1
|
Almirón A, Lorenz V, Doná F, Varayoud J, Milesi MM. Epigenetic alteration of uterine Leukemia Inhibitory Factor gene after glyphosate or a glyphosate-based herbicide exposure in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104564. [PMID: 39277068 DOI: 10.1016/j.etap.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (Lif) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were in silico predicted in regulatory regions of Lif gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased Lif mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of Lif.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
2
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
3
|
Lorenz V, Doná F, Cadaviz DB, Milesi MM, Varayoud J. Glyphosate and a glyphosate-based herbicide dysregulate the epigenetic landscape of Homeobox A10 ( Hoxa10) gene during the endometrial receptivity in Wistar rats. FRONTIERS IN TOXICOLOGY 2024; 6:1438826. [PMID: 39345349 PMCID: PMC11427440 DOI: 10.3389/ftox.2024.1438826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
We observed that gestational plus lactational exposure to glyphosate (Gly), as active ingredient, or a glyphosate-based herbicide (GBH) lead to preimplantation losses in F1 female Wistar rats. Here, we investigated whether GBH and/or Gly exposure could impair Hoxa10 gene transcription by inducing epigenetic changes during the receptive stage in rats, as a possible herbicide mechanism implicated in implantation failures. F0 dams were treated with Gly or a GBH through a food dose of 2 mg Gly/kg bw/day from gestational day (GD) 9 up to lactational day 21. F1 female rats were bred, and uterine tissues were analyzed on GD5 (preimplantation period). Transcripts levels of Hoxa10, DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b), histone deacetylases (Hdac-1 and Hdac-3) and histone methyltransferase (EZH2) were assessed by quantitative polymerase chain reaction (qPCR). Four CpG islands containing sites targeted by BstUI methylation-sensitive restriction enzyme and predicted transcription factors (TFs) were identified in Hoxa10 gene. qPCR-based methods were used to evaluate DNA methylation and histone post-translational modifications (hPTMs) in four regulatory regions (RRs) along the gene by performing methylation-sensitive restriction enzymes and chromatin immunoprecipitation assays, respectively. GBH and Gly downregulated Hoxa10 mRNA. GBH and Gly increased DNA methylation levels and Gly also induced higher levels than GBH in all the RRs analyzed. Both GBH and Gly enriched histone H3 and H4 acetylation in most of the RRs. While GBH caused higher H3 acetylation, Gly caused higher H4 acetylation in all RRs. Finally, GBH and Gly enhanced histone H3 lysine 27 trimethylation (H3K27me3) marker at 3 out of 4 RRs studied which was correlated with increased EZH2 levels. In conclusion, exposure to GBH and Gly during both gestational plus lactational phases induces epigenetic modifications in regulatory regions of uterine Hoxa10 gene. We show for the first time that Gly and a GBH cause comparable gene expression and epigenetic changes. Our results might contribute to delineate the mechanisms involved in the implantation failures previously reported. Finally, we propose that epigenetic information might be a valuable tool for risk assessment in the near future, although more research is needed to establish a cause-effect relationship.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Dalma B Cadaviz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
4
|
Pagano AD, Nunes LS, Domingues WB, da Silveira TLR, Kütter MT, Schneider A, Kremer FS, Junior ASV, Amaral MG, Gonçalves NM, Bellido-Quispe DK, Volcan MV, Costa PG, Bianchini A, Pinhal D, Campos VF, Remião MH. Assessing reproductive effects and epigenetic responses in Austrolebias charrua exposed to Roundup Transorb®: Insights from miRNA profiling and molecular interaction analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104539. [PMID: 39173985 DOI: 10.1016/j.etap.2024.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This study examines the effects of Roundup Transorb® (RDT) exposure on reproductive functions and ovarian miRNA expression in Austrolebias charrua. Exposure to RDT (at 0.065 or 5 mg. L-1 for 96 h) significantly disrupts fertility, evidenced by changes in fertilization rates and egg diameter. Profiling of ovarian miRNAs identified a total 205 miRNAs in A. charrua. Among these, three miRNAs were upregulated (miR-10b-5p, miR-132-3p, miR-100-5p), while ten miRNAs were downregulated (miR-499-5p, miR-375, miR-205-5p, miR-206-3p, miR-203a-3p, miR-133b-3p, miR-203b-5p, miR-184, miR-133a-3p, miR-2188-5p) compared to non-exposed fish. This study reveals that differentially expressed miRNAs are linked to molecular pathways such as steroid hormone biosynthesis, lipid and carbohydrate metabolism, bioenergetics, and antioxidant defense. It also analyzes molecular interactions between miRNAs and target genes during RDT exposure in annual killifish, providing insights into biomarkers in ecotoxicology. Moreover, it provides scope for developing environmental health assessment models based on epigenomic endpoints, supporting the protection of biodiversity and ecosystem services through the quantification of stress responses in living organisms exposed to pesticides.
Collapse
Affiliation(s)
- Antônio D Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Tony L R da Silveira
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mateus T Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Antonio S V Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Marta G Amaral
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natiéli M Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Dionet K Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Matheus V Volcan
- Instituto Pró-Pampa (IPPampa), Laboratório de Ictiologia, Pelotas, Brazil
| | - Patrícia G Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, UNESP, Botucatu, SP, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mariana H Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| |
Collapse
|
5
|
Almirón A, Lorenz V, Varayoud J, Durando M, Milesi MM. Perinatal Exposure to Glyphosate or a Commercial Formulation Alters Uterine Mechanistic Pathways Associated with Implantation Failure in Rats. TOXICS 2024; 12:590. [PMID: 39195693 PMCID: PMC11358895 DOI: 10.3390/toxics12080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Perinatal exposure to a glyphosate-based herbicide (GBH) or its active ingredient, glyphosate (Gly), has been demonstrated to increase implantation failure in rats. This study investigates potential mechanisms of action, analyzing uterine preparation towards the receptive state. Pregnant Wistar rats (F0) were treated orally with GBH or Gly (3.8 and 3.9 mg Gly/kg/day, respectively) from gestational day (GD) 9 until weaning. Adult F1 females became pregnant and uterine samples were collected on GD5 (preimplantation period). Histomorphological uterine parameters were assessed. Immunohistochemistry was applied to evaluate cell proliferation and protein expression of estrogen receptors (ERα and ERβ), cell cycle regulators (PTEN, cyclin G1, p27, and IGF1R-α), and the Wnt5a/β-catenin/FOXA2/Lif pathway. Both GBH and Gly females showed increased stromal proliferation, associated with a high expression of ERs. Dysregulation of PTEN and cyclin G1 was also observed in the Gly group. Reduced gland number was observed in both groups, along with decreased expression of Wnt5a/β-catenin/FOXA2/Lif pathway in the glandular epithelium. Overall, GBH and Gly perinatal exposure disrupted intrinsic uterine pathways involved in endometrial proliferation and glandular function, providing a plausible mechanism for glyphosate-induced implantation failure by compromising uterine receptivity. Similar effects between GBH and Gly suggest the active principle mainly drives the adverse outcomes.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| |
Collapse
|
6
|
Zhao F, Guo D, Lan J, Liu Y. One-step electrodeposition of MWCNTs-Cu MOF films for the ratiometric electrochemical analysis of glyphosate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4395-4401. [PMID: 38900497 DOI: 10.1039/d4ay00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Sensitive and accurate determination of glyphosate (GLYP) is vital for food safety and environmental protection. Herein, a novel electrochemical ratiometric biosensor was designed for the accurate quantification of GLYP through one-step electrodeposition of MWCNTs-Cu MOF films. MWCNTs-Cu MOF nanostructures were directly electro-synthesized in situ on the electrode from the precursor solution. The combination of Cu MOFs with MWCNTs not merely improved the conductivity of MOFs, but also enhanced the sensitivity of the biosensor. Furthermore, Cu sites within Cu MOFs were turned into CuCl to further amplify the current signal and enable the specific recognition of GLYP through competing reactions with the transformation of CuCl into non-electroactive Cu-GLYP. Meanwhile, internal reference molecules of methylene blue (MB) were incorporated to improve the measurement accuracy of GLYP for reducing unpredictable measurement errors aroused by environmental deviations. The ratiometric electrochemical sensor exhibited a high linearity with the logarithmic value of GLYP concentration from 0.5 nM to 400 nM. The detection limit was estimated to be as low as 0.014 nM. Finally, the present sensor with ratiometric signal export was applied for GLYP analysis in real samples with high sensitivity and accuracy. The simplicity and reliability of the ratiometric sensor make it a worthy and powerful tool for food and environmental monitoring. This design strategy also provides an avenue for the development of simple and efficient biosensors for other substances.
