1
|
Ma J, Huang R, Zhang H, Liu D, Dong X, Xiong Y, Xiong X, Lan D, Fu W, He H, Li J, Yin S. The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells. Int J Mol Sci 2024; 25:8764. [PMID: 39201451 PMCID: PMC11355056 DOI: 10.3390/ijms25168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Fumonisin B1 (FB1), a mycotoxin produced by Fusarium species, is prevalent in crops and animal feed, posing significant health risks to livestock and humans. FB1 induces oxidative stress in Sertoli cells, destroys testicular structure, and affects spermatogenesis. However, methods to mitigate the reproductive toxicity of FB1 in testes remain unknown. Quercetin, a natural flavonoid antioxidant, may offer protective benefits. This study investigated the protective effects and mechanisms of quercetin against FB1-induced reproductive toxicity in TM4 cells (a Sertoli cell line). The results indicated that 40 μM quercetin improved cell viability, reduced apoptosis, and preserved cell functions. Quercetin also decreased reactive oxygen species (ROS) levels in TM4 cells exposed to FB1, enhanced the expression of antioxidant genes, and improved mitochondrial membrane potential. Compared with FB1 alone, the combination of quercetin and FB1 increased ATP levels, as well as pyruvate and lactic acid, the key glycolysis products. Furthermore, this combination elevated the mRNA and protein expression of glycolysis-related genes, including glucose-6-phosphate isomerase 1 (Gpi1), hexokinase 2 (Hk2), aldolase (Aldoa), pyruvate kinase, muscle (Pkm), lactate dehydrogenase A (Ldha) and phosphofructokinase, liver, B-type (Pfkl). Quercetin also boosted the activity of PKM and LDHA, two crucial glycolytic enzymes. In summary, quercetin mitigates FB1-induced toxicity in TM4 cells by reducing ROS levels and enhancing glycolysis. This study offers new insights into preventing and treating FB1-induced toxic damage to the male reproductive system and highlights the potential application of quercetin.
Collapse
Affiliation(s)
- Jun Ma
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Ruixue Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Huai Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dongju Liu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xiaodong Dong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
3
|
Kulcsár S, Turbók J, Kövér G, Balogh K, Zándoki E, Ali O, Szabó A, Mézes M. Exposure to a Combination of Fusarium Mycotoxins Leads to Lipid Peroxidation and Influences Antioxidant Defenses, Fatty Acid Composition of Phospholipids, and Renal Histology in Laying Hens. Toxins (Basel) 2024; 16:226. [PMID: 38787078 PMCID: PMC11125972 DOI: 10.3390/toxins16050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The effects of combined short-term (3 days) exposure to Fusarium mycotoxins at both the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON/3-AcDON/15-AcDON: 5 mg/kg; FB1: 20 mg/kg) and twice the dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg/kg, and FB1: 40 mg/kg feed) on the kidneys of laying hens were examined. Our study aimed to investigate how these mycotoxins interacted with membrane lipid fatty acid (FA) composition and lipid peroxidation processes. It was observed that the levels of conjugated dienes and trienes were higher than the control in the low-mix group on day 3, and malondialdehyde concentration was higher on days 2 and 3. The proportion of phospholipid (PL) FAs showed that saturated and monounsaturated FAs increased. Still, both n3 and n6 polyunsaturated FAs decreased significantly on day 2 of exposure in the high-mix group. Among the n3 FAs, the level of docosahexaenoic (C22:6 n3) and among n6 FAs, arachidonic (C20:4 n6) acids decreased mainly on day 2 in the high-mix group. The results suggest that the combined exposure to Fusarium mycotoxins induced lipid peroxidation in the kidneys of laying hens, which resulted in marked changes in the PL FA profile. Histological examination revealed time- and dose-dependent increases as consequences of mycotoxin exposure.
Collapse
Affiliation(s)
- Szabina Kulcsár
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Janka Turbók
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (O.A.)
| | - György Kövér
- Department of Animal Science, Institute of Animal Breeding Sciences, Hungarian University of Agricultural and Life Sciences, H-7400 Kaposvár, Hungary;
| | - Krisztián Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Erika Zándoki
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (O.A.)
| | - András Szabó
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (O.A.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| |
Collapse
|
4
|
Tekin A, Güner A, Akkan T. Protective Effect of Boric Acid Against Ochratoxin A-Induced Toxic Effects in Human Embryonal Kidney Cells (HEK293): A Study on Cytotoxic, Genotoxic, Oxidative, and Apoptotic Effects. Biol Trace Elem Res 2024:10.1007/s12011-024-04194-5. [PMID: 38713435 DOI: 10.1007/s12011-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
The present study evaluates the protective properties of boric acid (BA) against the toxic effects induced by ochratoxin A (OTA) in human embryonic kidney cells (HEK293). The focus is on various parameters such as cytotoxicity, genotoxicity, oxidative stress, and apoptosis. OTA is a known mycotoxin that has harmful effects on the liver, kidneys, brain, and nervous system. BA, on the other hand, a boron-based compound, is known for its potential as a vital micronutrient with important cellular functions. The results show that BA administration not only increases cell viability but also mitigates the cytotoxic effects of OTA. This is evidenced by a reduction in the release of lactate dehydrogenase (LDH), indicating less damage to cell membranes. In addition, BA shows efficacy in reducing genotoxic effects, as the frequency of micronucleus (MN) and chromosomal aberrations (CA) decreases significantly, suggesting a protective role against DNA damage. In addition, the study shows that treatment with BA leads to a decrease in oxidative stress markers, highlighting its potential as a therapeutic intervention against the deleterious effects of OTA. These results emphasize the need for further research into the protective mechanisms of boron, particularly BA, in combating cell damage caused by OTA.
Collapse
Affiliation(s)
- Aşkın Tekin
- Faculty of Health Sciences, Department of Occupational Health and Safety,, Sinop University, Sinop, Türkiye.
| | - Adem Güner
- Şebinkarahisar Vocational School of Health Services, Giresun,, Giresun University, Giresun, Türkiye
| | - Tamer Akkan
- Faculty of Arts and Science, Biology Department of Biology, Giresun University, Giresun, Türkiye
| |
Collapse
|
5
|
Kulcsár S, Turbók J, Kövér G, Balogh K, Zándoki E, Gömbös P, Ali O, Szabó A, Mézes M. The Effect of Combined Exposure of Fusarium Mycotoxins on Lipid Peroxidation, Antioxidant Defense, Fatty Acid Profile, and Histopathology in Laying Hens' Liver. Toxins (Basel) 2024; 16:179. [PMID: 38668604 PMCID: PMC11053819 DOI: 10.3390/toxins16040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Fumonisin B1, T-2 toxin, and deoxynivalenol are frequently detected in feed materials. The mycotoxins induce free radical formation and, thereby, lipid peroxidation. The effects of mycotoxin exposure at the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON = 3AcDON/15-AScDON: 5 mg/kg; fumonisin B1: 20 mg/kg) and double dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg, and FB1: 40 mg/kg feed) were investigated during short-term (3 days) per os exposure in the liver of laying hens. On day 1 higher while on day 3 lower MDA concentrations were found in the low-dose group compared to the control. Fatty acid composition also changed: the proportion of monounsaturated fatty acids increased (p < 0.05) and the proportion of polyunsaturated fatty acids decreased by day 3. These alterations resulted in a decrease in the index of unsaturation and average fatty acid chain length. Histopathological alterations suggested that the incidence and severity of liver lesions were higher in the mycotoxin-treated laying hens, and the symptoms correlated with the fatty acid profile of total phospholipids. Overall, the findings revealed that mycotoxin exposure, even at the EU-recommended limits, induced lipid peroxidation in the liver, which led to changes in fatty acid composition, matched with tissue damage.
