1
|
Danes D, Vaishnav J, Pillai L, Singh A, Balakrishnan S. Embryonic exposure to flubendiamide induces hepatotoxicity in domestic chicks by altering drug-metabolizing enzymes, antioxidant status, and liver function. Toxicol Rep 2024; 13:101697. [PMID: 39131694 PMCID: PMC11314886 DOI: 10.1016/j.toxrep.2024.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Pesticides have increased crop yield but severely impacted ecosystems and non-target organisms. Flubendiamide, a new generation pesticide, targets insect larvae but also affects non-target organisms. This study examines the effects of lowest observed effect concentration of technical grade flubendiamide (0.5 µg/µL) flubendiamide on chick liver, focusing on cytochrome P450 (CYP) enzyme expression, oxidative stress, and liver damage. Chick embryos treated with flubendiamide showed significant alterations in CYP mRNA and protein levels, indicating increased toxicant accumulation. Elevated CYP3A4, CYP1A1, CYP1A2, and CYP2C19 levels were noted, suggesting enhanced biotransformation and detoxification processes. However, increased oxidative byproducts led to oxidative stress, as evidenced by decreased glutathione (GSH) levels and elevated superoxide dismutase (SOD) and catalase activities. DCFDA staining confirmed increased hydrogen peroxide (H2O2) levels, indicating heightened reactive oxygen species (ROS). Liver function tests revealed significant increases in serum ALP, ALT, and AST levels, indicating acute liver damage. Histopathological analysis showed structural liver damage, including expanded sinusoidal spaces, impaired portal veins, and compromised hepatocyte architecture. These findings underscore flubendiamide's potential hepatotoxicity in non-target organisms, emphasizing the need for cautious pesticide use to minimize environmental impacts.
Collapse
Affiliation(s)
- Dhanush Danes
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
- Department of Zoology, Union Christian College, Aluva, Kerala 683102, India
| | - Juhi Vaishnav
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Lakshmi Pillai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Anjali Singh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| |
Collapse
|
2
|
Li SC, Wang B, Zhang M, Yin Q, Yang ZY, Li XT, Liang G. Induction of cytochrome P450 via upregulation of CAR and PXR: a potential mechanism for altered florfenicol metabolism by macranthoidin B in vivo. Front Pharmacol 2024; 15:1460948. [PMID: 39444610 PMCID: PMC11496122 DOI: 10.3389/fphar.2024.1460948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Macranthoidin B (MB) is a primary active component of Flos Lonicerae. In Chinese veterinary clinics, Flos Lonicerae is frequently used in combination with florfenicol to prevent and treat infections in livestock and poultry. However, potential interactions between Flos Lonicerae and florfenicol remain unclear. To systematically study these interactions, it is crucial to investigate the individual phytochemicals within Flos Lonicerae. Therefore, MB was selected for this study to assess its effect on the pharmacokinetics of florfenicol in vivo and to explore the underlying mechanisms involved. Methods Male Sprague-Dawley rats were administered MB (60 mg/kg BW) or sterile water orally for 7 consecutive days. On the 8th day, a single oral dose of florfenicol (25 mg/kg BW) was given. Florfenicol pharmacokinetics were analyzed using ultra-high performance liquid chromatography. The hepatic expression levels of cytochrome P450 (CYP1A2, CYP2C11, CYP3A1), UDP-glucuronosyltransferase (UGT1A1), P-glycoprotein (P-gp), and nuclear receptors, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoid X receptor alpha (RXRα), were quantified via reverse transcription-quantitative polymerase chain reaction and Western blotting (WB). Hepatic CYP1A2 and CYP2C11 activities were measured using a cocktail method. Additionally, the subcellular expression and localization of CAR, PXR, and RXRαin hepatocytes was assessed using WB and immunofluorescence staining. Results MB significantly reduces the AUC(0-∞) and MRT(0-∞) of florfenicol. MB also markedly upregulates the mRNA and protein expression of hepatic CYP1A2 and CYP2C11, along with their catalytic activities. Substantial upregulation of CAR and PXR proteins occurs in the hepatocyte nucleus, along with significant nuclear colocalization of the transcriptionally active CAR/RXRα and PXR/RXRαheterodimers, indicating MB-induced nuclear translocation of both CAR and PXR. Discussion These findings suggest that MB-induced alterations in florfenicol pharmacokinetics, particularly its accelerated elimination, may be due to increased expression and activities of CYP1A2 and CYP2C11, with CAR and PXR potentially involved in these regulatory effects. Further investigation is yet needed to fully elucidate the clinical implications of these interactions concerning the efficacy of florfenicol in veterinary medicine.
Collapse
Affiliation(s)
- Si-cong Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Bin Wang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Min Zhang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Qin Yin
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zi-yi Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Xu-ting Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Ge Liang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| |
Collapse
|
3
|
Ueyama-Toba Y, Tong Y, Yokota J, Murai K, Hikita H, Eguchi H, Takehara T, Mizuguchi H. Development of a hepatic differentiation method in 2D culture from primary human hepatocyte-derived organoids for pharmaceutical research. iScience 2024; 27:110778. [PMID: 39280628 PMCID: PMC11401167 DOI: 10.1016/j.isci.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Human liver organoids derived from primary human hepatocytes (PHHs) are expected to be a hepatocyte source for preclinical in vitro studies of drug metabolism and disposition. Because hepatic functions of these organoids remain low, it is necessary to enhance the hepatic functions. Here, we develop a novel method for two dimensional (2D)-cultured hepatic differentiation from PHH-derived organoids by screening several compounds, cytokines, and growth factors. Hepatic gene expressions in the hepatocyte-like cells differentiated from PHH-derived organoids (Org-HEPs) were greatly increased, compared to those in PHH-derived organoids. The metabolic activities of cytochrome P450 (CYP) 1A2, CYP2C8, CYP2C19, CYP2E1, and CYP3A4 were at levels comparable to those in PHHs. The cell viability of Org-HEPs treated with hepatotoxic drugs was almost the same as that of PHHs. Thus, PHH-derived organoids could be differentiated into highly functional hepatocytes in 2D culture. Thus, Org-HEPs will be useful for pharmaceutical research, including hepatotoxicity tests.
Collapse
Affiliation(s)
- Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yanran Tong
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hayato Hikita
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Fang J, Tang Y, Gong C, Huang Z, Feng Y, Liu G, Tang Y, Li W. Prediction of Cytochrome P450 Substrates Using the Explainable Multitask Deep Learning Models. Chem Res Toxicol 2024; 37:1535-1548. [PMID: 39196814 DOI: 10.1021/acs.chemrestox.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Cytochromes P450 (P450s or CYPs) are the most important phase I metabolic enzymes in the human body and are responsible for metabolizing ∼75% of the clinically used drugs. P450-mediated metabolism is also closely associated with the formation of toxic metabolites and drug-drug interactions. Therefore, it is of high importance to predict if a compound is the substrate of a given P450 in the early stage of drug development. In this study, we built the multitask learning models to simultaneously predict the substrates of five major drug-metabolizing P450 enzymes, namely, CYP3A4, 2C9, 2C19, 2D6, and 1A2, based on the collected substrate data sets. Compared to the single-task model and conventional machine learning models, the multitask fingerprints and graph neural networks model achieved superior performance with the average AUC values of 90.8% on the test set. Notably, the multitask model demonstrated its good performance on the small amount of substrate data sets such as CYP1A2, 2C9, and 2C19. In addition, the Shapley additive explanation and the attention mechanism were used to reveal specific substructures associated with P450 substrates, which were further confirmed and complemented by the substructure mining tool and the literature.
Collapse
Affiliation(s)
- Jiaojiao Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changda Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zejun Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Damborská A, Hanáková L, Pindurová E, Horská K. Case report: Therapeutic drug monitoring and CYP2D6 phenoconversion in a protracted paroxetine intoxication. Front Pharmacol 2024; 15:1444857. [PMID: 39295933 PMCID: PMC11408286 DOI: 10.3389/fphar.2024.1444857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Objective The cytochrome P450 2D6 (CYP2D6) is an enzyme involved in the oxidative biotransformation of various widely used drugs, including paroxetine, a substrate and strong inhibitor of the enzyme. The aim is to report on a case of protracted intoxication with paroxetine after a single overdose in a genotype-predicted intermediate CYP2D6 metabolizer. Observation A 49-year-old man was receiving chronic treatment for more than 6 years with paroxetine 60 mg/day for an indication of agoraphobia. The patient ingested fifty 20 mg tablets of paroxetine in a suicide attempt. The toxic plasma level, accompanied by delirium, persisted for approximately 1 month after the overdose. According to the genotype profile, the patient was evaluated as an intermediate metabolizer with reduced CYP2D6 enzyme activity. Conclusion As a consequence of the suicide attempt with overdose and the chronic paroxetine treatment that preceded it, phenoconversion to a poor metabolizer with very low CYP2D6 enzyme activity is suggested as contributing to an extremely long intoxication accompanied by delirium. Prolonged monitoring over a standard 24 h of both physical symptoms and drug plasma levels, together with a genetic profile assessment and phenoconversion consideration, is recommended after a single overdose in patients chronically treated with paroxetine.
Collapse
Affiliation(s)
- Alena Damborská
- Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lenka Hanáková
- Department of Psychiatry, University Hospital Brno, Brno, Czechia
| | - Eva Pindurová
- Center of Molecular Biology and Genetics, University Hospital Brno, Brno, Czechia
- Laboratory of Clinical Microbiology, Forlab Ltd., Brno, Czechia
| | - Kateřina Horská
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, Brno, Czechia
| |
Collapse
|
6
|
De Vos K, Mavrogiannis A, Wolters JC, Schlenner S, Wierda K, Cortés Calabuig Á, Chinnaraj R, Dermesrobian V, Armoudjian Y, Jacquemyn M, Corthout N, Daelemans D, Annaert P. Tankyrase1/2 inhibitor XAV-939 reverts EMT and suggests that PARylation partially regulates aerobic activities in human hepatocytes and HepG2 cells. Biochem Pharmacol 2024; 227:116445. [PMID: 39053638 DOI: 10.1016/j.bcp.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/β-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.
