1
|
Janssen J, Chirico N, Ainsworth MJ, Cedillo-Servin G, Viola M, Dokter I, Vermonden T, Doevendans PA, Serra M, Voets IK, Malda J, Castilho M, van Laake LW, Sluijter JPG, Sampaio-Pinto V, van Mil A. Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs. Biomater Sci 2024; 12:3866-3881. [PMID: 38910521 PMCID: PMC11265564 DOI: 10.1039/d3bm01908j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials, investigating safety and feasibility of cTE construct transplantation in failing hearts. However, the lack of well-established preservation methods poses a hindrance to further scalability, commercialization, and transportation, thereby reducing their clinical implementation. In this study, hypothermic preservation (4 °C) and two methods for cryopreservation (i.e., a slow and fast cooling approach to -196 °C and -150 °C, respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs, composed of cardiomyocytes of different maturity, were preserved for three days, using several commercially available preservation protocols and solutions. Cardiomyocyte viability, function (beat rate and calcium handling), and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes' age did not influence post-rewarming viability, however, it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore, fast freezing outperformed slow freezing, but both viability and function were severely reduced after rewarming. In conclusion, whereas long-term preservation remains a challenge, hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation, aiding in off-the-shelf availability, ultimately increasing their clinical applicability.
Collapse
Affiliation(s)
- Jasmijn Janssen
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Nino Chirico
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Madison J Ainsworth
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Gerardo Cedillo-Servin
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Martina Viola
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Inge Dokter
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Pieter A Doevendans
- Netherlands Heart Institute (NLHI), Utrecht, 3511 EP, The Netherlands
- Centraal Militair Hospitaal (CMH), Utrecht, 3584 EZ, The Netherlands
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, PO box 513, The Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, The Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| | - Linda W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Vasco Sampaio-Pinto
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Alain van Mil
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| |
Collapse
|
2
|
Gokaltun A, Asik E, Byrne D, Yarmush ML, Usta OB. Supercooled preservation of cultured primary rat hepatocyte monolayers. Front Bioeng Biotechnol 2024; 12:1429412. [PMID: 39076209 PMCID: PMC11284110 DOI: 10.3389/fbioe.2024.1429412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Supercooled preservation (SCP) is a technology that involves cooling a substance below its freezing point without initiating ice crystal formation. It is a promising alternative to prolong the preservation time of cells, tissues, engineered tissue products, and organs compared to the current practices of hypothermic storage. Two-dimensional (2D) engineered tissues are extensively used in in vitro research for drug screening and development and investigation of disease progression. Despite their widespread application, there is a lack of research on the SCP of 2D-engineered tissues. In this study, we presented the effects of SCP at -2 and -6°C on primary rat hepatocyte (PRH) monolayers for the first time and compared cell viability and functionality with cold storage (CS, + 4°C). We preserved PRH monolayers in two different commercially available solutions: Hypothermosol-FRS (HTS-FRS) and the University of Wisconsin (UW) with and without supplements (i.e., polyethylene glycol (PEG) and 3-O-Methyl-Α-D-Glucopyranose (3-OMG)). Our findings revealed that UW with and without supplements were inadequate for the short-term preservation of PRH monolayers for both SCP and CS with high viability, functionality, and monolayer integrity. The combination of supplements (PEG and 3-OMG) in the HTS-FRS solution outperformed the other groups and yielded the highest viability and functional capacity. Notably, PRH monolayers exhibited superior viability and functionality when stored at -2°C through SCP for up to 3 days compared to CS. Overall, our results demonstrated that SCP is a feasible approach to improving the short-term preservation of PRH monolayers and enables readily available 2D-engineered tissues to advance in vitro research. Furthermore, our findings provide insights into preservation outcomes across various biological levels, from cells to tissues and organs, contributing to the advancement of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Department of Chemical Engineering, Hacettepe University, Ankara, Türkiye
| | - Eda Asik
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Bioengineering, Hacettepe University, Ankara, Türkiye
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Biomedical Engineering, Rutgers University, Newark, NJ, United States
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
3
|
