1
|
Scicluna RL, Everett NA, Badolato CJ, Wilson BB, Bowen MT. Effects of CB1 receptor negative allosteric modulator Org27569 on oxycodone withdrawal symptoms in mice. Psychopharmacology (Berl) 2024; 241:1705-1717. [PMID: 38676755 PMCID: PMC11269377 DOI: 10.1007/s00213-024-06591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
RATIONALE/OBJECTIVES Targeting cannabinoid receptor type 1 (CB1R) has shown promise for treating opioid withdrawal symptoms. This study aimed to investigate the efficacy of a specific CB1R negative allosteric modulator (NAM), Org27569, in reducing both naloxone-precipitated and protracted withdrawal symptoms in oxycodone-dependent mice. METHODS Mice received escalating doses of oxycodone (9-33 mg/kg IP) or saline twice daily for 9 days, followed by a final dose of oxycodone (33 mg/kg) or saline in the morning of day 9. In one cohort, the impact of Org27569 (3, 10, and 30 mg/kg) on naloxone (10 mg/kg IP) precipitated withdrawal symptoms was assessed. In another cohort, Org27569 (3 mg/kg) effects on the acquisition of conditioned place aversion to naloxone (0.6 mg/kg) precipitated opioid withdrawal, on behaviour following a 7-9-day abstinence period, and on naloxone (0.6 mg/kg) precipitated withdrawal-induced escape behaviour in a novel assay were assessed. RESULTS Although Org27569 decreased opioid withdrawal-induced jumping at doses of 10 and 30 mg/kg, these effects were confounded by reduced locomotion. At all doses tested, Org27569 had a modest inhibitory effect on gastrointestinal motility. At the lower dose of 3 mg/kg, which was not confounded by locomotor effects, Org27569 did not impact naloxone-precipitated withdrawal-induced jumping, acquisition of oxycodone withdrawal-induced conditioned place aversion, or naloxone-precipitated withdrawal-induced escape behaviour in a novel assay. A clear protracted opioid withdrawal phenotype was not observed in assays of anxiety-like or social behaviour. CONCLUSIONS Org27569 effects on negative affective-like symptoms were confounded by locomotor effects and effects on gastrointestinal motility were not opioid withdrawal specific. Further studies are needed in a model that produces a more pronounced protracted withdrawal syndrome.
Collapse
Affiliation(s)
- Rhianne L Scicluna
- Brain and Mind Centre, The University of Sydney, 94 Mallet Street, Camperdown, Sydney, NSW, 2050, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas A Everett
- Brain and Mind Centre, The University of Sydney, 94 Mallet Street, Camperdown, Sydney, NSW, 2050, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Connie J Badolato
- Brain and Mind Centre, The University of Sydney, 94 Mallet Street, Camperdown, Sydney, NSW, 2050, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bianca B Wilson
- Brain and Mind Centre, The University of Sydney, 94 Mallet Street, Camperdown, Sydney, NSW, 2050, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael T Bowen
- Brain and Mind Centre, The University of Sydney, 94 Mallet Street, Camperdown, Sydney, NSW, 2050, Australia.