Collapse
Affiliation(s)
- Kristof De Vos
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Adamantios Mavrogiannis
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Susan Schlenner
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Reena Chinnaraj
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vera Dermesrobian
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium.
| |
Collapse
|
7
|
Lei JJ, Li S, Dong BX, Yang J, Ren Y. Acute intermittent porphyria: a disease with low penetrance and high heterogeneity. Front Genet 2024; 15:1374965. [PMID: 39188285 PMCID: PMC11345236 DOI: 10.3389/fgene.2024.1374965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Acute intermittent porphyria (AIP) is caused by mutations in the gene encoding hydroxymethylbilane synthase (HMBS), a key enzyme in the heme biosynthesis pathway. AIP is an autosomal dominant disorder characterized by low penetrance and a highly heterogenous clinical presentation. The estimated prevalence of AIP is 5-10 cases per 100,000 persons, with acute attacks manifesting in less than 1% of the at-risk population. This low frequency of attacks suggests significant roles for oligogenic inheritance and environmental factors in the pathogenesis of the disease. In recent years, identification of several modifier genes has advanced our understanding of the factors influencing AIP penetrance and disease severity. This review summarizes these factors including the impact of specific HMBS mutations, oligogenic inheritance, mitochondrial DNA copy number, age, sex, the influence of sex hormones, and the role of environmental factors. Further studies into the etiology of AIP disease penetrance should inform pathogenesis, potentially allowing for the development of more precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia-Jia Lei
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Shuang Li
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Bai-Xue Dong
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jing Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Ren
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Tzoupis H, Papavasileiou KD, Papatzelos S, Mavrogiorgis A, Zacharia LC, Melagraki G, Afantitis A. Systematic Review of Naturally Derived Substances That Act as Inhibitors of the Nicotine Metabolizing Enzyme Cytochrome P450 2A6. Int J Mol Sci 2024; 25:8031. [PMID: 39125600 PMCID: PMC11312336 DOI: 10.3390/ijms25158031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Tobacco smoking has been highlighted as a major health challenge in modern societies. Despite not causing death directly, smoking has been associated with several health issues, such as cardiovascular diseases, respiratory disorders, and several cancer types. Moreover, exposure to nicotine during pregnancy has been associated with adverse neurological disorders in babies. Nicotine Replacement Therapy (NRT) is the most common strategy employed for smoking cessation, but despite its widespread use, NRT presents with low success and adherence rates. This is attributed partially to the rate of nicotine metabolism by cytochrome P450 2A6 (CYP2A6) in each individual. Nicotine addiction is correlated with the high rate of its metabolism, and thus, novel strategies need to be implemented in NRT protocols. Naturally derived products are a cost-efficient and rich source for potential inhibitors, with the main advantages being their abundance and ease of isolation. This systematic review aims to summarize the natural products that have been identified as CYP2A6 inhibitors, validated through in vitro and/or in vivo assays, and could be implemented as nicotine metabolism inhibitors. The scope is to present the different compounds and highlight their possible implementation in NRT strategies. Additionally, this information would provide valuable insight regarding CYP2A6 inhibitors, that can be utilized in drug development via the use of in silico methodologies and machine-learning models to identify new potential lead compounds for optimization and implementation in NRT regimes.
Collapse
Affiliation(s)
- Haralampos Tzoupis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Konstantinos D. Papavasileiou
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
| | - Stavros Papatzelos
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Angelos Mavrogiorgis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Lefteris C. Zacharia
- School of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Antreas Afantitis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| |
Collapse
|
9
|
Dąbrowski A, Nowicki M, Budzyńska A, Suchodolski J, Ogórek R, Chabowski M, Przywara K. Analysis of CYP1B1 Polymorphisms in Lung Cancer Patients Using Novel, Quick and Easy Methods Based on CAPS and ACRS-PCR Techniques. Int J Mol Sci 2024; 25:6676. [PMID: 38928381 PMCID: PMC11203417 DOI: 10.3390/ijms25126676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Within the sequence of the CYP1B1 gene, more than 50 polymorphisms, resulting from single-nucleotide polymorphisms (SNPs), have been described. Some of them play an important role as specific genetic markers in the process of carcinogenesis and for therapeutic purposes. In this publication, we present methods we have developed that enable the specific and unambiguous identification of four polymorphisms that result in amino acid changes: c. 142C > G, c. 355G > T, c. 1294C > G, and c. 1358A > G. Our studies are based on cleaved amplified polymorphic sequences (CAPSs) and artificially created restriction site (ACRS) PCR techniques; therefore, they require only basic laboratory equipment and low financial outlays. Utilizing the described methods allows for the reduction of research time and cost, and the minimization of errors. Their effectiveness and efficiency depend on the careful design of appropriate primers and the precise selection of suitable restriction enzymes. As a result, further confirmation by sequencing is not necessary. Using the developed method, we examined 63 patients diagnosed with lung cancer and observed a 1.5 to 2.1 times higher frequency of the analyzed single-nucleotide polymorphisms compared to the frequency in the European population.
Collapse
Affiliation(s)
- Adam Dąbrowski
- Laboratory of Molecular Diagnostics “Bio-Genetik” NZOZ, 50-525 Wrocław, Poland;
| | - Maciej Nowicki
- Department of Surgery, 4th Military Teaching Hospital, 53-114 Wroclaw, Poland; (M.N.); (M.C.)
| | - Aleksandra Budzyńska
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Jakub Suchodolski
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 53-114 Wroclaw, Poland; (M.N.); (M.C.)
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 51-377 Wroclaw, Poland
| | - Katarzyna Przywara
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (A.B.); (J.S.); (R.O.)
| |
Collapse
|
10
|
Christmann U, Garriga L, Llorente AV, Díaz JL, Pascual R, Bordas M, Dordal A, Porras M, Yeste S, Reinoso RF, Vela JM, Almansa C. WLB-87848, a Selective σ 1 Receptor Agonist, with an Unusually Positioned NH Group as Positive Ionizable Moiety and Showing Neuroprotective Activity. J Med Chem 2024; 67:9150-9164. [PMID: 38753759 DOI: 10.1021/acs.jmedchem.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The synthesis and pharmacological activity of a new series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as sigma-1 receptor (σ1R) ligands are reported. A hit from a high-throughput screening program was evolved into a highly potent and selective σ1R agonist (14qR) that contains a free NH group as positive ionizable moiety, not fulfilling the usual pharmacophoric features of the σ1R. The compound shows good physicochemical and ADMET characteristics, displays an agonist profile in the binding immunoglobulin protein/σ1R association assay, induces neuron viability in an in vitro model of β-amyloid peptide intoxication, and presents positive results against recognition memory impairment induced by hippocampal injection of Aβ peptide in rats after oral treatment, altogether making 14qR (WLB-87848) an interesting candidate for neuroprotection.
Collapse
Affiliation(s)
- Ute Christmann
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Lourdes Garriga
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Ana Virginia Llorente
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - José Luis Díaz
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Rosalía Pascual
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Magda Bordas
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Albert Dordal
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Mónica Porras
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Sandra Yeste
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Raquel F Reinoso
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Carmen Almansa
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| |
Collapse
|
11
|
Mao K, Liu C, Tang Z, Rao Z, Wen J. Advances in drug resistance of osteosarcoma caused by pregnane X receptor. Drug Metab Rev 2024:1-14. [PMID: 38872275 DOI: 10.1080/03602532.2024.2366948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Osteosarcoma (OS) is a prevalent malignancy among adolescents, commonly manifesting during childhood and adolescence. It exhibits a high degree of malignancy, propensity for metastasis, rapid progression, and poses challenges in clinical management. Chemotherapy represents an efficacious therapeutic modality for OS treatment. However, chemotherapy resistance of OS is a major problem in clinical treatment. In order to treat OS effectively, it is particularly important to explore the mechanism of chemotherapy resistance in OS.The Pregnane X receptor (PXR) is a nuclear receptor primarily involved in the metabolism, transport, and elimination of xenobiotics, including chemotherapeutic agents. PXR involves three stages of drug metabolism: stage I: drug metabolism enzymes; stage II: drug binding enzyme; stage III: drug transporter.PXR has been confirmed to be involved in the process of chemotherapy resistance in malignant tumors. The expression of PXR is increased in OS, which may be related to drug resistance of OS. Therefore, wereviewed in detail the role of PXR in chemotherapy drug resistance in OS.
Collapse
Affiliation(s)
- Kunhong Mao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
| | - Zhongwen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouzhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Ip BC, Madnick SJ, Zheng S, van Tongeren TCA, Hall SJ, Li H, Martin S, Spriggs S, Carmichael P, Chen W, Ames D, Breitweiser LA, Pence HE, Bowling AJ, Johnson KJ, Cubberley R, Morgan JR, Boekelheide K. Development of a human liver microphysiological coculture system for higher throughput chemical safety assessment. Toxicol Sci 2024; 199:227-245. [PMID: 38335931 PMCID: PMC11131024 DOI: 10.1093/toxsci/kfae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Chemicals in the systemic circulation can undergo hepatic xenobiotic metabolism, generate metabolites, and exhibit altered toxicity compared with their parent compounds. This article describes a 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of physiologically relevant human liver metabolism. This 2-chamber system is a hydrogel formed within each well consisting of a central well (target tissue) and an outer ring-shaped trough (human liver tissue). The target tissue chamber can be configured to accommodate a three-dimensional (3D) spheroid-shaped microtissue, or a 2-dimensional (2D) cell monolayer. Culture medium and compounds freely diffuse between the 2 chambers. Human-differentiated HepaRG liver cells are used to form the 3D human liver microtissues, which displayed robust protein expression of liver biomarkers (albumin, asialoglycoprotein receptor, Phase I cytochrome P450 [CYP3A4] enzyme, multidrug resistance-associated protein 2 transporter, and glycogen), and exhibited Phase I/II enzyme activities over the course of 17 days. Histological and ultrastructural analyses confirmed that the HepaRG microtissues presented a differentiated hepatocyte phenotype, including abundant mitochondria, endoplasmic reticulum, and bile canaliculi. Liver microtissue zonation characteristics could be easily modulated by maturation in different media supplements. Furthermore, our proof-of-concept study demonstrated the efficacy of this coculture model in evaluating testosterone-mediated androgen receptor responses in the presence of human liver metabolism. This liver-organ coculture system provides a practical, higher-throughput testing platform for metabolism-dependent bioactivity assessment of drugs/chemicals to better recapitulate the biological effects and potential toxicity of human exposures.
