1
|
Hu J, Liu C, Zeng X, Tang T, Zeng Z, Wu J, Tan X, Dai Q, Jin C. Prochloraz induced alterations in the expression of mRNA in the reproductive system of male offspring mice. PeerJ 2024; 12:e17917. [PMID: 39210919 PMCID: PMC11361262 DOI: 10.7717/peerj.17917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prochloraz is a widely used fungicide worldwide. It is classified as an endocrine disrupting pesticide that affects the reproductive system. This study aimed to examine the impact of exposure to prochloraz of male mice on the reproductive system of their offspring male mice. Male father mice were intragastrically administered different dosages of prochloraz (group MA: 0 mg/kg/day; MB: 53.33 mg/kg/day; MD:160 mg/kg/day). Then, the testicular average weight of male offspring in the dose groups was found to be significantly lower than those in the control group (MB:0.312g, MD:0.294g, and MA:0.355 g; P < 0.05). Additionally, the testicular coefficient index in the MB and MD groups was also lower than that of the control group. Secondly,we observed that there were significantly different expressed genes clustered in groups B and D, in contrast to the control. Finally, the findings demonstrated a significant alteration in the response of male mice reproductive relative genes to prochloraz invasion. Two genes (Mt-nd6 and Slc12a4) were found to be involved in the regulation of sperm mitochondria function and six genes (Greb1, Esrrb, Catsperb, Mospd2, Sohlh1 and Specc1) were closely linked to sperm functions and estrogen response. The study revealed a significant impact of prochloraz on the reproductive system of male mice, thereby supporting further investigation into the reproductive toxicological effects of the drug.
Collapse
Affiliation(s)
- Junhe Hu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chang Liu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xianghui Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Tao Tang
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Zhi Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Juan Wu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xiansheng Tan
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Qingxiang Dai
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| |
Collapse
|
2
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Li J, Yang L, He G, Wang B, Miao M, Ji H, Wen S, Cao W, Yuan W, Liang H. Association between prenatal exposure to perfluoroalkyl substances and anogenital distance in female neonates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114130. [PMID: 36182800 DOI: 10.1016/j.ecoenv.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) have been reported to exert reproductive toxicity. Anogenital distance (AGD) is a biomarker of intrauterine androgen exposure and an indicator of genital development. An animal study reported that female neonatal rats exposed to perfluorooctanoic acid or perfluorooctane sulfonate (PFOS) during postnatal days 1-5 exhibited a longer AGD, while epidemiological studies have shown inconsistent results. This study aimed to examine the effects of prenatal exposure to PFASs on the AGD in female neonates. METHODS PFAS levels were measured in plasma samples obtained from pregnant women at 12-16 gestational weeks using high-performance liquid chromatography/mass spectrometry. The AGD of each female neonate was measured within 3 days after delivery. The anogenital index (AGI), calculated as AGD divided by weight, was also determined. A total of 362 motherinfant pairs were included in this study. A multivariate linear regression model was used to examine the association between prenatal ln-transformed concentrations of PFASs and AGD/AGI. In addition, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) models were used to assess the overall effects of a mixture of PFASs on the AGD/AGI and to identify important contributors to the overall effect. RESULTS There was a consistent pattern of association between maternal PFAS concentrations and increased AGDanus to posterior fourchette (AF), AGDanus to clitoris (AC), and AGIAF lengths at birth. Statistical significance was found between maternal ln-transformed concentrations of perfluorohexane sulfonate (PFHxS), perfluorododecanoic acid, and perfluorotridecanoic acid and AGDAF, with β values (95% confidence interval [CI]) of 0.83 (0.16, 1.51), 0.32 (0.05, 0.59), and 0.25 (0.00, 0.51) mm, respectively; between PFOS and AGDAC, with a β value (95% CI) of 0.63 (0.04, 1.21) mm; and between PFHxS and AGIAF, with a β value (95% CI) of 0.22 (0.02, 0.43) mm/kg. Similarly, the WQSR and BKMR models showed that an increase in the AGDAF/AGIAF at birth was associated with co-exposure to a mixture of PFASs. CONCLUSION High maternal concentrations of PFASs were associated with increased AGD in female neonates, indicating that PFASs may impair reproductive development in female offspring in early life.