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Socha J, Grochecki P, Marszalek-Grabska M, Skrok A, Smaga I, Slowik T, Prazmo W, Kotlinski R, Filip M, Kotlinska JH. Cannabidiol Protects against the Reinstatement of Oxycodone-Induced Conditioned Place Preference in Adolescent Male but Not Female Rats: The Role of MOR and CB1R. Int J Mol Sci 2024; 25:6651. [PMID: 38928357 PMCID: PMC11204276 DOI: 10.3390/ijms25126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Aleksandra Skrok
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wojciech Prazmo
- Breast Surgery Department, Provincial Specialist Hospital, Al. Krasnicka 100, 20-718 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Lwowska 60, 35-301 Rzeszow, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| |
Collapse
|
3
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Babb JA, Constantino NJ, Kaplan GB, Chartoff EH. Estrous cycle dependent expression of oxycodone conditioned reward in rats. Sci Rep 2023; 13:13946. [PMID: 37626154 PMCID: PMC10457365 DOI: 10.1038/s41598-023-40971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Oxycodone is one of the most widely prescribed and misused opioid painkillers in the United States. Evidence suggests that biological sex and hormonal status can impact drug reward in humans and rodents, but the extent to which these factors can influence the rewarding effects of oxycodone is unclear. The purpose of this study was to utilize place conditioning to determine the effects of sex and female hormonal status on the expression of oxycodone conditioned reward in rats. Gonadally intact adult Sprague-Dawley male and female rats were used to test: (1) whether both sexes express conditioned reward to oxycodone at similar doses, (2) the impact of conditioning session length on oxycodone conditioned reward expression in both sexes, and (3) the influence of female estrous cycle stage on oxycodone conditioned reward expression. Both sexes expressed conditioned reward at the same doses of oxycodone. Increasing the length of conditioning sessions did not reveal an effect of sex and resulted in lower magnitude conditioned reward expression. Importantly however, female stage of estrous cycle significantly influenced oxycodone conditioned reward expression. These results suggest that female hormonal status can impact the rewarding effects of opioids and thus have important implications for prescription opioid treatment practices.
Collapse
Affiliation(s)
- Jessica A Babb
- Research and Mental Health Services, VA Boston Healthcare System, Boston, Massachusetts, USA.
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
| | | | - Gary B Kaplan
- Research and Mental Health Services, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
5
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
6
|
The kappa-opioid receptor agonist, nalfurafine, blocks acquisition of oxycodone self-administration and oxycodone's conditioned rewarding effects in male rats. Behav Pharmacol 2020; 31:792-797. [PMID: 32804774 DOI: 10.1097/fbp.0000000000000581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mu-opioid receptor (MOR) agonists are highly efficacious for the treatment of pain but have significant abuse liability. Recently, we reported that nalfurafine, when combined with oxycodone at a certain ratio, reduced the reinforcing effects of oxycodone in rats while producing additive antinociceptive effects. Questions remain, however, including if the combination will function as a reinforcer in drug-naïve rats, and if the combination produces aversive effects that could explain nalfurafine's ability to reduce oxycodone self-administration? In the present study, we investigated nalfurafine's ability to reduce acquisition of oxycodone self-administration when the two were self-administered as a mixture in drug-naïve rats and nalfurafine's ability to attenuate a conditioned place preference (CPP) induced by oxycodone. In the self-administration study, male Sprague-Dawley rats self-administered intravenous injections of oxycodone (0.056 mg/kg/injection), an oxycodone/nalfurafine combination (0.056/0.0032 mg/kg/injection), or saline under fixed-ratio schedules of reinforcement for 20 days to compare rates of acquisition of drug taking. In the CPP assay, male Sprague-Dawley rats received subcutaneous injections of either saline, oxycodone (3.2 mg/kg), nalfurafine (0.18 mg/kg), or an oxycodone/nalfurafine combination at the same ratio used in the self-administration study (3.2 mg/kg/0.18 mg/kg). All subjects self-administering oxycodone alone met acquisition criteria. However, only 13% of subjects self-administering oxycodone/nalfurafine met criteria, and no subjects acquired self-administration of saline. Oxycodone, but not nalfurafine alone or the oxycodone/nalfurafine combination, produced rewarding effects in rats in the CPP test. These findings suggest that the combination of oxycodone and nalfurafine will be less habit forming in opioid-naïve patients than oxycodone alone.