Collapse
Affiliation(s)
- Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Dongqing Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Jingyue Lan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Yunxi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
7
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Mesnage R, Benbrook C. Use of the concept ‘environmentally relevant level’ in linking the results of pesticide toxicity studies to public health outcomes. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London, UK
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Charles Benbrook
- Heartland Health Research Alliance and Benbrook Consulting Services, Port Orchard, WA, USA
| |
Collapse
|
9
|
Curl CL, Hyland C, Spivak M, Sheppard L, Lanphear B, Antoniou MN, Ospina M, Calafat AM. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127001. [PMID: 38054699 PMCID: PMC10699167 DOI: 10.1289/ehp12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. OBJECTIVE Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. METHODS We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant's glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide "spray season" (defined as those collected 1 May-15 August; average n = 5 samples/participant) and the "nonspray season" (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided < 0.5 km from an actively cultivated agriculture field to live "near fields" and those residing ≥ 0.5 km from an agricultural field to live "far from fields" (n = 22 and 18, respectively). RESULTS Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μ g / L vs. 0.150 μ g / L , p < 0.001 ). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μ g / L vs. 0.165 μ g / L , p = 0.45 ). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μ g / L vs. 0.165 μ g / L , for near vs. far, p = 0.53 ). DISCUSSION Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields. https://doi.org/10.1289/EHP12768.
Collapse
Affiliation(s)
- Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Division of Agriculture and National Resources, University of California, Berkeley, CA, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, London, UK
- Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Ganesan S, Keating AF. Maternal impacts of pre-conceptional glyphosate exposure. Toxicol Appl Pharmacol 2023; 478:116692. [PMID: 37708915 DOI: 10.1016/j.taap.2023.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Maternal glyphosate (GLY) impacts remain unclear despite associations between urinary GLY and birth outcomes. Whether maternal pre-conceptional GLY exposure would have phenotypic and molecular impacts in the dam and offspring was tested. Female C57BL6 mice (6 wk) were exposed to saline (CT; n = 20) or GLY (2 mg/kg; n = 20) per os five d per week for 20 wk. Females were housed with males and on gestation day (GD) 14, divided into: CT non-pregnant (CNP), CT pregnant (CP), GLY non-pregnant (GNP), GLY pregnant (GP). Another cohort (CT; n = 10 or GLY; n = 10) completed three pregnancy rounds and pregnancy index (PI), number of pups per litter and pups surviving to postnatal day (PND) 5 calculated. The PI in GLY mice was higher in breeding rounds 1 and 2, but lower in round 3. Pregnancy increased (P ≤ 0.1) GD14 liver and ovary weight. Spleen weight was increased (P < 0.05) in GP relative to GNP mice. No offspring phenotypic impacts were observed. Approximately six months after cessation of exposure, secondary follicle number was reduced (P < 0.05) by pre-conceptional GLY exposure. The ovarian proteome analyzed by LC-MS/MS was altered (P < 0.05) by pregnancy (49 increased, 43 decreased) and GLY exposure (non-pregnant: 75 increased, 22 decreased, pregnant: 27 increased, 29 decreased; aged dams: 60 increased, 98 decreased) with several histone proteins being altered. These findings support ovarian transient and persistent impacts of GLY exposure and identify pathways as potential modes of action.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
11
|
Tajai P, Pruksakorn D, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Effects of glyphosate-based herbicides and glyphosate exposure on sex hormones and the reproductive system: From epidemiological evidence to mechanistic insights. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104252. [PMID: 37604359 DOI: 10.1016/j.etap.2023.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Glyphosate-based herbicides (GBHs) containing glyphosate as the active component are extensively used worldwide. Concerns have arisen about their potential risk to human, as glyphosate has been detected in human body fluids. Current controversies surround the endocrine-disrupting properties and transgenerational inheritance of diseases and germline epimutations resulting from exposure to GBHs and glyphosate. This review discusses evidence from in vitro, in vivo, and clinical studies on their impact on sex hormone regulation and reproductive system. Evidence suggests that they act as endocrine-disrupting chemicals, which altering sex hormone levels. Mechanistically, they interfere with hormone signaling pathways by disrupting proteins involved in hormone transport and metabolism. Pathological changes have been observed in male and female reproductive systems, potentially leading to reproductive toxicity. Prenatal exposure may lead to transgenerational inheritance of pathologies and sperm epimutations. However, due to the complexity of glyphosate formulations containing adjuvants identifying higher risk components in environmental exposure becomes challenging.
Collapse
Affiliation(s)
- Preechaya Tajai
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Catheterization & Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Catheterization & Electrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
12
|
Gomez AL, Altamirano GA, Alcaraz MR, Montemurro M, Schierano-Marotti G, Oddi SL, Culzoni MJ, Muñoz-de-Toro M, Bosquiazzo VL, Kass L. Mammary Gland Development in Male Rats Perinatally Exposed to Propiconazole, Glyphosate, or their Mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104184. [PMID: 37328086 DOI: 10.1016/j.etap.2023.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess whether perinatal exposure to propiconazole (PRO), glyphosate (GLY) or their mixture (PROGLY) alters key endocrine pathways and the development of the male rat mammary gland. To this end, pregnant rats were orally exposed to vehicle, PRO, GLY, or a mixture of PRO and GLY from gestation day 9 until weaning. Male offspring were euthanized on postnatal day (PND) 21 and PND60. On PND21, GLY-exposed rats showed reduced mammary epithelial cell proliferation, whereas PRO-exposed ones showed increased ductal p-Erk1/2 expression without histomorphological alterations. On PND60, GLY-exposed rats showed reduced mammary gland area and estrogen receptor alpha expression and increased aromatase expression, whereas PRO-exposed ones showed enhanced lobuloalveolar development and increased lobular hyperplasia. However, PROGLY did not modify any of the endpoints evaluated. In summary, PRO and GLY modified the expression of key molecules and the development of the male mammary gland individually but not together.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milagros Montemurro
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sofia L Oddi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
13
|
Rosati L, Chianese T, De Gregorio V, Verderame M, Raggio A, Motta CM, Scudiero R. Glyphosate Interference in Follicular Organization in the Wall Lizard Podarcis siculus. Int J Mol Sci 2023; 24:ijms24087363. [PMID: 37108525 PMCID: PMC10138419 DOI: 10.3390/ijms24087363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Glyphosate (Gly) is a broad-spectrum herbicide widely used thanks to its high efficiency and low toxicity. However, evidence exists of its toxic effects on non-target organisms. Among these, the animals inhabiting agricultural fields are particularly threatened. Recent studies demonstrated that exposure to Gly markedly affected the morphophysiology of the liver and testis of the Italian field lizard Podarcis siculus. The present study aimed to investigate the effects of the herbicide on the female reproductive system of this lizard in order to have a full picture of Gly-induced reproductive impairment. The animals were exposed to 0.05 and 0.5 μg/kg of pure Gly by gavage for 3 weeks. The results demonstrated that Gly, at both doses tested, profoundly interfered with ovarian function. It induced germ cells' recruitment and altered follicular anatomy by anticipating apoptotic regression of the pyriform cells. It also induced thecal fibrosis and affected oocyte cytoplasm and zona pellucida organizations. At the functional levels, Gly stimulated the synthesis of estrogen receptors, suggesting a serious endocrine-disrupting effect. Overall, the follicular alterations, combined with those found at the level of the seminiferous tubules in males, suggest serious damage to the reproductive fitness of these non-target organisms, which over time could lead to a decline in survival.
Collapse
Affiliation(s)
- Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Vincenza De Gregorio
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Mariailaria Verderame
- Department of Human, Philosophic and Education Sciences (DISUFF), University of Salerno, 84084 Fisciano, Italy
| | - Anja Raggio
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Chiara Maria Motta
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| |
Collapse
|
14
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Liu M, Lu S, Yang C, Zhang D, Zhu J, Yin J, Zhao H, Yang B, Kuang H. Maternal exposure to a glyphosate-based herbicide impairs placental development through endoplasmic reticulum stress in mice. Food Chem Toxicol 2023; 173:113640. [PMID: 36724846 DOI: 10.1016/j.fct.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used agrochemicals worldwide, increasing the risk of their occurrence in the environment. This study aimed to explore effects and mechanisms of GBH exposure on placental development in vivo during pregnancy in mice. Pregnant mice received GBH by gavage at 0, 5, and 50 mg⋅kg-1⋅day-1 doses from gestational day (GD) 1 to GD 13 and were sacrificed on GD 13 or GD19. Our data indicated that GBH administration significantly increased the number of resorbed fetuses, reduced the weight of fetuses and placentas, and inhibited placental growth, as evident from decreased placental total area and spongiotrophoblast area on GD 19. GBH treatment also inhibited proliferation and induced apoptosis of placenta via upregulation of Bax, cleaved caspase-3 and -12 expression, and downregulation of B cell lymphoma (Bcl)-2 expression. Further study showed that GBH exposure significantly increased expression levels of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and C/EBP homologous protein (CHOP) mRNAs and proteins and triggered oxidative stress in placenta on GD 13 and GD 19. In conclusion, our findings suggest that maternal exposure to GBH can impair placental development through the endoplasmic reticulum stress-mediated activation of GRP78/PERK/CHOP signaling pathway in mice.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Nursing School of Jiujiang University, Jiujiang, Jiangxi, 332000, PR China.