Collapse
Affiliation(s)
- Jincan Li
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Limei Yang
- The First People's Hospital of Jiashan, Jiaxing Zhejiang Province 314199, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing 100081, China
| | - Maohua Miao
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wei Yuan
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China.
| |
Collapse
|
4
|
Draskau MK, Svingen T. Azole Fungicides and Their Endocrine Disrupting Properties: Perspectives on Sex Hormone-Dependent Reproductive Development. FRONTIERS IN TOXICOLOGY 2022; 4:883254. [PMID: 35573275 PMCID: PMC9097791 DOI: 10.3389/ftox.2022.883254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Azoles are antifungal agents used in both agriculture and medicine. They typically target the CYP51 enzyme in fungi and, by so doing, disrupt cell membrane integrity. However, azoles can also target various CYP enzymes in mammals, including humans, which can disrupt hormone synthesis and signaling. For instance, several azoles can inhibit enzymes of the steroidogenic pathway and disrupt steroid hormone biosynthesis. This is of particular concern during pregnancy, since sex hormones are integral to reproductive development. In other words, exposure to azole fungicides during fetal life can potentially lead to reproductive disease in the offspring. In addition, some azoles can act as androgen receptor antagonists, which can further add to the disrupting potential following exposure. When used as pharmaceuticals, systemic concentrations of the azole compounds can become significant as combatting fungal infections can be very challenging and require prolonged exposure to high doses. Although most medicinal azoles are tightly regulated and used as prescription drugs after consultations with medical professionals, some are sold as over-the-counter drugs. In this review, we discuss various azole fungicides known to disrupt steroid sex hormone biosynthesis or action with a focus on what potential consequences exposure during pregnancy can have on the life-long reproductive health of the offspring.
Collapse
|
5
|
Pedersen EB, Christiansen S, Svingen T. AOP key event relationship report: Linking androgen receptor antagonism with nipple retention. Curr Res Toxicol 2022; 3:100085. [PMID: 36090961 PMCID: PMC9459418 DOI: 10.1016/j.crtox.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
A full AOP KER description linking AR antagonism with nipple retention in rodents. Described KER 2133 is a non-adjacent KER of an intended AOP delineating anti-androgenicity as a mode for nipple retention. A case study for developing and publishing independent units of information under the AOP framework.
In rat developmental and reproductive toxicity studies, nipple/areola retention (NR) in male offspring is a biomarker for reduced androgen signaling during development. This is because nipples normally regress in male rats in response to androgen signaling during critical stages of development. NR is thus included as a mandatory endpoint in several OECD test guidelines for assessment of chemicals, particularly as a readout for anti-androgenic effects relevant for reproductive toxicity. With the growing interest in developing Adverse Outcome Pathways (AOPs) to aid in chemical risk assessment, a more pragmatic approach has been proposed, whereby essential units of knowledge could be developed independently of complete AOPs, not least emergent key event relationships (KERs). Herein, we have developed a KER linking “androgen receptor antagonism” and “increased areola/nipple retention”. The KER is based on a literature review conducted in a transparent semi-systematic manner in peer-reviewed databases with pre-defined inclusion criteria. Twenty-seven papers were included for development of the KER. The results support a qualitative relationship between the two key events (KEs) with a high weight of evidence; i.e., a causal relationship between androgen receptor (AR) antagonism and nipple retention in male rats exists.