Collapse
Affiliation(s)
- Blanche C Ip
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, Rhode Island 02903, USA
| | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, Rhode Island 02903, USA
| | - Sophia Zheng
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
| | - Tessa C A van Tongeren
- Division of Toxicology, Wageningen University and Research, 6700 EA Wageningen, The Netherlands
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
| | - Hui Li
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
| | - Suzanne Martin
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK44 1LQ Bedfordshire, United Kingdom
| | - Sandrine Spriggs
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK44 1LQ Bedfordshire, United Kingdom
| | - Paul Carmichael
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK44 1LQ Bedfordshire, United Kingdom
| | - Wei Chen
- Corteva, Inc, Indianapolis, Indiana 46268, USA
| | - David Ames
- Corteva, Inc, Indianapolis, Indiana 46268, USA
| | | | | | | | | | - Richard Cubberley
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK44 1LQ Bedfordshire, United Kingdom
| | - Jeffrey R Morgan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, Rhode Island 02903, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02903, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
13
|
Würger LTD, Alarcan J, Braeuning A. Effects of marine biotoxins on drug-metabolizing cytochrome P450 enzymes and their regulation in mammalian cells. Arch Toxicol 2024; 98:1311-1322. [PMID: 38416141 PMCID: PMC10965580 DOI: 10.1007/s00204-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Marine biotoxins are a heterogenous group of natural toxins, which are able to trigger different types of toxicological responses in animals and humans. Health effects arising from exposure to marine biotoxins are ranging, for example, from gastrointestinal symptoms to neurological effects, depending on the individual toxin(s) ingested. Recent research has shown that the marine biotoxin okadaic acid (OA) can strongly diminish the expression of drug-metabolizing cytochrome P450 (CYP) enzymes in human liver cells by a mechanism involving proinflammatory signaling. By doing so, OA may interfere with the metabolic barrier function of liver and intestine, and thus alter the toxico- or pharmacokinetic properties of other compounds. Such effects of marine biotoxins on drug and xenobiotic metabolism have, however, not been much in the focus of research yet. In this review, we present the current knowledge on the effects of marine biotoxins on CYP enzymes in mammalian cells. In addition, the role of CYP-regulating nuclear receptors as well as inflammatory signaling in the regulation of CYPs by marine biotoxins is discussed. Strong evidence is available for effects of OA on CYP enzymes, along with information about possible molecular mechanisms. For other marine biotoxins, knowledge on effects on drug metabolism, however, is scarce.
Collapse
Affiliation(s)
- Leonie T D Würger
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
14
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
15
|
El-Mahrouk SR, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Dimethylmonothioarsinic acid (DMMTA V) differentially modulates the expression of AHR-regulated cytochrome P450 1A enzymes in vivo and in vitro. Toxicol Lett 2024; 394:32-45. [PMID: 38403205 DOI: 10.1016/j.toxlet.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Dimethylmonothioarsinic acid (DMMTAV), a pentavalent thio-arsenic derivative, has been found in bodily fluids and tissues including urine, liver, kidney homogenates, plasma, and red blood cells. Although DMMTAV is a minor metabolite in humans and animals, its substantial toxicity raises concerns about potential carcinogenic effects. This toxicity could be attributed to arsenicals' ability to regulate cytochrome P450 1 A (CYP1A) enzymes, pivotal in procarcinogen activation or detoxification. The current study investigates DMMTAV's impact on CYP1A1/2 expression, individually and in conjunction with its inducer, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57BL/6 mice were intraperitoneally injected with 6 mg/kg DMMTAV, alone or with 15 μg/kg TCDD, for 6 and 24 h. Similarly, Hepa-1c1c7 cells were exposed to DMMTAV (0.5, 1, and 2 μM) with or without 1 nM TCDD for 6 and 24 h. DMMTAV hindered TCDD-induced elevation of Cyp1a1 mRNA, both in vivo (at 6 h) and in vitro, associated with reduced CYP1A regulatory element activation. Interestingly, in C57BL/6 mice, DMMTAV boosted TCDD-induced CYP1A1/2 protein and activity, unlike Hepa-1c1c7 cells where it suppressed both. DMMTAV co-exposure increased TCDD-induced Cyp1a2 mRNA. While Cyp1a1 mRNA stability remained unchanged, DMMTAV negatively affected protein stability, indicated by shortened half-life. Baseline levels of CYP1A1/2 mRNA, protein, and catalytic activities showed no significant alterations in DMMTAV-treated C57BL/6 mice and Hepa-1c1c7 cells. Taken together, these findings indicate, for the first time, that DMMTAV differentially modulates the TCDD-mediated induction of AHR-regulated enzymes in both liver of C57BL/6 mice and murine Hepa-1c1c7 cells suggesting that thio-arsenic pentavalent metabolites are extremely reactive and could play a role in the toxicity of arsenic.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
17
|
Shiohira H, Arakaki S, Uehara W, Uehara H, Yamamoto K, Nakamura K. Nirmatrelvir/ritonavir-induced elevation of blood tacrolimus levels in a patient in the maintenance phase post liver transplantation. J Infect Chemother 2024; 30:77-80. [PMID: 37689137 DOI: 10.1016/j.jiac.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Nirmatrelvir is an orally administered anti-SARS-CoV-2 drug used in combination with ritonavir, the drug-metabolizing cytochrome P450 (CYP) 3A inhibitor, to evade metabolism and extend bioavailability. Meanwhile, the immunosuppressant tacrolimus is a CYP3A4/5 substrate, and CYP3A inhibition results in drug-drug interactions. Herein, we report the case of a coronavirus disease 19 (COVID-19) patient in the maintenance phase post liver transplantation, receiving tacrolimus treatment, with a marked increase of blood tacrolimus levels after the initiation of concomitant nirmatrelvir/ritonavir treatment. A 61-year-old Japanese woman underwent a living donor liver transplant for Caroli disease 25 years ago and received tacrolimus 2 mg/day for immunosuppressive treatment. Three days before the observed high tacrolimus blood concentration, she presented to our emergency department with a fever and was diagnosed with COVID-19. She was prescribed an adjusted dose of nirmatrelvir/ritonavir (150 mg/100 mg, twice daily) for 5 days as a high-risk case with immunosuppressive treatment and reduced renal function (estimated glomerular filtration rate, eGFR: 46.6 mL/min/1.73 m2). At the return visit on day 1, blood tacrolimus level was >60 ng/mL on trough sampling, above the upper limit of measurement, with nausea and vomiting as side effects. Tacrolimus treatment was discontinued on the same day. Drug-drug interactions resulting from CYP3A inhibition by nirmatrelvir/ritonavir were deemed responsible for elevated blood tacrolimus levels. Therefore, in liver transplant recipients, tacrolimus dose reduction or discontinuation is required during COVID-19 treatment with nirmatrelvir/ritonavir.
Collapse
Affiliation(s)
- Hideo Shiohira
- Department of Pharmacy, University of the Ryukyus Hospital, Japan
| | - Shingo Arakaki
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine (First Department of Internal Medicine), University of the Ryukyus, Japan
| | - Wataru Uehara
- Department of Pharmacy, University of the Ryukyus Hospital, Japan
| | - Hitoshi Uehara
- Department of Pharmacy, University of the Ryukyus Hospital, Japan
| | - Kazuko Yamamoto
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine (First Department of Internal Medicine), University of the Ryukyus, Japan
| | - Katsunori Nakamura
- Department of Pharmacy, University of the Ryukyus Hospital, Japan; Department of Pharmacotherapeutics, Graduate School of Medicine, University of the Ryukyus, Japan.
| |
Collapse
|
18
|
Wang M, Wang S, Cui J, Lian D, Li Y, Du Y, Li L. Interactions studies of CYP2D6 with quercetin and hyperoside by spectral analysis and molecular dynamics simulations. LUMINESCENCE 2024; 39:e4605. [PMID: 37795938 DOI: 10.1002/bio.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka ) values of CYP2D6-quercetin/hyperoside range from 104 L mol-1 , which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.
Collapse
Affiliation(s)
- Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuan Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yutong Du
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
19
|
Deepika, Kumari A, Prajapati P, Sarita, Kumar S, Aluko RE, Singh S, Garg M. Pharmacological and Therapeutic Potential of Cucumis callosus: a Novel Nutritional Powerhouse for the Management of Non-communicable Diseases. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:630-642. [PMID: 37698772 DOI: 10.1007/s11130-023-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Cucumis callosus (Kachri) is an under-exploited fruit of the Cucurbitaceae family, distributed majorly in the arid regions of India in the states of Haryana, Rajasthan, and Gujarat. The fruit is traditionally used by the native people at a small scale by home-level processing. It is a perennial herb that has been shown to possess therapeutic potential in certain disorders. In several studies, the antioxidant, anti-hyperlipidaemic, anti-diabetic, anti-cancerous, anti-microbial, and cardioprotective properties of Kachri have been reported. The fruit has a good nutritional value in terms of high percentages of protein, carbohydrates, essential fatty acids, phenols, and various phytochemicals. Also, gamma radiation treatment has been used on this crop to reduce total bacterial counts (TBC), ensuring safety from pathogens during the storage period of the fruit and its products. These facts lay down a foundation for the development of functional food formulations and nutraceuticals of medicinal value from this functionally rich crop. Processing of traditionally valuable arid region foods into functional foods and products can potentially increase the livelihood and nutritional security of people globally. Therefore, this review focuses on the therapeutic and pharmacological potentials of the Kachri fruit in the management of non-communicable diseases (NCDs) namely, diabetes, cancer, and hyperlipidemia. Graphical abstract of the review.
Collapse
Affiliation(s)
- Deepika
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India, 123031
| | - Anita Kumari
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India, 123031.
| | - Priyanka Prajapati
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India, 110075
| | - Sarita
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India, 123031
| | - Sandeep Kumar
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Surender Singh
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Meenakshi Garg
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India, 110075
| |
Collapse
|
20
|
Czeleń P, Jeliński T, Skotnicka A, Szefler B, Szupryczyński K. ADMET and Solubility Analysis of New 5-Nitroisatine-Based Inhibitors of CDK2 Enzymes. Biomedicines 2023; 11:3019. [PMID: 38002019 PMCID: PMC10669656 DOI: 10.3390/biomedicines11113019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The development of new substances with the ability to interact with a biological target is only the first stage in the process of the creation of new drugs. The 5-nitroisatin derivatives considered in this study are new inhibitors of cyclin-dependent kinase 2 (CDK2) intended for anticancer therapy. The research, carried out based on the ADMET (absorption, distribution, metabolism, excretion, toxicity) methods, allowed a basic assessment of the physicochemical parameters of the tested drugs to be made. The collected data clearly showed the good oral absorption, membrane permeability, and bioavailability of the tested substances. The analysis of the metabolite activity and toxicity of the tested drugs did not show any critical hazards in terms of the toxicity of the tested substances. The substances' low solubility in water meant that extended studies tested compounds were required, which helped to select solvents with a high dissolving capacity of the examined substances, such as DMSO or NMP. The use of aqueous binary mixtures based on these two solvents allowed a relatively high solubility with significantly reduced toxicity and environmental index compared to pure solvents to be maintained, which is important in the context of the search for green solvents for pharmaceutical use.
