1
|
Kaneyasu Y, Fujiwara H, Akita T, Tanaka J, Shibata Y, Nakagawa T, Koh I, Hirata E, Hyodo M, Miyamoto T, Murakami Y, Nishibuchi I, Imano N, Nagata Y, Kudo Y. Suppressive effect of vitamin K 2 (menatetrenone) against bone mineral density loss after radiotherapy in uterine cancer patients. Jpn J Radiol 2025:10.1007/s11604-025-01733-5. [PMID: 39849242 DOI: 10.1007/s11604-025-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025]
Abstract
PURPOSE This study aimed to investigate whether vitamin K2 (menatetrenone) suppresses bone mineral density (BMD) loss in the irradiated region after radiotherapy (RT) in uterine cancer patients. MATERIALS AND METHODS Our study included 34 patients who underwent whole pelvic irradiation for uterine cancer between 2001 and 2010. The patients were categorized in two groups: (1) Vitamin K2 (45 mg/day) administration group (group A) with 18 cases and (2) non-administered group (group B) with 16 cases. The duration of vitamin K2 administration was 1 year or longer. BMD was measured before and immediately, 3 months, 6 months, 1 year, 1 year or more after RT. RESULTS Regarding change rate in the BMD of L3-L4 which was outside the irradiated field, no significant changes were observed in BMD after radiation in either groups compared to BMD before radiotherapy. Regarding change rate in BMD of L5-S1 which was inside the irradiated field, BMD reduced significantly at 6 months after radiotherapy compared to BMD before the start of radiotherapy in Group B (P = 0.0234). However, no significant change was seen in group A. Grade 2 and 3 insufficiency fractures appeared in both groups, one in each. Regarding outside the irradiation field, one patient developed compression fracture in L2 in group B, none occurred in group A. CONCLUSION: We suggest that vitamin K2 could suppress the decrease in BMD due to whole pelvic radiotherapy. Further studies are needed in the future to improve quality of life such as the prevention of insufficiency fractures.
Collapse
Affiliation(s)
- Yuko Kaneyasu
- Department of Radiation Oncology, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-Cho, Fukuyama, Hiroshima, 720-8520, Japan.
- Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hisaya Fujiwara
- Department of Obstetrics and Gynecology, Chugoku Rosai Hospital, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuuka Shibata
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomio Nakagawa
- Department of Radiation Oncology, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-Cho, Fukuyama, Hiroshima, 720-8520, Japan
| | - Iemasa Koh
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Hirata
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Hirata Ladies Clinic, Hiroshima, Japan
| | - Maki Hyodo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Mother and Fetus Maki Clinic, Hiroshima, Japan
| | - Tadashi Miyamoto
- Department of Orthopedic Surgery, National Hospital Organization Fukuyama Medical Center, Hiroshima, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Ikuno Nishibuchi
- Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuki Imano
- Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Oncology, Chugoku Rosai Hospital, Hiroshima, Japan
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Xie C, Gong J, Zheng C, Zhang J, Gao J, Tian C, Guo X, Dai S, Gao T. Effects of vitamin K supplementation on bone mineral density at different sites and bone metabolism in the middle-aged and elderly population. Bone Joint Res 2024; 13:750-763. [PMID: 39657786 PMCID: PMC11631259 DOI: 10.1302/2046-3758.1312.bjr-2024-0053.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Aims This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC. Conclusion This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC.
Collapse
Affiliation(s)
- Chenqi Xie
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Chenglong Zheng
- Jinan Railway Center for Disease Control and Prevention, Jinan, China
| | - Junwei Zhang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, China
| | - Jie Gao
- School of Public Health, Qingdao University, Qingdao, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaofei Guo
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Kim TH, Kim H, Lee HH, Sang JH. Vitamin K: Calcium Metabolism Modulator for Menopausal Women. J Menopausal Med 2024; 30:152-163. [PMID: 39829192 PMCID: PMC11745727 DOI: 10.6118/jmm.24023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Vitamin K (VitK) exists in multiple forms, with Vitamin K1 (VitK1) and Vitamin K2 (VitK2) being the most prominent. VitK1 primarily regulates clotting factors in the liver, whereas VitK2 plays a crucial role in activating extrahepatic proteins involved in various physiological processes. VitK plays a pivotal role in various physiological functions, including vascular health, bone metabolism, neuroprotection, hepatoprotection, immune response modulation, dental health, and glucose control. Particularly, activation of the matrix Gla protein and osteocalcin through VitK2 inhibits vascular calcification (VC) and promotes bone mineralization. This review provides an overview of the physiological functions of VitK2, underscoring its role in calcium metabolism modulation and its diverse effects on health. Additionally, this article provides a comprehensive overview of the beneficial functions of VitK, and discusses the significance of adequate dietary intake and oral supplementation of VitK. Particularly, emphasizing on the need for VitK2 supplementation owing to its relatively limited availability in Western diets. VitK2 supplementation effectively counters VC, enhances bone density, and offers neuroprotective, hepatoprotective, and anti-inflammatory benefits. Thus, the supplementation of VitK2, alongside dietary intake, is essential for preventive healthcare, particularly in the prevention of osteoporosis and vascular diseases. Incorporating adequate VitK2 intake highlights its significance in promoting overall well-being. Illustrated summary of the role of VitK in menopausal women.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hayeon Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hae Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| | - Jae Hong Sang
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
4
|
Aaseth JO, Finnes TE, Askim M, Alexander J. The Importance of Vitamin K and the Combination of Vitamins K and D for Calcium Metabolism and Bone Health: A Review. Nutrients 2024; 16:2420. [PMID: 39125301 PMCID: PMC11313760 DOI: 10.3390/nu16152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of the present review is to discuss the roles of vitamin K (phylloquinone or menaquinones) and vitamin K-dependent proteins, and the combined action of the vitamins K and D, for the maintenance of bone health. The most relevant vitamin K-dependent proteins in this respect are osteocalcin and matrix Gla-protein (MGP). When carboxylated, these proteins appear to have the ability to chelate and import calcium from the blood to the bone, thereby reducing the risk of osteoporosis. Carboxylated osteocalcin appears to contribute directly to bone quality and strength. An adequate vitamin K status is required for the carboxylation of MGP and osteocalcin. In addition, vitamin K acts on bone metabolism by other mechanisms, such as menaquinone 4 acting as a ligand for the nuclear steroid and xenobiotic receptor (SXR). In this narrative review, we examine the evidence for increased bone mineralization through the dietary adequacy of vitamin K. Summarizing the evidence for a synergistic effect of vitamin K and vitamin D3, we find that an adequate supply of vitamin K, on top of an optimal vitamin D status, seems to add to the benefit of maintaining bone health. More research related to synergism and the possible mechanisms of vitamins D3 and K interaction in bone health is needed.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| | - Trine Elisabeth Finnes
- Department of Medicine, Innlandet Hospital Hamar, P.O. Box 4453, N-2326 Hamar, Norway;
- Department of Endocrinology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Merete Askim
- Independent Researcher, Bromstadvegen 43, N-7045 Trondheim, Norway;
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, N-0213 Oslo, Norway;
| |
Collapse
|
5
|
Rusu ME, Bigman G, Ryan AS, Popa DS. Investigating the Effects and Mechanisms of Combined Vitamin D and K Supplementation in Postmenopausal Women: An Up-to-Date Comprehensive Review of Clinical Studies. Nutrients 2024; 16:2356. [PMID: 39064799 PMCID: PMC11279569 DOI: 10.3390/nu16142356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a complex process and a significant risk factor for chronic diseases. Menopause, a component of aging in women, is associated with several important cardiometabolic conditions including metabolic syndrome, osteoporosis, and cardiovascular diseases. Menopausal women could benefit from preventative strategies that may decrease morbidity and mortality and improve their quality of life. Vitamins D and K are essential nutrients required for bone health, immune function, and reducing cardiovascular risks, yet their synergistic effect is less understood in aging women. This is the first comprehensive review to summarize the evidence found in randomized clinical trials of the beneficial effects of vitamin D and K co-treatment in postmenopausal women. In our literature search across key electronic databases such as Cochrane, PubMed, and Ovid, we identified 31 pertinent studies. Overall, significant findings indicate that the combined intake of vitamins D and K may positively affect cardiovascular and bone health in postmenopausal women, emphasizing the importance of maintaining a healthy diet rich in vegetables and fermented dairy products. Given the challenges in obtaining all necessary nutrients solely through the diet, vitamin D and K supplements are recommended for postmenopausal women to promote healthy aging and well-being.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Galya Bigman
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alice S. Ryan
- Baltimore Veterans Affairs Medical Center, Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Baltimore Geriatric Research, Education and Clinical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Zhang T, O’Connor C, Sheridan H, Barlow JW. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods 2024; 13:1646. [PMID: 38890875 PMCID: PMC11172246 DOI: 10.3390/foods13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamins are essential organic compounds that vary widely in chemical structure and are vital in small quantities for numerous biochemical and biological functions. They are critical for metabolism, growth, development and maintaining overall health. Vitamins are categorised into two groups: hydrophilic and lipophilic. Vitamin K (VK), a lipophilic vitamin, occurs naturally in two primary forms: phylloquinone (VK1), found in green leafy vegetables and algae, and Menaquinones (VK2), present in certain fermented and animal foods and widely formulated in VK supplements. This review explores the possible factors contributing to VK deficiency, including dietary influences, and discusses the pharmacological and therapeutic potential of supplementary VK2, examining recent global clinical studies on its role in treating diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, cardiovascular disease, chronic kidney disease, diabetes, neurodegenerative disorders and cancers. The analysis includes a review of published articles from multiple databases, including Scopus, PubMed, Google Scholar, ISI Web of Science and CNKI, focusing on human studies. The findings indicate that VK2 is a versatile vitamin essential for human health and that a broadly positive correlation exists between VK2 supplementation and improved health outcomes. However, clinical data are somewhat inconsistent, highlighting the need for further detailed research into VK2's metabolic processes, biomarker validation, dose-response relationships, bioavailability and safety. Establishing a Recommended Daily Intake for VK2 could significantly enhance global health.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
| | - Helen Sheridan
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland
| | - James W. Barlow
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
7
|
Merra G, Dominici F, Gualtieri P, Capacci A, Cenname G, Esposito E, Dri M, Di Renzo L, Marchetti M. Role of vitamin K2 in bone-vascular crosstalk. INT J VITAM NUTR RES 2024; 94:143-152. [PMID: 36039403 DOI: 10.1024/0300-9831/a000761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin K (VK) is a fat-soluble vitamin that is indispensable for the activation of vitamin K-dependent proteins (VKDPs). It has been shown to play an important role in the proper calcium deposit at the bone level, hindering that on the vascular walls. The deficiency of this vitamin in European populations is frequent and unknown. It is related to several factors, poor dietary intake, altered intestinal absorption or altered production by bacteria, indicating possible dysbiosis. For Vitamin K2 (VK2), there is currently no official reference daily intake (RDI). However, the effects of VK2 on the improvement of health in cardiovascular diseases, on bone metabolism, on chronic kidney diseases have been the subject of research in recent decades. The microbiota in the gastrointestinal tract plays an important role: Bacteroides are primarily capable of synthetizing very long chain forms of menaquinones and, in addition to the bacteria present in the intestinal flora, VK2 is also produced by bacteria used in food fermentation processes. This review provides an update on the current literature regarding the origin of VK2 and its implications in what is called the "calcium paradox", namely the lack of calcium in the bone and its storage in the wall of the vessel.