Collapse
Affiliation(s)
- Szabina Kulcsár
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Janka Turbók
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - György Kövér
- Department of Animal Science, Institute of Animal Breeding Sciences, Hungarian University of Agricultural and Life Sciences, H-7400 Kaposvár, Hungary;
| | - Krisztián Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Erika Zándoki
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Patrik Gömbös
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - András Szabó
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| |
Collapse
|
6
|
Papatsiros VG, Papakonstantinou GI, Voulgarakis N, Eliopoulos C, Marouda C, Meletis E, Valasi I, Kostoulas P, Arapoglou D, Riahi I, Christodoulopoulos G, Psalla D. Effects of a Curcumin/Silymarin/Yeast-Based Mycotoxin Detoxifier on Redox Status and Growth Performance of Weaned Piglets under Field Conditions. Toxins (Basel) 2024; 16:168. [PMID: 38668593 PMCID: PMC11054618 DOI: 10.3390/toxins16040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
The aim of this in vivo study was to investigate the effects of a novel mycotoxin detoxifier whose formulation includes clay (bentonite and sepiolite), phytogenic feed additives (curcumin and silymarin) and postbiotics (yeast products) on the health, performance and redox status of weaned piglets under the dietary challenge of fumonisins (FUMs). The study was conducted in duplicate in the course of two independent trials on two different farms. One hundred and fifty (150) weaned piglets per trial farm were allocated into two separate groups: (a) T1 (control group): 75 weaned piglets received FUM-contaminated feed and (b) T2 (experimental group): 75 weaned piglets received FUM-contaminated feed with the mycotoxin-detoxifying agent from the day of weaning (28 days) until 70 days of age. Thiobarbituric acid reactive substances (TBARSs), protein carbonyls (CARBs) and the overall antioxidant capacity (TAC) were assessed in plasma as indicators of redox status at 45 and 70 days of age. Furthermore, mortality and performance parameters were recorded at 28, 45 and 70 days of age, while histopathological examination was performed at the end of the trial period (day 70). The results of the present study reveal the beneficial effects of supplementing a novel mycotoxin detoxifier in the diets of weaners, including improved redox status, potential hepatoprotective properties and enhanced growth performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Georgios I. Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Christina Marouda
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios Meletis
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Terma Mavromichali St., 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Irene Valasi
- Laboratory of Physiology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Polychronis Kostoulas
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Terma Mavromichali St., 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | | | - Georgios Christodoulopoulos
- Department of Animal Science, Agricultural University of Athens, 75 Iera Odos Street, Votanikos, 11855 Athens, Greece;
| | - Dimitra Psalla
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Li J, Zhu M, Xian R, Chen S, Zang Q, Zhu H, Cao C. A preliminary study on the pathology and molecular mechanism of fumonisin B 1 nephrotoxicity in young quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114438-114451. [PMID: 37858030 DOI: 10.1007/s11356-023-30291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Fumonisin B1 (FB1) is a widely present mycotoxin that accumulates in biological systems and poses a health risk to animals. However, few studies have reported the molecular mechanism by which FB1 induces nephrotoxicity. The aim of this study was to assess the extent of nephrotoxicity during FB1 exposure and the possible molecular mechanisms behind it. Therefore, 180 young quails were equally divided into two groups. The control group was fed typical quail food, while the experimental group was fed quail food containing 30 mg·kg-1 FB1. Various parameters were assessed, which included histopathological, ultrastructural changes, levels of biochemical parameters, oxidative indicators, inflammatory factors, possible target organelles mitochondrial and endoplasmic reticulum (ER)-related factors, nuclear xenobiotic receptors (NXR) response, and cytochrome P450 system (CYP450s)-related factors in the kidneys on days 14, 28, and 42. The results showed that FB1 can induce oxidative stress through NXR response and disorder of the CYP450s system, leading to mitochondrial dysfunction and ER stress, promoting the expression of inflammatory factors (including IL-1β, IL-6, and IL-8) and causing kidney damage. This study elucidated the possible molecular mechanism by which FB1 induces nephrotoxicity in young quails.
Collapse
Affiliation(s)
- Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Mingzhan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Runxi Xian
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Siqiu Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qian Zang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Huquan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
8
|
Krylov D, Rodimova S, Karabut M, Kuznetsova D. Experimental Models for Studying Structural and Functional State of the Pathological Liver (Review). Sovrem Tekhnologii Med 2023; 15:65-82. [PMID: 38434194 PMCID: PMC10902899 DOI: 10.17691/stm2023.15.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 03/05/2024] Open
Abstract
Liver pathologies remain one of the leading causes of mortality worldwide. Despite a high prevalence of liver diseases, the possibilities of diagnosing, prognosing, and treating non-alcoholic and alcoholic liver diseases still have a number of limitations and require the development of new methods and approaches. In laboratory studies, various models are used to reconstitute the pathological conditions of the liver, including cell cultures, spheroids, organoids, microfluidic systems, tissue slices. We reviewed the most commonly used in vivo, in vitro, and ex vivo models for studying non-alcoholic fatty liver disease and alcoholic liver disease, toxic liver injury, and fibrosis, described their advantages, limitations, and prospects for use. Great emphasis was placed on the mechanisms of development of pathological conditions in each model, as well as the assessment of the possibility of reconstructing various key aspects of pathogenesis for all these pathologies. There is currently no consensus on the choice of the most adequate model for studying liver pathology. The choice of a certain effective research model is determined by the specific purpose and objectives of the experiment.
Collapse
Affiliation(s)
- D.P. Krylov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.M. Karabut
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- Head of Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
9
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Mao X, Zhang P, Du H, Ge L, Liu S, Huang K, Chen X. The combined effect of deoxynivalenol and Fumonisin B1 on small intestinal inflammation mediated by pyroptosis in vivo and in vitro. Toxicol Lett 2023; 372:25-35. [DOI: 10.1016/j.toxlet.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
12
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
13
|
Sibiya T, Ghazi T, Mohan J, Nagiah S, Chuturgoon AA. Spirulina platensis Ameliorates Oxidative Stress Associated with Antiretroviral Drugs in HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223143. [PMID: 36432871 PMCID: PMC9694780 DOI: 10.3390/plants11223143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/01/2023]
Abstract
Lately, Spirulina platensis (SP), as an antioxidant, has exhibited high potency in the treatment of oxidative stress, diabetes, immune disorder, inflammatory stress, and bacterial and viral-related diseases. This study investigated the possible protective role of Spirulina platensis against ARV-induced oxidative stress in HepG2 cells. Human liver (HepG2) cells were treated with ARVs ((Lamivudine (3TC): 1.51 µg/mL, tenofovir disoproxil fumarate (TDF): 0.3 µg/mL and Emtricitabine (FTC): 1.8 µg/mL)) for 96 h and thereafter treated with 1.5 µg/mL Spirulina platensis for 24 h. After the treatments, the gene and protein expressions of the antioxidant response pathway were determined using a quantitative polymerase chain reaction (qPCR) and Western blots. The results show that Spirulina platensis decreased the gene expressions of Akt (p < 0.0001) and eNOS (↓p < 0.0001) while, on the contrary, it increased the transcript levels of NRF-2 (↑p = 0.0021), Keap1 (↑p = 0.0002), CAT (↑p < 0.0001), and NQO-1 (↑p = 0.1432) in the HepG2 cells. Furthermore, the results show that Spirulina platensis also decreased the protein expressions of NRF-2 (↓p = 0.1226) and pNRF-2 (↓p = 0.0203). Interestingly, HAART-SP induced an NRF-2 pathway response through upregulating NRF-2 (except for FTC-SP) (↑p < 0.0001), CAT (↑p < 0.0001), and NQO-1 (except for FTC-SP) (↑p < 0.0001) mRNA expression. In addition, NRF-2 (↑p = 0.0085) and pNRF-2 (↑p < 0.0001) protein expression was upregulated in the HepG2 cells post-exposure to HAART-SP. The results, therefore, allude to the fact that Spirulina platensis has the potential to mitigate HAART-adverse drug reactions (HAART toxicity) through the activation of antioxidant response in HepG2 cells. We hereby recommend further studies on Spirulina platensis and HAART synergy.
Collapse
Affiliation(s)
- Thabani Sibiya
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Jivanka Mohan
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
- Medical Programme, Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University Missionvale, Port Elizabeth 6059, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4013, South Africa
| |
Collapse
|
14
|
Zhao X, Gao J, Song Y, Zhang J, Han Q. Determination of Fumonisin B 1 by Aptamer-Based Fluorescence Resonance Energy Transfer. SENSORS (BASEL, SWITZERLAND) 2022; 22:8598. [PMID: 36433193 PMCID: PMC9699289 DOI: 10.3390/s22228598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Fumonisin FB is produced by Fusarium moniliforme Sheld, of which FB1 is the most common and the most toxic. The establishment of a rapid detection method is an important means to prevent and control FB1 pollution. A highly sensitive fluorescent sensor based on an aptamer for the rapid detection of fumonisin B1 (FB1) in corn was established. In this study, 5-carboxyfluorescein (FAM) was labeled on the aptamer of FB1 (F10). F10 was adsorbed on the surface of graphene oxide (GO) by π-π stacking. The FAM fluorescence signal could be quenched by fluorescence resonance energy transfer between fluorescent molecules and graphene oxide (GO). In the presence of FB1, the binding efficiency of the aptamer to GO was reduced. Therefore, the content of FB1 in corn samples was determined by fluorescence measurements of mixed FAM-labeled F10, GO and corn samples. This method had a good linear relationship in an FB1 concentration range of 0-3000 ng/mL. The equation was y = 0.2576x + 10.98, R2 = 0.9936. The limit of detection was 14.42 ng/mL, and the limit of quantification was 43.70 ng/mL. The recovery of a spiked standard in the corn sample was 89.13-102.08%, and the time of detection was 30 min.