Collapse
|
6
|
OUP accepted manuscript. Toxicol Sci 2022; 187:80-92. [DOI: 10.1093/toxsci/kfac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Sakali AK, Bargiota A, Fatouros IG, Jamurtas A, Macut D, Mastorakos G, Papagianni M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients 2021; 13:nu13114184. [PMID: 34836437 PMCID: PMC8622967 DOI: 10.3390/nu13114184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pesticide residues are largely found in daily consumed food because of their extensive use in farming and their long half-life, which prolongs their presence in the environment. Many of these pesticides act as endocrine-disrupting chemicals after pre- or postnatal exposure, significantly affecting, among other things, the time of puberty onset, progression, and completion. In humans, precocious or delayed puberty, and early or delayed sexual maturation, may entail several negative long-term health implications. In this review, we summarize the current evidence on the impact of endocrine-disrupting pesticides upon the timing of the landmarks of female and male puberty in both animals (vaginal opening, first estrus, and balanopreputial separation) and humans (thelarche, menarche, gonadarche). Moreover, we explore the possible mechanisms of action of the reviewed endocrine-disrupting pesticides on the human reproductive system. Access to safe, healthy, and nutritious food is fundamental for the maintenance of health and wellbeing. Eliminating the presence of hazardous chemicals in largely consumed food products may increase their nutritional value and be proven beneficial for overall health. Consequently, understanding the effects of human exposure to hazardous endocrine-disrupting pesticides, and legislating against their circulation, are of major importance for the protection of health in vulnerable populations, such as children and adolescents.
Collapse
Affiliation(s)
- Anastasia Konstantina Sakali
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (A.K.S.); (A.B.)
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (A.K.S.); (A.B.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.J.)
| | - Athanasios Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.J.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Maria Papagianni
- Department of Nutrition and Dietetics, University of Thessaly, 42132 Trikala, Greece
- Unit of Endocrinology, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
8
|
Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM, Svingen T. On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. FRONTIERS IN TOXICOLOGY 2021; 3:730752. [PMID: 35295101 PMCID: PMC8915873 DOI: 10.3389/ftox.2021.730752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Areola/nipple retention (NR) is an established biomarker for an anti-androgenic mode of action in rat toxicity studies. It is a mandatory measurement under several OECD test guidelines and is typically assessed in combination with anogenital distance (AGD). Both NR and AGD are considered retrospective biomarkers of insufficient androgen signaling during the masculinization programming window in male fetuses. However, there are still aspects concerning NR as a biomarker for endocrine disruption that remains to be clarified. For instance, can NR be regarded a permanent adverse effect? Is it a redundant measurement if AGD is assessed in the same study? Is NR equally sensitive and specific to anti-androgenic chemical substances as a shortening of male AGD? In this review we discuss these and other aspects concerning the use of NR as a biomarker in toxicity studies. We have collected available literature from rat toxicity studies that have reported on NR and synthesized the data in order to draw a clearer picture about the sensitivity and specificity of NR as an effect biomarker for an anti-androgenic mode of action, including comparisons to AGD measurements. We carefully conclude that NR and AGD in rats for the most part display similar sensitivity and specificity, but that there are clear exceptions which support the continued assessment of both endpoints in relevant reproductive toxicity studies. Available literature also support the view that NR in infant male rats signifies a high risk for permanent nipples in adulthood. Finally, the literature suggests that the mechanisms of action leading from a chemical stressor event to either NR or short AGD in male offspring are overlapping with respect to canonical androgen signaling, yet differ with respect to other mechanisms of action.
