1
|
Zha H, Lv S, Hu Y, Xie Y, Wang L, Yang C, Li G, Gong S, Ping L, Zhu D, Wang J, Weng Q, He Q, Wang J. Isorhapontigenin alleviates acetaminophen-induced liver injury by promoting fatty acid oxidation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167575. [PMID: 39577212 DOI: 10.1016/j.bbadis.2024.167575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic medicine. It is frequently employed to alleviate pain and mitigate fever-related symptoms, but it can cause liver injury or even liver failure when overdosed. Isorhapontigenin, a compound derived from Chinese herbs and grapes, has been demonstrated to exhibit antioxidant and anti-inflammatory effects. This study focused on evaluating the effect of isorhapontigenin in alleviating APAP-induced liver injury. In the study, a single intraperitoneal administration of APAP was employed to induce liver injury, and isorhapontigenin was given orally 3 days before or 1 h after APAP administration. The results revealed that isorhapontigenin significantly mitigated liver injury by effectively inhibiting APAP-induced apoptosis, oxidative stress, and inflammation. Furthermore, transcriptomic RNA sequencing of liver tissues indicated that isorhapontigenin probably protected against APAP-induced liver injury by promoting fatty acid oxidation. Pharmacological experiments also demonstrated that isorhapontigenin treatment led to a significant reduction in triglyceride accumulation, increased ATP levels and direct fatty acid oxidation activity, as well as enhanced expression of proteins associated with fatty acid oxidation, including PPAR-α, PGC-1α, and CPT-1A. Moreover, the protective effects of isorhapontigenin against APAP-induced liver injury were abolished by a CPT-1A inhibitor, etomoxir. Notably, we found that combining isorhapontigenin with NAC (N-acetyl-L-cysteine) resulted in a more significant alleviation of APAP-induced liver injury compared to NAC alone. In conclusion, our study indicates that isorhapontigenin is a potential therapeutic strategy that works by regulating fatty acid oxidation to alleviate APAP-induced liver injury.
Collapse
Affiliation(s)
- Huiyan Zha
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuying Lv
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Yuming Hu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Lingkun Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuchen Gong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Difeng Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Taizhou Institute of Zhejiang University, Taizhou, 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China; Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Taizhou Institute of Zhejiang University, Taizhou, 318000, China; Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
2
|
Cui W, Cao Q, Liu L, Yin X, Wang X, Zhao Y, Wang Y, Wei B, Xu X, Tang Y. Artemisia Argyi essential oil ameliorates acetaminophen-induced hepatotoxicity via CYP2E1 and γ-glutamyl cycle reprogramming. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156106. [PMID: 39366156 DOI: 10.1016/j.phymed.2024.156106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND The hepatotoxicity induced by acetaminophen (APAP), a commonly used antipyretic, analgesic and anti-inflammatory drug in clinical practice, has received accumulated attention. Artemisia argyi essential oil (AAEO), a volatile oil component extracted from traditional Chinese medicine Artemisia argyi H.Lév. & Vaniot, has great hepatoprotective effects. However, the potential role of AAEO in APAP-induced hepatotoxicity has not been characterized. The present study aimed to investigate the effects of AAEO on hepatic metabolic changes in mice exposed to APAP. METHODS In this study, 300.00 mg/kg acetaminophen was used to establish liver injury model in C57BL/6 J mice. Hepatoprotective effect of AAEO on APAP-induced hepatotoxicity in mice was investigated by detecting liver function enzymes and histopathological examination. Secondly, UPLC-MS/MS was used to analyze the to analyze the small molecule metabolites and metabolic pathways induced by AAEO treatment; In addition, the effect of AAEO on APAP-induced oxidative stress and inflammation were evaluated by detecting the levels of glutathione peroxidase 4, malondialdehyde, reactive oxygen species and inflammatory factors. Finally, the active components of AAEO were preliminarily screened by cellular assays. The hepatoprotective effect of AAEO against APAP-induced hepatotoxicity was examined through the Western blotting, after the CYP2E1 gene was knocked down in AML12 cells by siRNA transfection. RESULTS Compared with the APAP group, AAEO could reduce the abnormal increase in the levels of liver function enzymes caused by APAP. AAEO could enhance the antioxidant capacity by down-regulating the biosynthesis pathway of unsaturated fatty acids and promoting the activity of antioxidant enzymes SOD and CAT in liver tissue induced by APAP. Our study revealed that AAEO promoted GSH synthesis and covalently combined to form APAP-GSH conjugates to reduce the accumulation of APAP in liver tissue. In addition, the chemical constituents in AAEO were analyzed by GC-MS/MS, and it was determined to identify that dihydro-beta-ionone and (-)-verbenone in AAEO might have a significant protective effect on hepatocyte survival after APAP exposure. Further studies on the hepatoprotective mechanism of AAEO indicated that it might reduce the production of toxic metabolites by regulating CYP2E1 levels. CONCLUSION AAEO exerted hepatoprotective effects on acetaminophen-induced hepatotoxicity in mice via regulating the activity of CYP2E1 and regulating the γ-glutamyl cycle pathway.
Collapse
Affiliation(s)
- Weiqi Cui
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianwen Cao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Luyao Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuecui Yin
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Zhao
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhong Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Youcai Tang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
3
|
Ramachandran A, Akakpo JY, Curry SC, Rumack BH, Jaeschke H. Clinically relevant therapeutic approaches against acetaminophen hepatotoxicity and acute liver failure. Biochem Pharmacol 2024; 228:116056. [PMID: 38346541 PMCID: PMC11315809 DOI: 10.1016/j.bcp.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Liver injury and acute liver failure caused by an acetaminophen (APAP) overdose is a significant clinical problem in western countries. With the introduction of the mouse model of APAP hepatotoxicity in the 1970 s, fundamental mechanisms of cell death were discovered. This included the recognition that part of the APAP dose is metabolized by cytochrome P450 generating a reactive metabolite that is detoxified by glutathione. After the partial depletion of glutathione, the reactive metabolite will covalently bind to sulfhydryl groups of proteins, which is the initiating event of the toxicity. This insight led to the introduction of N-acetyl-L-cysteine, a glutathione precursor, as antidote against APAP overdose in the clinic. Despite substantial progress in our understanding of the pathomechanisms over the last decades viable new antidotes only emerged recently. This review will discuss the background, mechanisms of action, and the clinical prospects of the existing FDA-approved antidote N-acetylcysteine, of several new drug candidates under clinical development [4-methylpyrazole (fomepizole), calmangafodipir] and examples of additional therapeutic targets (Nrf2 activators) and regeneration promoting agents (thrombopoietin mimetics, adenosine A2B receptor agonists, Wharton's Jelly mesenchymal stem cells). Although there are clear limitations of certain therapeutic approaches, there is reason to be optimistic. The substantial progress in the understanding of the pathophysiology of APAP hepatotoxicity led to the consideration of several drugs for development as clinical antidotes against APAP overdose in recent years. Based on the currently available information, it is likely that this will result in additional drugs that could be used as adjunct treatment for N-acetylcysteine.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, Phoenix, AZ, USA; Department of Medicine, and Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Lim JC, Jiang L, Lust NG, Donaldson PJ. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel) 2024; 13:1193. [PMID: 39456447 PMCID: PMC11505578 DOI: 10.3390/antiox13101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress plays a major role in the formation of the cataract that is the result of advancing age, diabetes or which follows vitrectomy surgery. Glutathione (GSH) is the principal antioxidant in the lens, and so supplementation with GSH would seem like an intuitive strategy to counteract oxidative stress there. However, the delivery of glutathione to the lens is fraught with difficulties, including the limited bioavailability of GSH caused by its rapid degradation, anatomical barriers of the anterior eye that result in insufficient delivery of GSH to the lens, and intracellular barriers within the lens that limit delivery of GSH to its different regions. Hence, more attention should be focused on alternative methods by which to enhance GSH levels in the lens. In this review, we focus on the following three strategies, which utilize the natural molecular machinery of the lens to enhance GSH and/or antioxidant potential in its different regions: the NRF2 pathway, which regulates the transcription of genes involved in GSH homeostasis; the use of lipid permeable cysteine-based analogues to increase the availability of cysteine for GSH synthesis; and the upregulation of the lens's internal microcirculation system, which is a circulating current of Na+ ions that drives water transport in the lens and with it the potential delivery of cysteine or GSH. The first two strategies have the potential to restore GSH levels in the epithelium and cortex, while the ability to harness the lens's internal microcirculation system offers the exciting potential to deliver and elevate antioxidant levels in its nucleus. This is an important distinction, as the damage phenotypes for age-related (nuclear) and diabetic (cortical) cataract indicate that antioxidant delivery must be targeted to different regions of the lens in order to alleviate oxidative stress. Given our increasing aging and diabetic populations it has become increasingly important to consider how the natural machinery of the lens can be utilized to restore GSH levels in its different regions and to afford protection from cataract.