Collapse
Affiliation(s)
| | | | | | | | - Qinqin Han
- Correspondence: ; Tel.: +86-(0871)-65939528
| |
Collapse
|
15
|
Hydroxy-selenomethionine enhances the productivity and egg quality of 50- to 70-week-old semi-heavy laying hens under heat stress. Poult Sci 2022; 102:102320. [PMID: 36508950 PMCID: PMC9763846 DOI: 10.1016/j.psj.2022.102320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress significantly compromises the production efficiency of laying hens. It has been reported in literature that selenium (Se) in poultry diets has a positive effect on mitigating these effects. This study has been carried out to evaluate the effects of Se supplementation in feeds, from either an inorganic or a hydroxy-selenomethionine (OH-SeMet) source, on the performance and physiological traits of 50- to 70-wk-old Dekalb Brown laying hens under heat stress, and on their egg quality after different storage durations. The treatments consisted in supplementing 0.3 ppm of Se as sodium selenite (SS; 45%-0.7g/ton) or OH-SeMet (2%-15g/ton) in twelve 16-bird replicates. Supplementation with OH-SeMet resulted in a better performance of the laying hens than with SS: -5% feed conversion ratio and +3.6% of egg mass. A reduction in egg quality was observed with prolonged egg storage, which was mitigated with the use of OH-SeMet in laying hen diets. The use of OH-SeMet increased the antioxidant capacity of the birds, which showed higher glutathione peroxidase levels in the blood, kidneys, liver, and intestinal mucosa, in addition to a higher Se content in the eggs and a greater bone resistance. Thus, supplementing feeds with 0.3 ppm of OH-SeMet to 50- to 70-wk-old semi-heavy laying hens enhances their antioxidant capacity and leads to a higher egg quality and productivity than SS supplementation.
Collapse
|
16
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
17
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
18
|
Zhao X, Liu N, Song Y, Zhang J, Han Q. Establishment of fumonisin B 1 detection method for catalytic fluorescence detection of aptamer-regulated carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3953-3960. [PMID: 36196953 DOI: 10.1039/d2ay01358d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mycotoxin, common in agricultural products, is a small secondary metabolite with strong toxicity. Fumonisin B1 (FB1) is the most common and the most toxic. Establishing a rapid detection method is important for preventing and controlling FB1 pollution. This study prepared carbon dots (CDs) from 2,2'-dithiosalicylic acid (DTSA). Tetramethylbenzidine (TMB) can be catalyzed to produce fluorescence by CDs, while FB1 can adhere to the surface of CDs, decreasing fluorescence. Aptamer F10 of FB1 combines with FB1 attached to the surface of CDs to restore the catalytic ability of CDs and increase the fluorescence value. This method has good linearity in the FB1 concentration range from 0 to 1.0 μg mL-1. The standard curve was Y = -0.2512x + 661.4, R2 = 0.9903, the limit of detection (LOD) was 17.67 ng mL-1 and limit of quantitation (LOQ) was 53.55 ng mL-1. The recovery of the corn sample was 89.83-98.62%, and the detection time was 30 min.
Collapse
Affiliation(s)
- Xinyue Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Nuoya Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinyang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
19
|
Zhao X, Gao J, Song Y, Zhang J, Han Q. Establishment of an Improved ELONA Method for Detecting Fumonisin B 1 Based on Aptamers and Hemin-CDs Conjugates. SENSORS (BASEL, SWITZERLAND) 2022; 22:6714. [PMID: 36081171 PMCID: PMC9460299 DOI: 10.3390/s22176714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Fumonisin B1 (FB1) is a strong mycotoxin that is ubiquitous in agricultural products. The establishment of rapid detection methods is an important means to prevent and control FB1 contamination. In this study, an improved enzyme-linked oligonucleotide assay (ELONA) method was designed and tested to detect the contents of FB1 in maize (corn) samples. F10 modified with biotin was bound to an enzyme label plate that was coated with streptavidin (SA) in advance, and carbon dots (CDs) were used to catalyze the color of tetramethylbenzidine (TMB). The complementary chain of F10 was modified with an amino group and coupled with CDs to obtain conjugates. The sample and conjugates were then added to the enzyme plate coated with F10 (an FB1 aptamer). Upon completion of the color reaction, the absorbance was measured at 450 nm. The LOD of this method was 4.30 ng/mL and the LOQ was 13.03 ng/mL. We observed a linear relationship in the FB1 concentration range of 0-100 ng/mL. The standard curve was y = -0.001482 × x + 0.3463, R2 = 0.9918, and the experimental results could be directly measured visually. The recovery of the maize sample was 97.5-99.23% and 94.54-99.25%, and the total detection time was 1 h.
Collapse
Affiliation(s)
| | | | | | | | - Qinqin Han
- Correspondence: ; Tel.: +86-(0871)-6593-9528
| |
Collapse
|
20
|
Wang Y, Cui J, Zheng G, Zhao M, Hao Z, Lian H, Li Y, Wu W, Zhang X, Wang J. Ochratoxin A induces cytotoxicity through ROS-mediated endoplasmic reticulum stress pathway in human gastric epithelium cells. Toxicology 2022; 479:153309. [PMID: 36058351 DOI: 10.1016/j.tox.2022.153309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species that greatly threatens human health. We previously showed that OTA induced cycle arrest, apoptosis and autophagy in human gastric epithelium cells (GES-1). However, the mechanism underlying these effects is still unclear. Here, we showed that OTA exposure increased the expression of endoplasmic reticulum (ER) stress indicators (GRP78, PERK, ATF6, eIF2α, and CHOP), suggesting the activation of the unfolded protein response pathway. 4-phenylbutyric acid (4-PBA), an ER stress-specific inhibitor, attenuated OTA-induced loss of cell viability and apoptosis in GES-1 cells. It also attenuated the G2 phase arrest and autophagy induced by OTA, as evidenced by upregulated G2 phase-related proteins (Cdc2, Cdc25C, and cyclinB1) and downregulated autophagy markers (LC3B and Beclin-1). Moreover, OTA was found to increase ROS generation, and the inhibition of ROS formation by N-acetylcysteine (NAC), an ROS inhibitor, attenuated OTA-induced ER stress and subsequent apoptosis, cell cycle arrest, and autophagy. Collectively, these results suggest that the ROS-mediated ER stress pathway contributes to the OTA toxin-induced cytotoxicity in GES-1 cells. This study offers new insights into the molecular mechanisms underlying OTA toxicity in gastric cells.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Guona Zheng
- Department of Pathology, Heibei General Hospital, Shijiazhuang, China
| | - Man Zhao
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zengfang Hao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hongguang Lian
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China; Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
21
|
Ouyang H, Zhu H, Li J, Chen L, Zhang R, Fu Q, Li X, Cao C. Fumonisin B 1 promotes germ cells apoptosis associated with oxidative stress-related Nrf2 signaling in mice testes. Chem Biol Interact 2022; 363:110009. [PMID: 35697133 DOI: 10.1016/j.cbi.2022.110009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
Fumonisins (FBs) are widespread Fusarium toxins commonly found in corn. This study aimed to establish the mechanism of oxidative stress via the Nrf2 signaling pathway associated with FB1-induced toxicity in mice testis. Male mice were fed with 5 mg/kg FB1 diet for 21 or 42 days, the expression of inflammatory related genes, apoptosis related genes and Nrf2 pathway genes were detected by RT-qPCR, Western blot and immunohistochemical. Furthermore, Sertoli cell was treatment with FB1. Cell viability was measured by CCK8 assay, ROS level and apoptosis related genes were detected by immunofluorescence staining. The results showed that FB1 had toxic effects on testis, which could increase the ROS level of Sertoli cells, affect the Keap1-Nrf2 pathway related factors, destroy the oxidative balance of testis, lead to the occurrence of inflammation and the initiation of apoptosis, and finally destroy the testicular tissue structure and affect the formation of sperm.
Collapse
Affiliation(s)
- Huimin Ouyang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Huquan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Lina Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ruofan Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Xinran Li
- Foshan University Veterinary Teaching Hospital, Foshan 528225, Guangdong Province, China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
22
|
Fu Y, Yin S, Zhao C, Fan L, Hu H. Combined toxicity of food-borne mycotoxins and heavy metals or pesticides. Toxicon 2022; 217:148-154. [PMID: 35995097 DOI: 10.1016/j.toxicon.2022.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Food can be contaminated by multiple classes of toxic substances, mainly including mycotoxins, heavy metals and pesticides, which leads to a possibility of simultaneous exposure to two or more food contaminants for humans. Thus, it is necessary to examine whether the combined exposure could result in enhanced toxicity. Initially, the studies on the combined toxicity of food contaminants mainly focus on the mixtures of same classes of food contaminants due to their co-occurrence feature in foodstuffs, such as mixtures of mycotoxins or mixtures of heavy metals. Given the possibility that consumers are likely exposed to mixtures of different classes of food contaminants, recently, studies on the combined toxicity of different classes of food contaminants have been receiving increasing attentions. In this review article, we summarize the findings of combined toxicity studies related to co-exposure to food-borne mycotoxins and other classes of food contaminants mainly heavy metals or pesticides, and propose issues that need to be addressed in future studies for more accurately performing risk assessment of co-exposure to mycotoxins and other classes of food contaminants.