Ho YK, Loke KM, Woo JY, Lee YL, Too HP. Cryopreservation does not change the performance and characteristics of allogenic mesenchymal stem cells highly over-expressing a cytoplasmic therapeutic transgene for cancer treatment. Stem Cell Res Ther 2022; 13:519. [PMID: 36376945 PMCID: PMC9663191 DOI: 10.1186/s13287-022-03198-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) driven gene directed enzyme prodrug therapy is a promising approach to deliver therapeutic agents to target heterogenous solid tumours. To democratize such a therapy, cryopreservation along with cold chain transportation is an essential part of the logistical process and supply chain. Previously, we have successfully engineered MSCs by a non-viral DNA transfection approach for prolonged and exceptionally high expression of the fused transgene cytosine deaminase, uracil phosphoribosyl transferase and green fluorescent protein (CD::UPRT::GFP). The aim of this study was to determine the effects of cryopreservation of MSCs engineered to highly overexpress this cytoplasmic therapeutic transgene. Methods Modified MSCs were preserved in a commercially available, GMP-grade cryopreservative—CryoStor10 (CS10) for up to 11 months. Performance of frozen-modified MSCs was compared to freshly modified equivalents in vitro. Cancer killing potency was evaluated using four different cancer cell lines. Migratory potential was assessed using matrigel invasion assay and flow cytometric analysis for CXCR4 expression. Frozen-modified MSC was used to treat canine patients via intra-tumoral injections, or by intravenous infusion followed by a daily dose of 5-flucytosine (5FC). Results We found that cryopreservation did not affect the transgene expression, cell viability, adhesion, phenotypic profile, and migration of gene modified canine adipose tissue derived MSCs. In the presence of 5FC, the thawed and freshly modified MSCs showed comparable cytotoxicity towards one canine and three human cancer cell lines in vitro. These cryopreserved cells were stored for about a year and then used to treat no-option-left canine patients with two different types of cancers and notably, the patients showed progression-free interval of more than 20 months, evidence of the effectiveness in treating spontaneously occurring cancers. Conclusion This study supports the use of cryopreserved, off-the-shelf transiently transfected MSCs for cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03198-z.
Collapse
|
4
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
5
|
Faccioli LAP, Kocas-Kilicarslan ZN, Diaz-Aragon R, Motomura T, Amirneni S, Malizio MR, Coard MC, Frau C, Haep N, Florentino RM, Ostrowska A. Human Hepatocytes Isolated from Explanted Livers: A Powerful Tool to Understand End-stage Liver Disease and Drug Screening. Organogenesis 2021; 17:117-125. [PMID: 35114888 DOI: 10.1080/15476278.2021.1992216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The use of primary human hepatocytes has been hampered by limited availability of adequate numbers of fresh and viable cells due to the ongoing shortage of liver donors. Thus, there is no surplus of healthy organs from which freshly isolated cells can be prepared when needed. However, primary hepatocytes can be successfully isolated from explanted liver specimens obtained from patients receiving orthotopic liver transplantation for decompensated liver cirrhosis or for metabolic liver disease without end-stage liver disease and are a valuable resource for the pharmaceutical industry research. This review focuses on the isolation, characterization and cryopreservation of hepatocytes derived from therapeutically resected livers with various hepatic diseases.
Collapse
Affiliation(s)
- Lanuza A P Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle R Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael C Coard
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Surgery, Children's Hospital of Pittsburgh of Upmc, Pittsburgh, Pennsylvania, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Surgery, Children's Hospital of Pittsburgh of Upmc, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
7
|
The New Serum-Free OptiPASS ® Medium in Cold and Oxygen-Free Conditions: An Innovative Conservation Method for the Preservation of MDA-MB-231 Triple Negative Breast Cancer Spheroids. Cancers (Basel) 2021; 13:cancers13081945. [PMID: 33919619 PMCID: PMC8073891 DOI: 10.3390/cancers13081945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancer spheroids are reproducible and relevant multicellular in vitro preclinical models. Thus, their use is required more and more for drug development processes in oncology in order to improve the prediction of anticancer drugs responses. Moreover, spheroid models allow for the reduction in animal experimentation, in accordance with the rule of Reduce, Refine, Replace (3Rs). In order to optimize and extend the use of these spheroid models, this works was focused on the development of an original methodology to keep these cancer spheroids in the long term. This innovative concept is based on a cold storage for up to 7 days of Triple-Negative Breast Cancer (TNBC) spheroids cultured in the synthetic serum-free OptiPASS® culture medium. Major spheroid characteristics could be preserved with this new conservation method, allowing their use in high throughput screening tests. Abstract Cancer spheroids are very effective preclinical models to improve anticancer drug screening. In order to optimize and extend the use of spheroid models, these works were focused on the development of a new storage concept to maintain these models in the longer term using the Triple-Negative Breast Cancer MDA-MB-231 spheroid models. The results highlight that the combination of a temperature of 4 °C and oxygen-free conditions allowed the spheroid characteristics of OptiPASS® serum-free culture medium to preserve the spheroid characteristics during 3-, 5- or 7-day-long storage. Indeed, after storage they were returned to normal culture conditions, with recovered spheroids presenting similar growth rates (recovery = 96.2%), viability (Live/Dead® profiles) and metabolic activities (recovery = 90.4%) compared to nonstored control spheroids. Likewise, both recovered spheroids (after storage) and nonstored controls presented the same response profiles as two conventional drugs, i.e., epirubicin and cisplatin, and two anti-PARP1 targeted drugs—i.e., olaparib and veliparib. This new original storage concept seems to induce a temporary stop in spheroid growth while maintaining their principal characteristics for further use. In this way, this innovative and simple storage concept may instigate future biological sample preservation strategies.