Collapse
Affiliation(s)
- Julie C. Lim
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Lanpeng Jiang
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Natasha G. Lust
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
5
|
Jasim MHM, Mustafa YF. Synthesis of Acetaminophen-Based Coumarins as Selective COX-2 Inhibitors: An in vitro-in silico Study. Chem Biodivers 2024; 21:e202401309. [PMID: 39011809 DOI: 10.1002/cbdv.202401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Acetaminophen, a centrally-acting old analgesic drug, is a weak inhibitor of cyclooxygenase (COX) isoforms with some selectivity toward COX-2. This compound was used in this work as a precursor to create nine acetaminophen based coumarins (ACFs). To satisfy the aim of this work, which states the synthesis of acetaminophen-based coumarins as selective COX-2 inhibitors, the ACFs were subjected to two types of investigation: in vitro and in silico. Given the former type, the ACFs capacity to block COX-1 and COX-2 was investigated in lab settings. On the other hand, the in silico investigation included docking the chemical structures of ACFs into the active sites of these enzymes, predicting their anticipated toxicities, and determining the ADME characteristics. The results of the in vitro study revealed that the synthesized ACFs demonstrated good-to-excellent inhibitory properties against the enzymes under study. Also, these ACFs exhibited a high level of COX-2 selectivity, which improved as the capacity of the aromatic substitute for withdrawing electrons was enhanced. Results of docking were comparable to the in vitro investigation in case of COX-2. On the other hand, the in silico investigations indicated that the synthesized ACFs are safer than their precursor, acetaminophen, with a high potential to consider oral-administrated candidates.
Collapse
Affiliation(s)
- Mahmood H M Jasim
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Killingsworth ZK, Misare KR, Ryan AS, Ampolini EA, Mendenhall TT, Engevik MA, Hartman JH. Subcellular expression of CYP2E1 in HepG2 cells impacts response to free oleic and palmitic acid. Curr Res Toxicol 2024; 7:100195. [PMID: 39429948 PMCID: PMC11489078 DOI: 10.1016/j.crtox.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Aims Cytochrome P450 2E1 (CYP2E1) is a mammalian monooxygenase expressed at high levels in the liver that metabolizes low molecular weight pollutants and drugs, as well as endogenous fatty acids and ketones. Although CYP2E1 has been mainly studied in the endoplasmic reticulum (ER, microsomal fraction), it also localizes in significant amounts to the mitochondria, where it has been far less studied. We investigated the effects of CYP2E1 expression in mitochondria, endoplasmic reticulum, or both organelles in transgenic HepG2 cells exposed to free oleic and palmitic acid, including effects on cytotoxicity, lipid storage, respiration, and gene expression. Results We found that HepG2 cells expressing CYP2E1 in both the ER and mitochondria have exacerbated levels of palmitic acid cytotoxicity and inhibited respiration. CYP2E1 expression did not impact lipid accumulation from fatty acid exposures, but mitochondrial CYP2E1 expression promoted lipid droplet depletion during serum starvation. In contrast to HepG2 cells, differentiated HepaRG cells express abundant CYP2E1, but they are not sensitive to palmitic acid cytotoxicity. Oleic acid exposure prompted less cytotoxicity, and CYP2E1 expression in the ER prevented an oleic-acid-induced increase in respiration. HepG2 cells exposed to mixtures of palmitic and oleic acid are protected from palmitic acid cytotoxicity. Additionally, we identified that CYP2E1 was decreased at the gene and protein level in hepatocellular carcinoma. Moreover, patients with tumors that had higher CYP2E1 expression had a better prognosis compared to patients with lower CYP2E1 expression. Innovation This study has demonstrated that transgenic CYP2E1 subcellular localization plays an important role in sensitivity to cytotoxicity, lipid storage, and respiration in the hepatoma cell line HepG2 exposed to palmitic and oleic acid. HepaRG cells, in contrast, were insensitive to palmitic acid. This work demonstrates the clear importance of CYP2E1 in dictating lipotoxicity and differential roles for the mitochondrial and ER forms of the enzyme. Additionally, our data supports a potentially unique role for CYP2E1 in cancer cells. Conclusion There lies a role for CYP2E1 in altering lipotoxicity, and since CYP2E1 is known to be upregulated in both liver disease and hepatocellular carcinoma, it is important to better define how the role of CYP2E1 changes during disease progression.
Collapse
Affiliation(s)
- Zaria K. Killingsworth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Kelly R. Misare
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Abigail S. Ryan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth A. Ampolini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Tsultrim T. Mendenhall
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Jessica H. Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Zhang X, Geng Q, Lin L, Zhang L, Shi C, Liu B, Yan L, Cao Z, Li L, Lu P, Tan Y, He X, Zhao N, Li L, Lu C. Insights gained into the injury mechanism of drug and herb induced liver injury in the hepatic microenvironment. Toxicology 2024; 507:153900. [PMID: 39079402 DOI: 10.1016/j.tox.2024.153900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Drug-Induced Liver Injury (DILI) and herb Induced Liver Injury (HILI) continues to pose a substantial challenge in both clinical practice and drug development, representing a grave threat to patient well-being. This comprehensive review introduces a novel perspective on DILI and HILI by thoroughly exploring the intricate microenvironment of the liver. The dynamic interplay among hepatocytes, sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, cholangiocytes, and the intricate vascular network assumes a central role in drug metabolism and detoxification. Significantly, this microenvironment is emerging as a critical determinant of susceptibility to DILI and HILI. The review delves into the multifaceted interactions within the liver microenvironment, providing valuable insights into the complex mechanisms that underlie DILI and HILI. Furthermore, we discuss potential strategies for mitigating drug-induced liver injury by targeting these influential factors, emphasizing their clinical relevance. By highlighting recent advances and future prospects, our aim is to shed light on the promising avenue of leveraging the liver microenvironment for the prevention and mitigation of DILI and HILI. This deeper understanding is crucial for advancing clinical practices and ensuring patient safety in the realm of DILI and HILI.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Zhang W, Cheng Q, Yin L, Liu Y, Chen L, Jiang Z, Jiang X, Qian S, Li B, Wu M, Yin X, Wang T, Lu Q, Yang T. Jujuboside A through YY1/CYP2E1 signaling alleviated type 2 diabetes-associated fatty liver disease by ameliorating hepatic lipid accumulation, inflammation, and oxidative stress. Chem Biol Interact 2024; 400:111157. [PMID: 39059604 DOI: 10.1016/j.cbi.2024.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) was a chronic complication of type 2 diabetes mellitus (T2DM), and this comorbid disease lacked therapeutic drugs. Semen Ziziphi Spinosae (SZS) was the seed of Ziziphus jujuba var. Spinosa (Bunge) Hu ex H.F. Chow, and it could alleviate the symptoms of T2DM patients. As a triterpene saponin, Jujuboside A (Ju A) was the main active substance isolated from SZS and could improve hyperglycemia of diabetic mice. However, it was still unknown whether Ju A has protective effects on T2DM-associated NAFLD. Our study showed that Ju A attenuated T2DM-associated liver damage by alleviating hepatic lipid accumulation, inflammatory response, and oxidative stress in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-stimulated human hepatocellular carcinomas (HepG2) cells. Along with the improved hyperglycemia and liver injury, Ju A restrained Yin Yang 1 (YY1)/cytochrome P450 2E1 (CYP2E1) signaling in vivo and in vitro. YY1 overexpression intercepted the protective effects of Ju A on T2DM-induced liver injury via promoting hepatic lipid accumulation, inflammatory response, and oxidative stress. While, the blocking effect of YY1 overexpression on Ju A's hepatoprotective effect was counteracted by further treatment of CYP2E1 specific inhibitor diethyldithiocarbamate (DDC) in vitro. In-depth mechanism research showed that Ju A through YY1/CYP2E1 signaling promoted hepatic fatty acid β-oxidation, and inhibited inflammatory response and oxidative stress by activating peroxisome proliferator-activated receptor alpha (PPARα), leading to the improvement of T2DM-associated NAFLD. Ju A might be a potential agent in the treatment and health care of T2DM-associated liver disease, especially NAFLD.
Collapse
Affiliation(s)
- Wenjing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Longxiang Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiyan Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Baojing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Mengying Wu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
9
|
Jaeschke H, Ramachandran A. Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress. Drug Metab Dispos 2024; 52:712-721. [PMID: 37567742 PMCID: PMC11257690 DOI: 10.1124/dmd.123.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
10
|
Zhang N, Han Z, Zhang R, Liu L, Gao Y, Li J, Yan M. Ganoderma lucidum Polysaccharides Ameliorate Acetaminophen-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Apoptosis along the Nrf2 Pathway. Nutrients 2024; 16:1859. [PMID: 38931214 PMCID: PMC11206445 DOI: 10.3390/nu16121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Zhongming Han
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Rui Zhang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Linling Liu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Yanliang Gao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Jintao Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| |
Collapse
|
11
|
Adelusi OB, Akakpo JY, Eichenbaum G, Sadaff E, Ramachandran A, Jaeschke H. The thrombopoietin mimetic JNJ-26366821 reduces the late injury and accelerates the onset of liver recovery after acetaminophen-induced liver injury in mice. Arch Toxicol 2024; 98:1843-1858. [PMID: 38551724 PMCID: PMC11210275 DOI: 10.1007/s00204-024-03725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Gary Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, Consumer Health, New Brunswick, NJ, 08901, USA
| | - Ejaz Sadaff
- Office of the Chief Medical Officer, Johnson & Johnson, Consumer Health, New Brunswick, NJ, 08901, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
12
|
Liu X, Liu R, Wang Y. Indole-3-carboxaldehyde alleviates acetaminophen-induced liver injury via inhibition of oxidative stress and apoptosis. Biochem Biophys Res Commun 2024; 710:149880. [PMID: 38581952 DOI: 10.1016/j.bbrc.2024.149880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.