Collapse
|
9
|
Draskau MK, Rosenmai AK, Scholze M, Pedersen M, Boberg J, Christiansen S, Svingen T. Human-relevant concentrations of the antifungal drug clotrimazole disrupt maternal and fetal steroid hormone profiles in rats. Toxicol Appl Pharmacol 2021; 422:115554. [PMID: 33910022 DOI: 10.1016/j.taap.2021.115554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023]
Abstract
Clotrimazole is a non-prescription and broad-spectrum antifungal drug sold under brand names such as Canesten® and Lotrimin®. It is used to treat different types of fungal infections, from oral thrush to athlete's foot and vaginal mycosis. The level of exposure to clotrimazole is uncertain, as the exact usage amongst self-medicating patients is unclear. Recent studies have raised potential concern about the unsupervised use of clotrimazole during pregnancy, especially since it is a potent inhibitor of CYP enzymes of the steroidogenesis pathway. To address some of these concerns, we have assessed the effects of intrauterine exposure to clotrimazole on developing rat fetuses. By exposing pregnant rats to clotrimazole 25 or 75 mg/kg bw/day during gestation days 7-21, we obtained internal fetal concentrations close to those observed in humans. These in vivo data are in strong agreement with our physiologically-based pharmacokinetic (PBK)-modelled levels. At these doses, we observed no obvious morphological changes to the reproductive system, nor shorter male anogenital distance; a well-established morphometric marker for anti-androgenic effects in male offspring. However, steroid hormone profiles were significantly affected in both maternal and fetal plasma, in particular pronounced suppression of estrogens was seen. In fetal testes, marked up-concentration of hydroxyprogesterone was observed, which indicates a specific action on steroidogenesis. Since systemic clotrimazole is rapidly metabolized in humans, relevant exposure levels may not in itself cause adverse changes to the reproductive systems. Its capacity to significantly alter steroid hormone concentrations, however, suggests that clotrimazole should be used with caution during pregnancy.
Collapse
Affiliation(s)
- Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Anna Kjerstine Rosenmai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Martin Scholze
- Division of Environmental Studies, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Mikael Pedersen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
10
|
Johansson HKL, Christiansen S, Draskau MK, Svingen T, Boberg J. Classical toxicity endpoints in female rats are insensitive to the human endocrine disruptors diethylstilbestrol and ketoconazole. Reprod Toxicol 2021; 101:9-17. [PMID: 33571642 DOI: 10.1016/j.reprotox.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
Developmental exposure to endocrine disrupting chemicals can have negative consequences for reproductive health in both men and women. Our knowledge about how chemicals can cause adverse health outcomes in females is, however, poorer than our knowledge in males. This is possibly due to lack of sensitive endpoints to evaluate endocrine disruption potential in toxicity studies. To address this shortcoming we carried out rat studies with two well-known human endocrine disruptors, diethylstilbestrol (DES) and ketoconazole (KTZ), and evaluated the sensitivity of a series of endocrine related endpoints. Sprague-Dawley rats were exposed orally from gestational day 7 until postnatal day 22. In a range-finding study, disruption of pregnancy-related endpoints was seen from 0.014 mg/kg bw/day for DES and 14 mg/kg bw/day for KTZ, so doses were adjusted to 0.003; 0.006; and 0.0012 mg/kg bw/day DES and 3; 6; or 12 mg/kg bw/day KTZ in the main study. We observed endocrine disrupting effects on sensitive endpoints in male offspring: both DES and KTZ shortened anogenital distance and increased nipple retention. In female offspring, 0.0012 mg/kg bw/day DES caused slightly longer anogenital distance. We did not see effects on puberty onset when comparing average day of vaginal opening; however, we saw a subtle delay after exposure to both chemicals using a time-curve analysis. No effects on estrous cycle were registered. Our study shows a need for more sensitive test methods to protect the reproductive health of girls and women from harmful chemicals.
Collapse
Affiliation(s)
- Hanna K L Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
11
|
Draskau MK, Lardenois A, Evrard B, Boberg J, Chalmel F, Svingen T. Transcriptome analysis of fetal rat testis following intrauterine exposure to the azole fungicides triticonazole and flusilazole reveals subtle changes despite adverse endocrine effects. CHEMOSPHERE 2021; 264:128468. [PMID: 33032228 DOI: 10.1016/j.chemosphere.2020.128468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Azoles are used in agriculture and medicine to combat fungal infections. We have previously examined the endocrine disrupting properties of the agricultural azole fungicides triticonazole and flusilazole. Triticonazole displayed strong androgen receptor (AR) antagonism in vitro, whereas in utero exposure resulted in anti-androgenic effects in vivo evidenced by shorter anogenital distance (AGD) in fetal male rats. Flusilazole displayed strong AR antagonism, but less potent than triticonazole, and disrupted steroidogenesis in vitro, whereas in utero exposure disrupted fetal male plasma hormone levels. To elaborate on how these azole fungicides can disrupt male reproductive development by different mechanisms, and to investigate whether feminization effects such as short AGD in males can also be detected at the transcript level in fetal testes, we profiled fetal testis transcriptomes after in utero exposure to triticonazole and flusilazole by 3'Digital Gene Expression (3'DGE). The analysis revealed few transcriptional changes after exposure to either compound at gestation day 17 and 21. This suggests that the observed influence of flusilazole on hormone production may be by directly targeting steroidogenic enzyme activity in the testis at the protein level, whereas observations of shorter AGD by triticonazole may primarily be due to disturbed androgen signaling in androgen-sensitive tissues. Expression of Calb2 and Gsta2 was altered by flusilazole but not triticonazole and may pinpoint novel pathways of disrupted testicular steroid synthesis. Our findings have wider implication for how we integrate omics data in chemical testing frameworks, including selection of non-animal test methods and building of Adverse Outcome Pathways for regulatory purposes.