Collapse
|
8
|
Rosell-Valle C, Antúnez C, Campos F, Gallot N, García-Arranz M, García-Olmo D, Gutierrez R, Hernán R, Herrera C, Jiménez R, Leyva-Fernández L, Maldonado-Sanchez R, Muñoz-Fernández R, Nogueras S, Ortiz L, Piudo I, Ranchal I, Rodríguez-Acosta A, Segovia C, Fernández-Muñoz B. Evaluation of the effectiveness of a new cryopreservation system based on a two-compartment vial for the cryopreservation of cell therapy products. Cytotherapy 2021; 23:740-753. [PMID: 33714705 DOI: 10.1016/j.jcyt.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS Successful cell cryopreservation and banking remain a major challenge for the manufacture of cell therapy products, particularly in relation to providing a hermetic, sterile cryovial that ensures optimal viability and stability post-thaw while minimizing exposure to toxic cryoprotective agents, typically dimethyl sulfoxide (Me2SO). METHODS In the present study, the authors evaluated the effectiveness and functionality of Limbo technology (Cellulis S.L., Santoña, Spain). This system provides a hermetic vial with two compartments (one for adding cells with the cryoprotective agent solution and the other for the diluent solution) and an automated defrosting device. Limbo technology (Cellulis S.L.) allows reduction of the final amount of Me2SO, sidestepping washing and dilution steps and favoring standardization. The study was performed in several Good Manufacturing Practice laboratories manufacturing diverse cell therapy products (human mesenchymal stromal cells, hematopoietic progenitor cells, leukapheresis products, fibroblasts and induced pluripotent stem cells). Laboratories compared Limbo technology (Cellulis S.L.) with their standard cryopreservation procedure, analyzing cell recovery, viability, phenotype and functionality. RESULTS Limbo technology (Cellulis S.L.) maintained the viability and functionality of most of the cell products and preserved sterility while reducing the final concentration of Me2SO. CONCLUSIONS Results showed that use of Limbo technology (Cellulis S.L.) offers an overall safe alternative for cell banking and direct infusion of cryopreserved cell products into patients.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| | - Cristina Antúnez
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Fernando Campos
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | | | | | - Rosario Gutierrez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Concha Herrera
- Unidad de Terapia Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Leyva-Fernández
- Unidad de Producción Celular, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | | | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lourdes Ortiz
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Inmaculada Piudo
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | - Isidora Ranchal
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | - Cristina Segovia
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| |
Collapse
|
9
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Lentiviral vector bioprocess economics for cell and gene therapy commercialization. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Shultz RB, Katiyar KS, Laimo FA, Burrell JC, Browne KD, Ali ZS, Cullen DK. Biopreservation of living tissue engineered nerve grafts. J Tissue Eng 2021; 12:20417314211032488. [PMID: 34394908 PMCID: PMC8361542 DOI: 10.1177/20417314211032488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Tissue engineered nerve grafts (TENGs) built from living neurons and aligned axon tracts offer a revolutionary new approach as "living scaffolds" to bridge major peripheral nerve defects. Clinical application, however, necessitates sufficient shelf-life to allow for shipping from manufacturing facility to clinic as well as storage until use. Here, hypothermic storage in commercially available hibernation media is explored as a potential biopreservation strategy for TENGs. After up to 28 days of refrigeration at 4℃, TENGs maintain viability and structure in vitro. Following transplantation into 1 cm rat sciatic defects, biopreserved TENGs routinely survive and persist for at least 2 weeks and recapitulate pro-regenerative mechanisms of fresh TENGs, including the ability to recruit regenerating host tissue into the graft and extend neurites beyond the margins of the graft. The protocols and timelines established here serve as important foundational work for the manufacturing, storage, and translation of other neuron-based tissue engineered therapeutics.