Collapse
Affiliation(s)
- Xinlei Liu
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing, 400044, China; Stem Cell Research Center, School of Medicine, Chongqing University, Chongqing, 400044, China.
| | - Rui Liu
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China.
| | - Yancheng Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
13
|
Wang Y, Ren J, Ren S. Larsucosterol: endogenous epigenetic regulator for treating chronic and acute liver diseases. Am J Physiol Endocrinol Metab 2024; 326:E577-E587. [PMID: 38381400 PMCID: PMC11376820 DOI: 10.1152/ajpendo.00406.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Larsucosterol, a potent endogenous epigenetic regulator, has been reported to play a significant role in lipid metabolism, inflammatory responses, and cell survival. The administration of larsucosterol has demonstrated a reduction in lipid accumulation within hepatocytes and the attenuation of inflammatory responses induced by lipopolysaccharide (LPS) and TNFα in macrophages, alleviating LPS- and acetaminophen (ATMP)-induced multiple organ injury, and decreasing mortalities in animal models. Results from phase 1 and 2 clinical trials have shown that larsucosterol has potential as a biomedicine for the treatment of acute and chronic liver diseases. Recent evidence suggests that larsucosterol is a promising candidate for treating alcohol-associated hepatitis with positive results from a phase 2a clinical trial, and for metabolic dysfunction-associated steatohepatitis (MASH) from a phase 1b clinical trial. In this review, we present a culmination of our recent research efforts spanning two decades. We summarize the discovery, physiological and pharmacological mechanisms, and clinical applications of larsucosterol. Furthermore, we elucidate the pathophysiological pathways of metabolic dysfunction-associated steatotic liver diseases (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and acute liver injuries. A central focus of the review is the exploration of the therapeutic potential of larsucosterol in treating life-threatening conditions, including acetaminophen overdose, endotoxin shock, MASLD, MASH, hepatectomy, and alcoholic hepatitis.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Jenna Ren
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| |
Collapse
|
14
|
Jiang W, Wang J, Wang J, Chen X, Fang Z, Hu C. A Review of the Role of Caveolin-1 in Acetaminophen-Induced Liver Injury. Pharmacology 2024; 109:194-201. [PMID: 38657589 DOI: 10.1159/000538017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Acetaminophen (APAP) is commonly used as an antipyretic and analgesic agent. Excessive APAP can induce liver toxicity, known as APAP-induced liver injury (ALI). The metabolism and pathogenesis of APAP have been extensively studied in recent years, and many cellular processes such as autophagy, mitochondrial oxidative stress, mitochondrial dysfunction, and liver regeneration have been identified to be involved in the pathogenesis of ALI. Caveolin-1 (CAV-1) as a scaffold protein has also been shown to be involved in the development of various diseases, especially liver disease and tumorigenesis. The role of CAV-1 in the development of liver disease and the association between them remains a challenging and uncharted territory. SUMMARY In this review, we briefly explore the potential therapeutic effects of CAV-1 on ALI through autophagy, oxidative stress, and lipid metabolism. Further research to better understand the mechanisms by which CAV-1 regulates liver injury will not only enhance our understanding of this important cellular process, but also help develop new therapies for human disease by targeting CAV-1 targets. KEY MESSAGES This review briefly summarizes the potential protective mechanisms of CAV-1 against liver injury caused by APAP.
Collapse
Affiliation(s)
- Wei Jiang
- Pharmacy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China,
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China,
| | - Junping Wang
- Pharmacy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jiarong Wang
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Pharmacy Center, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Xueran Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei, China
| | - Zhiyou Fang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei, China
| | - Chengmu Hu
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Luo J, Liu H, Xu Y, Yu N, Steiner RA, Wu X, Si S, Jin ZG. Hepatic Sirt6 activation abrogates acute liver failure. Cell Death Dis 2024; 15:283. [PMID: 38649362 PMCID: PMC11035560 DOI: 10.1038/s41419-024-06537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 04/25/2024]
Abstract
Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.
Collapse
Affiliation(s)
- Jinque Luo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China
| | - Nanhui Yu
- The 2nd Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Rebbeca A Steiner
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Xiaoqian Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
16
|
Xu J, Chen J, Deng J, Chen X, Du R, Yu Z, Gao S, Chen B, Wang Y, Cai X, Duan H, Cai Y, Zheng G. Naringenin inhibits APAP-induced acute liver injury through activating PPARA-dependent signaling pathway. Exp Cell Res 2024; 437:114028. [PMID: 38582338 DOI: 10.1016/j.yexcr.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinji Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong, Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
17
|
Jaeschke H, Ramachandran A. Comments on: Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:1781-1782. [PMID: 38317477 PMCID: PMC11003835 DOI: 10.1002/ptr.8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
18
|
Williams EE, Quach D, Daigh A. Massive acetaminophen ingestion managed successfully with N-acetylcysteine, fomepizole, and renal replacement therapy. Clin Nephrol Case Stud 2024; 12:22-25. [PMID: 38444903 PMCID: PMC10913534 DOI: 10.5414/cncs111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/14/2023] [Indexed: 03/07/2024] Open
Abstract
Acetaminophen ingestion is routinely managed with the antidote, N-acetylcysteine (NAC). Massive acetaminophen poisoning has been treated successfully with adjunctive therapies such as fomepizole and hemodialysis. Fomepizole functions by inhibiting cytochrome p560, which prevents tylenol from forming its toxic metabolite, NAPQI. Prior cases have demonstrated favorable outcomes and a significant drop in acetaminophen levels after a single session of intermittent hemodialysis and continuous veno-venous hemofiltration (CVVH). However, the recommended dosage adjustments of NAC and fomepizole while a patient is undergoing CVVH has not been well reported. We present a case of an 18-year-old male who presented after ingesting 125 g of tylenol. His 4-hour acetaminophen level was 738.6 µg/mL. He was treated with NAC, fomepizole, and a single 4-hour session of hemodialysis. His acetaminophen level remained elevated at 730 µg/mL despite the hemodialysis session. CVVH was initiated, and he was given intravenous NAC at 12.5 mg/kg/h, oral NAC at 70 mg/kg every 4 hours, and intravenous fomepizole at 10 mg/kg every 6 hours. His tylenol levels became undetectable 57 hours after ingestion, and he did not develop permanent liver toxicity. This case encourages the use of CVVH for massive tylenol ingestion when a single run of intermittent hemodialysis is not effective in lowering the tylenol level. NAC, fomepizole, and CVVH can prevent unfavorable outcomes in massive acetaminophen ingestion when provided at an appropriate dose and frequency.
Collapse
Affiliation(s)
| | - Duc Quach
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arthur Daigh
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Ma J, Lu X, Hao M, Wang Y, Guo Y, Wang Z. Real-time visualization the pH fluctuations of living cells with a ratiometric near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123572. [PMID: 37922853 DOI: 10.1016/j.saa.2023.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
In situ real-time quantitative monitoring pH fluctuation in complex living systems is vitally significant. In the current work, a ratiometric near-infrared (NIR) probe (MCyOH) was developed to confront this challenge. MCyOH exhibited good sensitivity, photostability, reversibility, and an ideal pKa (pKa = 6.65). Ratiometric character of MCyOH is beneficial to accuracy detect the pH fluctuations in living cells under different stimulation. The observations showed that intracellular pH was decreased when HepG2 cells under oxidative stress or starvation conditions. In particular, HepG2 cells was acidulated after addition of ethanol, however, the acidification phenomenon was attenuated or disappeared when HepG2 cells preincubated with disulfiram or fomepizole. Finally, MCyOH was successfully applied to observe the increasement of intracellular pH when HepG2 cells treated with fomepizole individually. Overall, MCyOH would be a practical candidate to explore pH-associated physiological and pathological varieties.
Collapse
Affiliation(s)
- Jianlong Ma
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China; Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Mingyao Hao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yumeng Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China.