Collapse
Affiliation(s)
- Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Dominici
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Annunziata Capacci
- Department of Medical and Surgical Sciences, Agostino Gemelli General Hospital Foundation-IRCCS, Rome, Italy
| | - Giuseppe Cenname
- Comando Generale Arma Carabinieri, Direzione di Sanità, Rome, Italy
| | - Ernesto Esposito
- General Directorate, Department of Human Policies of Basilicata Region, Potenza, Italy
| | - Maria Dri
- Department of Surgical Sciences, School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marco Marchetti
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Smit A, Meijer O, Winter E. The multi-faceted nature of age-associated osteoporosis. Bone Rep 2024; 20:101750. [PMID: 38566930 PMCID: PMC10985042 DOI: 10.1016/j.bonr.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted metabolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be targeted for prevention and treatment. Although valuable as individual targets for intervention, the interconnectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multifaceted nature of AAOP will enable the development of more effective and sustainable management strategies, based on a holistic, patient-centered approach.
Collapse
Affiliation(s)
- A.E. Smit
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - O.C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - E.M. Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Ge Q, Zhang L, Sun Z, Cai J, Jiang X, Wang H, Li X, Yu C, Xiao C, Liu Z. The mediation effect of vitamin A and vitamin D supplement in the association between serum vitamin K levels and musculoskeletal disorders in preschool children. Front Nutr 2023; 10:1239954. [PMID: 38188876 PMCID: PMC10766770 DOI: 10.3389/fnut.2023.1239954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Vitamin K deficiency may elevate the incidence of musculoskeletal disorders (MSD), whereas it lacks validation for pediatric populations and has uncertain dose recommendations. In this context, we hypothesized that serum vitamin K levels are associated with MSD in preschool children, and the widely used vitamin A and vitamin D supplements may mediate these associations based on potential mechanisms, which expects to provide guidance for future practice. Methods A cross-sectional study was conducted in Sichuan province in southwestern China, from January 2021 to May 2022. Serum levels of vitamin K1/K2 and 25(OH)D were determined using the high-performance liquid chromatography method, and the diagnosis of MSD was executed by clinicians. Overall and stratified logistic regression analysis based on categorized 25(OH)D levels were conducted to assess association between serum vitamin K levels and MSD prevalence after adjusting for confounders. Mediation analysis was further performed and vitamin A and D supplementation was regressed as the mediator. Results A total of 6,368 children aged 0-6 years old were enrolled. MSD was identified in 1179 (18.51%) of the children, while 5,189 (81.49%) of them did not present such disorder. After adjusting confounders, a significant difference was found in serum vitamin K1 level between children in MSD and Non-MSD group (OR = 0.802, 95%CI 0.745-0.864). No significant difference was found in serum vitamin K2 level between the two groups (OR = 0.975, 95%CI 0.753-1.261). The association between vitamin K1 level and MSD prevalence was partly (36.8%) mediated by vitamin A and D supplementation. Conclusions A low serum vitamin K1 level is connected with an increased risk of MSD among children, highlighting that vitamin A and D supplementation is a helpful intervention to prevent MSD in children with vitamin K deficiency.
Collapse
Affiliation(s)
- Qiaoyue Ge
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeyuan Sun
- Department of Child and Adolescent Psychiatry, School of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jiarui Cai
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Wang
- Department of Child Health Care of Sichuan Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Xinxi Li
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Yu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenghan Xiao
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmi Liu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Webster J, Dalla Via J, Langley C, Smith C, Sale C, Sim M. Nutritional strategies to optimise musculoskeletal health for fall and fracture prevention: Looking beyond calcium, vitamin D and protein. Bone Rep 2023; 19:101684. [PMID: 38163013 PMCID: PMC10757289 DOI: 10.1016/j.bonr.2023.101684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 01/03/2024] Open
Abstract
Falls and osteoporotic fractures are a major public health problem, particularly among older adults. A third of individuals aged 65 years and over fall at least once each year, with up to 20 % of these resulting in serious injury, including fracture. In conjunction with regular exercise, the importance of diet for musculoskeletal health has largely focused upon calcium, vitamin D, and protein, particularly in the context of preventing falls and fractures. Whilst there is evidence for the benefits of these nutrients for musculoskeletal health, other aspects of the diet remain largely underexplored. For example, vegetables are rich sources of macro- and micronutrients that are essential for muscle function and bone health, which are key factors in the prevention of falls and fractures. Recent work has highlighted the importance of nutrients such as vegetable-derived nitrate and vitamin K1 in optimising muscle strength, physical function, and bone quality. In the context of dietary patterns, vegan/plant-based diets have recently gained popularity due to perceived health benefits, animal welfare, or to tackle climate change. The elimination and/or substitution of animal-based products for plant foods (without careful planning and/or expert dietary guidance) could, however, have long-term negative musculoskeletal consequences; a trend uncovered by recent evidence. Within the overarching theme of nutrition for fall and fracture prevention in older populations, the aim of this review is to (i) summarise the current evidence for calcium, vitamin D and protein; (ii) describe the importance of vegetables and selected nutrients, such as nitrate and vitamin K1, for muscle function and bone structural integrity; and (iii) highlight current evidence around different dietary patterns (e.g., plant-based, diet quality, data driven approaches) and their impact on musculoskeletal health.
Collapse
Affiliation(s)
- James Webster
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Jack Dalla Via
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Christina Langley
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Cassandra Smith
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Lyytinen AT, Linneberg A. Vitamin K - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10260. [PMID: 37920674 PMCID: PMC10619414 DOI: 10.29219/fnr.v67.10260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/09/2022] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Vitamin K occurs in dietary supply in two major forms: phylloquinone (vitamin K1) and menaquinones (collectively referred as vitamin K2). Phylloquinone is derived from plants. There are at least 10 forms of menaquinones varying in chain length and they are produced by bacteria except menaquinone-4. Menaquinone-4 is formed from phylloquinone or other menaquinone forms. Phylloquinone is considered to be the major contributor and menaquinones are thought to contribute less to vitamin K intake in Western diets. However, less is known about the content of menaquinones than phylloquinones in foods. Vitamin K is known to function as an enzymatic cofactor in the gamma-carboxylation of vitamin K dependent proteins (VKDPs). Hepatic VKDPs are involved in coagulation. Extrahepatic VKDPs have a role e.g. in bone health and vascular calcification. However, the amount of vitamin K needed for optimal functioning of the different VKDPs is not known.
Collapse
Affiliation(s)
- Arja T Lyytinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Lewiecki EM, Bellido T, Bilezikian JP, Brown JP, Farooki A, Kovacs CS, Lee B, Leslie WD, McClung MR, Prasarn ML, Sellmeyer DE. Proceedings of the 2023 Santa Fe Bone Symposium: Progress and Controversies in the Management of Patients with Skeletal Diseases. J Clin Densitom 2023; 26:101432. [PMID: 37944445 PMCID: PMC10900844 DOI: 10.1016/j.jocd.2023.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
The Santa Fe Bone Symposium (SFBS) held its 23rd annual event on August 5-6, 2023, in Santa Fe, New Mexico, USA. Attendees participated in-person and remotely, representing many states and countries. The program included plenary presentations, panel discussions, satellite symposia, a Project ECHO workshop, and a session on healthcare policy and reimbursement for fracture liaison programs. A broad range of topics were addressed, including transitions of osteoporosis treatments over a lifetime; controversies in vitamin D; update on Official Positions of the International Society for Clinical Densitometry; spine surgery and bone health; clinical applications of bone turnover markers; basic bone biology for clinicians; premenopausal-, pregnancy-, and lactation-associated osteoporosis; cancer treatment induced bone loss in patients with breast cancer and prostate cancer; genetic testing for skeletal diseases; and an update on nutrition and bone health. There were also sessions on rare bone diseases, including managing patients with hypophosphatasia; treatment of X-linked hypophosphatemia; and assessment and treatment of patients with hypoparathyroidism. There were oral presentations of abstracts by endocrinology fellows selected from those who participated in the Santa Fe Fellows Workshop on Metabolic Bone Diseases, held the 2 days prior to the SFBS. These proceedings of the 2023 SFBS present the clinical highlights and insights generated from many formal and informal discussions in Santa Fe.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, United States.
| | - Teresita Bellido
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John P Bilezikian
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | | | - Azeez Farooki
- Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, United States
| | - Christopher S Kovacs
- Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Brendan Lee
- Baylor College of Medicine, Houston, Texas, United States
| | | | | | | | | |
Collapse
|
13
|
Manubolu VS, Mao S, Kinninger A, Dahal S, Ahmad K, Havistin R, Gao Y, Dailing C, Carr JJ, Roy SK, Budoff MJ. Association between coronary artery calcium and thoracic spine bone mineral density: Multiethnic Study of Atherosclerosis (MESA). Nutr Metab Cardiovasc Dis 2023; 33:532-540. [PMID: 36642601 PMCID: PMC9974807 DOI: 10.1016/j.numecd.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Previously, osteoporosis and coronary artery disease were considered unrelated. However, beyond age, these two conditions appear to share common etiologies that are not yet fully understood. We examined the relationship between thoracic spine bone mineral density (BMD) and severity of coronary artery calcium (CAC) score. METHODS AND RESULTS MESA is a prospective cohort study of 6814 men and women between the ages of 45 and 84 years, without clinical cardiovascular disease. This study included participants who underwent non-contrast chest CT scans to determine CAC score and thoracic spine BMD. The thoracic spine BMD was categorized into osteoporosis (defined as T score: ≤ -2.5), osteopenia (T-score between: -2.5 and -1) and normal BMD (T-score ≥ -1). There were 3392 subjects who had CAC >0 at baseline. The prevalence of CAC >0 was 36% in normal BMD group, 49% in the osteopenia and 68% in osteoporosis group. After adjusting for risk factors of atherosclerosis, in multivariate regression models we found a significant association between CAC and osteoporosis (OR: 1.40, 95% CI 1.16-1.69, p value < 0.0004). Furthermore, we stratified our results by gender and found a statistically significant association in both men and women. CONCLUSION Results from this cross-sectional analysis of a large population based ethnically diverse cohort indicate a significant inverse relationship between thoracic BMD and CAC in both genders independent of other cardiovascular risk factors. Future studies need to explore the underlying pathophysiological mechanisms relating BMD and coronary artery calcification.