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jiting Yin
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hongru Zhao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
16
|
Kaboli Kafshgiri S, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:487-500. [PMID: 34265884 DOI: 10.1515/reveh-2021-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are organophosphate pesticides, which interrupt the chemicals involved in the endocrine system and cause lifelong disorders in women's reproductive system. The current study was designed to systematically evaluate the association between GBH exposure and the female reproductive tract. According to PRISMA Guidelines, the systematic review was performed, searching online databases, including Google Scholar, Web of Science, PubMed, and Scopus, throughout April 2020. Studies with Rodent, lamb, and fish or exposed to GBH to affect the female reproductive system were selected. All studies were in the English language. Two investigators independently assessed the articles. The first author's name, publication date, animal model, age, sample size, gender, dose, duration, and route of exposure and outcomes were extracted from each publication. The present review summarizes 14 publications on uterus alterations and oocytes, histological changes ovary, and assessed mRNA expression, protein expression, serum levels progesterone, and estrogen and intracellular Reaction Oxygen Species (ROS) in rodents, fish, and lamb exposed to GHB exposure. Most of the studies reported histological changes in ovarian and uterus tissue, alterations in serum levels, and increased oxidative stress level following exposure to GBH. Additionally, due to alterations in the reproductive systems (e.g., histomorphological changes, reduction of the mature follicles, higher atretic follicles, and interstitial fibrosis), it seems the GBH-induced female these alterations are both dose- and time-dependent. The present findings support an association between GBH exposure and female reproductive system diseases. However, more studies are needed to identify the mechanisms disrupting the effects of GBH and their underlying mechanisms. Considering the current literature, it is recommended that further investigations be focused on the possible effects of various pesticides on the human reproductive system.
Collapse
Affiliation(s)
- Sakineh Kaboli Kafshgiri
- Molecular Medicine Department, Postdoc Position in Developmental Biology, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Disease Research Center, Razi Hospital, Faculty of Medicine, Binorjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
17
|
Bukowska B, Woźniak E, Sicińska P, Mokra K, Michałowicz J. Glyphosate disturbs various epigenetic processes in vitro and in vivo - A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158259. [PMID: 36030868 DOI: 10.1016/j.scitotenv.2022.158259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate in the concentrations corresponding to environmental or occupational exposure has been shown to induce epigenetic changes potentially involved in carcinogenesis. This substance (1) changes the global methylation in various cell types and organisms and is responsible for the methylation of different promoters of individual genes, such as TP53 and P21 in human PBMCs, (2) decreases H3K27me3 methylation and H3 acetylation and increases H3K9 methylation and H4 acetylation in rats, (3) increases the expression of P16, P21, CCND1 in human PBMCs, and the expression of EGR1, JUN, FOS, and MYC in HEK293 cells, but decreases TP53 expression in human PBMCs, (4) changes the expression of genes DNMT1, HDAC3, TET1, TET2, TET3 involved in chromatin architecture, e.g. in fish Japanese medaka, (5) alters the expression of various small, single-stranded, non-coding RNA molecules engaged in post-transcriptional regulation of gene expression, such as miRNA 182-5p in MCF10A cells, miR-30 and miR-10 in mammalian stem cells, as well as several dozen of murine miRNAs. Epigenetic changes caused by glyphosate can persist over time and can be passed on to the offsprings in the next generation; in the third generation they can result in some disorders development, such as prostate disease or obesity. Some epigenetic mechanisms have indicated a potential risk of breast cancer development in human as a result of the exposure to glyphosate. It should be emphasized that the majority of reported epigenetic changes have not yet been associated with the final metabolic effects, which may depend on many other factors.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland.
| | - Ewelina Woźniak
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
18
|
Bai G, Jiang X, Qin J, Zou Y, Zhang W, Teng T, Shi B, Sun H. Perinatal exposure to glyphosate-based herbicides impairs progeny health and placental angiogenesis by disturbing mitochondrial function. ENVIRONMENT INTERNATIONAL 2022; 170:107579. [PMID: 36265358 DOI: 10.1016/j.envint.2022.107579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide worldwide and can provoke placental injury. However, whether and how GBHs damage angiogenesis in the placenta is not yet known. This work evaluated the safety of glyphosate on pregnant sows based on the limit level by governments and investigated the effects and mechanism of Low-GBHs (20 mg/kg) and High-GBHs (100 mg/kg) exposure on placental angiogenesis. Results showed that gestational exposure to GBHs decreased placental vessel density and cell multiplication by interfering with the expression of VEGFA, PLGF, VEGFr2 and Hand2 (indicators of angiogenesis), which may be in relation to oxidative stress-induced disorders of mitochondrial fission and fusion as well as the impaired function of the mitochondrial respiratory chain. Additionally, GBHs destroyed barrier function and nutrient transport in the placenta, and was accompanied by jejunum oxidative stress in newborn piglets. However, GBHs exposure had no significant differences on sow reproductive performance. As a natural antioxidant, betaine treatment protected placenta and newborn piglets against GBHs-induced damage. In conclusion, GBHs impaired placental angiogenesis and function and further damaged the health of postnatal progeny, these effects may be linked to mitochondrial dysfunction. Betaine treatment following glyphosate exposure provided modest relief.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haoyang Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
20
|
Novbatova G, Timme K, Severin A, Sayadi M, Keating AF. Pre-Conceptional Exposure to Glyphosate Affects the Maternal Hepatic and Ovarian Proteome. Toxicol Sci 2022; 190:204-214. [PMID: 36173347 PMCID: PMC9702999 DOI: 10.1093/toxsci/kfac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Exposure to glyphosate (GLY), a commonly used herbicide, is supported by urinary detection and associated with shortened gestation in women. This study tested the hypothesis that chronic low-dose pre-conceptional GLY exposure would affect maternal ovarian function mid- and post-gestation. Mice (C57BL/6; n = 40) were exposed per os to saline vehicle control (CT; n = 20) or GLY (2 mg/kg; n = 20) daily for 10 weeks starting at 7 weeks of age. Post-exposure, females were impregnated and euthanized at gestation day 14 (GD14) or post-weaning (PW). Pregnancy success was reduced from 75% to 55% by GLY exposure. No treatment effect (p > .05) on body weight, maternal serum 17β-estradiol, or litter size was noted. Ovarian weight was unaffected or reduced (p < .05) by GLY in GD14 and PW dams, respectively. Exposure to GLY decreased (p < .05) PW ovarian secondary follicle number with no other follicle composition impacts. Protein abundance analysis by LC-MS/MS identified that GLY altered (p < .05) 26 ovarian and 41 hepatic proteins in GD14 dams and 39 hepatic proteins in PW dams. In GD14 dams, GLY increased ovarian protein abundance of SEC16A (p < .05; 29-fold) and hepatic RPS27L and GM4952 (p < .05; ∼4-fold). In both GD14 and PW dams, GLY exposure increased (p < .05) hepatic RPS4 and decreased (p < .05) ECHDC3. Pathway analysis using DAVID identified 10 GLY hepatic pathway targets with FDR ≤ 0.07 in GD14 dams.
Collapse
Affiliation(s)
- Gulnara Novbatova
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Andrew Severin
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Maryam Sayadi
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Gerona RR, Reiter JL, Zakharevich I, Proctor C, Ying J, Mesnage R, Antoniou M, Winchester PD. Glyphosate exposure in early pregnancy and reduced fetal growth: a prospective observational study of high-risk pregnancies. Environ Health 2022; 21:95. [PMID: 36221133 PMCID: PMC9552485 DOI: 10.1186/s12940-022-00906-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal glyphosate (GLY) exposure is associated with adverse reproductive outcomes in animal studies. Little is known about the effects of GLY exposure during pregnancy in the human population. This study aims to establish baseline urine GLY levels in a high-risk and racially diverse pregnancy cohort and to assess the relationship between prenatal GLY exposure and fetal development and birth outcomes. METHODS Random first trimester urine specimens were collected from high risk pregnant women between 2013 and 2016 as part of the Indiana Pregnancy Environmental Exposures Study (PEES). Demographic and clinical data were abstracted from mother and infant medical records. Urine glyphosate levels were measured as a proxy for GLY exposure and quantified using liquid chromatography-tandem mass spectrometry. Primary outcome variables included gestation-adjusted birth weight percentile (BWT%ile) and neonatal intensive care unit (NICU) admission. Relationships between primary outcome variables and GLY exposure were assessed using univariate and multivariate linear and logistic regression models. RESULTS Urine GLY levels above the limit of detection (0.1 ng/mL) were found in 186 of 187 (99%) pregnant women. Further analyses were limited to 155 pregnant women with singleton live births. The mean age of participants was 29 years, and the majority were non-Hispanic white (70%) or non-Hispanic Black (21%). The mean (± SD) urine GLY level was 3.33 ± 1.67 ng/mL. Newborn BWT%iles were negatively related to GLY (adjusted slope ± SE = -0.032 + 0.014, p = 0.023). Infants born to women living outside of Indiana's large central metropolitan area were more likely to have a lower BWT%ile associated with mother's first trimester GLY levels (slope ± SE = -0.064 ± 0.024, p = 0.007). The adjusted odds ratio for NICU admission and maternal GLY levels was 1.16 (95% CI: 0.90, 1.67, p = 0.233). CONCLUSION GLY was found in 99% of pregnant women in this Midwestern cohort. Higher maternal GLY levels in the first trimester were associated with lower BWT%iles and higher NICU admission risk. The results warrant further investigation on the effects of GLY exposure in human pregnancies in larger population studies.