Collapse
Affiliation(s)
- Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland
| | - Agnieszka Skotnicka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland
| | - Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13, 85-067 Bydgoszcz, Poland
| |
Collapse
|
21
|
Rao ZZ, Tang ZW, Wen J. Advances in drug resistance of triple negative breast cancer caused by pregnane X receptor. World J Clin Oncol 2023; 14:335-342. [PMID: 37771631 PMCID: PMC10523191 DOI: 10.5306/wjco.v14.i9.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Triple-negative breast cancer (TNBC), refers breast cancer negative for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, characterized by high drug resistance, high metastasis and high recurrence, treatment of which is a difficult problem in the clinical treatment of breast cancer. In order to better treat TNBC clinically, it is a very urgent task to explore the mechanism of TNBC resistance in basic breast cancer research. Pregnane X receptor (PXR) is a nuclear receptor whose main biological function is to participate in the metabolism, transport and clearance of allobiological agents in PXR. PXR plays an important role in drug metabolism and clearance, and PXR is highly expressed in tumor tissues of TNBC patients, which is related to the prognosis of breast cancer patients. This reviews synthesized the important role of PXR in the process of high drug resistance to TNBC chemotherapeutic drugs and related research progress.
Collapse
Affiliation(s)
- Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| | - Zhong-Wen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
22
|
Yamamoto T, Ishida M, Kodama N, Saiki Y, Fujiyoshi M, Shimada M. Development of a New Method for Simultaneous Quantitation of Plasma Concentrations of Voriconazole and Voriconazole N-Oxide Using Column-Switching LC-MS/MS and Its Application in Therapeutic Drug Monitoring. Yonago Acta Med 2023; 66:365-374. [PMID: 37621974 PMCID: PMC10444587 DOI: 10.33160/yam.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Background Voriconazole therapy for fungal infections usually continues for several years and is often administered on an outpatient basis. Maintaining the voriconazole plasma concentration in the therapeutic range is highly important for effective therapy; however, it is difficult to obtain sufficient information to assess the voriconazole concentration in outpatients. Therefore, we developed a method to simultaneously measure the plasma concentrations of voriconazole and its major metabolite, voriconazole N-oxide, to obtain rapid results after outpatient blood collection and before medical consultation and to attain a better understanding of adherence and the drug-drug interactions of voriconazole. Methods Fifty microliters of patient plasma was deproteinized with methanol, injected into the liquid chromatography-tandem mass spectrometry system, and purified using an online column. Separation was achieved on an InertSustain C18 column (2.1 mm id × 50 mm, 2 μm) with a mobile phase of 30:70 (0.1% formic acid in water:methanol) at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode. Results The analysis time was 4 min. The calibration curve was linear, in the range of 0.1 μg/mL to 20 μg/mL for voriconazole and 0.05 μg/mL to 10 μg/mL for voriconazole N-oxide, with a coefficient of determination at R2 > 0.999. Conclusion There is no need to dilute the patient's plasma even if the concentration of voriconazole is near the upper limit of measurement. Furthermore, the short measurement-time could immediately inform physicians of the patient's voriconazole concentration during ambulatory medical care. Simultaneous measurement of voriconazole and voriconazole N-oxide may also be useful for the immediate adjustment of voriconazole dosage in outpatients and would help us to understand adherence or drug-drug interactions in plasma voriconazole concentrations.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Masako Ishida
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Nao Kodama
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Yusuke Saiki
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | | | - Miki Shimada
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| |
Collapse
|
23
|
Shi JH, Cheng N, Zhang W, Jin Q, Guo WZ, Ge GB, Zhang SJ, Line PD, Wang Y. Air-ventilated normothermic machine perfusion alleviates hepatic injury from DCD rat through CYP1A2. Heliyon 2023; 9:e19150. [PMID: 37654459 PMCID: PMC10465863 DOI: 10.1016/j.heliyon.2023.e19150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Normothermic machine perfusion (NMP) could provide protection to organs from donation after circulatory death (DCD) before transplantation, and its molecular mechanism remains unclear. Our previous study discovered that the air-ventilated NMP confers a better DCD liver recovery than oxygen-ventilated NMP. The purpose in the current study was to investigate the protective mechanism of air-ventilated NMP in a rat model of DCD liver by metabolomics, and to select biomarker to predict liver function recovery. MATERIALS AND METHODS Peroxisome proliferator activator receptor-α (PPARα) agonist or antagonist was administered via the perfusion circuit in the air-ventilated NMP. Perfusate samples were taken for measurements of aminotransferases using standard biochemical methods, tumor necrosis factor-alpha and interleukin-6. Liver biopsies were allocated for detection of metabolomics, PPARα and cytochrome P450 1A2 (CYP1A2). RESULTS Metabolomics analysis revealed the significant increased γ-linolenic acid and decreased adrenic acid during the air-ventilated NMP, indicating linoleic acid metabolism pathway was associated with a better DCD liver recovery; as a major enzyme involved in linolenic acid metabolism, CYP1A2 was found correlated with a less inflammation and better liver function with the air-ventilated NMP; PPARα agonist could increase CYP1A2 expression and activity, decrease inflammation response, and improve liver function with the air-ventilated NMP, while PPARα antagonist played the opposite. CONCLUSION Air-ventilated NMP confers a better liver recovery from DCD rats through the activated linoleic acid metabolism and CYP1A2 upregulation; CYP1A2 expression and activity might function as biomarker to predict DCD liver function recovery with NMP.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200473, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200473, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Pål-Dag Line
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yong Wang
- Department of Anesthesia Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
25
|
El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic trioxide (ATO) up-regulates cytochrome P450 1A (CYP1A) enzymes in murine hepatoma Hepa-1c1c7 cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104214. [PMID: 37423394 DOI: 10.1016/j.etap.2023.104214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Arsenic trioxide (ATO) is a highly toxic arsenical which has been successfully exploited for treating acute promyelocytic leukemia (APL). Unfortunately, its therapeutic efficacy is accompanied by serious toxicities with undeciphered mechanisms. Cytochrome P450 1A (CYP1A) enzymes undergo modulation by arsenicals, with ensuing critical consequences regarding drug clearance or procarcinogen activation. Here, we investigated the potential of ATO to alter basal and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced CYP1A1/1A2 expressions. Mouse-derived hepatoma Hepa-1c1c7 cells were exposed to 0.63, 1.25, and 2.5μM ATO with or without 1nM TCDD. ATO increased TCDD-induced CYP1A1/1A2 mRNA, protein, and activity. Constitutively, ATO induced Cyp1a1/1a2 transcripts and CYP1A2 protein. ATO increased AHR nuclear accumulation and subsequently increased XRE-luciferase reporter activity. ATO enhanced CYP1A1 mRNA and protein stabilities. In conclusion, ATO up-regulates CYP1A in Hepa-1c1c7 cells transcriptionally, post-transcriptionally, and post-translationally. Therefore, ATO can be implicated in clearance-related interactions with CYP1A1/1A2 substrates, or in excessive activation of environmental procarcinogens.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
26
|
Konstandi M, Johnson EO. Age-related modifications in CYP-dependent drug metabolism: role of stress. Front Endocrinol (Lausanne) 2023; 14:1143835. [PMID: 37293497 PMCID: PMC10244505 DOI: 10.3389/fendo.2023.1143835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Accumulating clinical evidence indicates extensive inter-individual variations in the effectiveness and adverse effects of standard treatment protocols, which are largely attributed to the multifactorial regulation of the hepatic CYP-dependent drug metabolism that is connected with either transcriptional or post-translational modifications. Age and stress belong to the most important factors in CYP gene regulation. Alterations in neuroendocrine responses to stress, which are associated with modified hypothalamo-pituitary-adrenal axis function, usually accompany ageing. In this light, ageing followed by a decline of the functional integrity of organs, including liver, a failure in preserving homeostasis under stress, increased morbidity and susceptibility to stress, among others, holds a determinant role in the CYP-catalyzed drug metabolism and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the drug metabolizing capacity of the liver with age have been reported and in particular, a decline in the activity of the main CYP isoforms in male senescent rats, indicating decreased metabolism and higher levels of the drug-substrates in their blood. These factors along with the restricted experience in the use of the most medicines in childhood and elderly, could explain at an extent the inter-individual variability in drug efficacy and toxicity outcomes, and underscore the necessity of designing the treatment protocols, accordingly.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Elizabeth O. Johnson
- Department of Anatomy, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
27
|
Watanabe K, Negoro R, Fujita T. 5-ALA treatment increases intracellular heme levels and enhances CYP3A4 activity in genome-edited Caco-2 cells. Biochem Biophys Res Commun 2023; 664:94-99. [PMID: 37141642 DOI: 10.1016/j.bbrc.2023.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
In nonclinical studies, models that can predict the metabolism of drug candidates by cytochrome P450 (CYP), including Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) are helpful. CYP3A4-overexpressing human cells have been used universally to evaluate whether CYP3A4 metabolizes drug-candidate compounds. However, CYP3A4-overexpressing human cell lines are problematic because their activity levels are lower than that of in vivo human CYP3A4. Heme plays a paramount role in CYP activity. The rate-limiting step in heme biosynthesis is the generation of 5-aminolevulinic acid (5-ALA). In this study, we examined whether treatment with 5-ALA to CYP3A4-POR-UGT1A1-CES2 knockin and CES1 knockout (genome-edited) Caco-2 cells enhances CYP3A4 activity. A 7-day 5-ALA treatment increased intracellular heme levels in genome-edited Caco-2 cells without cytotoxicity. Moreover, consistent with the increase in intracellular heme content, 5-ALA treatment increased CYP3A4 activity in genome-edited Caco-2 cells. The results of this research are expected to be applied to pharmacokinetic studies using CYP-overexpressing human cells containing CYP3A4.