Collapse
Affiliation(s)
| | - Song Mao
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - April Kinninger
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Suraj Dahal
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Khadije Ahmad
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ruby Havistin
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yanlin Gao
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Chris Dailing
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J Jeffrey Carr
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sion K Roy
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matthew J Budoff
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
14
|
Li Y, Zhu R, Wang L, Tan J. Effect of vitamin K2 in the treatment of nocturnal leg cramps in the older population: Study protocol of a randomized, double-blind, controlled trial. Front Nutr 2023; 10:1119233. [PMID: 36908924 PMCID: PMC9996107 DOI: 10.3389/fnut.2023.1119233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Nocturnal leg cramps (NLCs) are sudden contractions of the leg muscles, usually in the posterior calf muscles at night, affecting sleep quality. Because the precise pathophysiology of NCLs is unclear, different interventions have been proposed. There is conflicting evidence regarding the efficacy of conventional interventions in preventing cramps. Thus, the present study aims to investigate the effects of vitamin K2 for NLCs in a prospective randomized, double-blind, controlled trial. Methods and analysis This multicenter, randomized, double-blind, placebo-controlled clinical study will enroll older age (≥65-year-old) with two or more documented episodes of NLCs during 2 weeks of screening. Participants will be randomized to receive vitamin K2 or a similar-looking placebo for 8 weeks in a 1:1 ratio. Follow-up visits will be scheduled each week at the beginning of 4-week intervention, then participants will be visited semimonthly. The primary outcome is the difference in the mean number of NLCs per week in the vitamin K2 and placebo arms. The secondary outcomes include the severity and duration of NLCs in the vitamin K2 and placebo arms. Two hundred patients will be needed, for this two-treatment parallel design study, to achieve a probability is 90% that the study will detect a treatment difference at a two-sided 0.04 significance level, if the difference between treatments is 3.6 (difference in means between treatment arms) NLC events. Discussion Nocturnal Leg Cramps (NLCs) are a common musculoskeletal disorder in the general population, but effective and safe interventions have not been established. Our previous study has shown vitamin K2 was effective to reduce the frequency, severity, and duration of dialysis-related muscle cramps with a good safety profile. This randomized controlled trial (RCT) of rigorous methodological design will help to establish the effectiveness of vitamin K2 for the management of NLCs in older population. The findings of this RCT will encourage the studies of vitamin K2 in musculoskeletal disorders. Clinical Trial Registration www.ClinicalTrials.gov, identifier, NCT05547750.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, Chengdu Third People's Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Rui Zhu
- Department of Hematology, Chengdu Third People's Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jing Tan
- Department of Hematology, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Alonso N, Meinitzer A, Fritz-Petrin E, Enko D, Herrmann M. Role of Vitamin K in Bone and Muscle Metabolism. Calcif Tissue Int 2023; 112:178-196. [PMID: 35150288 PMCID: PMC9859868 DOI: 10.1007/s00223-022-00955-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
Abstract
Vitamin K, a cofactor for the γ-glutamyl carboxylase enzyme, is required for the post-translational activation of osteocalcin and matrix Gla protein, which play a key role in bone and muscle homeostasis. In vivo and in vitro models for osteoporosis and sarcopenia suggest the vitamin K could exert a positive effect in both conditions. In bone, it increases osteoblastogenesis, whilst decreases osteoclast formation and function. In muscle, it is associated with increased satellite cell proliferation and migration and might play a role in energy metabolism. Observational trials suggest that high levels of vitamin K are associated with increased bone mineral density and reduced fracture risk. However, interventional studies for vitamin K supplementation yielded conflicting results. Clinical trials in sarcopenia suggest that vitamin K supplementation could improve muscle mass and function. One of the main limitations on the vitamin K studies are the technical challenges to measure its levels in serum. Thus, they are obtained from indirect sources like food questionnaires, or levels of undercarboxylated proteins, which can be affected by other environmental or biological processes. Although current research appoints to a beneficial effect of vitamin K in bone and muscle, further studies overcoming the current limitations are required in order to incorporate this supplementation in the clinical management of patients with osteosarcopenia.
Collapse
Affiliation(s)
- N Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - A Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - E Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - D Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - M Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
16
|
Ziemińska M, Pawlak D, Sieklucka B, Chilkiewicz K, Pawlak K. Vitamin K-Dependent Carboxylation of Osteocalcin in Bone-Ally or Adversary of Bone Mineral Status in Rats with Experimental Chronic Kidney Disease? Nutrients 2022; 14:nu14194082. [PMID: 36235734 PMCID: PMC9572286 DOI: 10.3390/nu14194082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic kidney disease (CKD) commonly occurs with vitamin K (VK) deficiency and impaired bone mineralization. However, there are no data explaining the metabolism of endogenous VK and its role in bone mineralization in CKD. In this study, we measured serum levels of phylloquinone (VK1), menaquinone 4 and 7 (MK4, MK7), and VK-dependent proteins: osteocalcin, undercarboxylated osteocalcin (Glu-OC), and undercarboxylated matrix Gla protein (ucMGP). The carboxylated osteocalcin (Gla-OC), Glu-OC, and the expression of genes involved in VK cycle were determined in bone. The obtained results were juxtaposed with the bone mineral status of rats with CKD. The obtained results suggest that the reduced VK1 level observed in CKD rats may be caused by the accelerated conversion of VK1 to the form of menaquinones. The bone tissue possesses all enzymes, enabling the conversion of VK1 to menaquinones and VK recycling. However, in the course of CKD with hyperparathyroidism, the intensified osteoblastogenesis causes the generation of immature osteoblasts with impaired mineralization. The particular clinical significance seems to have a finding that serum osteocalcin and Glu-OC, commonly used biomarkers of VK deficiency, could be inappropriate in CKD conditions, whereas Gla-OC synthesized in bone appears to have an adverse impact on bone mineral status in this model.
Collapse
Affiliation(s)
- Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Katarzyna Chilkiewicz
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-7485600
| |
Collapse
|
17
|
Enhancement of Vitamin K2 Efflux in Bacillus subtilis Natto via a Potential Protein Receptor for Increased Yield. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8407829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacillus subtilis is one of the few strains that can secrete synthetic menaquinone-7 (MK-7) to the outside of the cell, and its purpose and mechanism have not been clearly studied. As an amphiphilic protein naturally synthesized by Bacillus subtilis, the BslA protein may be involved in the inversion of extracellular vitamin K2 solubility. The protein structure in UniProt was used to search for the possible binding sites of MK-7, and the analysis of the higher ranking results of the genetic algorithm showed that the ASP166 residue was likely to be the binding site. They could form a stable hydrogen bond connection through ASP166, and approximately 7 proteins formed the conformation of a fixed naphthoquinone ring. We isolated and obtained the BslA protein by Ni-NTA affinity chromatography. Then, MK-7 was modified by BslA in vitro. A series of experiments, such as SEM, XPS, and WCA, showed that MK-7 and BslA proteins can realize self-assembly and transform from fat-soluble to water-soluble complexes. When the bslA protein in Bacillus subtilis natto was overexpressed, its MK-7 synthesis ability was further improved, especially the extracellular MK-7 content, which increased by 16%. This finding suggests that the BslA protein in Bacillus subtilis is likely to be involved in the extracellular secretion of MK-7 as a receptor.
Collapse
|
18
|
Zhou M, Han S, Zhang W, Wu D. Efficacy and safety of vitamin K2 for postmenopausal women with osteoporosis at a long-term follow-up: meta-analysis and systematic review. J Bone Miner Metab 2022; 40:763-772. [PMID: 35711002 DOI: 10.1007/s00774-022-01342-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Vitamin K2 supplementation has been revealed to be effective in the prevention and treatment of osteoporosis in Japan, but further proof for the effectiveness of this practice is still needed. OBJECTIVE To investigate whether vitamin K2 supplementation plays a role in maintaining bone mineral density (BMD) and reducing the incidence of fractures for postmenopausal women with osteoporosis at a long-term follow-up. MATERIALS AND METHODS We searched systematically throughout the databases of PubMed, Cochrane library, and EMBASE from the dates of their inception to November 16 2021 in this meta-analysis and systematic review, using keywords vitamin K2 and osteoporosis. RESULTS Nine RCTs with 6853 participants met the inclusion criteria. Vitamin K2 was associated with a significantly increased percentage change of lumbar BMD and forearm BMD (WMD 2.17, 95% CI [1.59-2.76] and WMD 1.57, 95% CI [1.15-1.99]). There were significant differences in undercarboxylated osteocalcin (uc-OC) reduction (WMD -0.96, 95% CI [-0.70 to 0.21]) and osteocalcin (OC) increment (WMD 26.52, 95% CI [17.06-35.98]). Adverse reaction analysis showed that there seemed to be higher adverse reaction rates in the vitamin K2 group (RR = 1.33, 95% CI [1.11-1.59]), but no serious adverse events related to vitamin K2 supplementation. CONCLUSION This meta-analysis and systematic review seemed to support the hypothesis that vitamin K2 plays an important role in the maintenance and improvement of BMD, and it decreases uc-OC and increases OC significantly at a long-term follow-up. Vitamin K2 supplementation is beneficial and safe in the treatment of osteoporosis for postmenopausal women.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Joint Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Shiliang Han
- Department of Orthopaedics, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Wenpeng Zhang
- Department of Joint Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Dan Wu
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China.