Collapse
Affiliation(s)
- Roy R. Gerona
- Department of Gynecology, Obstetrics and Reproductive Sciences, University of California San Francisco, 2340 Sutter St S271, 94115 San Francisco, CA USA
| | - Jill L. Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W. 10th Street, Suite 5000, 46202 Indianapolis, IN USA
| | - Igor Zakharevich
- Department of Gynecology, Obstetrics and Reproductive Sciences, University of California San Francisco, 2340 Sutter St S271, 94115 San Francisco, CA USA
| | - Cathy Proctor
- Department of Pediatrics/Neonatology, Indiana University School of Medicine, NICU Satellite Franciscan Health, 8111 South Emerson Avenue, 46237 Indianapolis, IN USA
| | - Jun Ying
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street RAHN 3212, 72205 Little Rock, Arkansas, USA
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, Great Maze Pond, 8th Floor, Tower Wing, SE1 9RT London, UK
| | - Michael Antoniou
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, Great Maze Pond, 8th Floor, Tower Wing, SE1 9RT London, UK
| | - Paul D. Winchester
- Department of Pediatrics/Neonatology, Indiana University School of Medicine, NICU Satellite Franciscan Health, 8111 South Emerson Avenue, 46237 Indianapolis, IN USA
| |
Collapse
|
22
|
Strilbytska OM, Semaniuk UV, Strutynska TR, Burdyliuk NI, Tsiumpala S, Bubalo V, Lushchak O. Herbicide Roundup shows toxic effects in nontarget organism Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21893. [PMID: 35388481 DOI: 10.1002/arch.21893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicide Roundup, as the most employed herbicide used for multiple purposes in agriculture, adversely affects nontarget organisms. We tested the effects of Roundup applied at larval and adult stages. Roundup caused developmental delay and increased larvae mortality. Roundup treatment reduced hemolymph glucose and glycogen levels in adult flies of both sexes at the highest concentration tested. Sex-dependent diverse effects were found in catalase and Cu,Zn superoxide dismutase (Cu,Zn-SOD) activities. Decreased aconitase activity, contents of thiols, and lipid peroxides were found after larval Roundup exposure. Furthermore, chronic exposure to adult flies decreased appetite, body weight, and shortened lifespan. Thus, our results suggest that high concentrations of Roundup are deleterious to both larvae and adults, resulting in a shift of the metabolism and antioxidant defense system in Drosophila melanogaster.
Collapse
Affiliation(s)
- Olha M Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Uliana V Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Tetiana R Strutynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Sviatoslav Tsiumpala
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, Kyiv, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
23
|
Gomes ECZ, Teleken JL, Vargas R, Alegre-Maller ACP, Amorim JPDA, Bonfleur ML, Balbo SL. Exposure to glyphosate-based herbicide during early stages of development increases insulin sensitivity and causes liver inflammation in adult mice offspring. EINSTEIN-SAO PAULO 2022; 20:eAO6778. [PMID: 35674629 PMCID: PMC9165568 DOI: 10.31744/einstein_journal/2022ao6778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/29/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the effect of pre and postnatal exposure to a glyphosate-based herbicide on glucose metabolism and liver histology in adult F1 mice offspring. METHODS Female mice (C57Bl/6) received 0.5% of glyphosate (Roundup Original DI®) in drinking water or purified water (Glyphosate Group and Control Group respectively) during pregnancy and lactation. Offspring (F1) were submitted to glucose and insulin tolerance tests and euthanized on postnatal day 150. Body and plasma parameters, and liver histology were analyzed. RESULTS Exposure to glyphosate reduced maternal body weight gain during pregnancy and lactation, with no impacts on litter size. Pre and postnatal exposure to glyphosate did not affect body parameters but increased glucose tolerance on postnatal day 60. In spite of glucose tolerance normalization by postnatal day 143, this effect was associated with higher insulin sensitivity relative to mice in the Control-F1 Group. Mice in the Glyphosate-F1 Group had mild and moderate lobular inflammation in the liver. CONCLUSION Maternal exposure to glyphosate affected insulin sensitivity and caused hepatic inflammation in adult F1 mice offspring.
Collapse
Affiliation(s)
- Ellen Carolina Zawoski Gomes
- Universidade Estadual do Oeste do ParanáCascavelPRBrazilUniversidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| | - Jakeline Liara Teleken
- Universidade Estadual do Oeste do ParanáCascavelPRBrazilUniversidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| | - Rodrigo Vargas
- Universidade Estadual do Oeste do ParanáCascavelPRBrazilUniversidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| | - Ana Claudia Paiva Alegre-Maller
- Centro Universitário Fundação Assis GurgaczCascavelPRBrazilCentro Universitário Fundação Assis Gurgacz, Cascavel, PR, Brazil.
| | - João Paulo de Arruda Amorim
- Universidade Estadual do Oeste do ParanáCascavelPRBrazilUniversidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| | - Maria Lúcia Bonfleur
- Universidade Estadual do Oeste do ParanáCascavelPRBrazilUniversidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| | - Sandra Lucinei Balbo
- Universidade Estadual do Oeste do ParanáCascavelPRBrazilUniversidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| |
Collapse
|
24
|
Alvarez-Moya C, Sámano-León AG, Reynoso-Silva M, Ramírez-Velasco R, Ruiz-López MA, Villalobos-Arámbula AR. Antigenotoxic Effect of Ascorbic Acid and Resveratrol in Erythrocytes of Ambystoma mexicanum, Oreochromis niloticus and Human Lymphocytes Exposed to Glyphosate. Curr Issues Mol Biol 2022; 44:2230-2242. [PMID: 35678680 PMCID: PMC9164025 DOI: 10.3390/cimb44050151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Glyphosate is a controversial herbicide. Its genotoxicity and presence in various ecosystems have been reported. The use of ascorbic acid and resveratrol could protect different organisms from glyphosate-induced genetic damage. In the present study, specific genetic damage induced by glyphosate was evaluated in erythrocytes of Oreochromis niloticus, Ambystoma mexicanum and human lymphocytes. Simultaneously, the antigenotoxic capacity of various concentrations of ascorbic acid and resveratrol was evaluated by means of pretreatment and simultaneous treatment protocols. The 0.03, 0.05 and 0.07 mM concentrations of glyphosate induced significant genotoxic activity (p < 0.05) in human lymphocytes and in erythrocytes of the species studied, and could cause genomic instability in these populations. The reduction in genetic damage observed in human lymphocytes exposed to high concentrations of glyphosate is only apparent: excessive genetic damage was associated with undetectable excessive tail migration length. A significant (p < 0.05) antigenotoxic effect of ascorbic acid and resveratrol was observed in all concentrations, organisms and protocols used. Both ascorbic acid and resveratrol play an important role in maintaining the integrity of DNA. Ascorbic acid in Oreochromis niloticus, Ambystoma mexicanum reduced glyphosate-induced genetic damage to a basal level. Therefore, our data indicate that these antioxidants could help preserve the integrity of the DNA of organisms exposed to glyphosate. The consumption of antioxidants is a useful tool against the genotoxicity of glyphosate.
Collapse
Affiliation(s)
- Carlos Alvarez-Moya
- Environmental Mutagenesis Laboratory, Cellular and Molecular Department, University of Guadalajara, Guadalajara 45200, Jalisco, Mexico; (A.G.S.-L.); (R.R.-V.)
- Correspondence: (C.A.-M.); (M.R.-S.); Tel.: +52-377-77-1121 (C.A.-M.); +52-333-777-1121 (M.R.-S.)
| | - Alexis Gerardo Sámano-León
- Environmental Mutagenesis Laboratory, Cellular and Molecular Department, University of Guadalajara, Guadalajara 45200, Jalisco, Mexico; (A.G.S.-L.); (R.R.-V.)
| | - Mónica Reynoso-Silva
- Environmental Mutagenesis Laboratory, Cellular and Molecular Department, University of Guadalajara, Guadalajara 45200, Jalisco, Mexico; (A.G.S.-L.); (R.R.-V.)
- Correspondence: (C.A.-M.); (M.R.-S.); Tel.: +52-377-77-1121 (C.A.-M.); +52-333-777-1121 (M.R.-S.)
| | - Rafael Ramírez-Velasco
- Environmental Mutagenesis Laboratory, Cellular and Molecular Department, University of Guadalajara, Guadalajara 45200, Jalisco, Mexico; (A.G.S.-L.); (R.R.-V.)