Collapse
Affiliation(s)
- Keita Watanabe
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan.
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| |
Collapse
|
28
|
Yokota Y, Suzuki S, Gi M, Yanagiba Y, Yoneda N, Fujioka M, Kakehashi A, Koda S, Suemizu H, Wanibuchi H. o-Toluidine metabolism and effects in the urinary bladder of humanized-liver mice. Toxicology 2023; 488:153483. [PMID: 36870411 DOI: 10.1016/j.tox.2023.153483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Occupational exposure to aromatic amines is one of the most important risk factors for urinary bladder cancer. When considering the carcinogenesis of aromatic amines, metabolism of aromatic amines in the liver is an important factor. In the present study, we administered ortho-toluidine (OTD) in the diet to mice for 4 weeks. We used NOG-TKm30 mice (control) and humanized-liver mice, established via human hepatocyte transplantation, to compare differences in OTD-induced expression of metabolic enzymes in human and mouse liver cells. We also investigated OTD-urinary metabolites and proliferative effects on the urinary bladder epithelium. RNA and immunohistochemical analyses revealed that expression of N-acetyltransferases mRNA in the liver tended to be lower than that of the P450 enzymes, and that OTD administration had little effect on N-acetyltransferase mRNA expression levels. However, expression of CYP3A4 was increased in the livers of humanized-liver mice, and expression of Cyp2c29 (human CYP2C9/19) was increased in the livers of NOG-TKm30 mice. OTD metabolites in the urine and cell proliferation activities in the bladder urothelium of NOG-TKm30 and humanized-liver mice were similar. However, the concentration of OTD in the urine of NOG-TKm30 mice was markedly higher than in the urine of humanized-liver mice. These data demonstrate differences in hepatic metabolic enzyme expression induced by OTD in human and mouse liver cells, and consequent differences in the metabolism of OTD by human and mouse liver cells. This type of difference could have a profound impact on the carcinogenicity of compounds that are metabolized by the liver, and consequently, would be important in the extrapolation of data from animals to humans.
Collapse
Affiliation(s)
- Yuka Yokota
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan; Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Yukie Yanagiba
- Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, Japan (JNIOSH), Nagao-6-21-1, Tama-ku, Kawasaki, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Shigeki Koda
- Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, Japan (JNIOSH), Nagao-6-21-1, Tama-ku, Kawasaki, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan.
| |
Collapse
|
29
|
Jangala M, Manche SK, Katika MM, Koralla RM, Akka J. Association of CYP1A2 and GST gene variants with asthma in cases presenting with allergic chronic rhinosinusitis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Abstract
Background
Inter-individual differences in regulation and activity of xenobiotic metabolizing enzymes (XMEs) CYP1A and GST might cause distinct susceptibility to chronic rhinosinusitis (CRS) phenotypes that need to be explored. Therefore, the present study aimed to evaluate the role and risk of CYP1A and GST gene variants in allergic CRS subjects with and without asthma. A total of 224 allergic CRS cases with asthma, 252 allergic CRS cases without asthma, and 350 healthy control subjects were subjected to genetic analysis. Gene variants of cytochrome P450 (CYP1A1 T3801 rs4646903, A2455G rs1048943, C2453A rs1799814 and CYP1A2 G3858A rs2069514, T739G rs2069526, C163A rs762551) and glutathione S-transferase P (GSTP1 A313G rs1605 & C341T rs1799811) were investigated by polymerase chain reaction-restriction fragment length polymorphism and GSTM1null, and GSTT1null by multiplex PCR methods.
Results
TG genotype of CYP1A2 rs2069526 (OR 1.73, 95% CI 1.20–2.50, p < 0.002), TC genotype of CYP1A1 rs4646903 (OR 1.43, 95% CI 1.03–1.98, p < 0.031) and GSTM1del (OR 1.87, 95% CI 1.24–2.81, p < 0.003) and were found to be significantly associated with only allergic CRS cases. CYP1A2 rs2069526 (OR 2.33, 95% CI 1.61–3.37, p < 0.001), GG genotype of GSTP1 rs1605 (OR 4.75, 95% CI 2.62–8.63, p < 0.001), GSTM1del (OR 1.82, 95% CI 1.19–2.78, p < 0.006), GSTM1/GSTT1 double null (OR 2.58, 95% CI 1.36–4.87, p < 0.004) and were found to be significantly associated with asthma in allergic CRS cases. Further, G-G-C haplotype of CYP1A2 rs2069514, rs2069526 and rs762551 gene variants was found to increase the risk for asthma by 5 folds in allergic CRS subjects (OR 5.53, 95% CI 1.76–17.31, p < 0.003) while T-G-C haplotype of CYP1A1 rs4646903, rs1048943, rs1799814 (OR 0.11, 95% CI (0.01–0.95, p < 0.045) and A-T haplotype of GSTP1 rs1605, rs1799811 (OR 0.27, 95% CI (0.08–0.89, p < 0.032) showed protective effect in allergic CRS group.
Conclusion
The present study reports the significantly increased association of CYP1A2, GSTM, and GSTP gene variants with asthma in allergic CRS.
Collapse
|
30
|
Modulation of cytochrome P450 1A (CYP1A) enzymes by monomethylmonothioarsonic acid (MMMTA V) in vivo and in vitro. Chem Biol Interact 2023; 376:110447. [PMID: 36893905 DOI: 10.1016/j.cbi.2023.110447] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Inorganic arsenic (iAs) is a natural toxicant which, upon entering the biosphere, undergoes extensive biotransformation and becomes a portal for generating various organic intermediates/products. The chemical diversity of iAs-derived organoarsenicals (oAs) is accompanied by varying degree of toxicity that can be held responsible, at least partly, for the overall health outcome of the originally encountered parent inorganic molecule. Such toxicity may originate from arsenicals ability to modulate cytochrome P450 1A (CYP1A) enzymes, whose activity is critical in activating/detoxifying procarcinogens. In this study, we evaluated the effect of monomethylmonothioarsonic acid (MMMTAV) on CYP1A1 and CYP1A2 in absence and presence of their inducer; 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Therefore, C57BL/6 mice were intraperitoneally injected with 12.5 mg/kg MMMTAV, with or without 15 μg/kg TCDD for 6 and 24 h. Moreover, murine Hepa-1c1c7 and human HepG2 cells were treated with MMMTAV (1, 5, and 10 μM), with or without 1 nM TCDD for 6 and 24 h. MMMTAV significantly inhibited TCDD-mediated induction of CYP1A1 mRNA, both in vivo and in vitro. This effect was attributed to decreased transcriptional activation of CYP1A regulatory element. Interestingly, MMMTAV significantly increased TCDD-induced CYP1A1 protein and activity in C57BL/6 mice and Hepa-1c1c7 cells, while both were significantly inhibited by MMMTAV treatment in HepG2 cells. CYP1A2 mRNA, protein and activity induced by TCDD were significantly increased by MMMTAV co-exposure. MMMTAV had no effect on CYP1A1 mRNA stability or protein stability and did not alter their half-lives. At basal level, only CYP1A1 mRNA was significantly decreased in MMMTAV-treated Hepa-1c1c7 cells. Our findings show that MMMTAV exposure potentiates procarcinogen-induced catalytic activity of both CYP1A1 and CYP1A2 in vivo. This effect entails excessive activation of such procarcinogens upon co-exposure, with potentially negative health-related outcomes.
Collapse
|
31
|
Jyrkäs J, Lassila T, Tolonen A. Extrahepatic in vitro metabolism of peptides; comparison of human kidney and intestinal S9 fraction, human plasma and proximal tubule cells, using cyclosporine A, leuprorelin, and cetrorelix as model compounds. J Pharm Biomed Anal 2023; 225:115219. [PMID: 36630767 DOI: 10.1016/j.jpba.2022.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Peptide therapeutics showcase number of advantages compared to the traditional small molecule drugs, e,g. they usually have higher affinity to target and lower toxicity profiles. Endogenous peptides are mostly cleared from the body through renal clearance or proteolytic hydrolysis. As a part of drug discovery, metabolite identification is an important part in their development to identify metabolic hot spots and to further improve their stability. As the catabolism of the peptides and peptide-like drugs is often considered to be extrahepatic, the use of in vitro systems derived from these organs might be beneficial. In this study, multiple extrahepatic metabolic systems were evaluated for the applicability for peptide metabolism studies. Three peptide drugs (leuprorelin, cetrorelix, cyclosporin) were incubated in kidney and intestinal S9 fraction ( ± NADPH), fresh plasma (anticoagulants EDTA and heparin separately), and plated proximal tubule cells. Additionally, leuprorelin was also incubated with human kidney microsomes and cytosol to further investigate the NADPH-dependent metabolism detected in kidney S9 fraction. Both substrate disappearance and metabolite formation were monitored, using UPLC/HR-MS analysis of the collected samples.Overall, the largest number of metabolites was formed in the incubation with kidney S9 fraction, followed by intestinal S9, while incubations with proximal tubule cells produced lower number of metabolites All investigated peptides were stable in plasma and only a few metabolites were detected, likely because the studied peptide drugs have been optimized to be stable in plasma. Leuprorelin showed NADPH-dependent metabolite formation in kidney S9 fraction, while the metabolism of cetrorelix was more NADPH independent. As expected, formation of cytochrome P450 (CYP) catalyzed metabolism of cyclosporine was not observed with the employed extrahepatic systems. The NADPH-dependent metabolism of leuprorelin was detected also in the incubation with kidney cytosol, but not with kidney microsomes, and was thus not caused by CYPs or FMOs, but with cytosolic NADPH-dependent drug metabolizing enzymes. These enzymes could, in principle, activate the amide bond via reductive or oxidative metabolism outside the amide bond. The identity of the involved drug metabolizing enzymes in this process is still unknown.