Collapse
Affiliation(s)
- Yuhan Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
23
|
Szabó A, Omeralfaroug A, Bjellaas T, Kövér G, Turbók J, Kovács M. The effects of fumonisin B 1 at the No Observed Adverse Effect Level (NOAEL) and 5-times above on the renal histology and lipidome of rats. Food Chem Toxicol 2022:113333. [PMID: 35988863 DOI: 10.1016/j.fct.2022.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Fumonisin B1 (FB1) mycotoxin was intraperitoneally (IP) administered at the No Observed Adverse Effect Level (NOAEL = 0.2 mg/kg BW/day as IP equivalent, "L") and 5-times above ("H") to male rats, in a controlled ("C"), 5-day study (n = 10/group, total n = 30). BW (bodyweight) of H rats decreased after day 4, kidney weight after 5 days. Renal histology revealed tubular epithelial desquamation, tubular dilatation, nuclear swelling, pale chromatin, cell vacuolation and casual karyopycnosis (H). Lipidomic analysis was performed with liquid chromatography - time-of-flight mass spectrometry (LC-TOF). Renal sphinganine (Sa) concentration increased 500 (L) to 1000-fold (H) and Sa-1-P to over 200 and 350-fold, respectively), with FB1 dose-dependence. Renal triacyclglycerols, diacylglycerols, ceramides and sphingomyelins were depleted, while cholesterol and cholesterol ester concentrations increased. Spearman correlation of free sphingoid bases (Sa, Sa-1-P, sphingosine (So) and So-1-P) was positive with histopathological damage severity, sphingomyelins and ceramides provided negative relationship (-0.78 and -0.8, resp.). Two-way cluster analysis and sparse partial least squares discriminant analysis (sPLS-DA) was used for experimental group classification. Fully effective group separation was achieved for ceramides, sphingomyelins and phosphatidyl-cholines, highlighting molecular species of possible diagnostic value. Lipidomic results highlight possible re-consideration of the NOAEL.
Collapse
Affiliation(s)
- András Szabó
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | - Ali Omeralfaroug
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | | | - György Kövér
- Hungarian University of Agriculture and Life Sciences, Institute of Animal Breeding Sciences, Department of Animal Breeding, Hungary.
| | - Janka Turbók
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | - Melinda Kovács
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary; ELKH - MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary.
| |
Collapse
|
24
|
Guo X, Qiao Q, Zhang M, Fauconnier ML. Nuclease Triggered "Signal-On" and Amplified Fluorescent Sensing of Fumonisin B 1 Incorporating Graphene Oxide and Specific Aptamer. Int J Mol Sci 2022; 23:ijms23169024. [PMID: 36012283 PMCID: PMC9408943 DOI: 10.3390/ijms23169024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Remarkable advancements have been achieved in the development of rapid analytic techniques toward fumonisin B1 (FB1) monitoring and even trace levels for food safety in recent years. However, the point-of-care testing for quantitative and accurate FB1 determination is still challenging. Herein, an innovative aptasensor was established to monitor FB1 by utilizing graphene oxide (GO) and nuclease-triggered signal enhancement. GO can be utilized as a fluorescence quenching agent toward a fluorophore-modified aptamer, and even as a protectant of the aptamer from nuclease cleavage for subsequent target cycling and signal amplification detection. This proposed sensing strategy exhibited a good linearity for FB1 determination in the dynamic range from 0.5 to 20 ng mL−1 with a good correlation of R2 = 0.995. Its limit of detection was established at 0.15 ng mL−1 (S/N = 3), which was significantly lower than the legal requirements by three orders of magnitude. The interferent study demonstrated that the introduced aptasensor possessed high selectivity for FB1. Moreover, the aptasensor was successfully applied to the detection of wheat flour samples, and the results were consistent with the classical ELISA method. The rapid response, sensitive and selective analysis, and reliable results of this sensing platform offer a promising opportunity for food mycotoxin control in point-of-care testing.
Collapse
Affiliation(s)
- Xiaodong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinqin Qiao
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Information Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (M.Z.); (M.-L.F.); Tel.: +86-21-3420-8533 (M.Z.)
| | - Marie-Laure Fauconnier
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- Correspondence: (M.Z.); (M.-L.F.); Tel.: +86-21-3420-8533 (M.Z.)
| |
Collapse
|
25
|
Mao X, Liu S, Ge L, Du H, Yue D, Hou L, Huang K, Chen X. mTOR-Mediated Autophagy Regulates Fumonisin B 1-Induced Intestinal Inflammation via Pyroptosis In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9187-9200. [PMID: 35830273 DOI: 10.1021/acs.jafc.2c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fumonisin B1 (FB1) is a fungal metabolite, which has an incremental detection rate in grains and feed worldwide. The nucleotide-binding oligomerization domain-like pyrin domain containing protein 3 (NLRP3) inflammasome is a critical element in pyroptosis activation, which participates in regulating enteritis. Meanwhile, autophagy is also engaged in intestinal inflammation. However, the function of pyroptosis and autophagy in FB1-mediated enterotoxicity remains unclear. In this study, we explored the effects of FB1 on enteritis and the underlying mechanism in vivo and in vitro. Our data showed that FB1 exposure damaged the intestinal epithelium and promoted the secretion of inflammatory cytokines. Meanwhile, FB1 exposure significantly upregulated the expression of pyroptosis-related genes. Then, MCC950, an inhibitor of NLRP3, significantly blocked FB1-induced pyroptosis in IPEC-J2 cells. In addition, FB1 treatment elevated the levels of autophagy. Moreover, the phosphorylation of the mammalian target of rapamycin (mTOR), an upstream protein of the autophagy pathway, was inhibited by FB1 exposure. Notably, rapamycin, an inhibitor of mTOR, instead of MHY1485, an agonist of mTOR, could ameliorate FB1-induced intestinal inflammatory injury and inhibit the upregulation of pyroptosis-related genes. In summary, we demonstrated that autophagy exhibited a protective effect against NLRP3 inflammasome-dependent pyroptosis on FB1-induced enteritis. Our data clarify a favorable protective role for the activation of autophagy in FB1 poisoning.
Collapse
Affiliation(s)
- Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Heng Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
26
|
Effect of Fumonisin B1 on Proliferation and Apoptosis of Intestinal Porcine Epithelial Cells. Toxins (Basel) 2022; 14:toxins14070471. [PMID: 35878209 PMCID: PMC9323054 DOI: 10.3390/toxins14070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Fumonisin B1 (FB1), which is a mycotoxin produced by Fusarium moniliforme and Fusarium rotarum, has a number of toxic effects in animals. Moldy feed containing FB1 can damage the intestine. In this study, we used intestinal porcine epithelial cells (IPEC-J2) as an in vitro model to explore the effects of FB1 on cell cycle and apoptosis. The results showed that IPEC-J2 cells treated with 10, 20, and 40 μg/mL FB1 for 48 h experienced different degrees of damage manifested as decreases in cell number and viability, as well as cell shrinkage and floating. In addition, FB1 reduced cell proliferation and the mRNA and protein expression of proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (CDK2), CDK4, cyclinD1, and cyclinE1. FB1 blocked the cell cycle in the G1 phase. FB1 also induced mitochondrial pathway apoptosis, reduced mitochondrial membrane potential, and promoted mRNA and protein expression of Caspase3, Caspase9, and Bax. The findings suggest that FB1 can induce IPEC-J2 cell damage, block the cell cycle, and promote cell apoptosis.