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China.
| |
Collapse
|
20
|
Jaeschke H, Ramachandran A. Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. ANNUAL REVIEW OF PATHOLOGY 2024; 19:453-478. [PMID: 38265880 PMCID: PMC11131139 DOI: 10.1146/annurev-pathmechdis-051122-094016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| |
Collapse
|
21
|
Bryan A, Pingali P, Faber A, Landry J, Akakpo JY, Jaeschke H, Li H, Lee WS, May L, Patel B, Neuwelt A. High-Dose Acetaminophen with Concurrent CYP2E1 Inhibition Has Profound Anticancer Activity without Liver Toxicity. J Pharmacol Exp Ther 2024; 388:209-217. [PMID: 37918853 PMCID: PMC10765416 DOI: 10.1124/jpet.123.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Acetaminophen (AAP) is metabolized by a variety of pathways such as sulfation, glucuronidation, and fatty acid amide hydrolase-mediated conversion to the active analgesic metabolite AM404. CYP2E1-mediated metabolism to the hepatotoxic reactive metabolite NAPQI (N-acetyl-p-benzoquinone imine) is a minor metabolic pathway that has not been linked to AAP therapeutic benefits yet clearly leads to AAP liver toxicity. N-acetylcysteine (NAC) (an antioxidant) and fomepizole (a CYP2E1 inhibitor) are clinically used for the treatment of AAP toxicity. Mice treated with AAP in combination with fomepizole (plus or minus NAC) were assessed for liver toxicity by histology and serum chemistry. The anticancer activity of AAP with NAC and fomepizole rescue was assessed in vitro and in vivo. Fomepizole with or without NAC completely prevented AAP-induced liver toxicity. In vivo, high-dose AAP with NAC/fomepizole rescue had profound antitumor activity against commonly used 4T1 breast tumor and lewis lung carcinoma lung tumor models, and no liver toxicity was detected. The antitumor efficacy was reduced in immune-compromised NOD-scid IL2Rgammanull mice, suggesting an immune-mediated mechanism of action. In conclusion, using fomepizole-based rescue, we were able to treat mice with 100-fold higher than standard dosing of AAP (650 mg/kg) without any detected liver toxicity and substantial antitumor activity. SIGNIFICANCE STATEMENT: High-dose acetaminophen can be given concurrently with CYP2E1 inhibition to allow for safe dose escalation to levels needed for anticancer activity without detected evidence of toxicity.
Collapse
Affiliation(s)
- Allyn Bryan
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Pavani Pingali
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Anthony Faber
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Joseph Landry
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Jephte Y Akakpo
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Hartmut Jaeschke
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Howard Li
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Won Sok Lee
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Lauren May
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Bhaumik Patel
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Alex Neuwelt
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| |
Collapse
|
22
|
Li Y, Yang X, Bao T, Sun X, Li X, Zhu H, Zhang B, Ma T. Radix Astragali decoction improves liver regeneration by upregulating hepatic expression of aquaporin-9. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155166. [PMID: 37918281 DOI: 10.1016/j.phymed.2023.155166] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The therapeutic efficacy of liver injuries heavily relies on the liver's remarkable regenerative capacity, necessitating the maintenance of glycose/lipids homeostasis and oxidative eustasis during the recovery process. Astragali Radix, an herbal tonic widely used in China and many other countries, is believed to have many positive effects, including immune stimulation, nourishing, antioxidant, liver protection, diuresis, anti-diabetes, anti-cancer and expectorant. Astragali Radix is widely integrated into hepatoprotective formulas as it is believed to facilitate liver regeneration. Nevertheless, the precise molecular pharmacological mechanisms underlying this hepatoprotective effect remain elusive. PURPOSE To investigate the improving effects of Astragali Radix on liver regeneration and the underlying mechanisms. METHODS A mouse model of 70% partial hepatectomy (PHx) was employed to investigate the impact of Radix Astragali decoction (HQD) on liver regeneration. HQD was orally administered for 7 days before the PHx procedure and throughout the experiment. N-acetylcysteine (NAC) was used as a positive control for liver regeneration. Liver regeneration was assessed by evaluating the liver-to-body weight ratio (LW/BW) and the expression of representative cell proliferation marker proteins. Oxidative stress and glucose metabolism were analyzed using biochemical assays, Western blotting, dihydroethidium (DHE) fluorescence, and periodic acid-Schiff (PAS) staining methods. To understand the role of AQP9 as a potential molecular target of HQD in promoting liver regeneration, td-Tomato-tagged AQP9 transgenic mice (AQP9-RFP) were employed to determine the expression pattern of AQP9 protein. AQP9 knockout mice (AQP9-/-) were used to assess the specific targeting of AQP9 in the promotion of liver regeneration by HQD. RESULTS HQD significantly upregulated hepatic AQP9 expression, alleviated liver injury and promoted liver regeneration in wild-type (AQP9+/+) mice after 70% PHx. However, the beneficial impact of HQD on liver regeneration was absent in AQP9 gene knockout (AQP9-/-) mice. Moreover, HQD facilitated the uptake of glycerol by hepatocytes, enhanced gluconeogenesis, and concurrently reduced H2O2 content and oxidative stress levels in AQP9+/+ but not AQP9-/- mouse livers. Additionally, main active substance of Radix Astragali, astragaloside IV (AS-IV) and cycloastragenol (CAG), demonstrated substantial upregulation of AQP9 expression and promoted liver regeneration in AQP9+/+ but not AQP9-/- mice. CONCLUSION This study is the first to demonstrate that Radix Astragali and its main active constituents (AS-IV and CAG) improve liver regeneration by upregulating the expression of AQP9 in hepatocytes to increase gluconeogenesis and reduce oxidative stress. The study revealed novel molecular pharmacological mechanisms of Radix Astragali and provided a promising therapeutic target of liver diseases.
Collapse
Affiliation(s)
- Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xu Yang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Tiantian Bao
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiaojuan Sun
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Huilin Zhu
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
23
|
Ezhilarasan D, Shree Harini K, Karthick M, Selvaraj C. Ethyl gallate concurrent administration protects against acetaminophen-induced acute liver injury in mice: An in vivo and in silico approach. Chem Biol Drug Des 2024; 103:e14369. [PMID: 37817304 DOI: 10.1111/cbdd.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
Acetaminophen (APAP) in high doses causes acute liver injury and acute liver failure. Ethyl gallate (EG) is a natural polyphenol, possessing antioxidant, anti-inflammatory, and anti-microbial properties. Therefore, in this study, we evaluated the protective role of EG against APAP-induced acute liver injury in mice. Acute liver injury was induced by a single dose of APAP (400 mg/kg., i.p.). In separate groups, EG (10 mg/kg), EG (20 mg/kg), and N-acetylcysteine (NAC; 1200 mg/kg., i.p.) were administered concurrently with APAP. The mice were sacrificed after 24 h of treatment. Liver marker enzymes of hepatotoxicity, antioxidant markers, inflammatory markers, and histopathological studies were done. APAP administration caused a significant elevation of marker enzymes of hepatotoxicity and lipid peroxidation. APAP administration also decreased enzymic and nonenzymic antioxidants. Acute APAP intoxication induced nuclear factor κ B, tumor necrosis factor-α, interleukin-1, p65, and p52 and downregulated IκB gene expressions. Our histopathological studies have confirmed the presence of centrilobular necrosis, 24 h after APAP intoxication. All the above abnormalities were significantly inhibited in groups of mice that were concurrently administered with APAP + EG and APAP + NAC. Our in silico analysis further confirms that hydroxyl groups of EG interact with the above inflammatory proteins at the 3,4,5-trihydroxybenzoic acid region. These effects of EG against APAP-induced acute liver injury could be attributed to its antioxidative, free radical scavenging, and anti-inflammatory potentials. Therefore, this study suggests that EG can be an efficient therapeutic approach to protect the liver from APAP intoxication.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Chandrabose Selvaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Laboratory for Artificial Intelligence and Molecular Modelling, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
24
|
Etemadi Y, Akakpo JY, Ramachandran A, Jaeschke H. Nrf2 as a therapeutic target in acetaminophen hepatotoxicity: A case study with sulforaphane. J Biochem Mol Toxicol 2023; 37:e23505. [PMID: 37598316 PMCID: PMC10842847 DOI: 10.1002/jbt.23505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Acetaminophen (APAP) overdose can cause severe liver injury and acute liver failure. The only clinically approved antidote, N-acetylcysteine (NAC), is highly effective but has a narrow therapeutic window. In the last 2 decades, activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates acute phase proteins and antioxidant defense genes, has emerged as a putative new therapeutic target against APAP hepatotoxicity. However, virtually all studies that propose Nrf2 activation as mechanism of protection used prolonged pretreatment, which is not a clinically feasible approach to treat a drug overdose. Therefore, the objective of this study was to assess if therapeutic activation of Nrf2 is a viable approach to treat liver injury after APAP overdose. We used the water-soluble Nrf2 activator sulforaphane (SFN; 5 mg/kg) in a murine model of APAP hepatotoxicity (300 mg/kg). Our results indicate that short-term treatment (≤3 h) with SFN alone did not activate Nrf2 or its target genes. However, posttreatment with SFN after APAP partially protected at 6 h likely due to more rapid activation of the Nrf2-target gene heme oxygenase-1. A direct comparison of SFN with NAC given at 1 h after APAP showed a superior protection with NAC, which was maintained at 24 h unlike with SFN. Thus, Nrf2 activators have inherent problems like the need to create a cellular stress to activate Nrf2 and delayed adaptive responses which may hamper sustained protection against APAP hepatotoxicity. Thus, compared to the more direct acting antidote NAC, Nrf2 activators are less suitable for this indication.