| |
Collapse
|
19
|
Ma ML, Ma ZJ, He YL, Sun H, Yang B, Ruan BJ, Zhan WD, Li SX, Dong H, Wang YX. Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Front Public Health 2022; 10:979649. [PMID: 36033779 PMCID: PMC9403798 DOI: 10.3389/fpubh.2022.979649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Vitamin K (VK) as a nutrient, is a cofactor in the carboxylation of osteocalcin (OC), which can bind with hydroxyapatite to promote bone mineralization and increase bone strength. However, some studies have been inconsistent on whether vitamin K2 (VK2) can maintain or improve bone mineral density (BMD) and reduce the incidence of fractures in postmenopausal women. Therefore, the main objective of this meta-analysis was to determine the effect of VK2 as a nutritional supplement on BMD and fracture incidence in postmenopausal women. Methods We searched PubMed, EMBASE, and Cochrane Library databases (published before March 17, 2022) and then extracted and pooled data from all randomized controlled trials (RCTs) that met the inclusion criteria. Results Sixteen RCTs with a total of 6,425 subjects were included in this meta-analysis. The overall effect test of 10 studies showed a significant improvement in lumbar spine BMD (BMD LS) (P = 0.006) with VK2. The subgroup analysis of VK2 combination therapy showed that BMD LS was significantly maintained and improved with the administration of VK2 (P = 0.03). The overall effect test of the six RCTs showed no significant difference in fracture incidence between the two groups (RR=0.96, P=0.65). However, after excluding one heterogeneous study, the overall effect test showed a significant reduction in fracture incidence with VK2 (RR = 0.43, P = 0.01). In addition, this meta-analysis showed that VK2 reduced serum undercarboxylated osteocalcin (uc-OC) levels and the ratio of uc-OC to cOC in both subgroups of VK2 combined intervention and alone. However, for carboxylated osteocalcin (cOC), both subgroup analysis and overall effect test showed no significant effect of VK2 on it. And the pooled analysis of adverse reactions showed no significant difference between the VK2 and control groups (RR = 1.03, 95%CI 0.87 to 1.21, P = 0.76). Conclusions The results of this meta-analysis seem to indicate that VK2 supplementation has a positive effect on the maintenance and improvement of BMD LS in postmenopausal women, and it can also reduce the fracture incidence, serum uc-OC levels and the ratio of uc-OC to cOC. In conclusion, VK2 can indirectly promote bone mineralization and increase bone strength.
Collapse
Affiliation(s)
- Ming-ling Ma
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zi-jian Ma
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Yangzhou University Medical College, Yangzhou, China
| | - Yi-lang He
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Hao Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Bin Yang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Yangzhou University Medical College, Yangzhou, China
| | - Bin-jia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wan-da Zhan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Yangzhou University Medical College, Yangzhou, China
| | - Shi-xuan Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Hui Dong
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,Hui Dong
| | - Yong-xiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China,*Correspondence: Yong-xiang Wang
| |
Collapse
|
20
|
Zhang W, Li L, Zhou X, Li K, Liu C, Lin X, Lubisi N, Chen J, Si H. Concurrent Treatment with Vitamin K2 and D3 on Spine Fusion in Patients with Osteoporosis-Associated Lumbar Degenerative Disorders. Spine (Phila Pa 1976) 2022; 47:352-360. [PMID: 34919073 DOI: 10.1097/brs.0000000000004309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective and nonrandomized concurrent controlled trial. OBJECTIVE To address the early effects of concurrent treatment with vitamin K2 and vitamin D3 on fusion rates in patients who have undergone spinal surgery. SUMMARY OF BACKGROUND DATA Intervertebral pseudarthrosis has been reported after transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF), especially in patients with osteopenia or osteoporosis. No study has assessed the early effects of concurrent treatment with vitamin K2 and vitamin D3 on fusion rates. METHODS Patients with osteopenia or osteoporosis who underwent TLIF or PLIF in our department were included. Patients in the VK2+VD3 group received vitamin K2, vitamin D3, and calcium treatment, whereas subjects in the control group only received calcium and vitamin D3. Spine fusion was evaluated by computed tomography. The Japanese Orthopedic Association Back Pain Evaluation Questionnaire (JOA-BPEQ) and visual analog scale (VAS) were used to assess the clinical and neurological symptoms. Bone mineral density (BMD) and bone metabolism markers were measured for osteoporotic evaluation. RESULTS Seventy-eight patients were included, and nine patients subsequently discontinued because of 2019-nCoV. At six months postoperatively, complete fusion rates were significantly higher in the VK2+VD3 group than that in the control group (91.18% vs 71.43%, P = 0.036). At six months postoperatively, BMD was increased in the VK2+VD3 group and was higher than that in the control group, although there was no significant difference. At three months postoperatively, a significant increase in procollagen type I amino terminal propeptide (91.81%) and a slight decrease in C-terminal end peptide (8.06%) were observed in the VK2+VD3 group. In both groups, the JOA-BPEQ and VAS scores were significantly improved after spine surgery. CONCLUSION Administration of vitamin K2 and vitamin D3 can increase lumbar interbody fusion rates, improve clinical symptoms, promote bone information, and avoid further decline in BMD within six months after TLIF or PLIF.Level of Evidence: 3.
Collapse
Affiliation(s)
- Wencan Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
22
|
Kositsawat J, Duque G, Kirk B. Nutrients with anabolic/anticatabolic, antioxidant, and anti-inflammatory properties: Targeting the biological mechanisms of aging to support musculoskeletal health. Exp Gerontol 2021; 154:111521. [PMID: 34428477 DOI: 10.1016/j.exger.2021.111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
Old age is associated with declines in bone density and muscle mass and function, which predisposes to mobility disability, falls, and fractures. Poor nutritional status, a risk factor for several age-related pathologies, becomes prevalent in old age and contributes to the structural and functional changes of the musculoskeletal system that increases the risk of osteoporosis, sarcopenia, osteosarcopenia, and physical frailty. The biological mechanisms underpinning these pathologies often overlap and include loss of proteostasis, impaired redox functioning, and chronic low-grade inflammation. Thus, provision of nutrients with anabolic/anticatabolic, antioxidant, and anti-inflammatory properties may be an effective strategy to offset these age-related pathologies. We searched PUBMED for pre-clinical and clinical work examining the effects of nutrients with a combined effect on muscle and bone. This review summarizes recent evidence on the mechanisms of action and potential clinical use of nutrients that concomitantly improve muscle and bone health in older persons.
Collapse
Affiliation(s)
- Jatupol Kositsawat
- Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC 3021, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Ben Kirk
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC 3021, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia.
| |
Collapse
|
23
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
24
|
Mandatori D, Penolazzi L, Pelusi L, Lambertini E, Michelucci F, Porreca A, Cerritelli P, Pipino C, Di Iorio A, Bruni D, Di Nicola M, Buda R, Piva R, Pandolfi A. Three-Dimensional Co-Culture System of Human Osteoblasts and Osteoclast Precursors from Osteoporotic Patients as an Innovative Model to Study the Role of Nutrients: Focus on Vitamin K2. Nutrients 2021; 13:nu13082823. [PMID: 34444982 PMCID: PMC8399348 DOI: 10.3390/nu13082823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023] Open
Abstract
Several natural compounds, such as vitamin K2, have been highlighted for their positive effects on bone metabolism. It has been proposed that skeletal disorders, such as osteoporosis, may benefit from vitamin K2-based therapies or its regular intake. However, further studies are needed to better clarify the effects of vitamin K2 in bone disorders. To this aim, we developed in vitro a three-dimensional (3D) cell culture system one step closer to the bone microenvironment based on co-culturing osteoblasts and osteoclasts precursors obtained from bone specimens and peripheral blood of the same osteoporotic patient, respectively. Such a 3-D co-culture system was more informative than the traditional 2-D cell cultures when responsiveness to vitamin K2 was analyzed, paving the way for data interpretation on single patients. Following this approach, the anabolic effects of vitamin K2 on the osteoblast counterpart were found to be correlated with bone turnover markers measured in osteoporotic patients’ sera. Overall, our data suggest that co-cultured osteoblasts and osteoclast precursors from the same osteoporotic patient may be suitable to generate an in vitro 3-D experimental model that potentially reflects the individual’s bone metabolism and may be useful to predict personal responsiveness to nutraceutical or drug molecules designed to positively affect bone health.
Collapse
Affiliation(s)
- Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (E.L.)
| | - Letizia Pelusi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (E.L.)
| | - Francesca Michelucci
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Annamaria Porreca
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
| | - Pietro Cerritelli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Di Iorio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Danilo Bruni
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
| | - Roberto Buda
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.M.); (P.C.); (A.D.I.); (D.B.); (R.B.)
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (E.L.)
- Correspondence: (R.P.); (A.P.); Tel.: +39-0532-974405 (R.P.); +39-0871-541425 (A.P.)
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (D.M.); (L.P.); (A.P.); (C.P.); (M.D.N.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (R.P.); (A.P.); Tel.: +39-0532-974405 (R.P.); +39-0871-541425 (A.P.)
| |
Collapse
|
25
|
Zhang Y, Shea MK, Judd SE, D'Alton ME, Kahe K. Issues related to the research on vitamin K supplementation and bone mineral density. Eur J Clin Nutr 2021; 76:335-339. [PMID: 34050327 DOI: 10.1038/s41430-021-00941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yijia Zhang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - M Kyla Shea
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Suzanne E Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
26
|
McBurney MI, Blumberg JB, Costello RB, Eggersdorfer M, Erdman JW, Harris WS, Johnson EJ, Hazels Mitmesser S, Post RC, Rai D, Schurgers LJ. Beyond Nutrient Deficiency-Opportunities to Improve Nutritional Status and Promote Health Modernizing DRIs and Supplementation Recommendations. Nutrients 2021; 13:1844. [PMID: 34071268 PMCID: PMC8229216 DOI: 10.3390/nu13061844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The US Dietary Guidelines for Americans (DGA) provide dietary recommendations to meet nutrient needs, promote health, and prevent disease. Despite 40 years of DGA, the prevalence of under-consumed nutrients continues in the US and globally, although dietary supplement use can help to fill shortfalls. Nutrient recommendations are based on Dietary Reference Intakes (DRIs) to meet the nutrient requirements for nearly all (97 to 98 percent) healthy individuals in a particular life stage and gender group and many need to be updated using current evidence. There is an opportunity to modernize vitamin and mineral intake recommendations based on biomarker or surrogate endpoint levels needed to 'prevent deficiency' with DRIs based on ranges of biomarker or surrogate endpoints levels that support normal cell/organ/tissue function in healthy individuals, and to establish DRIs for bioactive compounds. We recommend vitamin K and Mg DRIs be updated and DRIs be established for lutein and eicosapentaenoic and docosahexaenoic acid (EPA + DHA). With increasing interest in personalized (or precision) nutrition, we propose greater research investment in validating biomarkers and metabolic health measures and the development and use of inexpensive diagnostic devices. Data generated from such approaches will help elucidate optimal nutrient status, provide objective evaluations of an individual's nutritional status, and serve to provide personalized nutrition guidance.