Collapse
|
27
|
Morphology and Chemical Coding of Rat Duodenal Enteric Neurons following Prenatal Exposure to Fumonisins. Animals (Basel) 2022; 12:ani12091055. [PMID: 35565482 PMCID: PMC9099666 DOI: 10.3390/ani12091055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Fumonisins (FBs), including fumonisin B1 and B2 produced by the fungus Fusarium verticillioides, are widespread mycotoxins contaminating crop plants as well as processed food. The aim of the experiment was to determine whether the exposure of 5-week-old pregnant rats to FBs at 60 mg/kg b.w. (group FB60) or 90 mg/kg b.w. (group FB90) results in morphological changes in the duodenum of weaned offspring, particularly the enteric nervous system (ENS). In addition, the levels of expression of galanin and vasoactive intestinal polypeptide (VIP) in the ENS were analysed by immunofluorescence in the control and experimental groups of animals. No significant morphological changes in the thickness of the muscle layer or submucosa of the duodenum were noted in group FB60 or FB90. In group FB90 (but not FB60), there was a significant increase in the width of the villi and in the density of the intestinal crypts. Immunofluorescence analysis using neuronal marker Hu C/D showed no significant changes in group FB60 or FB90 in the morphology of the duodenal ENS, i.e., the myenteric plexus (MP) and submucosal plexus (SP), in terms of the density of enteric ganglia in the MP and SP, surface area of MP and SP ganglia, length and width of MP and SP ganglia, surface area of myenteric and submucosal neurons, diameter of myenteric and submucosal neurons, density of myenteric and submucosal neurons, and number of myenteric and submucosal neurons per ganglion. In both groups, there was an increase (relative to the control) in the percentage of Hu C/D-IR/VIP-IR (IR-immunoreactive) and Hu C/D-IR/galanin-IR myenteric and submucosal neurons in the ganglia of both the MP and SP of the duodenum. In addition, in groups FB60 and FB90, there was an increase in the number of nerve fibres showing expression of VIP and galanin in the mucosa, submucosa and circular muscle layer of the duodenum. The results indicate that prenatal exposure to FBs does not significantly alter the histological structure of the duodenum (including the ENS) in the weaned offspring. The changes observed in the chemical code of the myenteric and submucosal neurons in both experimental groups suggest harmful activity of FBs, which may translate into activation of repair mechanisms via overexpression of neuroprotective neuropeptides (VIP and galanin).
Collapse
|
28
|
Qu L, Wang L, Ji H, Fang Y, Lei P, Zhang X, Jin L, Sun D, Dong H. Toxic Mechanism and Biological Detoxification of Fumonisins. Toxins (Basel) 2022; 14:182. [PMID: 35324679 PMCID: PMC8954241 DOI: 10.3390/toxins14030182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food safety is related to the national economy and people's livelihood. Fumonisins are widely found in animal feed, feed raw materials, and human food. This can not only cause economic losses in animal husbandry but can also have carcinogenicity or teratogenicity and can be left in animal meat, eggs, and milk which may enter the human body and pose a serious threat to human health. Although there are many strategies to prevent fumonisins from entering the food chain, the traditional physical and chemical methods of mycotoxin removal have some disadvantages, such as an unstable effect, large nutrient loss, impact on the palatability of feed, and difficulty in mass production. As a safe, efficient, and environmentally friendly detoxification technology, biological detoxification attracts more and more attention from researchers and is gradually becoming an accepted technique. This work summarizes the toxic mechanism of fumonisins and highlights the advances of fumonisins in the detoxification of biological antioxidants, antagonistic microorganisms, and degradation mechanisms. Finally, the future challenges and focus of the biological control and degradation of fumonisins are discussed.
Collapse
Affiliation(s)
- Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Lei Wang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Ji
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Yimeng Fang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Pengyu Lei
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Libo Jin
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Da Sun
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| |
Collapse
|
29
|
Lee R, Kim DW, Lee WY, Park HJ. Zearalenone Induces Apoptosis and Autophagy in a Spermatogonia Cell Line. Toxins (Basel) 2022; 14:toxins14020148. [PMID: 35202175 PMCID: PMC8878478 DOI: 10.3390/toxins14020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Zearalenone (ZEN), a widely known mycotoxin, is mainly produced by various Fusarium species, and it is a potent estrogenic metabolite that affects reproductive health in livestock and humans. In this study, the molecular mechanisms of toxicity and cell damage induced by ZEN in GC-1 spermatogonia (spg) cells were evaluated. Our results showed that cell viability decreased and apoptosis increased in a dose-dependent manner when GC-1 spg cells were exposed to ZEN. In addition, the key proteins involved in apoptosis, cleaved caspase-3 and -8, BAD, BAX, and phosphorylation of p53 and ERK1/2, were significantly increased in ZEN-exposed GC-1 spg cells for 24 h, and cytochrome c was released from mitochondria by ZEN. Interestingly, ZEN also triggered autophagy in GC-1 spg cells. The expression levels of the autophagy-related genes Atg5, Atg3, Beclin 1, LC3, Ulk1, Bnip 3, and p62 were significantly higher in ZEN-treated GC-1 spg cells, and the protein levels of both LC3A/B and Atg12 were remarkably increased in a dose-dependent manner in ZEN-exposed GC-1 spg cells compared to the control. In addition, immunostaining results showed that ZEN-treated groups showed a remarkable increase in LC 3A/B positive puncta as compared to the control in a dose-dependent manner based on confocal microscopy analysis in GC-1 spg cells. Our findings suggest that ZEN has toxic effects on tGC-1 spg cells and induces both apoptosis and autophagy.
Collapse
Affiliation(s)
- Ran Lee
- Department of Stem Cell and Regenerative Biology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Dong-Wook Kim
- Department of Swine & Poultry Science, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Korea;
| | - Won-Young Lee
- Department of Beef & Dairy Science, Korea National College of Agricultures and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Korea;
| | - Hyun-Jung Park
- Department of Animal Biotechnology, Sangji University, 83, Sangjidae-gil, Wonju-si 26339, Gangwon-do, Korea
- Correspondence: ; Tel.: +33-730-0543
| |
Collapse
|
30
|
Li T, Huang S, Wang J, Yin P, Liu H, Sun C. Alginate oligosaccharides protect against fumonisin B1-induced intestinal damage via promoting gut microbiota homeostasis. Food Res Int 2022; 152:110927. [PMID: 35181098 DOI: 10.1016/j.foodres.2021.110927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Fumonisin B1 (FB1), one of the most common mycotoxins contaminating feed and food, has been shown to induce intestinal barrier degradation. However, its role on gut microbiota in this process is still unclear. Alginate oligosaccharides (AOS) have been reported to exert their anti-inflammatory and anti-apoptotic function partially via modulation the gut microbiota. However, little is known about the beneficial effect of AOS on gut microbiota upon FB1 exposure. Results show that FB1 degraded intestinal epithelial barrier function as evidenced by increased pathological epithelial cell shedding, reduced the number of goblet cells, and promoted intestinal cell apoptosis. Markedly, FB1 disturbed the cecal and fecal microbiota composition. FB1 increased the level of Lactobacillus and decreased the relative abundance of beneficial microbes. FB1 largely inhibited the production of short chain fatty acids (SCFAs). AOS greatly ameliorated FB1-induced intestinal damage, inflammation, and oxidative stress (eg., T-SOD and MDA). AOS alleviated gut microbial dysbiosis by promoting the growth of beneficial microbes such as Roseburia, Bifidobacterium, and Akkermansia, and increasing SCFAs production upon FB1 exposure. Moreover, the correlation analysis showed that FB1- and AOS-treated gut microbiota alteration is closely associated with the change of intestinal phenotype. We have thus provided a novel insight into the protective role of AOS on FB1-induced gut microbial dysbiosis.
Collapse
Affiliation(s)
- Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Peng Yin
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Standards and Quality Center of National Food and Strategic Reserves Administration, China.
| |
Collapse
|
31
|
Awad MA, Ahmed ZSO, AbuBakr HO, Elbargeesy GAEFH, Moussa MHG. Oxidative stress, apoptosis and histopathological alterations in brain stem and diencephalon induced by subacute exposure to fipronil in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:936-948. [PMID: 34345985 DOI: 10.1007/s11356-021-15537-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Fipronil (FIP) is a highly effective insecticide that has been used in agriculture and veterinary medicine. Its neurotoxic effect to insects and to non-target organisms, after nonintentional exposure, was reported. Many studies were conducted to evaluate FIP effects on mammals. However, slight is known about its effect on the brain stem and diencephalon. The current study was designed to investigate the ability of FIP to induce oxidative stress as a molecular mechanism of FIP neurotoxicity that resulted in apoptosis and neural tissue reactivity in these regions. Ten adult male rats received 10 mg/kg of FIP technical grade by oral gavage, daily for 45 days. Brain stem and diencephalon were processed to examine oxidative stress-induced macromolecular alteration (MDA, PCC and DNA fragmentation). Also, the histopathological assessment and immunoreactivity for caspase-3 (active form), iNOS and GFAP were performed on the thalamus, hypothalamus and medulla oblongata. Our results revealed that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). In addition, significantly increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in the FIP-treated group was noticed (p ≤ 0.05). Moreover, alterations in the histoarchitecture of the neural tissue of these regions were observed. We conclude that FIP can induce oxidative stress, leading to apoptosis and tissue reaction in brain stem and diencephalon.