Collapse
Affiliation(s)
- Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK 2800, Denmark
| | - Aurélie Lardenois
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK 2800, Denmark
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK 2800, Denmark.
| |
Collapse
|
12
|
Draskau MK, Boberg J, Taxvig C, Pedersen M, Frandsen HL, Christiansen S, Svingen T. In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113309. [PMID: 31610510 DOI: 10.1016/j.envpol.2019.113309] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Azoles are effective antifungal agents used in both medicine and agriculture. They typically work by inhibiting cytochrome P450 enzymes, primarily CYP51 of the ergosterol biosynthesis pathway, thus damaging the fungal cell membrane. However, apart from their desired antifungal properties, several azoles also exhibit endocrine disrupting properties in mammals, both in vitro and in vivo. Here, we have tested two currently used agricultural azole fungicides, triticonazole and flusilazole, for their in vitro anti-androgenic activity and potential effects on reproductive parameters. Both fungicides showed strong androgen receptor (AR) antagonism and disruption of steroid biosynthesis in vitro. Following gestational exposure to flusilazole (15 or 45 mg/kg bw/day) or triticonazole (150 or 450 mg/kg bw/day) in time-mated Sprague Dawley rats, triticonazole induced shorter male anogenital distance (AGD). Flusilazole exposure did not affect the AGD, but altered fetal male blood hormone profile, with increased androstenedione and decreased estrone levels. Flusilazole and triticonazole have dissimilar effects on reproductive parameters in vivo, but both show endocrine disrupting activities.
Collapse
Affiliation(s)
- Monica Kam Draskau
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Camilla Taxvig
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Mikael Pedersen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Henrik Lauritz Frandsen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby, DK-2800, Denmark.
| |
Collapse
|
13
|
Wong HL, Garthwaite DG, Ramwell CT, Brown CD. Assessment of occupational exposure to pesticide mixtures with endocrine-disrupting activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1642-1653. [PMID: 30448946 DOI: 10.1007/s11356-018-3676-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Occupational exposure to pesticide mixtures comprising active substance(s) and/or co-formulant(s) with known/possible endocrine-disrupting activity was assessed using long-term activity records for 50 professional operators representing arable and orchard cropping systems in Greece, Lithuania, and the UK. Exposure was estimated using the harmonised Agricultural Operator Exposure Model, and risk was quantified as a point of departure index (PODI) using the lowest no observed (adverse) effect level. Use of substances with known/possible endocrine activity was common, with 43 of the 50 operators applying at least one such active substance on more than 50% of spray days; at maximum, one UK operator sprayed five such active substances and 10 such co-formulants in a single day. At 95th percentile, total exposure was largest in the UK orchard system (0.041 × 10-2 mg kg bw-1 day-1) whereas risk was largest in the Greek cropping systems (PODI 0.053 × 10-1). All five cropping systems had instances indicating potential for risk when expressed at a daily resolution (maximum PODI 1.2-10.7). Toxicological data are sparse for co-formulants, so combined risk from complex mixtures of active substances and co-formulants may be larger in reality.
Collapse
Affiliation(s)
- Hie Ling Wong
- Environment Department, University of York, York, YO10 5NG, UK.