Collapse
Affiliation(s)
- Yasaman Etemadi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
25
|
Akakpo JY, Ramachandran A, Rumack BH, Wallace DP, Jaeschke H. Lack of mitochondrial Cyp2E1 drives acetaminophen-induced ER stress-mediated apoptosis in mouse and human kidneys: Inhibition by 4-methylpyrazole but not N-acetylcysteine. Toxicology 2023; 500:153692. [PMID: 38042273 PMCID: PMC11097675 DOI: 10.1016/j.tox.2023.153692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury and acute liver failure, as well as acute kidney injury, which is not prevented by the clinical antidote N-acetyl-L-cysteine (NAC). The absence of therapeutics targeting APAP-induced nephrotoxicity is due to gaps in understanding the mechanisms of renal injury. APAP metabolism through Cyp2E1 drives cell death in both the liver and kidney. We demonstrate that Cyp2E1 is localized to the proximal tubular cells in mouse and human kidneys. Virtually all the Cyp2E1 in kidney cells is in the endoplasmic reticulum (ER), not in mitochondria. By contrast, hepatic Cyp2E1 is in both the ER and mitochondria of hepatocytes. Consistent with this subcellular localization, a dose of 600 mg/kg APAP in fasted C57BL/6J mice induced the formation of APAP protein adducts predominantly in mitochondria of hepatocytes, but the ER of the proximal tubular cells of the kidney. We found that reactive metabolite formation triggered ER stress-mediated activation of caspase-12 and apoptotic cell death in the kidney. While co-treatment with 4-methylpyrazole (4MP; fomepizole) or the caspase inhibitor Ac-DEVD-CHO prevented APAP-induced cleavage of procaspase-12 and apoptosis in the kidney, treatment with NAC had no effect. These mechanisms are clinically relevant because 4MP but not NAC also significantly attenuated APAP-induced apoptotic cell death in primary human kidney cells. We conclude that reactive metabolite formation by Cyp2E1 in the ER results in sustained ER stress that causes activation of procaspase-12, triggering apoptosis of proximal tubular cells, and that 4MP but not NAC may be an effective antidote against APAP-induced kidney injury.
Collapse
Affiliation(s)
- Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
26
|
Kandhari K, Kant R, Mishra N, Agarwal C, Agarwal R. Phenylarsine oxide induced corneal injury involves oxidative stress mediated unfolded protein response and ferroptotic cell death: Amelioration by NAC. Free Radic Biol Med 2023; 209:265-281. [PMID: 38088264 PMCID: PMC10719503 DOI: 10.1016/j.freeradbiomed.2023.10.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
Phenylarsine oxide (PAO), an analog of lewisite, is a highly toxic trivalent arsenical and a potential chemical warfare agent. PAO-induced toxicity has been studied in lung, liver, and skin tissues. Nevertheless, very few studies have been published to comprehend the impact of PAO-induced toxicity on ocular tissues, even though eyes are uniquely vulnerable to injury by vesicants. Notably, arsenical vesicants such as lewisite have been shown to cause edema of eyelids, inflammation, massive corneal necrosis, and blindness. Accordingly, human corneal epithelial cells were used to study the effects of PAO exposure. PAO (100 and 200 nM) induced significant oxidative stress in corneal epithelial cells. Simultaneous treatment with N-acetyl-l-cysteine (NAC), an FDA-approved antioxidant, reversed the PAO-induced toxicity in human corneal epithelial cells. Furthermore, oxidative stress induction by PAO was accompanied by unfolded protein response (UPR) signaling activation and ferroptotic cell death. Further, to validate the findings of our in vitro studies, we optimized injury biomarkers and developed an ex vivo rabbit corneal culture model of PAO exposure. Investigations using PAO in ex vivo rabbit corneas revealed similar results. PAO (5 or 10 μg) for 3, 5, and 10 min caused moderate to extensive corneal epithelial layer degradation and reduced the epithelial layer thickness in a concentration- and time-dependent manner. Similar to human corneal cells, injuries by PAO in ex vivo cultured rabbit corneas were also associated with elevated oxidative stress, UPR signaling, and ferroptosis induction. NAC mitigated PAO-induced corneal injuries in rabbit ex vivo cornea culture as well. The reversal of PAO toxicity upon NAC treatment observed in our studies could be attributed to its antioxidant properties. These findings suggest that PAO exposure can cause significant corneal injury and highlight the need for further mechanistic studies to better understand the pathobiology of different arsenical vesicants, including PAO and lewisite.
Collapse
Affiliation(s)
- Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
27
|
Gayatri Devi R, Ezhilarasan D. Concurrent administration of farnesol protects acetaminophen-induced acute hepatic necrosis in mice. J Biochem Mol Toxicol 2023; 37:e23478. [PMID: 37458150 DOI: 10.1002/jbt.23478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Acetaminophen (APAP) is known to cause acute liver injury and acute liver failure in Western countries. This study investigates the protective role of farnesol (FAR) (C15 H26 O), a natural sesquiterpene alcohol in essential oils, against APAP-induced acute liver necrosis in mice. Mice were injected with a single dose of APAP (300 mg/kg) via an intraperitoneal route. Different groups of mice were concurrently treated with a single dose of FAR 25 mg/kg, FAR 50 mg/kg, and N-acetylcysteine. APAP administration caused a significant increase in transaminase activities and malondialdehyde (MDA) levels in the serum and liver tissue, respectively, with a concomitant decrease in intracellular antioxidants, including reduced glutathione (GSH) in the liver tissue. APAP intoxication upregulated proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, nuclear factor-κB (NF-κB), and IκB kinase β in the liver tissue. FAR and N-acetylcysteine (NAC) administrations concurrently with APAP prevented serum transaminase increase in serum and MDA levels in the liver tissue. A high dose of FAR and NAC treatments significantly inhibited GSH and other antioxidant depletion. FAR and NAC treatments also downregulated the expression of proinflammatory markers. FAR treatments protects against APAP-induced acute liver injury and offers antioxidant and anti-inflammatory effects by inhibiting the NF-κB pathway involved in the transcription of genes responsible for inflammatory cytokine synthesis.
Collapse
Affiliation(s)
- Ramalingam Gayatri Devi
- Department of Physiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
28
|
You Q, Lan XB, Liu N, Du J, Ma L, Yang JM, Niu JG, Peng XD, Jin GL, Yu JQ. Neuroprotective strategies for neonatal hypoxic-ischemic brain damage: Current status and challenges. Eur J Pharmacol 2023; 957:176003. [PMID: 37640219 DOI: 10.1016/j.ejphar.2023.176003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a prominent contributor to both immediate mortality and long-term impairment in newborns. The elusive nature of the underlying mechanisms responsible for neonatal HIBD presents a significant obstacle in the effective clinical application of numerous pharmaceutical interventions. This comprehensive review aims to concentrate on the potential neuroprotective agents that have demonstrated efficacy in addressing various pathogenic factors associated with neonatal HIBD, encompassing oxidative stress, calcium overload, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory response, and apoptosis. In this review, we conducted an analysis of the precise molecular pathways by which these drugs elicit neuroprotective effects in animal models of neonatal hypoxic-ischemic brain injury (HIBD). Our objective was to provide a comprehensive overview of potential neuroprotective agents for the treatment of neonatal HIBD in animal experiments, with the ultimate goal of enhancing the feasibility of clinical translation and establishing a solid theoretical foundation for the clinical management of neonatal HIBD.