Collapse
Affiliation(s)
- Juha Jyrkäs
- Admescope Ltd, Typpitie 1, 90620 Oulu, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | | | - Ari Tolonen
- Admescope Ltd, Typpitie 1, 90620 Oulu, Finland
| |
Collapse
|
32
|
Zhang H, Zhao F, Liu Y, Li Y, Liu H, Sun H. Assessment of the inhibition risk of chlorophenol substances on cytochrome P450 via cocktail inhibition assays. Toxicol Appl Pharmacol 2023; 461:116401. [PMID: 36706924 DOI: 10.1016/j.taap.2023.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Chlorophenols (CPs) are widespread pollutants in nature. CPs have raised significant concern due to their potential hepatotoxic effects on humans. This research aimed to ascertain the inhibitory potential of eleven CPs (2-CP, 3-CP, 4-CP, 2,4-DCP, 2,3,4-TCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,5-TeCP, 2,3,4,6-TeCP, 2,3,5,6-TeCP, and PCP) on nine human CYP isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). The CPs that inhibit the activity of CYP isoforms were detected with human liver microsomes (HLM) using a cocktail approach in vitro. The results demonstrated that trichlorophenols, tetrachlorophenols, and PCP strongly inhibited CYP2C8 and CYP2C9. The half inhibition concentration (IC50) value of 2,3,4,6-TeCP and PCP for CYP2C8 inhibition was 27.3 μM and 12.3 μM, respectively. The IC50 for the inhibition of 2,4,6-TCP, 2,3,4,6-TeCP and PCP towards CYP2C9 were calculated to be 30.3 μM, 5.8 μM and 2.2 μM, respectively. 2,3,4,6-TeCP, and PCP exhibited non-competitive inhibition towards CYP2C8. 2,4,6-TCP, 2,3,4,6-TeCP, and PCP exhibited competitive inhibition towards CYP2C9. The inhibition kinetics parameters (Ki) were 51.51 μM, 22.28 μM, 37.86 μM, 7.27 μM, 0.68 μM for 2,3,4,6-TeCP-CYP2C8, PCP-CYP2C8, 2,4,6-TCP-CYP2C9, 2,3,4,6-TeCP-CYP2C9, PCP-CYP2C9, respectively. This study also defined clear structure-activity relationships (SAR) of CPs on CYP2C8, supported by molecular docking studies. Overall, CPs were found to cause inhibitory effects on CYP isoforms in vitro, and this finding may provide a basis for CPs focused on CYP isoforms inhibition endpoints.
Collapse
Affiliation(s)
- Haoqian Zhang
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Furong Zhao
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian 116000, China; Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Liaoning Runsheng Kangtai Medical Lab Co. Ltd, Jinzhou 121219, China
| | - Yong Liu
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China
| | - Ying Li
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian 116000, China; Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Liaoning Runsheng Kangtai Medical Lab Co. Ltd, Jinzhou 121219, China
| | - Haiwen Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hongzhi Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
33
|
Yamada N, Negoro R, Watanabe K, Fujita T. Generation of Caco-2 cells with predictable metabolism by CYP3A4, UGT1A1 and CES using the PITCh system. Drug Metab Pharmacokinet 2023; 50:100497. [PMID: 37037169 DOI: 10.1016/j.dmpk.2023.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Caco-2 cells are widely used as an in vitro intestinal model. However, the expression levels of the drug-metabolizing enzymes CYP3A4 and UGT1A1 are lower in these cells than in intestinal cells. Furthermore, the majority of prodrugs in use today are ester-containing, and carboxylesterase (CES) 1 and CES2 are among the enzymes that process the prodrugs into drugs. In the human small intestine, CES1 is hardly expressed while CES2 is highly expressed, but the CES expression pattern in Caco-2 cells is the opposite. In this study, we generated CYP3A4-POR-UGT1A1-CES2 knock-in (KI) and CES1 knock-out (KO) Caco-2 (genome-edited Caco-2) cells using a PITCh system. Genome-edited Caco-2 cells were shown to express functional CYP3A4, POR, UGT1A1 and CES2 while the expression of the CES1 protein was completely knocked out. We performed transport assays using temocapril. The Papp value of temocapril in genome-edited Caco-2 cells was higher than that in WT Caco-2 cells. Interestingly, the amount of temocaprilat on the apical side in genome-edited Caco-2 cells was lower than that in WT Caco-2 cells. These results suggest that genome-edited Caco-2 cells are more suitable than WT Caco-2 cells as a model for predicting intestinal drug absorption and metabolism.
Collapse
Affiliation(s)
- Naoki Yamada
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan.
| | - Keita Watanabe
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| |
Collapse
|
34
|
Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? J Xenobiot 2023; 13:75-89. [PMID: 36810432 PMCID: PMC9945131 DOI: 10.3390/jox13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The use of herbs to treat illnesses was common in all historical eras. Our aim was to describe the phytotherapeutic substances that cancer patients use most commonly, and to determine whether their use can increase side effects. METHODS This was a retrospective and descriptive study conducted among older adults actively undergoing chemotherapy, admitted at the Oncology DH Unit (COES) of the Molinette Hospital AOU Città della Salute e della Scienza in Turin (Italy). Data collection was conducted through the distribution of self-compiled and closed-ended questionnaires during chemotherapy treatment. RESULTS A total of 281 patients were enrolled. Evaluating retching and sage consumption was statistically significant in multivariate analysis. The only risk factor for dysgeusia was chamomile consumption. Ginger, pomegranate, and vinegar use were retained as mucositis predictors. CONCLUSIONS Phytotherapeutic use needs more attention in order to decrease the risks of side effects, toxicity, and ineffective treatment. The conscious administration of these substances should be promoted for safe use and to provide the reported benefits.
Collapse
|
35
|
Genotoxicity of pyrrolizidine alkaloids in metabolically inactive human cervical cancer HeLa cells co-cultured with human hepatoma HepG2 cells. Arch Toxicol 2023; 97:295-306. [PMID: 36273350 PMCID: PMC9816206 DOI: 10.1007/s00204-022-03394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, which can be found as contaminant in various foods and herbal products. Several PAs can cause hepatotoxicity and liver cancer via damaging hepatic sinusoidal endothelial cells (HSECs) after hepatic metabolization. HSECs themselves do not express the required metabolic enzymes for activation of PAs. Here we applied a co-culture model to mimic the in vivo hepatic environment and to study PA-induced effects on not metabolically active neighbour cells. In this co-culture model, bioactivation of PA was enabled by metabolically capable human hepatoma cells HepG2, which excrete the toxic and mutagenic pyrrole metabolites. The human cervical epithelial HeLa cells tagged with H2B-GFP were utilized as non-metabolically active neighbours because they can be identified easily based on their green fluorescence in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronuclei in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of cytochrome P450 enzymes with ketoconazole abrogated micronucleus formation. The efflux transporter inhibitors verapamil and benzbromarone reduced micronucleus formation in the co-culture model. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured HeLa cells.
Collapse
|
36
|
Boulaamane Y, Ibrahim MAA, Britel MR, Maurady A. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA 2AR antagonists for the treatment of Parkinson's disease. J Integr Bioinform 2022; 19:jib-2021-0027. [PMID: 36112816 PMCID: PMC9800045 DOI: 10.1515/jib-2021-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/24/2022] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease is considered the second most frequent neurodegenerative disease. It is described by the loss of dopaminergic neurons in the mid-brain. For many decades, L-DOPA has been considered as the gold standard for treating Parkinson's disease motor symptoms, however, due to the decrease of efficacy, in the long run, there is an urgent need for novel antiparkinsonian drugs. Caffeine derivatives have been reported several times for their neuroprotective properties and dual blockade of monoamine oxidase (MAO) and adenosine A2A receptors (AA2AR). Natural products are currently attracting more focus due to structural diversity and safety in contrast to synthetic drugs. In the present work, computational studies were conducted on natural product-like caffeine derivatives to search for novel potent candidates acting as dual MAO-B inhibitors/AA2AR antagonists for Parkinson's disease. Our findings revealed two natural products among the top hits: CNP0202316 and CNP0365210 fulfill the requirements of drugs acting on the brain. The selected lead compounds were further studied using molecular dynamics simulation to assess their stability with MAO-B. Current findings might shift the interest towards natural-based compounds and could be exploited to further optimize caffeine derivatives into a successful dual-target-directed drug for managing and halting the neuronal damage in Parkinson's disease patients.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
37
|
Sun X, Ye Y, Sun J, Tang L, Yang X, Sun X. Advances in the study of liver microsomes in the in vitro metabolism and toxicity evaluation of foodborne contaminants. Crit Rev Food Sci Nutr 2022; 64:3264-3278. [PMID: 36226776 DOI: 10.1080/10408398.2022.2131728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Foodborne contaminants are closely related to anthropologic activities and represent an important food safety hazard. The study of metabolic transformation and toxic side effects of foodborne contaminants in the body is important for their safety assessment. Liver microsomes contain a variety of enzymes related to substance metabolism and biotransformation. An in vitro model simulating liver metabolic transformation is associated with a significant advantage in the study of the metabolic transformation mechanisms of contaminants. This review summarizes the recent progress in the application of liver microsomes in metabolic transformation and toxicity evaluation of various foodborne pollutants based on metabolic kinetics, molecular docking and enzyme inhibition studies. The purpose of this review is to distinguish the existing studies involving liver microsomes and provide strategies for their application in the future. Finally, the prospects and challenges of the liver microsomal model are discussed.
Collapse
Affiliation(s)
- Xinyu Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
38
|
Przybylla R, Mullins CS, Krohn M, Oswald S, Linnebacher M. Establishment and Characterization of Novel Human Intestinal In Vitro Models for Absorption and First-Pass Metabolism Studies. Int J Mol Sci 2022; 23:ijms23179861. [PMID: 36077251 PMCID: PMC9456142 DOI: 10.3390/ijms23179861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Commonly used intestinal in vitro models are limited in their potential to predict oral drug absorption. They either lack the capability to form a tight cellular monolayer mimicking the intestinal epithelial barrier or the expression of cytochrome P450 3A4 (CYP3A4). The aim of this study was to establish a platform of colorectal cancer patient-derived cell lines for evaluation of human intestinal drug absorption and metabolism. We characterized ten 2D cell lines out of our collection with confluent outgrowth and long-lasting barrier forming potential as well as suitability for high throughput applications with special emphasis on expression and inducibility of CYP3A4. By assessment of the transepithelial electrical resistance (TEER) the cells barrier function capacity can be quantified. Very high TEER levels were detected for HROC60. A high basal CYP3A4 expression and function was found for HROC32. Eight cell lines showed higher CYP3A4 induction by stimulation via the vitamin D receptor compared to Caco-2 cells (5.1- to 16.8-fold change). Stimulation of the pregnane X receptor led to higher CYP3A4 induction in two cell lines. In sum, we identified the two cell lines HROC183 T0 M2 and HROC217 T1 M2 as useful tools for in vitro drug absorption studies. Due to their high TEER values and inducibility by drug receptor ligands, they may be superior to Caco-2 cells to analyze oral drug absorption and intestinal drug–drug interactions. Significance statement: Selecting appropriate candidates is important in preclinical drug development. Therefore, cell models to predict absorption from the human intestine are of the utmost importance. This study revealed that the human cell lines HROC183 T0 M2 and HROC217 T1 M2 may be better suited models and possess higher predictive power of pregnane X receptor- and vitamin D-mediated drug metabolism than Caco-2 cells. Consequently, they represent useful tools for predicting intestinal absorption and simultaneously enable assessment of membrane permeability and first-pass metabolism.