- Faculty of Earth Science, University Malaysia Kelantan, Locked Bag 100, 17600, Jeli, Kelantan, Malaysia.
| | | | | | - Colin D Brown
- Environment Department, University of York, York, YO10 5NG, UK
| |
Collapse
|
14
|
Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 2018; 93:253-272. [PMID: 30430187 DOI: 10.1007/s00204-018-2350-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.
Collapse
Affiliation(s)
- Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Schneider S, Fussell KC, Melching-Kollmuss S, Buesen R, Gröters S, Strauss V, Jiang X, van Ravenzwaay B. Investigations on the dose-response relationship of combined exposure to low doses of three anti-androgens in Wistar rats. Arch Toxicol 2017; 91:3961-3989. [PMID: 28879601 PMCID: PMC5719133 DOI: 10.1007/s00204-017-2053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
The current investigation examines whether combined exposure to three anti-androgens (flutamide, prochloraz, vinclozolin) result in interference with endocrine homeostasis when applied at very low dose levels, and whether the results of combined exposure are more pronounced than to the individual compounds. A pre-post-natal in vivo study design was chosen with more parameters than regulatory testing protocols require (additional endpoints addressing hormone levels, morphology and histopathological examinations). Dose levels were chosen to represent the lowest observed adverse effect level (LOAEL), the no observed adverse effect level (NOAEL), and the acceptable daily intake for each individual substance. Anti-androgenic changes were observable at the effect level (LOAEL) but not at lower exposures. Nipple/areola counts appeared to be a sensitive measure of effect, in addition to male sex organ weights at sexual maturation, and finally gross findings. The results indicate the absence of evidence for effects at low or very low dose levels. No (adverse) effects were seen at the NOAEL dose. A non-monotonic dose-response relationship was not evident. Combined exposure at LOAEL level resulted in enhanced responses for anogenital index, number of areolas/nipples, delayed preputial separation and reduced ventral prostate weight in comparison to the individual compounds.
Collapse
Affiliation(s)
- Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | | | | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Xiaoqi Jiang
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
16
|
Flick B, Schneider S, Melching-Kollmuss S, Fussell KC, Gröters S, Buesen R, Strauss V, van Ravenzwaay B. Investigations of putative reproductive toxicity of low-dose exposures to vinclozolin in Wistar rats. Arch Toxicol 2016; 91:1941-1956. [PMID: 27612472 DOI: 10.1007/s00204-016-1811-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/04/2016] [Indexed: 01/11/2023]
Abstract
The current investigation examines whether the fungicide vinclozolin, which has an anti-androgenic mode of action, is capable of disrupting endocrine homeostasis at very low doses. The data generated clarify whether a non-monotonic dose-response relationship exists to enhance the current debate about the regulation of endocrine disruptors. Moreover, it is part of a series of investigations assessing the dose-response relationship of single and combined administration of anti-androgenic substances. A pre-postnatal in vivo study design was chosen which was compliant with regulatory testing protocols. The test design was improved by additional endpoints addressing hormone levels, morphology and histopathological examinations. Doses were chosen to represent an effect level (20 mg/kg bw/d), the current NOAEL (4 mg/kg bw/d), and a dose close to the "ADI" (0.005 mg/kg bw/d) for the detection of a possible non-monotonic dose-response curve. Anti-androgenic changes were observable at the effect level but not at lower exposures. Nipple/areola counts appeared to be the most sensitive measure of effect, followed by male sex organ weights at sexual maturation, and finally gross and histopathological findings. The results indicate the absence of evidence for effects at low or very low dose levels. A non-monotonic dose-response relationship was not evident.
Collapse
Affiliation(s)
- Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | | | | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
17
|
Boberg J, Axelstad M, Svingen T, Mandrup K, Christiansen S, Vinggaard AM, Hass U. Multiple Endocrine Disrupting Effects in Rats Perinatally Exposed to Butylparaben. Toxicol Sci 2016; 152:244-56. [DOI: 10.1093/toxsci/kfw079] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|