Collapse
Affiliation(s)
- Qing You
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiao-Dong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Gui-Lin Jin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, 350108, Fujian, China; Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
29
|
Kryl’skii ED, Kravtsova SE, Popova TN, Matasova LV, Shikhaliev KS, Medvedeva SM. 6-Hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline Demonstrates Anti-Inflammatory Properties and Reduces Oxidative Stress in Acetaminophen-Induced Liver Injury in Rats. Curr Issues Mol Biol 2023; 45:8321-8336. [PMID: 37886968 PMCID: PMC10605539 DOI: 10.3390/cimb45100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
We examined the effects of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline on markers of liver injury, oxidative status, and the extent of inflammatory and apoptotic processes in rats with acetaminophen-induced liver damage. The administration of acetaminophen caused the accumulation of 8-hydroxy-2-deoxyguanosine and 8-isoprostane in the liver and serum, as well as an increase in biochemiluminescence indicators. Oxidative stress resulted in the activation of pro-inflammatory cytokine and NF-κB factor mRNA synthesis and increased levels of immunoglobulin G, along with higher activities of caspase-3, caspase-8, and caspase-9. The administration of acetaminophen also resulted in the development of oxidative stress, leading to a decrease in the level of reduced glutathione and an imbalance in the function of antioxidant enzymes. This study discovered that 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline reduced oxidative stress by its antioxidant activity, hence reducing the level of pro-inflammatory cytokine and NF-κB mRNA, as well as decreasing the concentration of immunoglobulin G. These changes resulted in a reduction in the activity of caspase-8 and caspase-9, which are involved in the activation of ligand-induced and mitochondrial pathways of apoptosis and inhibited the effector caspase-3. In addition, 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline promoted the normalization of antioxidant system function in animals treated with acetaminophen. As a result, the compound being tested alleviated inflammation and apoptosis by decreasing oxidative stress, which led to improved liver marker indices and ameliorated histopathological alterations.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Svetlana E. Kravtsova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Larisa V. Matasova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| |
Collapse
|
30
|
Martis RM, Grey AC, Wu H, Wall GM, Donaldson PJ, Lim JC. N-Acetylcysteine amide (NACA) and diNACA inhibit H 2O 2-induced cataract formation ex vivo in pig and rat lenses. Exp Eye Res 2023; 234:109610. [PMID: 37536438 DOI: 10.1016/j.exer.2023.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Oxidative stress plays a central role in cataract formation suggesting that antioxidants might slow cataract progression. The anticataract activity of N-acetylcysteine amide (NACA) and (2 R, 2 R')-3,3'-disulfanediyl bis(2-acetamidopropanamide) (diNACA) and/or N-acetylcysteine (NAC), were evaluated in porcine and rat lens models. Cataractogenesis via oxidation was induced with H2O2 and/or glucose oxidase (GO). Porcine lenses were incubated in 0.1 mM, 1 mM, or 10 mM NAC, NACA or diNACA for 24 h. Lenses were then transferred to media containing 0.75 mM H2O2 and 4.63U of GO in order to maintain a constant H2O2 level for an additional 8 h. At the end of incubation, lenses were imaged under darkfield microscopy. Separately, rat lenses were extracted from 3-week-old Wistar rats and incubated with either 10 mM NACA or 10 mM diNACA for 24 h prior to treatment with 0.2U GO to generate a steady source of ∼0.6 mM H2O2. Rat lenses were analyzed by LC-MS/MS to quantify changes in cysteine, cystine, glutathione (GSH) or oxidised glutathione (GSSG) levels in the lens epithelium, cortex or core. Pre-treatment with NACA or diNACA followed by oxidation with H2O2 and/or GO to stimulate cataract formation afforded rapid assessment in ex vivo porcine (32 h) and rat (48 h) lens models. Pre-treatment of isolated porcine lenses with 0.1 mM, 1 mM or 10 mM of either NAC, NACA or diNACA followed by H2O2/GO treatment resulted in reduced lens opacity relative to the lenses exposed to H2O2/GO, with NACA and diNACA reducing opacities to a greater extent than NAC. Rat lenses incubated with 10 mM NACA or 10 mM diNACA without exposure to H2O2 showed no signs of opacities. Pre-treatment of rat lenses with 10 mM NACA or 10 mM diNACA, followed by GO cataract induction resulted in reduced opacities compared to control (GO alone). LC-MS/MS analyses revealed that NACA, but not diNACA, increased cysteine, cystine and GSH levels in rat lens epithelium and cortex regions. Taken together, both NACA and diNACA inhibited cataract formation to a greater extent than NAC (all at 1-10 mM) in an ex vivo porcine lens model. Both NACA and diNACA (both at 10 mM) reduced cataract formation in rat lenses. Based on LC-MS/MS analyses, NACA-induced reduction in opacity observed in rat lenses was attributed to enhanced cysteine and GSH levels while the diNACA-induced reduction in opacity induced did not consistently increase cysteine, cystine and GSH levels and, therefore, appears to involve a different antioxidant mechanism. These screening studies warrant further testing of NACA and diNACA as anticataract agents.
Collapse
Affiliation(s)
- R M Martis
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - A C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - H Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas, 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas, 76107, USA
| | - G M Wall
- Nacuity Pharmaceuticals, PTY LTD, a Subsidiary of Nacuity Pharmaceuticals, Inc., 306 W 7th St., Ste 310, Fort Worth, TX, 76102, USA
| | - P J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - J C Lim
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
31
|
Fang Z, Xu Y, Liu G, Shao Q, Niu X, Tai W, Shen T, Fan M, Chen M, Lei L, Gao W, Song Y, Wang Z, Du X, Li X. Narirutin activates TFEB (transcription factor EB) to protect against Acetaminophen-induced liver injury by targeting PPP3/calcineurin. Autophagy 2023; 19:2240-2256. [PMID: 36779633 PMCID: PMC10351474 DOI: 10.1080/15548627.2023.2179781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Acetaminophen (APAP) overdose is the predominant cause of drug-induced liver injury worldwide. The macroautophagy/autophagy-lysosomal pathway (ALP) is involved in the APAP hepatotoxicity. TFEB (transcription factor EB) promotes the expression of genes related to autophagy and lysosomal biogenesis, thus, pharmacological activation of TFEB-mediated ALP may be an effective therapeutic approach for treating APAP-induced liver injury. We aimed to reveal the effects of narirutin (NR), the main bioactive constituents isolated from citrus peels, on APAP hepatotoxicity and to explore its underlying mechanism. Administration of NR enhanced activities of antioxidant enzymes, improved mitochondrial dysfunction and alleviated liver injury in APAP-treated mice, whereas NR did not affect APAP metabolism and MAPK/JNK activation. NR enhanced TFEB transcriptional activity and activated ALP in an MTOR complex 1 (MTORC1)-independent but PPP3/calcineurin-dependent manner. Moreover, knockout of Tfeb or knockdown of PPP3CB/CNA2 (protein phosphatase 3, catalytic subunit, beta isoform) in the liver abolished the beneficial effects of NR on APAP overdose. Mechanistically, NR bound to PPP3CB via PRO31, LYS61 and PRO347 residues and enhanced PPP3/calcineurin activity, thereby eliciting dephosphorylation of TFEB and promoting ALP, which alleviated APAP-induced oxidative stress and liver injury. Together, NR protects against APAP-induced liver injury by activating a PPP3/calcineurin-TFEB-ALP axis, indicating NR may be a potential agent for treating APAP overdose.Abbreviations: ALP: autophagy-lysosomal pathway; APAP: acetaminophen; APAP-AD: APAP-protein adducts; APAP-Cys: acetaminophen-cysteine adducts; CAT: catalase; CETSA: cellular thermal shift assay; CQ: chloroquine; CYP2E1: cytochrome P450, family 2, subfamily e, polypeptide 1; CYCS/Cyt c: cytochrome c, somatic; DARTS: drug affinity responsive target stability assay; ENGASE/NAG: endo-beta-N-acetylglucosaminidase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; GSH: glutathione; GPX/GSH-Px: glutathione peroxidase; KD: dissociation constant; Leu: leupeptin; MCOLN1: mucolipin 1; MTORC1: MTOR complex 1; NAC: N-acetylcysteine; NAPQI: N-acetyl-p-benzoquinoneimine; NFAT: nuclear factor of activated T cells; NR: narirutin; OA: okadaic acid; RRAG: Ras related GTP binding; ROS: reactive oxygen species; PPP3CB/CNA2: protein phosphatase 3, catalytic subunit, beta isoform; PPP3R1/CNB1: protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I); SOD: superoxide dismutase; SPR: surface plasmon resonance analysis; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Qi Shao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Taiyu Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Minghe Fan
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Meng Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| |
Collapse
|
32
|
Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G, Ramachandran A, Jaeschke H. Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch Toxicol 2023; 97:1397-1412. [PMID: 36928416 PMCID: PMC10680445 DOI: 10.1007/s00204-023-03478-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. APAP can cause extensive hepatocellular necrosis, which triggers an inflammatory response involving neutrophil and monocyte recruitment. Particularly the role of neutrophils in the injury mechanism of APAP hepatotoxicity has been highly controversial. Thus, the objective of the current study was to assess whether a potential contribution of neutrophils was dependent on the APAP dose and the sex of the animals. Male and female C57BL/6 J mice were treated with 300 or 600 mg/kg APAP and the injury and inflammatory cell recruitment was evaluated between 6 and 48 h. In both male and female mice, ALT plasma levels and the areas of necrosis peaked at 12-24 h after both doses with more severe injury at the higher dose. In addition, Ly6g-positive neutrophils started to accumulate in the liver at 6 h and peaked at 6-12 h after 300 mg/kg and 12-24 h after 600 mg/kg for both sexes; however, the absolute numbers of hepatic neutrophils in the liver were significantly higher after the 600 mg/kg dose. Neutrophil infiltration correlated with mRNA levels of the neutrophil chemoattractant Cxcl2 in the liver. Treating mice with an anti-Cxcl2 antibody at 2 h after APAP significantly reduced neutrophil accumulation at 24 h after both doses and in both sexes. However, the injury was significantly reduced only after the high overdose. Thus, neutrophils, recruited through Cxcl2, have no effect on APAP-induced liver injury after 300 mg/kg but aggravate the injury only after severe overdoses.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Sawyer Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA.