Collapse
Affiliation(s)
- Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zainab Sabry Othman Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | | | - Moukhtar H G Moussa
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
32
|
Detecting fumonisin B1 in black beans (Phaseolus vulgaris L.) by near-infrared spectroscopy (NIRS). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Wu Z, Zhu X, Li P, Wang X, Sun Y, Fu Y, Wang J, Yang Z, Zhou E. Fumonisin B 1 induces chicken heterophil extracellular traps mediated by PAD4 enzyme and P2 × 1 receptor. Poult Sci 2021; 101:101550. [PMID: 34823185 PMCID: PMC8626696 DOI: 10.1016/j.psj.2021.101550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/24/2023] Open
Abstract
Fumonisin B1 (FB1) is a common mycotoxin contamination in agricultural commodities being considered as a significant risk to human and livestock health, while the mechanism of FB1 immunotoxicity are less understood, especially in chicken. Given that extracellular traps as a novel defense mechanism of leukocytes play an important role against foreign matters, in this study we aimed to investigate the effects of FB1 on chicken heterophil extracellular traps (HETs) formation. Our result showed that FB1 induced HETs release in chicken heterophils observed via immunostaining, and it was concentration-dependent during 10 to 40 μM. Moreover, in 40 μM FB1-exposed chicken heterophils, reactive oxygen species (ROS) level was increased, while catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity and glutathione (GSH) content were decreased. Simultaneously, FB1 (40 μM) activated ERK and p38 MAPK signaling pathways via increasing the phosphorylation level of ERK and p38 proteins. However, pretreatment of SB202190, U0126, and diphenyleneiodonium chloride (DPI) did not change FB1-triggered ROS production and HETs formation, suggesting FB1-induced HETs was a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, p38, and extracellular regulated protein kinases (ERK) signaling pathways-independent process. Inhibition of peptidyl arginine deiminase 4 (PAD4) enzyme and P2 × 1 receptor showed their vital role in 40 μM FB1-triggered HETs. This study reported for the first time that 40 μM FB1 induced the release of HETs in heterophils, and it was related to ROS production, PAD4, and P2 × 1, but was independent of NADPH oxidase, p38 and ERK signaling pathways, which might provide a whole novel perspective of perceiving and understanding the role of FB1 in immunotoxicity.
Collapse
Affiliation(s)
- Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xia Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Youpeng Sun
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yiwu Fu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
34
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
35
|
Awad MA, Ahmed ZSO, AbuBakr HO, Elbargeesy GAEFH, Moussa MHG. Fipronil induced oxidative stress in neural tissue of albino rat with subsequent apoptosis and tissue reactivity. Acta Histochem 2021; 123:151764. [PMID: 34352653 DOI: 10.1016/j.acthis.2021.151764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/15/2022]
Abstract
Fipronil (FIP) insecticide is extensively used in agriculture, public health and veterinary medicine. Although it is considered as a neurotoxin to insects (target organisms) and exhibits neurological signs upon vertebrates (non-target organisms) exposure, slight is known about its potential neurotoxic effects and its molecular mechanisms on vertebrates. The current study is designed to assess oxidative stress as a molecular mechanism of FIP neurotoxicity subordinated with apoptosis and neural tissue reactivity. Ten adult male albino rats received 10 mg/kg body weight fipronil technical grade by oral gavage daily for 45 days (subacute exposure). Brain neural tissue regions (hippocampus, cerebellum and caudate putamen) were processed to examine oxidative stress induced cellular macromolecular alterations as MDA, PCC and DNA fragmentation. Besides, TNF-α and Bcl-2 gene expression and immunoreactivity for caspase-3 (active form), iNOS and GFAP were evaluated. Also, histopathological assessment was conducted. We found that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). Also, it significantly upregulated TNF-α and non-significantly down-regulated Bcl-2 gene expression (p ≤ 0.05). Further, significant increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in these brain neural tissue regions in FIP treated group was noticed (p ≤ 0.05). Histopathological findings, including alterations in the histological architecture and neuronal degeneration, were also observed in these brain regions of FIP treated group. In conclusion, we suggest the ability of FIP to induce oxidative stress mediated macromolecular alterations, leading to apoptosis and tissue reaction in these brain regions which showed variable susceptibility to FIP toxic effects.
Collapse
Affiliation(s)
- Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Zainab Sabry Othman Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | | | - Moukhtar H G Moussa
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
36
|
Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021; 26:molecules26175238. [PMID: 34500671 PMCID: PMC8434385 DOI: 10.3390/molecules26175238] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisin B1 (FB1), belonging to the member of fumonisins, is one of the most toxic mycotoxins produced mainly by Fusarium proliferatum and Fusarium verticillioide. FB1 has caused extensive contamination worldwide, mainly in corn, rice, wheat, and their products, while it also poses a health risk and is toxic to animals and human. It has been shown to cause oxidative stress, endoplasmic reticulum stress, cellular autophagy, and apoptosis. This review focuses on the current stage of FB1 contamination, its toxic effects of acute toxicity, immunotoxicity, organ toxicity, and reproductive toxicity on animals and humans. The potential toxic mechanisms of FB1 are discussed. One of the main aims of the work is to provide a reliable reference strategy for understanding the occurrence and toxicity of FB1.
Collapse
|
37
|
Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Ali O, Mézes M, Balogh K, Kovács M, Szabó A. The Effects of Mixed Fusarium Mycotoxins at EU-Permitted Feed Levels on Weaned Piglets' Tissue Lipids. Toxins (Basel) 2021; 13:444. [PMID: 34199083 PMCID: PMC8309798 DOI: 10.3390/toxins13070444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
At exactly the individual permitted EU-tolerance dietary limits, fumonisins (FB: 5 mg/kg diet) and mixed fusariotoxins (DZ: 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet, and FDZ: 5 mg fumonisins + 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet) were administered to piglets (n = 6/group) for three weeks. Bodyweights of intoxicated piglets increased, while feed conversion ratios decreased. In FDZ, both the absolute and relative weight of the liver decreased. In the renal-cellular membrane, the most pronounced alterations were in FDZ treatment, followed by individual FB exposure. In both treatments, high proportions of C20:0 and C22:0 with low fatty acid (FA) unsaturation were found. In hepatocyte phospholipids, FDZ toxins exerted antagonistic interactions, and FB had the strongest increasing effect on FA monounsaturation. Among all investigated organs, the spleen lipids were the least responsive, in which FDZ expressed synergistic reactions on C20:0 (↑ FDZ vs. FB) and C22:0 (↓ FDZ vs. DZ). The antioxidant defense of the kidney was depleted (↓ glutathione concentration by FB-exposure). Blood plasma indicated renal injury (profound increase of urea and creatinine in FB vs. DZ and FDZ). FB strongly increased total-cholesterol and low density lipoprotein concentrations, whereas FDZ synergistically increased gamma-glutamyltransferase, alkaline-phosphatase, calcium and phosphorus levels. Summarized, individual and combined multiple fusariotoxins modified the membrane lipid profile and antioxidant defense of splanchnic organs, and serum biochemicals, without retarding growth in piglets.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
| | - Miklós Mézes
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Krisztián Balogh
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Melinda Kovács
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary
| | - András Szabó
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary
| |
Collapse
|
39
|
Non-cytotoxic dosage of fumonisin B1 aggravates ochratoxin A-induced nephrocytotoxicity and apoptosis via ROS-dependent JNK/MAPK signaling pathway. Toxicology 2021; 457:152802. [PMID: 33905761 DOI: 10.1016/j.tox.2021.152802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
Ochratoxin A (OTA) and fumonisin B1 (FB1), two of the most toxicologically important mycotoxins, often coexist in a variety of foodstuff and feed in humans and animals. Because of the low content of FB1 in foodstuff and feed, alone harmfulness of FB1 is often ignored. However, it is unknown whether the lower dosage of FB1 aggravates the toxicity of other mycotoxins. In this article, we aimed to investigate the effects of the lower dosage of FB1 on OTA-induced nephrotoxicity and apoptosis, and its underlying mechanism in porcine kidney cells (PK-15). Our current study showed that the non-cytotoxic concentration of FB1 (8 μM) could enhance OTA(5 μM)-induced nephrocytotoxicity and the expression of pro-apoptosis-associated genes in PK-15 cells. We also observed that the production of reactive oxygen species (ROS) was increased. However, the expression of pro-apoptosis-associated genes were down-regulated when the N-acetylcysteine (NAC), a ROS scavenger, was used in our experiment. Besides, we found that the combined toxins could increase the protein expression of p-JNK instead of p-p38 and p-ERK. Pretreatment with SP600125, a JNK inhibitor, could significantly block the promotion effects of FB1 on OTA-induced nephrocytotoxicity and apoptosis. The protein expression of p-JNK was also inhibited and the promotion effects of FB1 were significantly alleviated when NAC was used. In conclusion, the non-cytotoxic dosage of FB1 could aggravate the nephrocytotoxicity and apoptosis caused by OTA via ROS-dependent JNK/MAPK signaling pathway.