| | - Mario Alberto Ruiz-López
- Biotechnology Laboratory, Department of Botany and Zoology, University of Guadalajara, Guadalajara 45200, Jalisco, Mexico;
| | - Alma Rosa Villalobos-Arámbula
- Molecular and Functional Genetics and Ecosystems Laboratory of Biomarkers and Molecular Genetics, Cellular and Molecular Departament, University of Guadalajara, Guadalajara 45200, Jalisco, Mexico;
| |
Collapse
|
25
|
Ingaramo PI, Alarcón R, Caglieris ML, Varayoud J, Muñoz-de-Toro M, Luque EH. Altered uterine angiogenesis in rats treated with a glyphosate-based herbicide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118729. [PMID: 34953950 DOI: 10.1016/j.envpol.2021.118729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the agrochemicals most used around the globe. However, they might have adverse effects on human and animal health. Previously, we showed that female rats neonatally exposed to GBHs exhibit altered expression of morphogenetic molecules and biomarkers of uterine development. We also observed a reduction in the size of implantation sites, altered expression of decidualization-related molecules, and increased post-implantation losses. Since decidualization comprises morphogenetic, biochemical and vascular changes, here we investigated the effects of neonatal GBH exposure on uterine angiogenesis in neonatal and pregnant rats. To achieve this, Wistar female rats were exposed to saline solution or GBH (2 mg glyphosate/kg-bw/day) on post-natal days (PND) 1, 3, 5 and 7. On PND8, uterine samples were collected for developmental studies. On PND90, the remaining females were mated and in the morning of gestational day (GD) 9, the implantation sites were collected. Angiogenesis-related molecules and cells involved in this process were identified and/or measured by immunohistochemistry or RT-PCR. On PND8, GBH-treated rats showed increased vascular endothelial growth factor (VEGF) expression and decreased Notch1, inducible nitric oxide synthase (iNOS) and Angiopoietin-2 (Ang2) mRNA levels. Vascular area, vessel diameter, endothelial cell proliferation, VEGF and Nestin protein expression, and VEGF, Notch1, iNOS and cyclooxygenase-2 (Cox-2) genes were downregulated in implantation sites of exposed females, while Ang2, VEGF receptor 1 and interleukin-10 (IL-10) were increased. Mast cells and macrophages were increased on PND8 and GD9 of treated rats. The increased Transforming growth factor-beta expression in the antimesometrial zone and IL-10 mRNA expression suggest that the M2 type is the predominant population of macrophages on implantation sites. In conclusion, neonatal GBH exposure alters the expression of angiogenesis-related molecules at neonatal uterine development and decidual reaction, suggesting altered vascular support. These alterations might contribute to the increased post-implantation losses observed in GBH-treated rats.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María L Caglieris
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
26
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
27
|
Elias R, Talyn B, Melchiorre E. Dietary Behavior of Drosophila melanogaster Fed with Genetically-Modified Corn or Roundup ®. J Xenobiot 2021; 11:215-227. [PMID: 34940514 PMCID: PMC8703958 DOI: 10.3390/jox11040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
With the rise in concern about GMOs and pesticides on human health, we have utilized Drosophila melanogaster as a model organism for understanding the effects of Roundup-Ready® GMO diets on health. We recorded dietary behavior during and after exposure to a medium containing GMO or non-GMO corn, Roundup® in organic corn medium, and sucrose with or without one of the two Roundup® formulations. No differences in behavior were observed when Drosophila were exposed to a medium containing Roundup-Ready® GMO or non-GMO corn. Drosophila can detect and refrain from eating sucrose containing one Roundup® formulation, Ready-to-Use, which contains pelargonic acid in addition to glyphosate as an active ingredient. Drosophila exhibited dose-dependent increased consumption of sucrose alone after exposure to a medium containing either Roundup® formulation. This may indicate that flies eating a medium with Roundup® eat less and were thus hungrier when then given sucrose solution; that a medium with Roundup® is more difficult to digest; or that a medium with Roundup® is less nutritious, as would be the case if nutritionally important microbes grew on control medium, but not one containing Roundup®.
Collapse
Affiliation(s)
- Raquel Elias
- Department of Biology, California State University, San Bernardino, CA 92407, USA;
| | - Becky Talyn
- College of Natural Sciences, California State University, San Bernardino, CA 92407, USA
- Correspondence: ; Tel.: +1-909-537-5303
| | - Erik Melchiorre
- Department of Geology, California State University, San Bernardino, CA 92407, USA;
| |
Collapse
|
28
|
Serra L, Estienne A, Bourdon G, Ramé C, Chevaleyre C, Didier P, Chahnamian M, El Balkhi S, Froment P, Dupont J. Chronic Dietary Exposure of Roosters to a Glyphosate-Based Herbicide Increases Seminal Plasma Glyphosate and AMPA Concentrations, Alters Sperm Parameters, and Induces Metabolic Disorders in the Progeny. TOXICS 2021; 9:toxics9120318. [PMID: 34941753 PMCID: PMC8704617 DOI: 10.3390/toxics9120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
The effects of chronic dietary Roundup (RU) exposure on rooster sperm parameters, fertility, and offspring are unknown. We investigated the effects of chronic RU dietary exposure (46.8 mg kg−1 day−1 glyphosate) for 5 weeks in 32-week-old roosters (n = 5 RU-exposed and n = 5 control (CT)). Although the concentrations of glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) increased in blood plasma and seminal fluid during exposure, no significant differences in testis weight and sperm concentrations were observed between RU and CT roosters. However, sperm motility was significantly reduced, associated with decreased calcium and ATP concentrations in RU spermatozoa. Plasma testosterone and oestradiol concentrations increased in RU roosters. These negative effects ceased 14 days after RU removal from the diet. Epigenetic analysis showed a global DNA hypomethylation in RU roosters. After artificial insemination of hens (n = 40) with sperm from CT or RU roosters, eggs were collected and artificially incubated. Embryo viability did not differ, but chicks from RU roosters (n = 118) had a higher food consumption, body weight and subcutaneous adipose tissue content. Chronic dietary RU exposure in roosters reduces sperm motility and increases plasma testosterone levels, growth performance, and fattening in offspring.
Collapse
Affiliation(s)
- Loïse Serra
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Anthony Estienne
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Guillaume Bourdon
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Claire Chevaleyre
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Philippe Didier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement—Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France; (P.D.); (M.C.)
| | - Marine Chahnamian
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement—Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France; (P.D.); (M.C.)
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU, F-87042 Limoges, France;
| | - Pascal Froment
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
- Correspondence:
| |
Collapse
|
29
|
Marino M, Mele E, Viggiano A, Nori SL, Meccariello R, Santoro A. Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. Int J Mol Sci 2021; 22:12606. [PMID: 34830483 PMCID: PMC8618927 DOI: 10.3390/ijms222212606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Stefania Lucia Nori
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| |
Collapse
|
30
|
Serra L, Estienne A, Vasseur C, Froment P, Dupont J. Review: Mechanisms of Glyphosate and Glyphosate-Based Herbicides Action in Female and Male Fertility in Humans and Animal Models. Cells 2021; 10:3079. [PMID: 34831302 PMCID: PMC8622223 DOI: 10.3390/cells10113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic-pituitary-gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA)." In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Claudine Vasseur
- Assisted Medical Procreation, Pôle Santé Léonard de Vinci, F-37380 Chambray-lès-Tours, France;
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| |
Collapse
|
31
|
Muller K, Herrera K, Talyn B, Melchiorre E. Toxicological Effects of Roundup ® on Drosophila melanogaster Reproduction. TOXICS 2021; 9:161. [PMID: 34357904 PMCID: PMC8309847 DOI: 10.3390/toxics9070161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Herbicide use has increased dramatically since 2001, particularly Roundup®. Effective in agricultural practice, Roundup® adversely affects non-target organisms, including reproductive and endocrine systems. We exposed fruit flies, Drosophila melanogaster, to either Roundup® Ready to Use, containing pelargonic acid and glyphosate, or Roundup® Super Concentrate, that includes glyphosate and POEA, at sublethal concentrations. Both Roundup® formulations reduced ovary volume with fewer mature oocytes, most adversely at the highest concentration tested. Flies exposed within 2 h of eclosion were affected more than at 4 h, suggesting a critical period of increased ovarian sensitivity. These results support multi-species evidence that glyphosate-based herbicides interfere with normal development of the reproductive systems of non-target organisms.
Collapse
Affiliation(s)
- Kelly Muller
- Department of Chemistry and Biochemistry, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA; (K.M.); (K.H.)
| | - Karina Herrera
- Department of Chemistry and Biochemistry, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA; (K.M.); (K.H.)
| | - Becky Talyn
- Department of Biology and College of Natural Sciences, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Department of Geology, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA;
| |
Collapse
|
32
|
Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Endocrinol (Lausanne) 2021; 12:672532. [PMID: 34305812 PMCID: PMC8293380 DOI: 10.3389/fendo.2021.672532] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
33
|
Lesseur C, Pirrotte P, Pathak KV, Manservisi F, Mandrioli D, Belpoggi F, Panzacchi S, Li Q, Barrett ES, Nguyen RHN, Sathyanarayana S, Swan SH, Chen J. Maternal urinary levels of glyphosate during pregnancy and anogenital distance in newborns in a US multicenter pregnancy cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:117002. [PMID: 33812205 PMCID: PMC8165010 DOI: 10.1016/j.envpol.2021.117002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
Human exposure to glyphosate has become ubiquitous because of its increasing agricultural use. Recent studies suggest endocrine disrupting effects of glyphosate. Specifically, in our work in rodents, low-dose early-life exposure to Roundup® (glyphosate-based herbicide) lengthened anogenital distance (AGD) in male and female offspring. AGD is a marker of the prenatal hormone milieu in rodents and humans. The relationship between glyphosate exposure and AGD has not been studied in humans. We conducted a pilot study in 94 mother-infant pairs (45 female and 49 male) from The Infant Development and the Environment Study (TIDES). For each infant, two AGD measurements were collected after birth; the anopenile (AGD-AP) and anoscrotal (AGD-AS) distances for males, and anoclitoral (AGD-AC) and anofourchette distances (AGD-AF) for females. We measured levels of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in 2nd trimester maternal urine samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. We assessed the relationship between exposure and AGD using sex-stratified multivariable linear regression models. Glyphosate and AMPA were detected in 95% and 93% of the samples (median 0.22 ng/mL and 0.14 ng/mL, respectively). Their concentrations were moderately correlated (r = 0.55, p = 5.7 × 10-9). In female infants, high maternal urinary glyphosate (above the median) was associated with longer AGD-AC (β = 1.48, 95%CI (-0.01, 3.0), p = 0.05), but this was not significant after covariate adjustment. Increased AMPA was associated with longer AGD-AF (β = 1.96, 95%CI (0.44, 3.5), p = 0.01) after adjusting for infant size and age at AGD exam. No associations were detected in male offspring. These preliminary findings partially reproduce our previous results in rodents and suggest that glyphosate is a sex-specific endocrine disruptor with androgenic effects in humans. Given the increasing glyphosate exposures in the US population, larger studies should evaluate potential developmental effects on endocrine and reproductive systems.
