of systemic skeletal fluorosis are observed or not.
Collapse
|
24
|
Antonijevic D, Jeschke A, Colovic B, Milovanovic P, Jevremovic D, Kisic D, vom Scheidt A, Hahn M, Amling M, Jokanovic V, Busse B, Djuric M. Addition of a Fluoride-containing Radiopacifier Improves Micromechanical and Biological Characteristics of Modified Calcium Silicate Cements. J Endod 2015; 41:2050-7. [DOI: 10.1016/j.joen.2015.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 02/02/2023]
|
25
|
Krause M, Lehmann D, Amling M, Rolvien T, Frosch KH, Püschel K, Bohndorf K, Meenen NM. Intact bone vitality and increased accumulation of nonmineralized bone matrix in biopsy specimens of juvenile osteochondritis dissecans: a histological analysis. Am J Sports Med 2015; 43:1337-47. [PMID: 25759459 DOI: 10.1177/0363546515572579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although commonly proposed to be the starting point of juvenile osteochondritis dissecans (JOCD), avascular osteonecrosis (AVN) has been an inconsistent finding in histological studies. Analysis of early-stage lesions is required to elucidate the origins of OCD and justify proper treatment. PURPOSE To analyze histological sections of JOCD lesions with special emphasis on bone vitality. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Of 64 patients with 74 JOCD lesions (20 females, mean age, 11.4 years; 44 males, mean age, 12.7 years), 34 required surgery because of lesion instability or failed nonoperative treatment. From 9 patients, 11 histological specimens were obtained. Lesions were classified according to the International Cartilage Repair Society (ICRS). Two additional histological control sections were harvested from children without JOCD manifestation. Undecalcified histological sections were histomorphometrically analyzed. To analyze the skeletal health of the patients, biochemical analyses with special emphasis on bone metabolism were performed. RESULTS Histologically, no osteonecrosis was visible in any of the cases. Osteocyte distribution was similar among OCD lesions and controls. ICRS OCD I lesions (n = 6) showed no intralesional separation. In ICRS OCD II and III lesions (n = 5), there was a subchondral fracture concomitant with histological characteristics of active repair mechanism (increased bone formation: osteoid volume P = .008, osteoblast number P = .046; resorption: osteoclast number P = .005; and tissue fibrosis compared with controls). Instead, in ICRS OCD I lesions, subchondral osteoid volume (P = .010) and osteoblast number (P = .046) were significantly increased compared with controls; however, no active repair mechanisms (no increased bone resorption or fibrous tissue) were detected, suggesting a focal lack of mineralization. Fifty-seven of 64 patients (89.1%) showed a vitamin D deficiency. The median vitamin D serum level of the patients with ICRS OCD I lesions was 13.6 µg/L. CONCLUSION In the present study, osteonecrosis was not found in histological specimens of JOCD. As a secondary finding, focal accumulations of nonmineralized bone matrix indicating a lack of mineralization in ICRS OCD I lesions were revealed. This finding correlated with a low level of vitamin D in the affected children.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Trauma and Reconstructive Surgery, Asklepios Clinic St Georg, Hamburg, Germany Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Lehmann
- Department of Pediatric Sports Medicine, Altona Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Reconstructive Surgery, Asklepios Clinic St Georg, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Bohndorf
- High Field MR Center, Department of Biochemical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Norbert M Meenen
- Department of Trauma and Reconstructive Surgery, Asklepios Clinic St Georg, Hamburg, Germany Department of Pediatric Sports Medicine, Altona Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|