| |
Collapse
|
33
|
He X, Liang SM, Wang HQ, Tao L, Sun FF, Wang Y, Zhang C, Huang YC, Xu DX, Chen X. Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner. Toxicol Appl Pharmacol 2023; 465:116452. [PMID: 36894071 DOI: 10.1016/j.taap.2023.116452] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Mitochondrial oxidative stress has been a crucial mediator in acetaminophen (APAP)-induced hepatotoxicity. MitoQ, an analog of coenzyme Q10, is targeted towards mitochondria and acts as a potent antioxidant. This study aimed to explore the effect of MitoQ on APAP-induced liver injury and its possible mechanisms. To investigate this, CD-1 mice and AML-12 cells were treated with APAP. Hepatic MDA and 4-HNE, two markers of lipid peroxidation (LPO), were elevated as early as 2 h after APAP. Oxidized lipids were rapidly upregulated in APAP-exposed AML-12 cells. Hepatocyte death and mitochondrial ultrastructure alterations were observed in APAP-induced acute liver injury. The in vitro experiments showed that mitochondrial membrane potentials and OXPHOS subunits were downregulated in APAP-exposed hepatocytes. MtROS and oxidized lipids were elevated in APAP-exposed hepatocytes. We discovered that APAP-induced hepatocyte death and liver injury were ameliorated by attenuation of protein nitration and LPO in MitoQ-pretreated mice. Mechanistically, knockdown of GPX4, a key enzyme for LPO defense systems, exacerbated APAP-induced oxidized lipids, but did not influence the protective effect of MitoQ on APAP-induced LPO and hepatocyte death. Whereas knockdown of FSP1, another key enzyme for LPO defense systems, had little effect on APAP-induced lipid oxidation but partially weakened the protection of MitoQ on APAP-induced LPO and hepatocyte death. These results suggest that MitoQ may alleviate APAP-evoked hepatotoxicity by eliminating protein nitration and suppressing hepatic LPO. MitoQ prevents APAP-induced liver injury partially dependent of FSP1 and independent of GPX4.
Collapse
Affiliation(s)
- Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi-Min Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hong-Qian Wang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li Tao
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Fei-Fei Sun
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Xi Chen
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
34
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
35
|
Jaeschke H, Ramachandran A. Putative Effects of an Orally Administered Anti-TLR4 Antibody on Gut Microbiota and Acetaminophen Hepatotoxicity in Mice. Microbiol Spectr 2023; 11:e0186322. [PMID: 36511725 PMCID: PMC9927294 DOI: 10.1128/spectrum.01863-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Centergrid.412016.0, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Centergrid.412016.0, Kansas City, Kansas, USA
| |
Collapse
|
36
|
Abstract
Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release potassium, interleukin-1β (IL-1β), IL-18, and other small molecules in a sublytic phase, which can be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in hepatocytes. Based on the critical evaluation of the currently available literature and understanding of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant contributor to APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
37
|
Umbaugh DS, Soder RP, Nguyen NT, Adelusi O, Robarts DR, Woolbright B, Duan L, Abhyankar S, Dawn B, Apte U, Jaeschke H, Ramachandran A. Human Wharton's Jelly-derived mesenchymal stem cells prevent acetaminophen-induced liver injury in a mouse model unlike human dermal fibroblasts. Arch Toxicol 2022; 96:3315-3329. [PMID: 36057886 PMCID: PMC9773902 DOI: 10.1007/s00204-022-03372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
The persistence of hepatotoxicity induced by N-acetyl-para-aminophenol (Acetaminophen or Paracetamol, abbreviated as APAP) as the most common cause of acute liver failure in the United States, despite the availability of N-acetylcysteine, illustrates the clinical relevance of additional therapeutic approaches. While human mesenchymal stem cells (MSCs) have shown protection in mouse models of liver injury, the MSCs used are generally not cleared for human use and it is unclear whether these effects are due to xenotransplantation. Here we evaluated GMP manufactured clinical grade human Wharton's Jelly mesenchymal stem cells (WJMSCs), which are currently being investigated in human clinical trials, in a mouse model of APAP hepatotoxicity in comparison to human dermal fibroblasts (HDFs) to address these issues. C57BL6J mice were treated with a moderate APAP overdose (300 mg/kg) and WJMSCs were administered 90 min later. Liver injury was evaluated at 6 and 24 h after APAP. WJMSCs treatment reduced APAP-induced liver injury at both time points unlike HDFs, which showed no protection. APAP-induced JNK activation as well as AIF and Smac release from mitochondria were prevented by WJMSCs treatment without influencing APAP bioactivation. Mechanistically, WJMSCs treatment upregulated expression of Gclc and Gclm to enhance recovery of liver GSH levels to attenuate mitochondrial dysfunction and accelerated recovery of pericentral hepatocytes to re-establish liver zonation and promote liver homeostasis. Notably, preventing GSH resynthesis with buthionine sulfoximine prevented the protective effects of WJMSCs. These data indicate that these GMP-manufactured WJMCs could be a clinically relevant therapeutic approach in the management of APAP hepatotoxicity in humans.
Collapse
Affiliation(s)
- David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Rupal P Soder
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1075, Kansas City, KS, 66160, USA
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Olamide Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Ben Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Sunil Abhyankar
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1075, Kansas City, KS, 66160, USA
- Blood and Marrow Transplant Program, Division of Hematologic Malignancies and Cellular Therapeutics Center, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Buddhadeb Dawn
- Midwest Stem Cell Therapy Center, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1075, Kansas City, KS, 66160, USA
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
38
|
Hu B, Li J, Gong D, Dai Y, Wang P, Wan L, Xu S. Long-Term Consumption of Food-Derived Chlorogenic Acid Protects Mice against Acetaminophen-Induced Hepatotoxicity via Promoting PINK1-Dependent Mitophagy and Inhibiting Apoptosis. TOXICS 2022; 10:665. [PMID: 36355956 PMCID: PMC9693533 DOI: 10.3390/toxics10110665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hepatotoxicity brought on by acetaminophen (APAP) is significantly impacted by mitochondrial dysfunction. Mitophagy, particularly PINK1-mediated mitophagy, maintains the stability of cell function by eliminating damaged mitochondria. One of the most prevalent dietary polyphenols, chlorogenic acid (CGA), has been shown to have hepatoprotective properties. It is yet unknown, nevertheless, whether its defense against hepatocyte apoptosis involves triggering PINK1-mediated mitophagy. In vitro and in vivo models of APAP-induced hepatotoxicity were established to observe CGA's effect and mechanism in preventing hepatotoxicity in the present study. Serum aminotransferase levels, mouse liver histology, and the survival rate of HepG2 cells and mice were also assessed. The outcomes showed that CGA could reduce the activities of serum enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH), and alleviate liver injury in mice. It could also significantly increase the cell viability of HepG2 cells and the 24-h survival rate of mice. TUNEL labeling and Western blotting were used to identify the hepatocyte apoptosis level. According to data, CGA could significantly reduce liver cell apoptosis in vivo. Additionally, Tom20 and LC3II colocalization in mitochondria may be facilitated by CGA. CGA considerably increased the levels of genes and proteins associated with mitophagy (PINK1, Parkin, LC3II/LC3I), while considerably decreasing the levels of p62 and Tom20, suggesting that it might activate PINK1/Parkin-mediated mitophagy in APAP-induced liver damage. Additionally, the protection of CGA was reduced when PINK1 was knocked down by siPINK1 in HepG2 cells, and it did not upregulate mitophagy-related proteins (PINK1, Parkin, LC3II/LC3I). In conclusion, our findings revealed that long-term consumption of food-derived CGA could prevent APAP hepatotoxicity via increasing PINK1-dependent mitophagy and inhibiting hepatocyte apoptosis.
Collapse
Affiliation(s)
- Bangyan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ping Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
39
|
Motohashi K, Thanacoody RHK. Toxicology in the emergency department: what's new? Br J Hosp Med (Lond) 2022; 83:1-16. [DOI: 10.12968/hmed.2022.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intentional and accidental drug overdose, recreational drug use and exposure to toxic substances are common reasons for people presenting to emergency departments. Although the mortality rate associated with these presentations is low in the UK, they can lead to significant morbidity and prolonged hospital admissions. This review discusses new developments in the management of paracetamol overdose. Several new protocols for the infusion of acetylcysteine, the antidote for paracetamol overdose, have been proposed in the past decade and evaluated in clinical studies. The 12-hour Scottish and Newcastle Acetylcysteine Protocol regimen and 20-hour Australian two-infusion bag protocol have been widely adopted into clinical practice and endorsed in national guidelines because of their shorter duration, reduction in adverse effects and efficacy in treating overdose. This article includes a care pathway that can facilitate the implementation of the Scottish and Newcastle Acetylcysteine Protocol. This article also discusses the emergency management of ingested button batteries, describes the emerging threat of novel psychoactive substances, and provides an update on new UK antidote guidelines. Further up-to-date guidance on management of clinical toxicology is available to healthcare professionals on the internet database TOXBASE.