Collapse
Affiliation(s)
- Corina Lesseur
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy; Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Qian Li
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily S Barrett
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Ruby H N Nguyen
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
Rossetti MF, Canesini G, Lorenz V, Milesi MM, Varayoud J, Ramos JG. Epigenetic Changes Associated With Exposure to Glyphosate-Based Herbicides in Mammals. Front Endocrinol (Lausanne) 2021; 12:671991. [PMID: 34093442 PMCID: PMC8177816 DOI: 10.3389/fendo.2021.671991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
Glyphosate is a phosphonomethyl amino acid derivative present in a number of non-selective and systemic herbicides. During the last years the use of glyphosate-based herbicide (GBH) has been increasing exponentially around the world, including Argentina. This fact added to the detection of glyphosate, and its main metabolite, amino methylphosphonic acid (AMPA), in environmental matrices such as soil, sediments, and food, has generated great concern about its risks for humans, animals, and environment. During the last years, there were controversy and intense debate regarding the toxicological effects of these compounds associated with the endocrine system, cancer, reproduction, and development. The mechanisms of action of GBH and their metabolites are still under investigation, although recent findings have shown that they could comprise epigenetic modifications. These are reversible mechanisms linked to tissue-specific silencing of gene expression, genomic imprinting, and tumor growth. Particularly, glyphosate, GBH, and AMPA have been reported to produce changes in global DNA methylation, methylation of specific genes, histone modification, and differential expression of non-coding RNAs in human cells and rodents. Importantly, the epigenome could be heritable and could lead to disease long after the exposure has ended. This mini-review summarizes the epigenetic changes produced by glyphosate, GBHs, and AMPA in humans and rodents and proposes it as a potential mechanism of action through which these chemical compounds could alter body functions.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
35
|
Klingelhöfer D, Braun M, Brüggmann D, Groneberg DA. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144271. [PMID: 33387924 DOI: 10.1016/j.scitotenv.2020.144271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate is a systemic broad-spectrum herbicide that is by now the most extensively used herbicide in the world and has been the source for a still heated controversy about its harmful effects on human health and the environment. The different weighting of scientific studies has led to different attitudes in most countries towards appropriate handling and their regulatory authorities. Therefore, an in-depth analysis of the global research landscape on glyphosate is needed to provide the background for further decisions regarding appropriate and careful use, taking into account the different regional conditions. The present study is based on established bibliometric methodological tools and is extended by glyphosate-specific parameters. Chronological and geographical patterns are revealed to determine the incentives and intentions of international scientific efforts. Research output grew in line with the exponential growth in consumption, with the field of research becoming increasingly multidisciplinary and shifting towards environmental and medical disciplines. The countries with the highest herbicide use are also the leading countries in glyphosate research: USA, Brazil, Canada, China and Argentina. The link between publication output and market parameters is as evident as the association with national grants. The research interest of the manufacturing company Monsanto could be shown as the second largest publishing institution behind the US Department of Agriculture, which interest is underscored by its position among the otherwise government-funded organizations. Developing countries are generally underrepresented in glyphosate research, although the use of glyphosate is increasing dramatically. In conclusion, the incentives are strongly linked to market and agricultural interests, with the scientific infrastructure of the countries forming the basis for financing and conducting research. The existing international network is important and needs to be expanded and strengthened by including the lower economies in order to take into account all regional and social needs and aspects of glyphosate use.
Collapse
Affiliation(s)
- Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| | - Dörthe Brüggmann
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| |
Collapse
|
36
|
Gorga A, Rindone GM, Centola CL, Sobarzo CM, Pellizzari EH, Camberos MDC, Marín-Briggiler CI, Cohen DJ, Riera MF, Galardo MN, Meroni SB. Low Doses of Glyphosate/Roundup Alter Blood-Testis Barrier Integrity in Juvenile Rats. Front Endocrinol (Lausanne) 2021; 12:615678. [PMID: 33776912 PMCID: PMC7992013 DOI: 10.3389/fendo.2021.615678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
It has been postulated that glyphosate (G) or its commercial formulation Roundup (R) might lead to male fertility impairment. In this study, we investigated the possible effects of G or R treatment of juvenile male rats on blood-testis barrier function and on adult male sperm production. Pups were randomly assigned to the following groups: control group (C), receiving water; G2 and G50 groups, receiving 2 and 50 mg/kg/day G respectively; and R2 and R50 groups receiving 2 and 50 mg/kg/day R respectively. Treatments were performed orally from postnatal day (PND) 14 to 30, period of life that is essential to complete a functional blood-testis barrier. Evaluation was done on PND 31. No differences in body and testis weight were observed between groups. Testis histological analysis showed disorganized seminiferous epithelium, with apparent low cellular adhesion in treated animals. Blood-testis barrier permeability to a biotin tracer was examined. A significant increase in permeable tubules was observed in treated groups. To evaluate possible mechanisms that could explain the effects on blood-testis barrier permeability, intratesticular testosterone levels, androgen receptor expression, thiobarbituric acid reactive substances (TBARS) and the expression of intercellular junction proteins (claudin11, occludin, ZO-1, connexin43, 46, and 50 which are components of the blood-testis barrier) were examined. No modifications in the above-mentioned parameters were detected. To evaluate whether juvenile exposure to G and R could have consequences during adulthood, a set of animals of the R50 group was allowed to grow up until PND 90. Histological analysis showed that control and R50 groups had normal cellular associations and complete spermatogenesis. Also, blood-testis barrier function was recovered and testicular weight, daily sperm production, and epididymal sperm motility and morphology did not seem to be modified by juvenile treatment. In conclusion, the results presented herein show that continuous exposure to low doses of G or R alters blood-testis barrier permeability in juvenile rats. However, considering that adult animals treated during the juvenile stage showed no differences in daily sperm production compared with control animals, it is feasible to think that blood-testis barrier impairment is a reversible phenomenon. More studies are needed to determine possible damage in the reproductive function of human juvenile populations exposed to low doses of G or R.
Collapse
Affiliation(s)
- Agostina Gorga
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Gustavo Marcelo Rindone
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cecilia Lucía Centola
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cristian M. Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Eliana Herminia Pellizzari
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María del Carmen Camberos
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Clara Isabel Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Debora J. Cohen
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Fundación Endocrinológica Infantil (FEI) – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
37
|
Fu H, Gao F, Wang X, Tan P, Qiu S, Shi B, Shan A. Effects of glyphosate-based herbicide-contaminated diets on reproductive organ toxicity and hypothalamic-pituitary-ovarian axis hormones in weaned piglets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115596. [PMID: 33243543 DOI: 10.1016/j.envpol.2020.115596] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
At present, glyphosate (GLP) is the most produced and used herbicide in the world. With the large-scale use of glyphosate-based herbicides (GBHs), their toxic effects on animals and plants have increasingly become a concern. Based on the Codex Alimentarius Commission (CODEX) dose (20 mg kg-1) and the dose set by the government (40 mg kg-1), four experimental groups in which Roundup® (R) herbicide was added to the feed of weaned piglets at GLP concentrations of 0, 10, 20, and 40 mg kg-1 were designed. The results showed that R had no significant effect on the vulvar size or index of reproductive organs but that it could affect the tissue morphology and ultrastructure of the uterus and ovary. With the increase in GLP concentration, the activities of antioxidant enzymes [SOD (P < 0.05) and GPx (P = 0.002)] in the uterus showed significant increases. Compared with the control group, the content of hydrogen peroxide (H2O2) in the treatment groups increased significantly (P < 0.05), the malondialdehyde (MDA) content in the 10 mg kg-1 treatment group was significantly higher than that in the control group. We measured hypothalamic-pituitary-ovarian axis (HPOA) hormones and also found that GLP significantly increased luteinizing hormone-releasing hormone (LHRH), gonadotropin-releasing hormone (GnRH) and testosterone (T) content (P < 0.05) and decreased follicle-stimulating hormone (FSH) content (P < 0.05). In summary, although R does not affect the vulvar size or reproductive organ index of weaned piglets, it changes the morphology and ultrastructure of the uterus and ovaries, interferes with the synthesis and secretion of HPOA hormones, and causes changes in the balance of the antioxidant system of uterus. This study provided a theoretical basis for preventing reproductive system harm caused by GBHs.