Collapse
Affiliation(s)
- Michael I. McBurney
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1H 0B5, Canada
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (J.B.B.); (E.J.J.)
| | - Jeffrey B. Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (J.B.B.); (E.J.J.)
| | | | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA;
| | - William S. Harris
- Department of Internal Medicine, University of South Dakota, Sioux Falls, SD 57105, USA;
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA
| | - Elizabeth J. Johnson
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (J.B.B.); (E.J.J.)
| | | | - Robert C. Post
- FoodTrition Solutions, LLC, Hackettstown, NJ 07840, USA;
| | - Deshanie Rai
- Global Regulatory and Scientific Affairs, Omniactive Health Technologies, Morristown, NJ 07960, USA;
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
27
|
The Dual Role of Vitamin K2 in "Bone-Vascular Crosstalk": Opposite Effects on Bone Loss and Vascular Calcification. Nutrients 2021; 13:nu13041222. [PMID: 33917175 PMCID: PMC8067793 DOI: 10.3390/nu13041222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that frequently coexist in the elderly population. Traditionally, they have been considered independent processes, and mainly age-related. However, an increasing number of studies have reported their possible direct correlation, commonly defined as “bone-vascular crosstalk”. Vitamin K2 (VitK2), a family of several natural isoforms also known as menaquinones (MK), has recently received particular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency seems to be responsible of the so-called “calcium paradox” phenomenon, characterized by low calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially been explained, this review focuses on its effects on the bone and vascular system by providing a more recent literature update. Overall, the findings reported here propose the VitK2 family as natural bioactive molecules that could be able to play an important role in the prevention of bone loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a dietary food supplement.
Collapse
|
28
|
The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants (Basel) 2021; 10:antiox10040566. [PMID: 33917442 PMCID: PMC8067486 DOI: 10.3390/antiox10040566] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
As human life expectancy is rising, the incidence of age-associated diseases will also increase. Scientific evidence has revealed that healthy diets, including good fats, vitamins, minerals, or polyphenolics, could have antioxidant and anti-inflammatory activities, with antiaging effects. Recent studies demonstrated that vitamin K is a vital cofactor in activating several proteins, which act against age-related syndromes. Thus, vitamin K can carboxylate osteocalcin (a protein capable of transporting and fixing calcium in bone), activate matrix Gla protein (an inhibitor of vascular calcification and cardiovascular events) and carboxylate Gas6 protein (involved in brain physiology and a cognitive decline and neurodegenerative disease inhibitor). By improving insulin sensitivity, vitamin K lowers diabetes risk. It also exerts antiproliferative, proapoptotic, autophagic effects and has been associated with a reduced risk of cancer. Recent research shows that protein S, another vitamin K-dependent protein, can prevent the cytokine storm observed in COVID-19 cases. The reduced activation of protein S due to the pneumonia-induced vitamin K depletion was correlated with higher thrombogenicity and possibly fatal outcomes in COVID-19 patients. Our review aimed to present the latest scientific evidence about vitamin K and its role in preventing age-associated diseases and/or improving the effectiveness of medical treatments in mature adults ˃50 years old.
Collapse
|
29
|
AlHajri L, Ayoub A, Ahmed H, AlMulla M. Effect of Vitamin K2 Alone or in Combination on Various Bone Turnover Markers Amongst Postmenopausal Females. J Bone Metab 2021; 28:11-26. [PMID: 33730780 PMCID: PMC7973400 DOI: 10.11005/jbm.2021.28.1.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
Background Osteoporosis is common in postmenopausal women. Some studies have demonstrated the usefulness of vitamin K through the action of bone-specific proteins and osteoblast and osteoclast activities. However, no systematic review had explored this aspect in postmenopausal women. Hence, this systematic review aimed to explore the effect of vitamin K2 alone or in combination with other agents (vitamin D3 or calcium) on various bone turnover markers (BTMs) and bone mineral density (BMD) in postmenopausal women. Methods MEDLINE, ScienceDirect, PubMed, and Google Scholar were searched to identify relevant studies using specific inclusion criteria. Data extraction and quality assessment were carried out using standardized tests, and the results were narratively synthesized and presented in the form of tables. Results Vitamin K2 was beneficial in inducing an improvement or preventing deterioration, as evidenced by the BMD and osteocalcin (OC), undercarboxylated OC (ucOC), carboxylated OC (cOC), and γ-carboxylated OC levels. However, its effect was not conclusive when procollagen type 1 N-terminal propeptide, carboxyterminal propeptide of type I procollagen, C-terminal telopeptide of type I collagen, bone alkaline phosphatase, deoxypyridinoline, and N-terminal telopeptide levels (NTX) and ucOC:cOC or cOC:ucOC, and NTX:creatinine ratios were examined. Conclusions Vitamin K2 supplementation combined with vitamin D and calcium was found to be advantageous. However, vitamin K2 supplementation cannot replace the existing treatment options. In addition, vitamin K2 should be used with caution, considering its interactions with food and other drugs.
Collapse
Affiliation(s)
- Lamia AlHajri
- Department of Health Sciences and Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates.,Department of Health Research, Lancaster University, Lancaster, UK
| | - Amna Ayoub
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hessa Ahmed
- Department of Health Sciences and Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates
| | - Marwa AlMulla
- Department of Health Sciences and Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates
| |
Collapse
|
30
|
Kuang X, Liu C, Guo X, Li K, Deng Q, Li D. The combination effect of vitamin K and vitamin D on human bone quality: a meta-analysis of randomized controlled trials. Food Funct 2021; 11:3280-3297. [PMID: 32219282 DOI: 10.1039/c9fo03063h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies did not draw a consistent conclusion about the effects of vitamin K combined with vitamin D on human skeletal quality. METHOD AND FINDINGS A comprehensive search on Web of Science, PubMed, Embase and the Cochrane Library (from 1950 to February 2020) and bibliographies of relevant articles was undertaken, with the meta-analysis of eight randomized controlled trials (RCTs) including a total of 971 subjects. Vitamin K combined with vitamin D significantly increased the total bone mineral density (BMD): the pooled effect size was 0.316 [95% CI (confidence interval), 0.031 to 0.601]. A significant decrease in undercarboxylated osteocalcin (-0.945, -1.113 to -0.778) can be observed with the combination of vitamin K and D. Simultaneously, subgroup analysis showed that K2 or vitamin K (not specified) supplement was less than 500 μg d-1, which when combined with vitamin D can significantly increase the total BMD compared with the control group fed a normal diet or the group with no treatment (0.479, 0.101 to 0.858 and 0.570, 0.196 to 0.945). CONCLUSIONS The combination of vitamin K and D can significantly increase the total BMD and significantly decrease undercarboxylated osteocalcin, and a more favorable effect is expected when vitamin K2 is used.
Collapse
Affiliation(s)
- Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Chunxiao Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Qingxue Deng
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
31
|
Khalil Z, Alam B, Akbari AR, Sharma H. The Medical Benefits of Vitamin K 2 on Calcium-Related Disorders. Nutrients 2021; 13:691. [PMID: 33670005 PMCID: PMC7926526 DOI: 10.3390/nu13020691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Due to the potentially crucial role of vitamin K2 in calcium metabolism, a deficit can disrupt many mechanisms, resulting in an array of different issues, such as broken bones, stiff arteries and poor fertility. Although there has been existing research, the potential of vitamin K2 as a treatment for conditions including cerebral palsy, parathyroid disease, heart disease and gastrointestinal disease is unknown. This review discusses the biochemistry of vitamin K and the metabolism of calcium, followed by an analysis of the current literature available on vitamin K2 and its prospects. METHODS Using public libraries including PubMed and Wiley, we searched for existing research on the metabolism and use of vitamin K2 that has been conducted in the preceding two decades. RESULTS Data indicated that vitamin K2 had a positive impact on osteoporosis, cardiovascular disease, parathyroid disorders, cerebral palsy and sperm motility. CONCLUSION Due to the existence of confounding variables and limitations in the quality and volume of research conducted, further investigation must be done to see whether the beneficial effects seen are reproducible and must assess the viability of vitamin K2 as treatment in isolation for these conditions.
Collapse
Affiliation(s)
- Zeyad Khalil
- Medical School, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; (B.A.); (A.R.A.); (H.S.)
| | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Nutrition influences skeletal health throughout the lifespan, from the impact of maternal intakes during development, through the development of peak bone mass, to the rate of bone loss during aging. However, there are limited data available on the effects of nutritional supplements on bone density, let alone fracture risk. This review will assess the current literature, focusing on human studies, and emphasizing nutrients where bone density or fracture data are available. RECENT FINDINGS Calcium and vitamin D supplements, in combination, reduce fracture risk, particularly in populations with low intakes. Extensive recent analyses have supported the safety of these interventions at recommended intakes. There is growing evidence that specific isoflavones may improve bone density although fracture data are lacking. Multiple other nutrient supplements may benefit skeletal health, but data are limited. The effect size of nutrient interventions are relatively small, requiring large sample sizes for trials with bone outcomes, may be difficult to blind, and the impact of supplementation may depend on baseline intake. However, nutrition is the only intervention that can be implemented life long and on a population wide basis. Further investigation is needed into the potential benefits of nutritional supplements to determine in which settings supplements may add benefit in addition to dietary intakes.