Collapse
Affiliation(s)
- Randy Przybylla
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| | | | - Mathias Krohn
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
39
|
Haron MH, Dale O, Martin K, Avula B, Chittiboyina AG, Khan IA, Gurley BJ, Khan SI. Evaluation of the Herb-Drug Interaction Potential of Commonly Used Botanicals on the US Market with Regard to PXR- and AhR-Mediated Influences on CYP3A4 and CYP1A2. J Diet Suppl 2022:1-14. [PMID: 36017806 DOI: 10.1080/19390211.2022.2110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In this study, hydroethanolic extracts of 30 top-selling botanicals (herbs) commonly used as ingredients of herbal dietary supplements in the US were screened for their potential to activate the human pregnane X receptor (hPXR) and human aryl hydrocarbon receptor (hAhR) and to increase the activities of hPXR- and hAhR-regulated drug metabolizing cytochrome P450 enzymes (i.e., CYP3A4 and CYP1A2, respectively). Of the 30 botanicals tested, 21 induced PXR and 29 induced AhR transcriptional activities. Out of the 21 botanicals that induced hPXR transcriptional activity, 14 yielded >50% induction in CYP3A4 activity at concentrations ranging from 6 to 60 µg/mL and 16 out of the 29 botanicals that activated hAhR yielded >50% induction in CYP1A2 activity at concentrations ranging from 3 to 30 µg/mL. Moreover, eight botanicals (G. gummi-gutta [garcinia], Hemp [low and high CBD content], H. perforatum [St. John's wort], M. vulgare [horehound], M. oleifera [moringa], O. vulgare [oregano], P. johimbe [yohimbe] and W. somnifera [ashwagandha]) yielded >50% induction in both CYP3A4 and CYP1A2 activity. Herbal products are mixtures of phytoconstituents, any of which could modulate drug metabolism. Our data reveals that several top-selling botanicals may pose herb-drug interaction (HDI) risks via CYP450 induction. While in vitro experiments can provide useful guidance in assessing a botanical's HDI potential, their clinical relevance needs to be investigated in vivo. Botanicals whose effects on hPXR/CYP3A4, and hAhR/CYP1A2 activity were most pronounced will be slated for further clinical investigation.
Collapse
Affiliation(s)
- Mona H Haron
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Olivia Dale
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Katherine Martin
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bill J Gurley
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
40
|
Guttman Y, Kerem Z. Computer-Aided (In Silico) Modeling of Cytochrome P450-Mediated Food–Drug Interactions (FDI). Int J Mol Sci 2022; 23:ijms23158498. [PMID: 35955630 PMCID: PMC9369352 DOI: 10.3390/ijms23158498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food–drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is an important determinant of FDI. Traditional targeted approaches have highlighted a limited number of dietary inhibitors and single-nucleotide variations (SNVs), each determining personal CYP activity and inhibition. These approaches are costly in time, money and labor. Here, we review computational tools and databases that are already available and are relevant to predicting CYP-mediated FDIs. Computer-aided approaches such as protein–ligand interaction modeling and the virtual screening of big data narrow down hundreds of thousands of items in databanks to a few putative targets, to which the research resources could be further directed. Structure-based methods are used to explore the structural nature of the interaction between compounds and CYP enzymes. However, while collections of chemical, biochemical and genetic data are available today and call for the implementation of big-data approaches, ligand-based machine-learning approaches for virtual screening are still scarcely used for FDI studies. This review of CYP-mediated FDIs promises to attract scientists and the general public.
Collapse
|
41
|
El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Down-regulation of hepatic cytochromes P450 1A1 and 1A2 by arsenic trioxide (ATO) in vivo and in vitro: A role of heme oxygenase 1. Chem Biol Interact 2022; 364:110049. [PMID: 35872050 DOI: 10.1016/j.cbi.2022.110049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Arsenic trioxide (ATO) has evolved from an environmental threat to a successful therapy for acute promyelocytic leukemia (APL) and probably for solid tumors in the future. However, its efficacy comes at a cost of multi-organ toxicity whose mechanism remains unresolved. Arsenicals have been reported to modulate cytochrome P450 1A (CYP1A) enzymes, thus modifying activation/detoxification of drugs/procarcinogens. Therefore, this study aimed to investigate the possible effects of ATO on CYP1A1 and CYP1A2, in absence and presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) using in vivo and in vitro models. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO with or without 15 μg/kg TCDD for 6 and 24 h. Furthermore, HepG2 cells were treated with ATO (1, 5, and 10 μM) with or without 1 nM TCDD for 6 and 24 h. ATO significantly inhibited TCDD-mediated induction of CYP1A1/1A2 mRNA, protein, and activity in both models. ATO differentially modulated CYP1A1/1A2 basal levels in vivo. We also demonstrated that ATO downregulates CYP1A through inhibiting the transcriptional activation of its regulatory element at both basal and inducible levels. Additionally, ATO significantly induced mRNA and protein of heme oxygenase 1 (HMOX1) in vivo and in vitro. In HepG2 cells, inhibition of HMOX1 by tin (IV) mesoporphyrin (IX) (SnMP) resulted in a partial restoration of the TCDD-mediated induction of CYP1A1 activity that was inhibited by ATO co-exposure. Our findings show that ATO alters both constitutive and inducible CYP1A1/1A2 expressions through transcriptional and HMOX1-mediated post-translational mechanisms. This implies the possible involvement of ATO in clearance-related consequences for the substrates of these enzymes such as drug-drug interactions or suboptimal toxicant elimination.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Takiyama M, Matsumoto T, Kaifuchi N, Mizuhara Y, Warabi E, Ohbuchi K, Mizoguchi K. In vitro assessment of the inhibitory effect of goreisan extract and its ingredients on the P-glycoprotein drug transporter and cytochrome P-450 metabolic enzymes. Xenobiotica 2022; 52:511-519. [PMID: 35855663 DOI: 10.1080/00498254.2022.2078750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Kampo medicines are widely used in Japan, however their potential to cause drug interactions still remains unclear and needs to be further investigated. The effects of goreisan on the P-glycoprotein (P-gp) and the cytochrome P-450 (CYP), which are associated with drug interactions, were investigated.2. The inhibitory effect of goreisan extract on P-gp was evaluated using a Caco-2 cell permeability assay. The results indicated that it inhibited P-gp function in a concentration-dependent manner.3. The inhibitory effect of three goreisan ingredients (alisol A, tumulosic acid, and (E)-cinnamic acid) on seven CYP isoforms was evaluated using human liver microsomes (HLM). Of these, tumulosic acid and (E)-cinnamic acid exhibited less than 16% inhibition at concentrations of 10 µM against any of the CYP isoforms tested. Alisol A inhibited only CYP3A but showed no inhibitory effect with pre-incubation.4. These results indicate that goreisan extract has inhibitory activity against P-gp and that alisol A, a goreisan ingredient, exhibits an inhibitory effect on CYP3A. However, these are thought to be minor or negligible in vivo. Overall, these findings will be useful to evaluate possible drug interactions and provide support for the interpretation of future clinical drug-drug interaction studies involving goreisan.
Collapse
Affiliation(s)
- Mikina Takiyama
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Noriko Kaifuchi
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Yasuharu Mizuhara
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Eiji Warabi
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Kazushige Mizoguchi
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
43
|
Quantitative Prediction of Drug Interactions Caused by Cytochrome P450 2B6 Inhibition or Induction. Clin Pharmacokinet 2022; 61:1297-1306. [PMID: 35857278 DOI: 10.1007/s40262-022-01153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Numerous drugs have the potential to be affected by cytochrome P450 (CYP) 2B6-mediated drug-drug interactions (DDIs). OBJECTIVES In this work, we extend a static approach to the prediction of the extent of pharmacokinetics DDIs between substrates and inhibitors or inducers of CYP2B6. METHODS This approach is based on the calculation of two parameters (the contribution ratio [CR], representing the fraction of dose of the substrate metabolized via this pathway and the inhibitory or inducing potency of the perpetrator [IR or IC, respectively]) calculated from the area under the concentration-time curve (AUC) ratios obtained in in-vivo DDI studies. RESULTS Forty-eight studies involving 5 substrates, 11 inhibitors and 18 inducers of CYP2B6 (overall 15 inhibition and 33 induction studies) were divided into test and validation sets and considered for estimation of the parameters. The proposed approach demonstrated a fair accuracy for predicting the extent of DDI related to CYP2B6 inhibition and induction, all predictions related to the validation test (N = 18) being 50-200% of the observed ratios. CONCLUSIONS This methodology can be used for proposing initial dose adaptations to be adopted, for example in clinical use or for designing DDI studies involving this enzyme.
Collapse
|
44
|
Stocco MR, Tyndale RF. Cytochrome P450 enzymes and metabolism of drugs and neurotoxins within the mammalian brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:73-106. [PMID: 35953164 DOI: 10.1016/bs.apha.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 enzymes (CYPs) that metabolize xenobiotics are expressed and active in the brain. These CYPs contribute to the metabolism of many centrally acting compounds, including clinically used drugs, drugs of abuse, and neurotoxins. Although CYP levels are lower in the brain than in the liver, they may influence central substrate and metabolite concentrations, which could alter resulting centrally-mediated responses to these compounds. Additionally, xenobiotic metabolizing CYPs are highly variable due to genetic polymorphisms and regulation by endogenous and xenobiotic molecules. In the brain, these CYPs are sensitive to xenobiotic induction. As a result, CYPs in the brain vary widely, including among humans, and this CYP variation may influence central metabolism and resulting response to centrally acting compounds. It has been demonstrated, using experimental manipulation of CYP activity in vivo selectively within the brain, that CYP metabolism in the brain alters central substrate and metabolite concentrations, as well as drug response and neurotoxic effects. This suggests that variability in xenobiotic metabolizing CYPs in the human brain may meaningfully contribute to individual differences in response to, and effects of, centrally acting drugs and neurotoxins. This chapter will provide an overview of CYP expression in the brain, endogenous- and xenobiotic-mediated CYP regulation, and the functional impact of CYP-mediated metabolism of drugs and neurotoxins in the brain, with a focus on experimental approaches in mice, rats, and non-human primates, and a discussion regarding the potential role of xenobiotic metabolizing CYPs in the human brain.