Collapse
Affiliation(s)
- Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoxu Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Peng Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
38
|
Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 2020; 518:110934. [PMID: 32659439 DOI: 10.1016/j.mce.2020.110934] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Numerous evidences have alerted on the toxic effects of the exposure to glyphosate on living organisms. Glyphosate is the herbicide most used in crops such as maize and soybean worldwide, which implies that several non-target species are at a high risk of exposure. Although the Environmental Protection Agency (EPA-USA) has reaffirmed that glyphosate is safe for users, there are controversial studies that question this statement. Some of the reported effects are due to exposure to high doses; however, recent evidences have shown that exposure to low doses could also alter the development of the female reproductive tract, with consequences on fertility. Different animal models of exposure to glyphosate or glyphosate-based herbicides (GBHs) have shown that the effects on the female reproductive tract may be related to the potential and/or mechanisms of actions of an endocrine-disrupting compound. Studies have also demonstrated that the exposure to GBHs alters the development and differentiation of ovarian follicles and uterus, affecting fertility when animals are exposed before puberty. In addition, exposure to GBHs during gestation could alter the development of the offspring (F1 and F2). The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors and molecules involved in the estrogenic pathways. This review summarizes the endocrine-disrupting effects of exposure to glyphosate and GBHs at low or "environmentally relevant" doses in the female reproductive tissues. Data suggesting that, at low doses, GBHs may have adverse effects on the female reproductive tract fertility are discussed.
Collapse
Affiliation(s)
- Paola Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina.
| |
Collapse
|
39
|
Plewis I. Pesticides and transgenerational inheritance of pathologies: Designing, analysing and reporting rodent studies. PLoS One 2020; 15:e0228762. [PMID: 33001987 PMCID: PMC7529424 DOI: 10.1371/journal.pone.0228762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
Single-centre studies examining the transgenerational inheritance of pathologies in rodents exposed to pesticides have not always taken important design and analysis issues into account. This paper examines these methodological and statistical issues in detail. Its particular focus is on the estimation of 'litter effects': the tendency for rodents within a litter to be more alike than rodents in different litters. Appropriate statistical models were fitted to published data from a series of widely reported studies carried out at Washington State University. These studies were amalgamated into a single dataset in order to estimate these litter effects and associated treatment effects. Litter effects varied by outcome and were often substantial. Consequently, the effective sample size was often substantially less than the number of observations with implications for the power of the studies. Moreover, the reported precision of the estimates of treatment effects was too low. These problems are exacerbated by unexplained missing data across generations. Researchers in the life sciences could be more cognisant of the guidelines established in medicine for reporting randomised controlled trials, particularly cluster randomised trials. More attention should be paid to the design and analysis of multi-generational rodent studies; their imperfections have important implications for assessments of the evidence relating to the risks of pesticides for public health.
Collapse
Affiliation(s)
- Ian Plewis
- Social Statistics, School of Social Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Lorenz V, Pacini G, Luque EH, Varayoud J, Milesi MM. Perinatal exposure to glyphosate or a glyphosate-based formulation disrupts hormonal and uterine milieu during the receptive state in rats. Food Chem Toxicol 2020; 143:111560. [PMID: 32640336 DOI: 10.1016/j.fct.2020.111560] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
We investigated the effects of perinatal exposure to a glyphosate-based herbicide (GBH) or glyphosate alone (Gly) on female fertility and the hormonal and uterine milieu during the preimplantation period. F0 pregnant rats orally received a GBH or Gly in a dose of 2 mg of glyphosate/kg/day from gestational day (GD) 9 until weaning. F1 females were evaluated to determine the reproductive performance on GD19; and the sex steroid serum levels, the expression of estrogen receptor alpha (ERα), progesterone receptor (PR) and implantation-related genes on GD5 (preimplantation period). GBH and Gly induced preimplantation losses in F1 rats. GBH and Gly groups exhibited higher 17β-estradiol serum levels, without changes in progesterone. Both compounds increased the uterine ERα protein expression, with no differences at transcript level; and only Gly decreased PR mRNA expression. Also, GBH and Gly downregulated Hoxa10 and Lif genes, with no difference in Muc1 and Areg expression. To conclude, perinatal exposure to a GBH or Gly disrupted critical hormonal and uterine molecular targets during the receptive state, possibly associated with the implantation failures. Overall, similar results were found in GBH- and Gly-exposed rats, suggesting that the active principle might be the main responsible for the deleterious effects.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Guillermina Pacini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
41
|
Sergievich AA, Khoroshikh PP, Artemenko AF, Zakharenko AM, Chaika VV, Kodintsev VV, Stroeva OA, Lenda EG, Tsatsakis A, Burykina TI, Agathokleous E, Kostoff RN, Zlatian O, Docea AO, Golokhvast KS. Behavioral impacts of a mixture of six pesticides on rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138491. [PMID: 32335449 DOI: 10.1016/j.scitotenv.2020.138491] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Pesticides can potentially contribute to the development of numerous neurodegenerative diseases. This study evaluates the effects of a six-pesticide mixture at doses around the no-observed-adverse-effectlevels (0 × NOAEL, control) and 0.25, 1 and 5 × NOAEL on behavior of Wistar rats. After 3, 6 and 12 months, rats were observed for neurobehavioral changes using the techniques of elevated plus maze and universal problemchamber, and the experiment was conducted thrice. The 3-month exposure revealed a decrease in the cognitive ability at the dose of 5 × NOAEL, and a dose-dependent research activity and anxiety. The 6-month exposurerevealed non-monotonic effects on the cognitive ability, with a decrease by 0.25 and 5 × NOAEL, as well as non-monotonic effects on anxiety, withan increase by 0.25 and 1 × NOAEL. A decrease was also observed in research activity at 5 × NOAEL. However, the 12-month exposure resulted to an increase in cognitive ability by 0.25 × NOAEL and in anxiety by 1 × NOAEL, as well as to a dose-dependent research activity. Repeating the trial showed that the cognitive ability increased from one trial to another, while the researching activity decreased and the anxiety increased by 0× NOAEL. In the groups exposed to pesticides mixture, the trends were different, showing that the exposure to pesticides combined with repeated trials, also influence the response of the animals. The resultsdemonstrate the occurrence of several dose-dependent behavioral responses, with negative effects occurring at doses that are considered safe. This study provides novel insights about time-dependent mixtures biology, and an important perspective to consider when conducting risk assessments.
Collapse
Affiliation(s)
- Alexander A Sergievich
- Far Eastern Federal University, Vladivostok, Russian Federation; Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation.
| | | | | | | | | | | | - Olga A Stroeva
- Center Hygiene and Epidemiology in the Primorsky Territory, Vladivostok, Russian Federation.
| | - Elena G Lenda
- Center Hygiene and Epidemiology in the Primorsky Territory, Vladivostok, Russian Federation
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Greece; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia.
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia
| | - Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | | | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania.
| | - Kirill S Golokhvast
- Far Eastern Federal University, Vladivostok, Russian Federation; Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation.
| |
Collapse
|
42
|
Gastiazoro MP, Durando M, Milesi MM, Lorenz V, Vollmer G, Varayoud J, Zierau O. Glyphosate induces epithelial mesenchymal transition-related changes in human endometrial Ishikawa cells via estrogen receptor pathway. Mol Cell Endocrinol 2020; 510:110841. [PMID: 32360565 DOI: 10.1016/j.mce.2020.110841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Glyphosate based herbicides are the most commonly used herbicide in the world. We aimed to determine whether glyphosate (Gly) induces epithelial mesenchymal transition (EMT) - related changes in a human endometrial carcinoma cell line (Ishikawa cells), and whether the estrogen receptor (ER) pathway is involved in these changes. Ishikawa cells were exposed to Gly (0.2 μM and 2 μM) or 17β-estradiol (E2: 10-9 M). We detected that Gly increased cell migration and invasion ability compared to vehicle, as did E2. Moreover, a down regulation of E-cadherin mRNA expression was determined in response to Gly, similar to E2-effects. These results show that Gly promotes EMT-related changes in Ishikawa cells. When an ER antagonist (Fulvestrant: 10-7 M) was co-administrated with Gly, all changes were reversed, suggesting that Gly might promote EMT-related changes via ER-dependent pathway. Our results are interesting evidences of Gly effects on endometrial cancer progression via the ER-dependent pathway.
Collapse
Affiliation(s)
- M P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Institute for Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany.
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - M M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - V Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - G Vollmer
- Institute for Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - J Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - O Zierau
- Institute for Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
43
|
Rossetti MF, Stoker C, Ramos JG. Agrochemicals and neurogenesis. Mol Cell Endocrinol 2020; 510:110820. [PMID: 32315720 DOI: 10.1016/j.mce.2020.110820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Agrochemicals or pesticides are compounds widely used to prevent, destroy or mitigate pests such as insects, rodents, herbs and weeds. However, most of them also act as environmental estrogens, anti-estrogens and/or antiandrogenic chemicals. In addition, both herbicides (such as glyphosate and paraquat) and insecticides (such as pyrethroids, organophosphates, neonicotinoids and rotenone) have been shown to exert significant adverse effects on hippocampal neurogenesis. These effects are particularly important because neurogenesis dysregulation could be associated with cognitive decline and neuropathologies such as Alzheimer's disease. This review focuses on the most commonly used agrochemicals in Argentina and their effects on the hippocampal neurogenesis of mammals. It also discusses the disruption of hormone synthesis and action as a possible mechanism through which these chemical compounds could alter the brain functions. Finally, we propose some lines of research to study the potential endocrine mechanisms involved in the effects of agrochemicals on human health and biodiversity.