Collapse
Affiliation(s)
- Laila S Tabatabai
- Division of Endocrinology, Houston Methodist Hospital, Houston, TX, USA
| | - Deborah E Sellmeyer
- Division of Endocrinology, Gerontology, and Metabolism, School of Medicine, Stanford University, 300 Pasteur Drive, Room S025, Palo Alto, Stanford, CA, 94305-5103, USA.
| |
Collapse
|
33
|
Tang H, Zhu Z, Zheng Z, Wang H, Li C, Wang L, Zhao G, Wang P. A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation. Mol Cell Biochem 2021; 476:1939-1948. [PMID: 33502649 DOI: 10.1007/s11010-021-04062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Menaquinone-7 is involved in bone metabolism and can be used to prevent and treat osteoporosis. However, as a fat-soluble vitamin, menaquinone-7 has poor water solubility. As a surfactant, hydrophobins can change the affinity/hydrophobicity of the covered interface. In this study, menaquinone-7 was modified by hydrophobins, and the different addition ratios were explored. Moreover, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements indicated that hydrophobins effectively bind to menaquinone-7 and greatly increase the hydrophilicity of the surface of menaquinone-7. Studies on the metabolism of MC3T3-E1 cells showed that compared with native menaquinone-7, HGFI-modified menaquinone-7 can significantly promote osteoblast differentiation but inhibit osteoclast differentiation. Besides, the Mito-Tracker Green experiments show that HGFI-modified menaquinone-7 can significantly promote the activity of mitochondria in cells. These findings indicate that hydrophobins can be used as an effective biomaterial to modify menaquinone-7, promote the formation of osteoblasts, and better to bone balance.
Collapse
Affiliation(s)
- Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhu Zhu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. .,Hefei Institute of Technology Innovation Engineering, CAS, Hefei, People's Republic of China.
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chu Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China. .,Hefei Institute of Technology Innovation Engineering, CAS, Hefei, People's Republic of China.
| |
Collapse
|
34
|
Randomised Controlled Trial of Nutritional Supplement on Bone Turnover Markers in Indian Premenopausal Women. Nutrients 2021; 13:nu13020364. [PMID: 33530298 PMCID: PMC7912479 DOI: 10.3390/nu13020364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022] Open
Abstract
Young Indian women may be at risk of poor bone health due to malnutrition. The aim of this study was to examine the effects on bone metabolism of a nutritional supplement in women aged 25 to 44. The nutritional supplement was a protein-rich beverage powder fortified with multi-micronutrients including calcium (600 mg), vitamin D (400 IU), and vitamin K (55 mcg) per daily serving, while a placebo supplement was low-protein non-fortified isocaloric beverage powder. This 6-month randomised, controlled trial showed favorable changes in bone turnover markers (decreased) and calcium homeostasis; such changes in older adults have been associated with slowing of bone loss and reduced fracture risk. For example, serum CTX decreased by about 30% and PINP by about 20% as a result of the increase in calcium intake. There were also changes in the ratio of carboxylated to undercarboxylated osteocalcin and such changes have been linked to a slowing of bone loss in older subjects. For example, the ratio increased by about 60% after 3 months as a result in the improvement in vitamin K status. Finally, there were improvements in the status of B vitamins, and such changes have been associated with reductions in homocysteine, but it is uncertain whether this would affect fracture risk. The product was generally well tolerated. This study shows the nutritional supplement holds promise for improved bone health among young Indian women.
Collapse
|
35
|
Prasuhn J, Kasten M, Vos M, König IR, Schmid SM, Wilms B, Klein C, Brüggemann N. The Use of Vitamin K2 in Patients With Parkinson's Disease and Mitochondrial Dysfunction (PD-K2): A Theranostic Pilot Study in a Placebo-Controlled Parallel Group Design. Front Neurol 2021; 11:592104. [PMID: 33505346 PMCID: PMC7829299 DOI: 10.3389/fneur.2020.592104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Despite rapid advances in research on Parkinson's disease (PD), in particular in the elucidation of genetic contributions, no disease-modifying therapy has become available to date. Objectives: In the proposed project, we aim to investigate the potential effects of vitamin K2 (long-chain menaquinone 7, MK-7) in genetically determined PD with mitochondrial dysfunction. Methods: A total of 130 study participants (26 biallelic Parkin/PINK1 mutation carriers, 52 sporadic PD patients, and 52 healthy controls) will receive the trial medication (MK-7 or placebo for 1 week). 31P-Magnetic resonance spectroscopy imaging of the forebrain and basal ganglia (31P-MRSI, primary endpoint) as well as other advanced neuroimaging methods, clinical assessment, including quantitative movement analysis, and biomarker sampling will be applied pre- and post-intervention. Innovation: The proposed project is highly translational as it builds on compelling mechanistic data from animal studies as well as on a small preliminary data set in humans. Patients are selected based on their mutation-related mitochondrial dysfunction and compared to disease and a healthy control group in a personalized medicine approach. We will further investigate how neuroimaging and blood-derived biomarkers can predict individual treatment response in sporadic PD. Clinical trial registration: This study was registered at the German Clinical Trial Registry (DRKS, DRKS00019932) on the 19th of December 2019.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Melissa Vos
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Sebastian M Schmid
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Britta Wilms
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
36
|
Rønn SH, Harsløf T, Oei L, Pedersen SB, Langdahl BL. The effect of vitamin MK-7 on bone mineral density and microarchitecture in postmenopausal women with osteopenia, a 3-year randomized, placebo-controlled clinical trial. Osteoporos Int 2021; 32:185-191. [PMID: 33030563 DOI: 10.1007/s00198-020-05638-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
UNLABELLED We conducted a randomized placebo-controlled double-blinded clinical trial of MK-7 or placebo daily for 3 years in postmenopausal women with osteopenia. BMD decreased at all sites without differences between the MK-7 and placebo-treated women. Changes in bone turnover markers and microstructure were similar between the two groups. INTRODUCTION Vitamin K is a cofactor in the carboxylation of osteocalcin (OC) and carboxylated OC promotes mineralization of bone. Clinical studies suggest that vitamin K2 prevents bone loss. The aim of the study was to investigate the effect of vitamin K2 as an add-on to calcium and vitamin D supplementation on osteocalcin, bone mass, and microarchitecture in postmenopausal women. METHODS We conducted a randomized placebo-controlled double-blinded clinical trial, including 142 postmenopausal women with osteopenia who received vitamin K2 (375 μg MK-7) or placebo daily for 3 years. Both groups received vitamin D3 (38 μg/day) and calcium (800 mg/day). We measured bone turnover markers in serum and bone mineral density and microarchitecture by DXA and HRpQCT. RESULTS Undercarboxylated osteocalcin decreased in the MK-7-group (- 65.2 ± 23.5%) (mean ± SD) compared with the placebo group (- 0.03 ± 38.5%), p < 0.01 after 1 year. After 3 years, aBMD decreased at all sites without differences between the MK-7 and placebo-treated women (p > 0.09). aBMD decreased at the total hip by 1.5 ± 2.5% and 2.4 ± 2.7% in the MK-7 and the placebo groups, respectively, at the femoral neck by 1.5 ± 3.5% and 1.0 ± 5.0% in the MK-7 and the placebo groups, respectively, and at the lumbar spine by 1.8 ± 3.9% and 1.1 ± 3.1% in the MK-7 and the placebo groups, respectively. Changes in bone turnover markers were also similar between the two groups.We have previously reported improved microarchitecture with MK-7 after 1 year. However, changes in microstructure over 3 years were similar between the two groups, as assessed by both HRpQCT and DXA trabecular bone score. CONCLUSION Treatment with MK-7 375 μg daily as an add-on to calcium and vitamin D increased carboxylation of osteocalcin. However, treatment of postmenopausal women with osteopenia for 3 years did not affect biochemical markers of bone turnover, bone mineral density, or bone microarchitecture. TRIAL REGISTRATION The study was registered at Clinicaltrial.gov : NCT01922804 .
Collapse
Affiliation(s)
- S H Rønn
- Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
| | - T Harsløf
- Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
| | - L Oei
- Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
- Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - S B Pedersen
- Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
| | - B L Langdahl
- Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
37
|
Elshaikh AO, Shah L, Joy Mathew C, Lee R, Jose MT, Cancarevic I. Influence of Vitamin K on Bone Mineral Density and Osteoporosis. Cureus 2020; 12:e10816. [PMID: 33173624 PMCID: PMC7645307 DOI: 10.7759/cureus.10816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vitamin K (VK) has an established biological function in blood coagulation and hemostasis and maintains general health and bone wellbeing. VK supplements have been promoted to treat and prevent many diseases, particularly for decreasing fracture risk in osteoporosis, a chronic condition described by weak bone tissue, and a high fracture risk following minor trauma. It affects older people from different races and ethnicity, mainly postmenopausal women. Many kinds of research emphasize the role of VK in improving bone health and preventing osteoporotic bone fracture, but the findings are mostly inconclusive. In this literature review, PubMed and Google Scholar databases were used as the primary sources to select the relevant studies and review the association between VK and bone health and also, to explore the impact of VK supplementation in osteoporosis management. A majority of studies reported that VK has an essential role in promoting bone health. Although some studies revealed that VK might increase bone mineral density and reduce fracture risk in people with osteoporosis, VK supplements' potential benefits were not sufficiently supported. Thus, more clinical studies are needed to determine the positive effects of VK supplementation in osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Abeer O Elshaikh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lisa Shah
- Family and Community Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Robert Lee
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Merin Tresa Jose
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
38
|
LncRNA SNHG1 was down-regulated after menopause and participates in postmenopausal osteoporosis. Biosci Rep 2020; 39:220723. [PMID: 31693735 PMCID: PMC6851504 DOI: 10.1042/bsr20190445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/01/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
The functions of long (>200 nt) non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) have only been investigated in cancer biology. We found that plasma LncRNA SNHG1 was down-regulated in postmenopausal than in premenopausal females. Among postmenopausal females, the ones with postmenopausal osteoporosis showed much lower expression levels of plasma lncRNA SNHG1. A 6-year follow-up study on postmenopausal females revealed that plasma lncRNA SNHG1 decreased in females with postmenopausal osteoporosis but not in healthy postmenopausal females. Levels of plasma lncRNA SNHG1 at 12 months before diagnosis is sufficient to distinguish postmenopausal osteoporosis patients from healthy controls. After treatment, plasma lncRNA SNHG1 were significantly up-regulated. Therefore, lncRNA SNHG1 was down-regulated after menopause and plasma level of lncRNA SNHG1 may serve as a biomarker for the diagnosis and treatment of postmenopausal osteoporosis.