Collapse
|
40
|
Szabó A, Nagy S, Ali O, Gerencsér Z, Mézes M, Balogh KM, Bartók T, Horváth L, Mouhanna A, Kovács M. A 65-Day Fumonisin B Exposure at High Dietary Levels Has Negligible Effects on the Testicular and Spermatological Parameters of Adult Rabbit Bucks. Toxins (Basel) 2021; 13:toxins13040237. [PMID: 33806221 PMCID: PMC8066801 DOI: 10.3390/toxins13040237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
A 65-day study was undertaken to test the effects of two doses (10 and 20 mg/kg) of dietary fumonisin Bs (FB) on the rabbit male reproduction system. Body and testicular weight was not affected by the intoxication, neither the fatty acid composition of the testicular total phospholipids; the testis histological analysis failed to reveal any toxic effect. The FBs increased the testicular concentration and activity of reduced glutathione and glutathione peroxidase and decreased initial phase lipid peroxidation (conjugated dienes and trienes) in a dose dependent manner. Sperm morphology and chromatin condensation were monitored on Feulgen-stained smears. No significant differences were observed between the treatment groups and between sampling time points. The live cell ratio in the sperm (as assessed with flow cytometry) was not different among groups at any of the five sampling timepoints and was also identical within groups. Similarly, the spermatozoa membrane lipid profile was also identical in all three groups after the total intoxication period. In summary, it was demonstrated that FBs in an unrealistic and unjustified high dose still do not exert any drastic harmful effect on the leporine, male reproduction system, meanwhile slightly augmenting testicular antioxidant response.
Collapse
Affiliation(s)
- András Szabó
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary;
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
- Correspondence:
| | - Szabolcs Nagy
- Department of Precision Livestock Farming and Animal Biotechnics, Institute of Animal Sciences, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Deák F. u. 16., 8360 Keszthely, Hungary;
| | - Omeralfaroug Ali
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
| | - Zsolt Gerencsér
- Department of Animal Breeding, Institute of Animal Sciences, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary;
| | - Miklós Mézes
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.M.B.)
| | - Krisztián Milán Balogh
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.M.B.)
| | - Tibor Bartók
- Fumizol Ltd., Kisfaludy u. 6/b, 6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Levente Horváth
- Fumizol Ltd., Kisfaludy u. 6/b, 6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Aziz Mouhanna
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
| | - Melinda Kovács
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary;
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. u. 40., 7400 Kaposvár, Hungary; (O.A.); (A.M.)
| |
Collapse
|
41
|
Oskarsson A, Rosenmai AK, Mandava G, Johannisson A, Holmes A, Tröger R, Lundqvist J. Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays - Oxidative stress and antiandrogenic effects after artificial infiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144001. [PMID: 33338789 DOI: 10.1016/j.scitotenv.2020.144001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Drinking water quality and treatment efficacy was investigated in seven drinking water treatment plants (DWTPs), using water from the river Göta Älv, which also is a recipient of treated sewage water. A panel of cell-based bioassays was used, including measurements of receptor activity of aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), peroxisome proliferator-activated receptor alpha (PPARα) as well as induction of oxidative stress (Nrf2) and micronuclei formation. Grab water samples were concentrated by solid phase extraction (SPE) and water samples were analyzed at a relative enrichment factor of 50. High activities of AhR, ER and AR antagonism were present in WWTP outlets along the river. Inlet water from the river exhibited AhR and AR antagonistic activities. AhR activity was removed by DWTPs using granulated activated carbon (GAC) and artificial infiltration. AR antagonistic activity was removed by the treatment plants, except the artificial infiltration plant, which actually increased the activity. Furthermore, treated drinking water from the DWTP using artificial infiltration exhibited high Nrf2 activity, which was not found in any of the other water samples. Nrf2 activity was found in water from eight of the 13 abstraction wells, collecting water from the artificial infiltration. No genotoxic activity was detected at non-cytotoxic concentrations. No Nrf2 or AR antagonistic activities were detected in the inlet or outlet water after the DWTP had been replaced by a new plant, using membrane ultrafiltration and GAC. Neither target chemical analysis, nor chemical analysis according to the drinking water regulation, detected any presence of chemicals, which could be responsible of the prominent effects on oxidative stress and AR antagonistic activity in the drinking water samples. Thus, bioanalysis is a useful tool for detection of unknown hazards in drinking water and for assessment of drinking water treatments.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Anna Kjerstine Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Andrew Holmes
- Kungälv Drinking Water Treatment Plant, Filaregatan 15, SE-442 81 Kungälv, Sweden
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
42
|
Gerez JR, Camacho T, Brunaldi Marutani VH, Nascimento de Matos RL, Hohmann MS, Verri Júnior WA, Bracarense APFRL. Ovarian toxicity by fusariotoxins in pigs: Does it imply in oxidative stress? Theriogenology 2021; 165:84-91. [PMID: 33640590 DOI: 10.1016/j.theriogenology.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
Mycotoxins are natural contaminants of food and feed occurring worldwide. Deoxynivalenol (DON) and fumonisin B1 (FB1) are the most frequent fusariotoxins and induce immune and intestinal toxicity in humans and animals. Recently, an association between mycotoxins exposure and impaired fertility has been suggested. However, the effects of these mycotoxins on the reproductive system are not well established. This study aimed to evaluate the effects of FB1 and DON, in combination or alone, on the ovarian morphology and oxidative responses using porcine explants. Seventy-two explants were obtained from six pigs and submitted to the following treatments: control (MEM medium), DON (10 μM), FB1 (100 μM FB1), and DON + FB1 (10 μM + 100 μM). Histological and immunohistochemical assays were performed to evaluate ovarian changes, cell proliferation, and apoptosis. Oxidative stress response was evaluated through lipid peroxidation and antioxidant capacity response assays. The exposure to mycotoxins induced significant histological changes in the ovaries, which were characterized by a decrease in viable follicles and increase in degenerated follicles. A significant decrease in granulosa cell proliferation was observed in explants exposed to all mycotoxins. In addition the multi-contaminated treatment was responsible for an increase in the cell apoptosis index of growing follicles. On the other hand, the FB1 and multi-contaminated treatments induced a significant decrease in lipid peroxidation accompanied by an increase in antioxidant responses. Altogether, our results indicate a reproductive toxicity induced by fusariotoxins. Moreover, mycotoxins, alone or in combination, modulate oxidative stress response, interfering with the production of free radicals and affecting the reproductive capacity of pigs.
Collapse
Affiliation(s)
- Juliana Rubira Gerez
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil; Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil.
| | - Thaynara Camacho
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil.
| | | | | | - Miriam Sayuri Hohmann
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil.
| | - Waldiceu Aparecido Verri Júnior
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Universidade Estadual de Londrina, Londrina, Paraná, 86057-970, Brazil.