Collapse
Affiliation(s)
- M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina
| | - Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
44
|
Gomez AL, Altamirano GA, Tschopp MV, Bosquiazzo VL, Muñoz-de-Toro M, Kass L. Exposure to a Glyphosate-based Herbicide Alters the Expression of Key Regulators of Mammary Gland Development on Pre-pubertal Male Rats. Toxicology 2020; 439:152477. [PMID: 32360609 DOI: 10.1016/j.tox.2020.152477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
We previously reported that exposure during gestation and lactation to a low dose of glyphosate-based herbicide (GBH) reduced the area and perimeter of male offspring mammary gland at postnatal day 60 (PND60), whereas a higher dose increased the longitudinal growth of the gland. Here, our aim was to assess whether perinatal exposure to GBH exhibits endocrine disruptive action in male mammary gland at an early time point (pre-puberty), which could be related to the changes observed after puberty. We also wanted to explore whether an early evaluation of the male rat mammary gland is appropriate to assess exposure to potential endocrine disrupting chemicals (EDCs). Pregnant rats were orally exposed, through the diet, to vehicle (saline solution), 3.5 or 350 mg/kg/day of GBH from gestational day 9 until weaning. At PND21, the male offspring were euthanized, and mammary gland samples were collected. The histology and proliferation index of the mammary glands were evaluated, and the mRNA expression of estrogen (ESR1) and androgen (AR) receptors, cyclin D1 (Ccnd1), amphiregulin (Areg), insulin-like growth factor 1 (IGF1), epidermal growth factor receptor (EGFR) and IGF1 receptor (IGF1R) were assessed. Moreover, the phosphorylated-Erk1/2 (p-ERK1/2) protein expression was determined. No differences were observed in mammary epithelial structures and AR expression between experimental groups; however, the proliferation index was reduced in GBH3.5-exposed males. This result was associated with decreased ESR1, Ccnd1, Areg, IGF1, EGFR and IGF1R mRNA expressions, as well as reduced p-Erk1/2 protein expression in these animals. ESR1, Ccnd1, IGF1R and EGFR expressions were also reduced in GBH350-exposed males. In conclusion, the mammary gland development of pre-pubertal male rats is affected by perinatal exposure to GBH. Although further studies are still needed to understand the molecular mechanisms involved in GBH350 exposure, the present results may explain the alterations observed in mammary gland growth of post-pubertal males exposed to low doses of GBH. Our results also suggest that early evaluation of the male rat mammary gland is useful in assessing exposure to potential EDCs. However, analysis of EDCs effects at later time points should not be excluded.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
45
|
Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol 2020; 508:110789. [PMID: 32165172 DOI: 10.1016/j.mce.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer. It has been shown that the mammary glands of male and female rats and mice are susceptible to exposure to non-organochlorine (vinclozolin, atrazine, glyphosate, chlorpyrifos) and organochlorine (endosulfan, methoxychlor, hexachlorobenzene) pesticides. Some of the effects of these compounds in experimental models include increased or decreased mammary development, impaired cell proliferation and steroid receptor expression and signaling, increased malignant cellular transformation and tumor development and angiogenesis. Contradictory findings have been found as to whether there is a causal link between the exposure or the pesticide body burden and breast cancer in humans. However, an association has been observed between pesticides (especially organochlorine compounds) and specific subtypes of breast cancer. Further studies are needed in both humans and experimental models to understand how agrochemical pesticides can induce or promote changes in the development, differentiation and/or malignant transformation of the mammary gland.
Collapse
Affiliation(s)
- Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
46
|
Fu H, Qiu S, Yao X, Gao F, Tan P, Teng T, Shi B. Toxicity of glyphosate in feed for weanling piglets and the mechanism of glyphosate detoxification by the liver nuclear receptor CAR/PXR pathway. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121707. [PMID: 31776084 DOI: 10.1016/j.jhazmat.2019.121707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate (GLP), the most widely used and productive pesticide worldwide, which safety and reliability gradually become a social concern. It is important to explore the toxic of GLP on the limitation level by governments on piglets and the potential role of hepatic CAR/PXR and Keap1-Nrf2 pathways in low levels of glyphosate detoxification. Compared with the control group, the production performance and organ index of GLP group showed no significant change. However, the liver GLP residue of 40 mg/kg group was significantly higher than the control group. We also found that the activity of ALP increased linearly and DBIL content increased quadratically. Furthermore, GLP could significantly increase SOD and GSH-Px and decrease T-AOC and CAT activities and significantly increase MDA and H2O2 contents (P < 0.05); however, the genes expression of Keap1/Nrf2 pathway was not affected. Gene expression of CAR/PXR pathway showed that GLP could significantly stimulate the expression of CAR, but it could not affect the expression of phase Ⅰ (CYP1A1, CYP1A2, CYP2E1, CYP2A19, CYP3A29), phase Ⅱ (UGT1A6, GSTA1, GSTA2) detoxification enzymes and transporters (MDR1, MRP2, P-gp). Our study showed that although 10-40 mg/kg GLP would inevitably cause some liver damage and dysfunction, it can self-alleviating the toxic effect of GLP.
Collapse
Affiliation(s)
- Huiyang Fu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengnan Qiu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinxin Yao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Peng Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
47
|
Zanardi MV, Schimpf MG, Gastiazoro MP, Milesi MM, Muñoz-de-Toro M, Varayoud J, Durando M. Glyphosate-based herbicide induces hyperplastic ducts in the mammary gland of aging Wistar rats. Mol Cell Endocrinol 2020; 501:110658. [PMID: 31756423 DOI: 10.1016/j.mce.2019.110658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Glyphosate-based herbicide (GBH) exposure is known to have adverse effects on endocrine-related tissues. Here, we aimed to determine whether early postnatal exposure to a GBH induces long-term effects on the rat mammary gland. Thus, female Wistar pups were injected with saline solution (Control) or GBH (2 mg glyphosate/kg/day) on postnatal days (PND) 1, 3, 5 and 7. At 20 months of age, mammary gland samples were collected to determine histomorphological features, proliferation index and the expression of steroid hormone receptors expression, by immunohistochemistry, and serum samples were collected to assess 17β-estradiol (E2) and progesterone (P4) levels. GBH exposure induced morphological changes evidenced by a higher percentage of hyperplastic ducts and a fibroblastic-like stroma in the mammary gland. GBH-treated rats also showed a high expression of steroid hormone receptors in hyperplastic ducts. The results indicate that early postnatal exposure to GBH induces long-term alterations in the mammary gland morphology of aging female rats.
Collapse
Affiliation(s)
- María V Zanardi
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL; UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
48
|
Plewis I. Comment on response from Milesi et al. to 'Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats'. Arch Toxicol 2020; 94:351-352. [PMID: 31853558 PMCID: PMC7311515 DOI: 10.1007/s00204-019-02647-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Ian Plewis
- University of Manchester, Manchester, UK.
| |
Collapse
|
49
|
Milesi MM, Lorenz V, Beldomenico PM, Vaira S, Varayoud J, Luque EH. Response to comments on: Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats. Arch Toxicol 2019; 93:3635-3638. [PMID: 31720698 DOI: 10.1007/s00204-019-02609-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
- María M Milesi
- Instituto de Salud Y Ambiente del Litoral (ISAL), Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina.
| | - Virginia Lorenz
- Instituto de Salud Y Ambiente del Litoral (ISAL), Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Pablo M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), UNL - CONICET, Esperanza, Argentina
| | - Stella Vaira
- Departamento de Matemática and Laboratorio de Investigaciones y Servicios en Bioestadística (LISEB), Facultad de Bioquímica Y Ciencias Biológicas (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud Y Ambiente del Litoral (ISAL), Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud Y Ambiente del Litoral (ISAL), Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
50
|
Ingaramo PI, Guerrero Schimpf M, Milesi MM, Luque EH, Varayoud J. Acute uterine effects and long-term reproductive alterations in postnatally exposed female rats to a mixture of commercial formulations of endosulfan and glyphosate. Food Chem Toxicol 2019; 134:110832. [PMID: 31550491 DOI: 10.1016/j.fct.2019.110832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023]
Abstract
Endosulfan and glyphosate are widely used pesticides and have been associated to reproductive disorders. We examine the acute and long-term effects of postnatal exposure to commercial formulations of endosulfan (EF), glyphosate (glyphosate-based herbicide, GBH) and a mixture of both pesticides (MIX). After birth, female pups of Wistar rats received saline solution (CONTROL), EF (600 μg/kg of b.w/day), GBH (2 mg/kg of b.w/day) or a mixture (at the same doses) from postnatal day (PND) 1 to PND7. The uterine histology and expression of Hoxa10, estrogen (ERα) and progesterone (PR) receptors were evaluated on PND8. Reproductive performance was evaluated on gestational day 19. GBH and MIX rats showed an increment of 1) the incidence of luminal epithelial hyperplasia, 2) PR and Hoxa10 expression. EF modified ERα and Hoxa10 expression. During adulthood, MIX and GBH rats showed higher post-implantation losses while EF alone produced an increase of pre-implantation losses. We showed that the co-administration of both pesticides produced acute uterine effects and long-term deleterious reproductive effects that were similar to those induced by GBH alone. We consider important to highlight the necessity to evaluate the commercial pesticide mixture as a more representative model of human exposure to a high number of pesticides.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|