Collapse
Affiliation(s)
- Robert B Shultz
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers University, Piscataway, NJ, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Kritika S Katiyar
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Franco A Laimo
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin C Burrell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Zarina S Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel K Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| |
Collapse
|
11
|
Huang H, Rey-Bedón C, Yarmush ML, Usta OB. Deep-supercooling for extended preservation of adipose-derived stem cells. Cryobiology 2020; 92:67-75. [PMID: 31751557 PMCID: PMC7195234 DOI: 10.1016/j.cryobiol.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
Abstract
Cell preservation is an enabling technology for widespread distribution and applications of mammalian cells. Traditional cryopreservation via slow-freezing or vitrification provides long-term storage but requires cytotoxic cryoprotectants (CPA) and tedious CPA loading/unloading, cooling, and recovering procedures. Hypothermic storage around 0-4 °C is an alternative method but only works for a short period due to its high storage temperatures. Here, we report on the deep-supercooling (DSC) preservation of human adipose-derived stem cells at deep subzero temperatures without freezing for extended storage. Enabled by surface sealing with an immiscible oil phase, cell suspension can be preserved in a liquid state at -13 °C and -16 °C for 7 days with high cell viability, retention of stemness, attachment, and multilineage differentiation capacities. These results demonstrate that DSC is an improved short-term preservation approach to provide off-the-shelf cell sources for booming cell-based medicine and bioengineering.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
| | - Camilo Rey-Bedón
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, United States.
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States.
| |
Collapse
|
12
|
Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5909524. [PMID: 30805009 PMCID: PMC6360551 DOI: 10.1155/2019/5909524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.
Collapse
|
13
|
Pless-Petig G, Walter B, Bienholz A, Rauen U. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions. Cell Transplant 2018; 26:1855-1867. [PMID: 29390882 PMCID: PMC5802638 DOI: 10.1177/0963689717743254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec-1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec-1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Björn Walter
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Anja Bienholz
- 2 Klinik für Nephrologie, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
14
|
Ruoß M, Häussling V, Schügner F, Olde Damink LHH, Lee SML, Ge L, Ehnert S, Nussler AK. A Standardized Collagen-Based Scaffold Improves Human Hepatocyte Shipment and Allows Metabolic Studies over 10 Days. Bioengineering (Basel) 2018; 5:E86. [PMID: 30332824 PMCID: PMC6316810 DOI: 10.3390/bioengineering5040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023] Open
Abstract
Due to pronounced species differences, hepatotoxicity of new drugs often cannot be detected in animal studies. Alternatively, human hepatocytes could be used, but there are some limitations. The cells are not always available on demand or in sufficient amounts, so far there has been only limited success to allow the transport of freshly isolated hepatocytes without massive loss of function or their cultivation for a long time. Since it is well accepted that the cultivation of hepatocytes in 3D is related to an improved function, we here tested the Optimaix-3D Scaffold from Matricel for the transport and cultivation of hepatocytes. After characterization of the scaffold, we shipped cells on the scaffold and/or cultivated them over 10 days. With the evaluation of hepatocyte functions such as urea production, albumin synthesis, and CYP activity, we showed that the metabolic activity of the cells on the scaffold remained nearly constant over the culture time whereas a significant decrease in metabolic activity occurred in 2D cultures. In addition, we demonstrated that significantly fewer cells were lost during transport. In summary, the collagen-based scaffold allows the transport and cultivation of hepatocytes without loss of function over 10 days.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Victor Häussling
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | | | | | - Serene M L Lee
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
- Biobank of the Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, 81377 Munich, Germany.