| | | |
Collapse
|
43
|
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, Zoidis E, Tsiplakou E, Pappas AC, Georgiou CA, Feggeros K. Impact of Mycotoxins on Animals' Oxidative Status. Antioxidants (Basel) 2021; 10:214. [PMID: 33535708 PMCID: PMC7912820 DOI: 10.3390/antiox10020214] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mycotoxins appear to be the "Achilles' heel" of the agriculture sector inducing enormous economic losses and representing a severe risk to the health of humans and animals. Although novel determination protocols have been developed and legislation has been implemented within Europe, the side effects of mycotoxins on the homeostatic mechanisms of the animals have not been extensively considered. Feed mycotoxin contamination and the effects on the antioxidant status of livestock (poultry, swine, and ruminants) are presented. The findings support the idea that the antioxidant systems in both monogastrics and ruminants are challenged under the detrimental effect of mycotoxins by increasing the toxic lipid peroxidation by-product malondialdehyde (MDA) and inhibiting the activity of antioxidant defense mechanisms. The degree of oxidative stress is related to the duration of contamination, co-contamination, the synergetic effects, toxin levels, animal age, species, and productive stage. Since the damaging effects of MDA and other by-products derived by lipid peroxidation as well as reactive oxygen species have been extensively studied on human health, a more integrated monitoring mechanism (which will take into account the oxidative stability) is urgently required to be implemented in animal products.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Savvina Tavrizelou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Maria Zacharioudaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - George Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Kostas Feggeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| |
Collapse
|
44
|
Chen J, Wei Z, Wang Y, Long M, Wu W, Kuca K. Fumonisin B 1: Mechanisms of toxicity and biological detoxification progress in animals. Food Chem Toxicol 2021; 149:111977. [PMID: 33428988 DOI: 10.1016/j.fct.2021.111977] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/21/2023]
Abstract
Fumonisin B1 (FB1) is a toxic secondary metabolite produced by the Fusarium molds that can contaminate food and feed. It has been found that FB1 can cause systemic toxicity, including neurotoxicity, hepatotoxicity, nephrotoxicity and mammalian cytotoxicity. This review addresses the toxicity studies carried out on FB1 and outlines the probable mechanisms underlying its immunotoxicity, reproductive toxicity, joint toxicity, apoptosis, and autophagy. In the present work, the research progress of FB1 detoxification in recent years is reviewed, which provides reference for controlling and reducing the toxicity of FB1.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Zhen Wei
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
45
|
Yayeh T, Jeong HR, Park YS, Moon S, Sur B, Yoo HS, Oh S. Fumonisin B1-Induced Toxicity Was Not Exacerbated in Glutathione Peroxidase-1/Catalase Double Knock Out Mice. Biomol Ther (Seoul) 2021; 29:52-57. [PMID: 32632050 PMCID: PMC7771844 DOI: 10.4062/biomolther.2020.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Fumonisin B1 (FB1) structurally resembles sphingolipids and interferes with their metabolism leading to sphingolipid dysregulation. We questioned if FB1 could exacerbate liver or kidney toxicities in glutathione peroxidase 1 (Gpx1) and catalase (Cat) knockout mice. While higher serum levels of thiobarbituric acid reactive substances (TBARS) and sphinganine (Sa) were measured in Gpx1/Cat knockout mice (Gpx1/Cat KO) than wild type mice after 5 days of FB1 treatment, serum levels of alanine aminotransferase (ALT), sphingosine-1 phosphate (So-1-P), and sphinganine-1 phosphate (Sa-1-P) were found to be relatively low. Although Sa was highly elevated in Gpx1/Cat KO mice and wild mice, lower levels of So and Sa were found in both the kidney and liver tissues of Gpx/Cat KO mice than wild type mice after FB1 treatment. Paradoxically, FB1-induced cellular apoptosis and necrosis were hastened under oxidative stress in Gpx1/Cat KO mice.
Collapse
Affiliation(s)
- Taddesse Yayeh
- Department of Veterinary Science, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar 5501, Ethiopia
| | - Ha Ram Jeong
- St. Louis College of Pharmacy, St. Louis, MO 63108, USA
| | - Yoon Soo Park
- St. Louis College of Pharmacy, St. Louis, MO 63108, USA
| | - Sohyeon Moon
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Bongjun Sur
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hwan-Soo Yoo
- College of Pharmacy, Chungbuk National University, Osong 28160, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
46
|
Kövesi B, Kulcsár S, Zándoki E, Szabó-Fodor J, Mézes M, Balogh K, Ancsin Z, Pelyhe C. Short-term effects of deoxynivalenol, T-2 toxin, fumonisin B1 or ochratoxin on lipid peroxidation and glutathione redox system and its regulatory genes in common carp (Cyprinus carpio L.) liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1921-1932. [PMID: 32617788 PMCID: PMC7584534 DOI: 10.1007/s10695-020-00845-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 05/09/2023]
Abstract
The effects of a single oral dose of 1.82 mg kg-1 bw of T-2 and HT-2 toxin (T-2), 1.75 mg kg-1 bw deoxynivalenol (DON) and 15-acetyl DON, 1.96 mg kg-1 bw fumonisin B1 (FB1) or 1.85 mg kg-1 bw ochratoxin A (OTA) were investigated in common carp juveniles on lipid peroxidation, the parameters of the glutathione redox system including the expression of their encoding genes in a short-term (24 h) experiment. Markers of the initiation phase of lipid peroxidation, conjugated dienes, and trienes, were slightly affected by DON and OTA treatment at 16-h sampling. The termination marker, malondialdehyde, concentration increased only as an effect of FB1. Glutathione content and glutathione peroxidase activity showed significantly higher levels in the T-2 and FB1 groups at 8 h, and in the DON and FB1 groups at 16 h. The expression of glutathione peroxidase genes (gpx4a, gpx4b) showed a dual response. Downregulation of gpxa was observed at 8 h, as the effect of DON, FB1, and OTA, but an upregulation in the T-2 group. At 16 h gpx4a upregulated as an effect of DON, T-2, and FB1, and at 24 h in the DON and T-2 groups. Expression of gpx4b downregulated at 8 h, except in the T-2 group, and upregulation observed as an effect of T-2 at 24 h. The lack of an increase in the expression of nrf2, except as the effect of DON at 8 h, and a decrease in the keap1 expression suggests that the antioxidant defence system was activated at gene and protein levels through Keap1-Nrf2 independent pathways.
Collapse
Affiliation(s)
- Benjámin Kövesi
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| | - Szabina Kulcsár
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| | - Erika Zándoki
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary
| | - Judit Szabó-Fodor
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary
| | - Miklós Mézes
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary.
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary.
| | - Krisztián Balogh
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary
| | - Zsolt Ancsin
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| | - Csilla Pelyhe
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| |
Collapse
|
47
|
Chen J, Li Z, Cheng Y, Gao C, Guo L, Wang T, Xu J. Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls. J Fungi (Basel) 2020; 6:E312. [PMID: 33255427 PMCID: PMC7711896 DOI: 10.3390/jof6040312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
48
|
Ledur PC, Santurio JM. Cytoprotective effects of curcumin and silymarin on PK-15 cells exposed to ochratoxin A, fumonisin B 1 and deoxynivalenol. Toxicon 2020; 185:97-103. [PMID: 32622693 DOI: 10.1016/j.toxicon.2020.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungus which cause worldwide concern regarding food and feed safety. Ochratoxin A (OTA), fumonisin B1 (FB1) and deoxynivalenol (DON) are some of the main mycotoxins and oxidative stress is the main mechanism of toxicity. Thereby, this study investigates the in vitro cytoprotective effects of curcumin (CUR) and silymarin (SIL) - known for their strong antioxidant activity - in PK-15 cells exposed to OTA, FB1 and DON. Pretreatment with CUR and SIL enhanced the viability of cells exposed to the mycotoxins (P < 0.001) and attenuated reactive oxygen species (ROS) formation by DON (P < 0.01), partially reduced ROS formation by FB1 (P < 0.001), but not OTA. CUR significantly decreased apoptosis in cells exposed to DON (P < 0.01) but was not able to prevent apoptosis in cells exposed to OTA and FB1. Whereas SIL was able to prevent apoptosis in PK-15 cells exposed to FB1 and DON (P < 0.01) but was not able to decrease apoptosis in cells exposed to OTA. In summary, these data indicate that curcumin and silymarin are able to provide cytoprotection against toxicity induced by OTA, FB1 and DON in PK-15 cells.
Collapse
Affiliation(s)
- Pauline Christ Ledur
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Janio M Santurio
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
49
|
Wang J, Liu Z, Han Z, Wei Z, Zhang Y, Wang K, Yang Z. Fumonisin B1 triggers the formation of bovine neutrophil extracellular traps. Toxicol Lett 2020; 332:140-145. [DOI: 10.1016/j.toxlet.2020.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
|
50
|
Sheik Abdul N, Marnewick JL. Fumonisin B 1 -induced mitochondrial toxicity and hepatoprotective potential of rooibos: An update. J Appl Toxicol 2020; 40:1602-1613. [PMID: 32667064 DOI: 10.1002/jat.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Fumonisins are a family of potentially carcinogenic mycotoxins produced by Fusarium verticillioides. Several fumonisins have been identified with fumonisin B1 (FB1 ) being the most toxic. The canonical mechanism of FB1 toxicity is centered on its structural resemblance with sphinganine and consequent competitive inhibition of ceramide synthase and disruption of lipidomic profiles. Recent and emerging evidence at the molecular level has identified the disruption of mitochondria and excessive generation of toxic reactive oxygen species (ROS) as alternative/additional mechanisms of toxicity. The understanding of how these pathways contribute to FB1 toxicity can lead to the identification of novel, effective approaches to protecting vulnerable populations. Natural compounds with antioxidant properties seem to protect against the induced toxic effects of FB1 . Rooibos (Aspalathus linearis), endemic to South Africa, has traditionally been used as a medicinal herbal tea with strong scientific evidence supporting its anecdotal claims. The unique composition of phytochemicals and combination of metabolic activators, adaptogens and antioxidants make rooibos an attractive yet underappreciated intervention for FB1 toxicoses. In the search for a means to address FB1 toxicoses as a food safety problem in developing countries, phytomedicine and traditional knowledge systems must play an integral part. This review aims to summarize the growing body of evidence succinctly, which highlights mitochondrial dysfunction as a secondary toxic effect responsible for the FB1 -induced generation of ROS. We further propose the potential of rooibos to combat this induced toxicity based on its integrated bioactive properties, as a socio-economically viable strategy to prevent and/or repair cellular damage caused by FB1 .
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|