Collapse
|
39
|
Vitamin K Nutrition and Bone Health. Nutrients 2020; 12:nu12071909. [PMID: 32605143 PMCID: PMC7399911 DOI: 10.3390/nu12071909] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
Vitamin K is essential for blood coagulation and plays an important role in extrahepatic metabolism, such as in bone and blood vessels, and in energy metabolism. This review discusses the assessment of vitamin K sufficiency and the role of vitamin K in bone health. To elucidate the exact role of vitamin K in other organs, accurate tools for assessing vitamin K deficiency or insufficiency are crucial. Undercarboxylated vitamin K-dependent protein levels can be measured to evaluate tissue-specific vitamin K deficiency/insufficiency. Vitamin K has genomic action through steroid and xenobiotic receptor (SXR); however, the importance of this action requires further study. Recent studies have revealed that the bone-specific, vitamin K-dependent protein osteocalcin has a close relationship with energy metabolism through insulin sensitivity. Among the organs that produce vitamin K-dependent proteins, bone has attracted the most attention, as vitamin K deficiency has been consistently associated with bone fractures. Although vitamin K treatment addresses vitamin K deficiency and is believed to promote bone health, the corresponding findings on fracture risk reduction are conflicting. We also discuss the similarity of other vitamin supplementations on fracture risk. Future clinical studies are needed to further elucidate the effect of vitamin K on fracture risk.
Collapse
|
40
|
Akbulut AC, Pavlic A, Petsophonsakul P, Halder M, Maresz K, Kramann R, Schurgers L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020; 12:E1852. [PMID: 32575901 PMCID: PMC7353270 DOI: 10.3390/nu12061852] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin K and its essential role in coagulation (vitamin K [Koagulation]) have been well established and accepted the world over. Many countries have a Recommended Daily Intake (RDI) for vitamin K based on early research, and its necessary role in the activation of vitamin K-dependent coagulation proteins is known. In the past few decades, the role of vitamin K-dependent proteins in processes beyond coagulation has been discovered. Various isoforms of vitamin K have been identified, and vitamin K2 specifically has been highlighted for its long half-life and extrahepatic activity, whereas the dietary form vitamin K1 has a shorter half-life. In this review, we highlight the specific activity of vitamin K2 based upon proposed frameworks necessary for a bioactive substance to be recommended for an RDI. Vitamin K2 meets all these criteria and should be considered for a specific dietary recommendation intake.
Collapse
Affiliation(s)
- Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| | - Katarzyna Maresz
- International Science & Health Foundation, 30-134 Krakow, Poland;
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; (A.C.A.); (A.P.); (P.P.)
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (R.K.)
| |
Collapse
|
41
|
Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020; 140:55-63. [PMID: 32972636 DOI: 10.1016/j.maturitas.2020.05.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Supplementation with calcium (Ca) and/or vitamin D (vitD) is key to the management of osteoporosis. Other supplements like vitamin K2 (VitK2) and magnesium (Mg) could contribute to the maintenance of skeletal health. This narrative review summarizes the most recent data on Ca, vitD, vitK2 and Mg supplementation and age-related bone and muscle loss. Ca supplementation alone is not recommended for fracture prevention in the general postmenopausal population. Patients at risk of fracture with insufficient dietary intake and absorption could benefit from calcium supplementation, but it needs to be customized, taking into account possible side-effects and degree of adherence. VitD supplementation is essential in patients at risk of fracture and/or vitD deficiency. VitK2 and Mg both appear to be involved in bone metabolism. Data suggest that VitK2 supplementation might improve bone quality and reduce fracture risk in osteoporotic patients, potentially enhancing the efficacy of Ca ± vitD. Mg deficiency could negatively influence bone and muscle health. However, data regarding the efficacy of vitK2 and Mg supplementation on bone are inconclusive.
Collapse
|
42
|
Capozzi A, Scambia G, Migliaccio S, Lello S. Role of vitamin K 2 in bone metabolism: a point of view and a short reappraisal of the literature. Gynecol Endocrinol 2020; 36:285-288. [PMID: 31711322 DOI: 10.1080/09513590.2019.1689554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Vitamin K2 (vit K2) belongs to a large group of fat-soluble compounds whose formulation is MK (menaquinone) (MK-2 to MK-14), that seem to be involved in different biological functions. In particular, vit K2 has been recently recognized as efficacious and safe in treatment of bone loss, as it contributes to structural integrity of osteocalcin (OC), the major non-collagenous protein typically found in bone matrix. Several studies proved low vit K2 intake is linked to bone loss and to increased fracture risk in both sexes. Nowadays, vit K2 supplementation is considered a significant manner to enhance the association of calcium and vitamin D whose role on bone health is largely recognized. On the other hand, vit K2 may be used alone or with other drugs to preserve bone quality/strength from skeletal degradation after menopause and/or in patients affected by secondary osteoporosis. In this paper, we review the most recent data about vit K2 on skeleton.
Collapse
Affiliation(s)
- A Capozzi
- Department of Woman and Child Health, Policlinico Gemelli Foundation-IRCCS, Rome, Italy
| | - G Scambia
- Department of Woman and Child Health, Policlinico Gemelli Foundation-IRCCS, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of "Foro Italico" of Rome, Rome, Italy
| | - S Lello
- Department of Woman and Child Health, Policlinico Gemelli Foundation-IRCCS, Rome, Italy
| |
Collapse
|
43
|
Owen R, Bahmaee H, Claeyssens F, Reilly GC. Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts. Bioengineering (Basel) 2020; 7:E12. [PMID: 31972962 PMCID: PMC7148480 DOI: 10.3390/bioengineering7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
| |
Collapse
|
44
|
Impact of calcium, vitamin D, vitamin K, oestrogen, isoflavone and exercise on bone mineral density for osteoporosis prevention in postmenopausal women: a network meta-analysis. Br J Nutr 2020. [DOI: 10.1017/s0007114519002290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractThe aim of this network meta-analysis is to compare bone mineral density (BMD) changes among different osteoporosis prevention interventions in postmenopausal women. We searched MEDLINE, Embase and Cochrane Library from inception to 24 February 2019. Included studies were randomised controlled trials (RCT) comparing the effects of different treatments on BMD in postmenopausal women. Studies were independently screened by six authors in three pairs. Data were extracted independently by two authors and synthesised using Bayesian random-effects network meta-analysis. The results were summarised as mean difference in BMD and surface under the cumulative ranking (SUCRA) of different interventions. A total of ninety RCT (10 777 participants) were included. Ca, vitamin D, vitamin K, oestrogen, exercise, Ca + vitamin D, vitamin D + vitamin K and vitamin D + oestrogen were associated with significantly beneficial effects relative to no treatment or placebo for lumbar spine (LS). For femoral neck (FN), Ca, exercise and vitamin D + oestrogen were associated with significantly beneficial intervention effects relative to no treatment. Ranking probabilities indicated that oestrogen + vitamin D is the best strategy in LS, with a SUCRA of 97·29 % (mean difference: +0·072 g/cm2 compared with no treatment, 95 % credible interval (CrI) 0·045, 0·100 g/cm2), and Ca + exercise is the best strategy in FN, with a SUCRA of 79·71 % (mean difference: +0·029 g/cm2 compared with placebo, 95 % CrI –0·00093, 0·060 g/cm2). In conclusion, in postmenopausal women, many interventions are valuable for improving BMD in LS and FN. Different intervention combinations can affect BMD at different sites diversely.
Collapse
|
45
|
Rodríguez-Olleros Rodríguez C, Díaz Curiel M. Vitamin K and Bone Health: A Review on the Effects of Vitamin K Deficiency and Supplementation and the Effect of Non-Vitamin K Antagonist Oral Anticoagulants on Different Bone Parameters. J Osteoporos 2019; 2019:2069176. [PMID: 31976057 PMCID: PMC6955144 DOI: 10.1155/2019/2069176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
Although known for its importance in the coagulation cascade, vitamin K has other functions. It is an essential vitamin for bone health, taking part in the carboxylation of many bone-related proteins, regulating genetic transcription of osteoblastic markers, and regulating bone reabsorption. Vitamin K deficiency is not uncommon, as deposits are scarce and dependent upon dietary supplementation and absorption. Vitamin K antagonist oral anticoagulants, which are prescribed to many patients, also induce vitamin K deficiency. Most studies find that low serum K1 concentrations, high levels of undercarboxylated osteocalcin (ucOC), and low dietary intake of both K1 and K2 are associated with a higher risk of fracture and lower BMD. Studies exploring the relationship between vitamin K supplementation and fracture risk also find that the risk of fracture is reduced with supplements, but high quality studies designed to evaluate fracture as its primary endpoint are needed. The reduction in risk of fracture with the use of non-vitamin K antagonist oral anticoagulants instead of warfarin is also of interest although once again, the available evidence offers disparate results. The scarce and limited evidence, including low quality studies reaching disparate conclusions, makes it impossible to extract solid conclusions on this topic, especially concerning the use of vitamin K supplements.
Collapse
Affiliation(s)
- Celia Rodríguez-Olleros Rodríguez
- Internal Medicine, Bone Disease Department, Hospital Universitario Fundación Jiménez Díaz, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Manuel Díaz Curiel
- Internal Medicine, Bone Disease Department, Hospital Universitario Fundación Jiménez Díaz, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain
| |
Collapse
|
46
|
Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. Int J Mol Sci 2019; 20:ijms20174150. [PMID: 31450694 PMCID: PMC6747195 DOI: 10.3390/ijms20174150] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Vitamin K is a multifunctional micronutrient implicated in age-related diseases such as cardiovascular diseases, osteoarthritis and osteoporosis. Although vitamin K-dependent proteins (VKDPs) are described to have a crucial role in the pathogenesis of these diseases, novel roles have emerged for vitamin K, independently of its role in VKDPs carboxylation. Vitamin K has been shown to act as an anti-inflammatory by suppressing nuclear factor κB (NF-κB) signal transduction and to exert a protective effect against oxidative stress by blocking the generation of reactive oxygen species. Available clinical evidences indicate that a high vitamin K status can exert a protective role in the inflammatory and mineralization processes associated with the onset and progression of age-related diseases. Also, vitamin K involvement as a protective super-micronutrient in aging and ‘inflammaging’ is arising, highlighting its future use in clinical practice. In this review we summarize current knowledge regarding clinical data on vitamin K in skeletal and cardiovascular health, and discuss the potential of vitamin K supplementation as a health benefit. We describe the clinical evidence and explore molecular aspects of vitamin K protective role in aging and age-related diseases, and its involvement as a modulator in the interplay between pathological calcification and inflammation processes.