Collapse
Affiliation(s)
- Kenzo Motohashi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ruben HK Thanacoody
- National Poisons Information Service (Newcastle Unit), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
40
|
Chu S, Lu Y, Liu W, Ma X, Peng J, Wang X, Jiang M, Bai G. Ursolic acid alleviates tetrandrine-induced hepatotoxicity by competitively binding to the substrate-binding site of glutathione S-transferases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154325. [PMID: 35820303 DOI: 10.1016/j.phymed.2022.154325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, is the only approved medicine in China for silicosis. However, TET-induced hepatotoxicity has raised safety concerns. The underlying toxic targets and mechanism induced by TET remain unclear; there are no targeted detoxification strategies developed for TET-induced hepatotoxicity. Ursolic acid (UA), a pentacyclic triterpene with liver protective effects, may have detoxification effects on TET-induced hepatotoxicity. PURPOSE This study aims to explore toxic targets and mechanism of TET and present UA as a potential targeted therapy for alleviating TET-induced hepatotoxicity. METHODS A TET-induced liver-injury model was established to evaluate TET toxicity and the potential UA detoxification effect. Alkenyl-modified TET and UA probes were designed to identify potential liver targets. Pharmacological and molecular biology methods were used to explore the underlying toxicity/detoxification mechanism. RESULTS TET induced liver injury by covalently binding to the substrate-binding pocket (H-site) of glutathione S-transferases (GSTs) and inhibiting GST activity. The covalent binding led to toxic metabolite accumulation and caused redox imbalance and liver injury. UA protected the liver from TET-induced damage by competitively binding to the GST H-site. CONCLUSION The mechanism of TET-induced hepatotoxicity is related to irreversible binding with the GST H-site and GST-activity inhibition. UA, a natural antidote, competed with TET on H-site binding and reversed the redox imbalance. This study revealed the hepatotoxic mechanism of TET and provided a targeted detoxifying agent, UA, to alleviate hepatotoxicity caused by GST inhibition.
Collapse
Affiliation(s)
- Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Jiamin Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| |
Collapse
|
41
|
Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, Jaeschke H. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol Lett 2022; 367:59-66. [PMID: 35905941 PMCID: PMC9849076 DOI: 10.1016/j.toxlet.2022.07.813] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury in animals and humans. Although well-studied in animals, limited longitudinal data exist on cytokine release after APAP overdose in patients. The purpose of this study was to quantify concentrations of cytokines in APAP overdose patients to determine if early cytokine or complement measurements can distinguish between surviving and non-surviving patients. Plasma was obtained from healthy controls, APAP overdose patients with no increase in liver transaminases, and surviving and non-surviving APAP overdose patients with severe liver injury. Interleukin-10 (IL-10), and CC chemokine ligand-2 (CCL2, MCP-1) were substantially elevated in surviving and non-surviving patients, whereas IL-6 and CXC chemokine ligand-8 (CXCL8, IL-8) had early elevations in a subset of patients only with liver injury. Day 1 IL-10 and IL-6 levels, and Day 2 CCL2, levels correlated positively with survival. There was no significant increase in IL-1α, IL-1β or TNF-α in any patient during the first week after APAP. Monitoring cytokines such as CCL2 may be a good indicator of patient prognosis; furthermore, these data indicate the inflammatory response after APAP overdose in patients is not mediated by a second phase of inflammation driven by the inflammasome.
Collapse
Affiliation(s)
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, USA
| | | | - Matthew R Sharpe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA; Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
42
|
Unraveling the effect of intra- and intercellular processes on acetaminophen-induced liver injury. NPJ Syst Biol Appl 2022; 8:27. [PMID: 35933513 PMCID: PMC9357019 DOI: 10.1038/s41540-022-00238-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In high dosages, acetaminophen (APAP) can cause severe liver damage, but susceptibility to liver failure varies across individuals and is influenced by factors such as health status. Because APAP-induced liver injury and recovery is regulated by an intricate system of intra- and extracellular molecular signaling, we here aim to quantify the importance of specific modules in determining the outcome after an APAP insult and of potential targets for therapies that mitigate adversity. For this purpose, we integrated hepatocellular acetaminophen metabolism, DNA damage response induction and cell fate into a multiscale mechanistic liver lobule model which involves various cell types, such as hepatocytes, residential Kupffer cells and macrophages. Our model simulations show that zonal differences in metabolism and detoxification efficiency are essential determinants of necrotic damage. Moreover, the extent of senescence, which is regulated by intracellular processes and triggered by extracellular signaling, influences the potential to recover. In silico therapies at early and late time points after APAP insult indicated that prevention of necrotic damage is most beneficial for recovery, whereas interference with regulation of senescence promotes regeneration in a less pronounced way.
Collapse
|
43
|
Black SM, Zhang Z, Han Y, Zeng C, Ma J. Reply to: "Protection against acetaminophen-induced liver injury with MG53: Muscle-liver axis and necroptosis". J Hepatol 2022; 77:562-563. [PMID: 35526783 DOI: 10.1016/j.jhep.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Sylvester M Black
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Han
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Jaeschke H, Umbaugh DS. Protection against acetaminophen-induced liver injury with MG53: Muscle-liver axis and necroptosis. J Hepatol 2022; 77:560-562. [PMID: 35278532 DOI: 10.1016/j.jhep.2022.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, School of Medicine, Kansas City, USA.
| | - David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, School of Medicine, Kansas City, USA
| |
Collapse
|
45
|
Zhang C, Zhao Y, Yu M, Qin J, Ye B, Wang Q. Mitochondrial Dysfunction and Chronic Liver Disease. Curr Issues Mol Biol 2022; 44:3156-3165. [PMID: 35877442 PMCID: PMC9319137 DOI: 10.3390/cimb44070218] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengli Yu
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianru Qin
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| |
Collapse
|
46
|
Acetaminophen Hepatotoxicity: Not as Simple as One Might Think! Introductory Comments on the Special Issue—Recent Advances in Acetaminophen Hepatotoxicity. LIVERS 2022; 2:105-107. [PMID: 35874799 PMCID: PMC9302899 DOI: 10.3390/livers2030008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
47
|
Nguyen NT, Umbaugh DS, Huang EL, Adelusi OB, Sanchez Guerrero G, Ramachandran A, Jaeschke H. Recovered Hepatocytes Promote Macrophage Apoptosis through CXCR4 after Acetaminophen-Induced Liver Injury in Mice. Toxicol Sci 2022; 188:248-260. [PMID: 35642939 DOI: 10.1093/toxsci/kfac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP) overdose is the main cause of acute liver failure in Western countries. The mechanism of APAP hepatotoxicity is associated with centrilobular necrosis which initiates infiltration of neutrophils, monocytes, and other leukocytes to the area of necrosis. While it has been recognized that this infiltration of immune cells plays a critical role in promoting liver repair, mechanism of immune cell clearance that is important for resolution of inflammation and the return to normal homeostasis are not well characterized. CXCR4 is a chemokine receptor expressed on hepatocytes as well as neutrophils, monocytes, and hematopoietic stem cells. CXCR4 function is dependent on its selective expression on different cell types and thus can vary depending on the pathophysiology. This study aimed to investigate the crosstalk between hepatocytes and macrophages through CXCR4 to promote macrophage apoptosis after APAP overdose. C57BL/6J mice were subjected to APAP overdose (300 mg/kg). Flow cytometry and immunohistochemistry were used to determine the mode of cell death of macrophages and expression pattern of CXCR4 during the resolution phase of APAP hepatotoxicity. The impact of CXCR4 in regulation of macrophage apoptosis and liver recovery was assessed after administration of a monoclonal antibody against CXCR4. RNAseq analysis was performed on flow cytometry sorted CXCR4+ macrophages at 72 h to confirm the apoptotic cell death of macrophages. Our data indicate that the inflammatory response is resolved by recovering hepatocytes through induction of CXCR4 on macrophages, which triggers their cell death by apoptosis at the end of the recovery phase.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eileen L Huang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olamide B Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Giselle Sanchez Guerrero
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Hepatoprotective Effect of Carob Pulp Flour (Ceratonia siliqua L.) Extract Obtained by Optimized Microwave-Assisted Extraction. Pharmaceutics 2022; 14:pharmaceutics14030657. [PMID: 35336031 PMCID: PMC8950939 DOI: 10.3390/pharmaceutics14030657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
To examine antioxidant capacity and the hepatoprotective effect of carob pulp flour, microwave-assisted extraction was performed. The influence of ethanol concentration (0–40% w/w), extraction time (5–25 min) and irradiation power (400–800 W) on DPPH, FRAP and ABTS antioxidant activity of carob pulp flour extract was evaluated. The strongest influence was that of the ethanol concentration, followed by extraction time. Optimal process parameters for maximizing total antioxidant activity were determined, using response surface methodology: ethanol concentration 40%, time 25 min and power 800 W. Carob extract obtained at optimal conditions (CE) was analyzed in vivo using a paracetamol-induced hepatotoxicity model in mice. Treatment with CE attenuated the parameters of liver injury, especially aspartate and alanine aminotransferase activity, and prevented paracetamol-induced increase in malondialdehyde levels. Pretreatment with CE reversed the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase enzymes after the high dose of paracetamol in the liver. Hepatotoxicity induced using a toxic dose of paracetamol was also seen through histopathological alterations, which were significantly reduced in the groups treated with CE prior to paracetamol. Still, the number of Kupffer cells and macrophages did not differ among groups. Finally, pretreatment of mice with CE and paracetamol significantly decreased the expression of cytochrome P450 2E1 (CYP2E1) in hepatocytes.
Collapse
|