| | - Liming Ge
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Pereira Chilima TD, Moncaubeig F, Farid SS. Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Wang W, Penland L, Gokce O, Croote D, Quake SR. High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis. BMC Genomics 2018; 19:140. [PMID: 29439658 PMCID: PMC5811979 DOI: 10.1186/s12864-018-4512-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND High-fidelity preservation strategies for primary tissues are in great demand in the single cell RNAseq community. A reliable method would greatly expand the scope of feasible multi-site collaborations and maximize the utilization of technical expertise. When choosing a method, standardizability and fidelity are important factors to consider due to the susceptibility of single-cell RNAseq analysis to technical noise. Existing approaches such as cryopreservation and chemical fixation are less than ideal for failing to satisfy either or both of these standards. RESULTS Here we propose a new strategy that leverages preservation schemes developed for organ transplantation. We evaluated the strategy by storing intact mouse kidneys in organ transplant preservative solution at hypothermic temperature for up to 4 days (6 h, 1, 2, 3, and 4 days), and comparing the quality of preserved and fresh samples using FACS and single cell RNAseq. We demonstrate that the strategy effectively maintained cell viability, transcriptome integrity, cell population heterogeneity, and transcriptome landscape stability for samples after up to 3 days of preservation. The strategy also facilitated the definition of the diverse spectrum of kidney resident immune cells, to our knowledge the first time at single cell resolution. CONCLUSIONS Hypothermic storage of intact primary tissues in organ transplant preservative maintains the quality and stability of the transcriptome of cells for single cell RNAseq analysis. The strategy is readily generalizable to primary specimens from other tissue types for single cell RNAseq analysis.
Collapse
Affiliation(s)
- Wanxin Wang
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
| | - Lolita Penland
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 USA
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität LMU, 81377 Munich, Germany
| | - Derek Croote
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
- Department of Applied Physics, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
17
|
Yang J, Zhu Y, Xu T, Pan C, Cai N, Huang H, Zhang L. The preservation of living cells with biocompatible microparticles. NANOTECHNOLOGY 2016; 27:265101. [PMID: 27189861 DOI: 10.1088/0957-4484/27/26/265101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Lu J, Zhang Y, Zhu D, Wang J, Ye C, Zhang X, Cao H, Li L. Improvement of short-term hypothermic preservation of microencapsulated hepatocytes. Biotechnol Lett 2016; 38:909-17. [PMID: 26943346 DOI: 10.1007/s10529-016-2063-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/08/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To determine the optimal storage solution containing suitable protective agents for the preservation of microencapsulated hepatocytes at 4 °C as well as the optimum incubation time after hypothermic preservation. RESULTS L15 was the optimum solution for both maintaining microcapsule integrity and cell viability. Furthermore, 5 %(v/v) PEG (20 or 35 kDa) added to Leibovitz-15 medium was optimal for microencapsulated C3A cells, enhancing cell viability and liver-specific functions, including albumin and urea synthesis as well as CYP1A2 and CYP3A4 activities. The transcription levels of several CYP450-related genes were also dramatically increased in cells incubated in the optimal solution. Pre-incubation for 2 h was the optimal time for restoring favorable levels of CYP1A2 and CYP3A4 activities in microencapsulated C3A cells for short term, 2 day storage. CONCLUSIONS Leibovitz-15 medium supplemented with 5 % (v/v) PEG is a promising cold solution for microencapsulated hepatocytes at 4 °C, with an incubation of 2 h at 37 °C after hypothermic preservation being the best incubation duration for further cell application.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chao Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Swioklo S, Constantinescu A, Connon CJ. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells. Stem Cells Transl Med 2016; 5:339-49. [PMID: 26826163 DOI: 10.5966/sctm.2015-0131] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state.
Collapse
Affiliation(s)
- Stephen Swioklo
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andrei Constantinescu
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
20
|
Duret C, Moreno D, Balasiddaiah A, Roux S, Briolotti P, Raulet E, Herrero A, Ramet H, Biron-Andreani C, Gerbal-Chaloin S, Ramos J, Navarro F, Hardwigsen J, Maurel P, Aldabe R, Daujat-Chavanieu M. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy. Cell Transplant 2015; 24:2541-55. [PMID: 25622096 DOI: 10.3727/096368915x687020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation.