Collapse
|
47
|
Mott A, Bradley T, Wright K, Cockayne ES, Shearer MJ, Adamson J, Lanham-New SA, Torgerson DJ. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int 2019; 30:1543-1559. [PMID: 31076817 DOI: 10.1007/s00198-019-04949-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022]
Abstract
UNLABELLED Vitamin K may affect bone mineral density and fracture incidence. Since publication of a previous systematic review the integrity of some of the previous evidence has been questioned and further trials have been published. Therefore an update to the systematic review was required. INTRODUCTION This systematic review was designed to assess the effectiveness of oral vitamin K supplementation for increasing bone mineral density and reducing fractures in adults. METHODS MEDLINE, EMBASE, CENTRAL, CINAHL, clinicaltrials.gov, and WHO-ICTRP were searched for eligible trials. Randomised controlled trials assessing oral vitamin K supplementation that assessed bone mineral density or fractures in adult populations were included. A total of 36 studies were identified. Two independent reviewers extracted data using a piloted extraction form. RESULTS For post-menopausal or osteoporotic patients, meta-analysis showed that the odds of any clinical fracture were lower for vitamin K compared to controls (OR, 0.72, 95%CI 0.55 to 0.95). Restricting the analysis to low risk of bias trials reduced the OR to 0.76 (95%CI, 0.58 to 1.01). There was no difference in vertebral fractures between the groups (OR 0.96, 95%CI 0.83 to 1.11). In the bone mineral density meta-analysis, percentage change from baseline at the lumbar spine was higher at 1 year (MD 0.93, 95%, CI - 0.02 to 1.89) and 2 years (MD 1.63%, 95%CI 0.10 to 3.16) for vitamin K compared to controls; however, removing trials at high risk of bias tended to result in smaller differences that were not statistically significant. At 6 months, it was higher in the hip (MD 0.42%, 95%CI 0.01 to 0.83) and femur (MD 0.29%, 95%CI 0.17 to 0.42). There was no significant difference at other anatomical sites. CONCLUSIONS For post-menopausal or osteoporotic patients, there is no evidence that vitamin K affects bone mineral density or vertebral fractures; it may reduce clinical fractures; however, the evidence is insufficient to confirm this. There are too few trials to draw conclusions for other patient groups.
Collapse
Affiliation(s)
- A Mott
- York Trials Unit, Department of Health Sciences, University of York, ARRC Building, York, YO10 5DD, UK.
| | - T Bradley
- Chesterfield Hospital, Chesterfield Road, Calow, S44 5BL, UK
| | - K Wright
- Centre for Reviews & Dissemination, University of York, York, YO10 5DD, UK
| | - E S Cockayne
- York Trials Unit, Department of Health Sciences, University of York, ARRC Building, York, YO10 5DD, UK
| | - M J Shearer
- Centre for Haemostasis and Thrombosis, Guy's and St Thomas' NHS Trust, London, SE1 7EH, UK
| | - J Adamson
- Institute of Health & Society, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - S A Lanham-New
- Nutritional Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - D J Torgerson
- York Trials Unit, Department of Health Sciences, University of York, ARRC Building, York, YO10 5DD, UK
| |
Collapse
|
48
|
Su S, He N, Men P, Song C, Zhai S. The efficacy and safety of menatetrenone in the management of osteoporosis: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2019; 30:1175-1186. [PMID: 30734066 DOI: 10.1007/s00198-019-04853-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/13/2019] [Indexed: 02/06/2023]
Abstract
UNLABELLED In our systematic review and meta-analysis, we comprehensively evaluated menatetrenone in the management of osteoporosis. We found that menatetrenone decreased the ratio of undercarboxylated osteocalcin to osteocalcin (ucOC/OC) and improved lumbar BMD compared with placebo based on the 18 studies assessed. However, its benefit in fracture risk control was uncertain. INTRODUCTION We performed a systematic review and meta-analysis of the efficacy and safety of menatetrenone in managing osteoporosis. METHODS PubMed, Cochrane Library, Embase, ClinicalTrials.gov , and three Chinese literature databases (CNKI, CBM, Wanfang) were searched for relevant randomized controlled trials (RCTs) published before October 5, 2017, comparing menatetrenone with other anti-osteoporotic drugs or placebo in treating osteoporosis. The pooled risk ratio (RR) or mean difference (MD) and 95% confidence interval (CI) were calculated using fixed-effects or random-effects meta-analysis. RESULTS Eighteen RCTs (8882 patients) were included. Pooled analyses showed that menatetrenone was more effective than placebo in improving lumbar bone mineral density (BMD) (five studies, N = 658, MD = 0.05 g/cm2, 95% CI 0.01 to 0.09 g/cm2) and decreasing ucOC/OC (two studies, N = 75, MD = - 21.78%, 95% CI - 33.68 to - 9.87%). Compared with placebo, menatetrenone was associated with a nonsignificantly decreased risk of vertebral fracture (five studies, N = 5508, RR = 0.87, 95% CI 0.64 to 1.20). Evidence on other anti-osteoporotic drugs as comparators was limited and revealed no significantly different effects of menatetrenone on BMD or fracture risks. Furthermore, compared with placebo, menatetrenone significantly increased the incidence of adverse events (AEs) (two studies, N = 1949, RR = 1.47, 95% CI 1.07 to 2.02) and adverse drug reactions (four studies, N = 6102, RR = 1.29, 95% CI 1.07 to 1.56). However, no significant difference in the incidence of serious AEs was found between menatetrenone and placebo. CONCLUSIONS Menatetrenone significantly decreases ucOC and might improve lumbar BMD in osteoporotic patients. However, its benefit in fracture risk control is uncertain.
Collapse
Affiliation(s)
- S Su
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - N He
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - P Men
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - C Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - S Zhai
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
49
|
Chenard CA, Rubenstein LM, Snetselaar LG, Wahls TL. Nutrient Composition Comparison between a Modified Paleolithic Diet for Multiple Sclerosis and the Recommended Healthy U.S.-Style Eating Pattern. Nutrients 2019; 11:E537. [PMID: 30832289 PMCID: PMC6470485 DOI: 10.3390/nu11030537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease that attacks the central nervous system. Evidence-based dietary guidelines do not exist for MS; the default advice is to follow the Dietary Guidelines for Americans (DGA). A modified Paleolithic Wahls Elimination (WahlsElim) diet promoted for MS excludes grains and dairy and encourages 9+ cups fruits and vegetables (F/V) and saturated fat for cooking. This study evaluated the nutritional adequacy of seven-day menus and modeled them with varying amounts of F/V for comparison with the DGA Healthy US-Style Eating Pattern (HEP) for ages 31⁻50 years. WahlsElim menus had low added sugar and glycemic index. Nutritional adequacy of the menus and modeled versions were similar to HEP for 17 vitamins and minerals (mean adequacy ratio ≥92%). Nutrient shortfalls for the modeled diet with 60% F/V were identical to HEP for vitamin D, iron (females), magnesium (marginally males), choline and potassium; this modeled diet was also low in dietary fiber and calcium but met vitamin E requirements while HEP did not. WahlsElim-prescribed supplements corrected vitamin D and magnesium shortfalls; careful selection of foods are needed to meet requirements of other shortfall nutrients and reduce saturated fat and sodium. Doctors should monitor nutritional status, supplement doses, and possible contraindications to high vitamin K intake in individuals following the WahlsElim diet.
Collapse
Affiliation(s)
- Catherine A Chenard
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Linda M Rubenstein
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| | - Linda G Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| | - Terry L Wahls
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
50
|
Kuroda T, Uenishi K, Ohta H, Shiraki M. Multiple vitamin deficiencies additively increase the risk of incident fractures in Japanese postmenopausal women. Osteoporos Int 2019; 30:593-599. [PMID: 30483849 DOI: 10.1007/s00198-018-4784-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
UNLABELLED The associations of multiple vitamin deficiencies on incident fractures were uncertain, the relationships between serum vitamin markers and incident bone fractures were investigated in Japanese postmenopausal women. The number of deficiencies was additively associated with incident fracture after adjustment for possible confounding factors including the treatment of osteoporosis. INTRODUCTION To evaluate the associations of multiple vitamin deficiencies on incident fractures, the relationships between serum vitamin markers and incident bone fractures were investigated in Japanese postmenopausal women. METHODS This analysis used a subset of the ongoing cohort maintained by a primary care institution. Inclusion criteria of the present study were postmenopausal women aged ≥ 50 years, without vitamin supplementation and secondary osteoporosis. Baseline serum concentrations of 25-hydroxyvitamin D (25(OH)D), undercarboxylated osteocalcin (ucOC), and homocysteine (Hcy) were measured to assess vitamin D, vitamin K, and vitamin B, respectively. Since 25(OH) D positively relates to vitamin D, ucOC and Hcy negatively relate to vitamin K and vitamin B nutrients, respectively, the subjects with lower (25(OH)D) or higher (ucOC or Hcy) values than each median value was defined as subjects with the corresponding vitamin deficiency. Subjects were divided into four groups according to the number of deficiency: no deficiency, single deficiency, double deficiencies, and triple deficiencies. Relationships between the vitamin deficiencies and incident fractures were evaluated by Cox regression analysis. RESULTS A total of 889 subjects were included in this analysis; their mean and SD age was 68.3 ± 9.5 years, and the follow-up period was 6.3 ± 5.1 years. The numbers of subjects in the four groups were 139 (15.6%), 304 (34.2%), 316 (35.5%), and 130 (14.6%) for the groups with no, single, double, and triple deficiencies, respectively. Incident fractures were observed in 264 subjects (29.7%) during the observation period. The number of deficiencies was significantly associated with incident fracture (hazard ratio 1.25, 95% confidence interval 1.04-1.50, P = 0.018) after adjustment for possible confounding factors including the treatment of osteoporosis. CONCLUSION Accumulation of vitamin deficiencies was related to incident fractures.
Collapse
Affiliation(s)
- T Kuroda
- Public Health Research Foundation, 1-1-7 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan.
| | - K Uenishi
- Division of Nutritional Physiology, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado City, Saitama, 350-0288, Japan
| | - H Ohta
- Clinical Medical Research Center, Women's Medical Center, Sanno Medical Center, International University of Health and Welfare, 8-5-35 Akasaka, Minato-ku, Tokyo, 107-0052, Japan
| | - M Shiraki
- Department of Internal Medicine, Research Institute and Practice for Involutional Diseases, 1610-1 Meisei, Misato, Azumino, Nagano, 399-8101, Japan
| |
Collapse
|