Collapse
Affiliation(s)
- Marlaina R Stocco
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Negoro R, Tasaka M, Deguchi S, Takayama K, Fujita T. Generation of HepG2 Cells with High Expression of Multiple Drug-Metabolizing Enzymes for Drug Discovery Research Using a PITCh System. Cells 2022; 11:cells11101677. [PMID: 35626714 PMCID: PMC9140068 DOI: 10.3390/cells11101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4–POR–UGT1A1–CYP1A2–CYP2C19–CYP2C9–CYP2D6 (CYPs–UGT1A1) knock-in (KI)-HepG2 cells using a PITCh system to evaluate whether they could be a new hepatocyte model for pharmaceutical studies. To evaluate whether CYPs–UGT1A1 KI-HepG2 cells express and function with CYPs and UGT1A1, gene expression levels of CYPs and UGT1A1 were analyzed by using real-time PCR, and metabolites of CYPs or UGT1A1 substrates were quantified by HPLC. The expression levels of CYPs and UGT1A1 in the CYPs–UGT1A1 KI-HepG2 cells were comparable to those in primary human hepatocytes (PHHs) cultured for 48 h. The CYPs and UGT1A1 activity levels in the CYPs–UGT1A1 KI-HepG2 cells were much higher than those in the wild-type (WT)-HepG2 cells. These results suggest that the CYPs–UGT1A1 KI-HepG2 cells expressed functional CYPs and UGT1A1. We also confirmed that the CYPs–UGT1A1 KI-HepG2 cells were more sensitive to drug-induced liver toxicity than the WT-HepG2 cells. CYPs–UGT1A1 KI-HepG2 cells could be used to predict drug metabolism and drug-induced liver toxicity, and they promise to be a helpful new hepatocyte model for drug discovery research.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-3353
| | - Mitsuki Tasaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
46
|
Abass K, Reponen P, Alsanie WF, Rautio A, Pelkonen O. Characterization of furathiocarb metabolism in in vitro human liver microsomes and recombinant cytochrome P450 enzymes. Toxicol Rep 2022; 9:679-689. [PMID: 35399214 PMCID: PMC8989696 DOI: 10.1016/j.toxrep.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Furathiocarb is a carbamate insecticide detected in ecosystems. Its main metabolite carbofuran has been alluded to affect birth outcomes and disturb hormone levels in humans. The metabolism of furathiocarb in humans has not been characterized. The metabolism studies were performed using hepatic microsomes from ten donors and fifteen human cDNA-expressed CYPs. The initial screening and identification of the metabolites were performed by LC-TOF. Quantifications and fragmentations were performed by LC/MS-MS. Furathiocarb was metabolized to eight phase I metabolites via two general pathways, carbofuran metabolic pathway and furathiocarb oxidation pathway. Six metabolites in the carbofuran metabolic pathway (carbofuran, 3-hydroxycarbofuran, 3-ketocarbofuran, 3-keto-7-phenolcarbofuran, 3-hydroxy-7-phenolcarbofuran, and 7-phenolcarbofuran) were identified with the help of authentic standards. The two unidentified metabolites in the furathiocarb oxidation pathway are probably hydroxylated and sulfoxidated derivatives of furathiocarb. The carbofuran metabolic pathway was more predominant than the furathiocarb oxidation pathway, ratios ranged from 24- to 115-fold in a 10-donor panel of hepatic microsomes. On the basis of recombinant CYP studies, the carbofuran pathway was dominated by CYP3A4 (95.9%); contributions by CYP1A2 (1.3%) and CYP2B6 (2.0%) were minor. The minor furathiocarb oxidation pathway was catalyzed by CYP2C19 and CYP2D6 (hydroxylated/sulfoxidated metabolite A) and by CYP3A5, CYP3A4 and CYP2A6 (metabolite B). High and significant correlation between carbofuran metabolic pathway and CYP3A4 marker activities (midazolam-1'-hydroxylation and omeprazole-sulfoxidation) were observed. Ketoconazole, a CYP3A4-inhibitor, inhibited the carbofuran pathway by 32–86% and hydroxylated/sulfoxidated metabolite-B formations by 41–62%. The data suggest that in humans, the carbofuran metabolic pathway is dominant, and CYP3A4 is the major enzyme involved. These results provide useful scientific information for furathiocarb risk assessment in humans. Eight Phase I metabolites were detected by LC-TOF-MS/MS. The carbofuran pathway was more rapid than the furathiocarb oxidation pathway The carbofuran pathway was dominated by CYP3A4 (96%). Ketoconazole inhibited the carbofuran pathway by 32–86%. The findings provide useful scientific information for furathiocarb risk assessment in humans.
Collapse
Affiliation(s)
- Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 7300, FI-90014, Finland
- Pharmacology and Toxicology Unit, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
- Department of Pesticides, Menoufia University, P.O. Box 32511, Egypt
- Correspondence to: Faculty of Medicine, Arctic Health, University of Oulu, Oulu FI-90014, Finland.
| | - Petri Reponen
- Pharmacology and Toxicology Unit, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences & Centre of Biomedical Sciences Research (CBSR), Taif University, Saudi Arabia
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 7300, FI-90014, Finland
- Thule Institute, University of the Arctic, Oulu FI-90014, Finland
| | - Olavi Pelkonen
- Pharmacology and Toxicology Unit, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| |
Collapse
|
47
|
Konstandi M, Johnson EO, Lang MA. Stress as a Potential Regulatory Factor in the Outcome of Pharmacotherapy. Front Neurosci 2022; 16:737716. [PMID: 35401076 PMCID: PMC8984175 DOI: 10.3389/fnins.2022.737716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Elizabeth O Johnson
- Department of Anatomy, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
48
|
Mangó K, Kiss ÁF, Fekete F, Erdős R, Monostory K. CYP2B6 allelic variants and non-genetic factors influence CYP2B6 enzyme function. Sci Rep 2022; 12:2984. [PMID: 35194103 PMCID: PMC8863776 DOI: 10.1038/s41598-022-07022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Human CYP2B6 enzyme although constitutes relatively low proportion (1–4%) of hepatic cytochrome P450 content, it is the major catalyst of metabolism of several clinically important drugs (efavirenz, cyclophosphamide, bupropion, methadone). High interindividual variability in CYP2B6 function, contributing to impaired drug-response and/or adverse reactions, is partly elucidated by genetic polymorphisms, whereas non-genetic factors can significantly modify the CYP2B6 phenotype. The influence of genetic and phenoconverting non-genetic factors on CYP2B6-selective activity and CYP2B6 expression was investigated in liver tissues from Caucasian subjects (N = 119). Strong association was observed between hepatic S-mephenytoin N-demethylase activity and CYP2B6 mRNA expression (P < 0.0001). In less than one third of the tissue donors, the CYP2B6 phenotype characterized by S-mephenytoin N-demethylase activity and/or CYP2B6 expression was concordant with CYP2B6 genotype, whereas in more than 35% of the subjects, an altered CYP2B6 phenotype was attributed to phenoconverting non-genetic factors (to CYP2B6-specific inhibitors and inducers, non-specific amoxicillin + clavulanic acid treatment and chronic alcohol consumption, but not to the gender). Furthermore, CYP2B6 genotype–phenotype mismatch still existed in one third of tissue donors. In conclusion, identifying potential sources of CYP2B6 variability and considering both genetic variations and non-genetic factors is a pressing requirement for appropriate elucidation of CYP2B6 genotype–phenotype mismatch.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary.,Doctoral School of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary.
| |
Collapse
|
49
|
Khan S, Buğday N, UrRehman A, Ul Haq I, Yaşar S, Özdemir İ. Synthesis, Molecular Docking and Biological Evaluation of 5‐Alkyl (aryl)‐2‐isobutylthiazole Derivatives: As α‐amylase, α‐Glucosidase, and Protein Kinase Inhibitors. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Nesrin Buğday
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
| | - Asim UrRehman
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| |
Collapse
|
50
|
Chen MH, Zhang SH, Jia SM, Wang LJ, Ma WL. In vitro biotransformation of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate by mouse liver microsomes: Kinetics and key CYP isoforms. CHEMOSPHERE 2022; 288:132504. [PMID: 34627810 DOI: 10.1016/j.chemosphere.2021.132504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
As the result of the phase-out on polybrominated diphenyl ethers, organophosphate flame retardants (OPFRs) were widely used as substitutes in the world. Previous studies found that OPFRs were frequently detected in environmental, biological, and human samples. Considering their adverse effects, the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs attracted more attentions recently, especially for aryl-OPFR and Cl-OPFRs. In the present study, the biotransformation, metabolic kinetics and related CYP450 isoforms of typical Cl-OPFR (tris(1,3-dichloro-2-propyl) phosphate: TDCPP) and aryl-OPFR (triphenyl phosphate: TPhP) were studied in vitro by mouse liver microsomes. Metabolomic analysis revealed that TDCPP may be easier to bio-accumulate in organisms than TPhP, which can be explained by their metabolic rates and half-life values (TDCPP: t1/2 = 1.8083 h; TPhP: t1/2 = 0.1531 h). CYP2E1, CYP2D6, CYP1A2 and CYP2C19 were suggested to be the specific enzymes for the biotransformation of TDCPP via associated inhibition assay. CYP2E1 was the primary CYP450 isoform of metabolism in vitro for TPhP. These findings may provide new insights for the potential mechanism of hepatotoxicity in mammals induced by OPFRs and the detoxification process of OPFRs in hepatocytes.
Collapse
Affiliation(s)
- Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Sheng-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Li-Jun Wang
- Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| |
Collapse
|