Collapse
Affiliation(s)
- Cedric Duret
- INSERM, U1040, Institut de Recherche en Biothérapie, F-34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Kamijima T, Sakashita M, Miura A, Nishimiya Y, Tsuda S. Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation. PLoS One 2013; 8:e73643. [PMID: 24069217 PMCID: PMC3775740 DOI: 10.1371/journal.pone.0073643] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
It is sometimes desirable to preserve mammalian cells by hypothermia rather than freezing during short term transplantation. Here we found an ability of hypothermic (+4°C) preservation of fish antifreeze protein (AFP) against rat insulinoma cells denoted as RIN-5F. The preservation ability was compared between type I-III AFPs and antifreeze glycoprotein (AFGP), which could be recently mass-prepared by a developed technique utilizing the muscle homogenates, but not the blood serum, of cold-adapted fishes. For AFGP, whose molecular weight is distributed in the range from 2.6 to 34 kDa, only the proteins less than 10 kDa were examined. The viability rate was evaluated by counting of the preserved RIN-5F cells unstained with trypan blue. Significantly, either AFPI or AFPIII dissolved into Euro-Collins (EC) solution at a concentration of 10 mg/ml could preserve approximately 60% of the cells for 5 days at +4°C. The 5-day preserved RIN-5F cells retained the ability to secrete insulin. Only 2% of the cells were, however, preserved for 5 days without AFP. Confocal photomicroscopy experiments further showed the significant binding ability of AFP to the cell surface. These results suggest that fish AFP enables 5-day quality storage of the insulinoma cells collected from a donor without freezing.
Collapse
Affiliation(s)
- Tatsuro Kamijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Mami Sakashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
23
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1062] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
24
|
Usta OB, Kim Y, Ozer S, Bruinsma BG, Lee J, Demir E, Berendsen TA, Puts CF, Izamis ML, Uygun K, Uygun BE, Yarmush ML. Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS One 2013; 8:e69334. [PMID: 23874947 PMCID: PMC3713052 DOI: 10.1371/journal.pone.0069334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/09/2013] [Indexed: 12/17/2022] Open
Abstract
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4(o)C) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4(o)C) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 (o)C). We find that there exists an optimum temperature (-4(o)C) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials.
Collapse
Affiliation(s)
- O. Berk Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- * E-mail:
| | - Yeonhee Kim
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Sinan Ozer
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Bote G. Bruinsma
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Jungwoo Lee
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Esin Demir
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Tim A. Berendsen
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Catheleyne F. Puts
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Maria-Louisa Izamis
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Basak E. Uygun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Hovanyecz P, Guibert E, Pellegrino J, Rodriguez J, Sigot V. Extended cold storage of cultured hepatocytes impairs endocytic uptake during normothermic rewarming. Cryobiology 2013; 66:112-20. [DOI: 10.1016/j.cryobiol.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 12/27/2022]
|
26
|
Li Y, Ma T. Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores Open Access 2013; 1:205-14. [PMID: 23515461 PMCID: PMC3559214 DOI: 10.1089/biores.2012.0224] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived cell therapy requires production of therapeutic cells in large quantity, which starts from thawing the cryopreserved cells from a working cell bank or a master cell bank. An optimal cryopreservation and thaw process determines the efficiency of hPSC expansion and plays a significant role in the subsequent lineage-specific differentiation. However, cryopreservation in hPSC bioprocessing has been a challenge due to the unique growth requirements of hPSC, the sensitivity to cryoinjury, and the unscalable cryopreservation procedures commonly used in the laboratory. Tremendous progress has been made to identify the regulatory pathways regulating hPSC responses during cryopreservation and the development of small molecule interventions that effectively improves the efficiency of cryopreservation. The adaption of these methods in current good manufacturing practices (cGMP)-compliant cryopreservation processes not only improves cell survival, but also their therapeutic potency. This review summarizes the advances in these areas and discusses the technical requirements in the development of cGMP-compliant hPSC cryopreservation process.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemical and Biomedical Engineering, Florida State University , Tallahassee, Florida
| | | |
Collapse
|
27
|
Sart S, Ma T, Li Y. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation. Biotechnol Prog 2012; 29:143-53. [PMID: 23125166 DOI: 10.1002/btpr.1653] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/25/2012] [Indexed: 12/14/2022]
Abstract
Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate-based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size-dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein-free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three-germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein-free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale.
Collapse
Affiliation(s)
- Sébastien Sart
- Dept. of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | | | | |
Collapse
|
28
|
Pless-Petig G, Metzenmacher M, Türk TR, Rauen U. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium - identification of the responsible medium components. BMC Biotechnol 2012; 12:73. [PMID: 23046946 PMCID: PMC3534012 DOI: 10.1186/1472-6750-12-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/04/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. RESULTS Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. CONCLUSION These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr, 55, 45122, Essen, Germany
| | | | | | | |
Collapse
|
29
|
Pless-Petig G, Singer BB, Rauen U. Cold storage of rat hepatocyte suspensions for one week in a customized cold storage solution--preservation of cell attachment and metabolism. PLoS One 2012; 7:e40444. [PMID: 22792326 PMCID: PMC3392233 DOI: 10.1371/journal.pone.0040444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Methods Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Results Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. Conclusion In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | | | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
30
|
Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 11:61-70. [PMID: 22682337 DOI: 10.2450/2012.0145-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/27/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. MATERIALS AND METHODS In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. RESULTS The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0-6 days). CONCLUSION These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability.
Collapse
|
31
|
Ginis I, Grinblat B, Shirvan MH. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods 2012; 18:453-63. [PMID: 22196031 DOI: 10.1089/ten.tec.2011.0395] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Achievements in tissue engineering using mesenchymal stem cells (MSC) demand a clinically acceptable "off-the-shelf" cell therapy product. Efficacy of cryopreservation of human bone marrow-derived MSC in clinically safe, animal product-free medium containing 2%, 5%, and 10% dimethyl sulfoxide (DMSO) was evaluated by measuring cell recovery, viability, apoptosis, proliferation rate, expression of a broad panel of MSC markers, and osteogenic differentiation. Rate-controlled freezing in CryoStor media was performed in a programmable cell freezer. About 95% of frozen cells were recovered as live cells after freezing in CryoStor solutions with 5% and 10% DMSO followed by storage in liquid nitrogen for 1 month. Cell recovery after 5 months storage was 72% and 80% for 5% and 10% DMSO, respectively. Measurements of caspase 3 activity demonstrated that 15.5% and 12.8% of cells after 1 month and 18.3% and 12.9% of cells after 5 months storage in 5% and 10% DMSO, respectively, were apoptotic. Proliferation of MSC recovered after cryopreservation was measured during 2 weeks post-plating. Proliferation rate was not compromised and was even enhanced. Cryopreservation did not alter expression of MSC markers. Quantitative analysis of alkaline phosphatase (ALP) activity, ALP surface expression and Ca⁺⁺ deposition in previously cryopreserved MSC and then differentiated for 3 weeks in osteogenic medium demonstrated the same degree of osteogenic differentiation as in unfrozen parallel cultures. Cell viability and functional parameters were analyzed in MSC after short-term storage at 4°C in HypoThermosol-FRS solution, also free of animal products. Hypothermic storage for 2 and 4 days resulted in about 100% and 85% cell recovery, respectively, less than 10% of apoptotic cells, and normal proliferation, marker expression, and osteogenic potential. Overall, our results demonstrate that human MSC could be successfully cryopreserved for banking and clinical applications and delivered to the bedside in clinically safe protective reagents.
Collapse
Affiliation(s)
- Irene Ginis
- Cell Therapy Laboratory, Teva Pharmaceutical Industries, Petach Tikva, Israel.
| | | | | |
Collapse
|
32
|
Celic T, Spanjol J, Grskovic A, Markic D, Prebilic I, Fuckar Z, Bobinac D. Bone Morphogenetic Protein-7 Reduces Cold Ischemic Injury in Rat Kidney. Transplant Proc 2011; 43:2505-9. [DOI: 10.1016/j.transproceed.2011.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/02/2011] [Indexed: 01/22/2023]
|
33
|
Dai J, Meng Q. Differential function of protective agents at each stage of the hypothermic preservation of hepatocytes. J Biochem 2011; 149:739-45. [DOI: 10.1093/jb/mvr030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
34
|
|
35
|
McAnulty JF. Hypothermic organ preservation by static storage methods: Current status and a view to the future. Cryobiology 2009; 60:S13-9. [PMID: 19538951 DOI: 10.1016/j.cryobiol.2009.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 12/16/2022]
Abstract
The donor organ shortage is the largest problem in transplantation today and is one where organ preservation technology has an important role to play. Static storage of solid organs, especially of the kidney, continues to be the most common method employed for storage and transport of organs from deceased donors. However, the increase in organs obtained from expanded criteria donors and donors with cardiac death provide new challenges in crafting effective preservation methods for the future. This article reviews the current status of static hypothermic storage methods and discusses potential avenues for future exploitation of this technology as the available organ pool is expanded into the more marginal donor categories.
Collapse
Affiliation(s)
- Jonathan F McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. W. Madison, WI 53706, USA.
| |
Collapse
|