Collapse
|
7
|
Townsend EA, Banks ML. Preclinical Evaluation of Vaccines to Treat Opioid Use Disorders: How Close are We to a Clinically Viable Therapeutic? CNS Drugs 2020; 34:449-461. [PMID: 32248427 PMCID: PMC7223115 DOI: 10.1007/s40263-020-00722-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ongoing opioid crisis, now into its second decade, represents a global public health challenge. Moreover, the opioid crisis has manifested despite clinical access to three approved opioid use disorder medications: the full opioid agonist methadone, the partial opioid agonist buprenorphine, and the opioid antagonist naltrexone. Although current opioid use disorder medications are underutilized, the ongoing opioid crisis has also identified the need for basic research to develop both safer and more effective opioid use disorder medications. Emerging preclinical evidence suggests that opioid-targeted vaccines or immunopharmacotherapies may be promising opioid use disorder therapeutics. One premise for this article is to critically examine whether vaccine effectiveness evaluated using preclinical antinociceptive endpoints is predictive of vaccine effectiveness on abuse-related endpoints such as drug self-administration, drug discrimination, and conditioned place preference. A second premise is to apply decades of knowledge in the preclinical evaluation of candidate small-molecule therapeutics for opioid use disorder to the preclinical evaluation of candidate opioid use disorder immunopharmacotherapies. We conclude with preclinical experimental design attributes to enhance preclinical-to-clinical translatability and potential future directions for immunopharmacotherapies to address the dynamic illicit opioid environment.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Collins D, Zhang Y, Blendy J, Kreek MJ. Murine model of OPRM1 A118G alters oxycodone self-administration and locomotor activation, but not conditioned place preference. Neuropharmacology 2020; 167:107864. [DOI: 10.1016/j.neuropharm.2019.107864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/03/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022]
|
9
|
Stuart Bradley E, Liss D, Pepper Carreiro S, Brush DE, Babu K. Potential uses of naltrexone in emergency department patients with opioid use disorder. Clin Toxicol (Phila) 2019; 57:753-759. [PMID: 30831039 PMCID: PMC6908461 DOI: 10.1080/15563650.2019.1583342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
Introduction: Despite widespread recognition of the opioid crisis, opioid overdose remains a common reason for Emergency Department (ED) utilization. Treatment for these patients after stabilization often involves the provision of information for outpatient treatment options. Ideally, an ED visit for overdose would present an opportunity to start treatment for opioid use disorder (OUD) immediately. Although widely recognized as effective, opioid agonist therapy with methadone and buprenorphine commonly referred to as "medication-assisted therapy" but more correctly as "medication for addiction treatment" (MAT), can be difficult to access even for motivated individuals due to shortages of prescribers and treatment programs. Moreover, opioid agonist therapy may not be appropriate for all patients, as many patients who present after overdose are not opioid dependent. More treatment options are required to successfully match patients with diverse needs to an optimal treatment plan in order to avoid relapse. Naltrexone, a long-acting opioid antagonist, available orally and as a monthly extended-release intramuscular injection, may represent another treatment option. Methods: We conducted a literature search of MEDLINE and PubMed. We aimed to capture references related to naltrexone and is use as MAT for OUD, as well as manuscripts that discussed naltrexone in comparison toother agents used for MAT, opioid detoxification, and naltrexone metabolism. Our initial search logic returned a total of 618 articles. Following individual evaluation for relevance, we selected 65 for in-depthreview. Manuscripts meeting criteria were examined for citations meriting further review, leading to the addition of 30 manuscripts Conclusions: Here, we review the pharmacology of naltrexone as it relates to OUD, its history of use, and highlight recent studies and new approaches for use of the drug as MAT including its potential initiation after ED visit for opioid overdose.
Collapse
Affiliation(s)
- Evan Stuart Bradley
- Department of Emergency Medicine, Division of Medical Toxicology, University of Massachusetts Medical School and Umass Memorial Medical Center, Worcester, MA, USA
| | - David Liss
- Division of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Pepper Carreiro
- Department of Emergency Medicine, Division of Medical Toxicology, University of Massachusetts Medical School and Umass Memorial Medical Center, Worcester, MA, USA
| | - David Eric Brush
- Department of Emergency Medicine, Division of Medical Toxicology, University of Massachusetts Medical School and Umass Memorial Medical Center, Worcester, MA, USA
| | - Kavita Babu
- Department of Emergency Medicine, Division of Medical Toxicology, University of Massachusetts Medical School and Umass Memorial Medical Center, Worcester, MA, USA
| |
Collapse
|
10
|
Dopamine D 3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 2019; 44:1415-1424. [PMID: 30555159 PMCID: PMC6785005 DOI: 10.1038/s41386-018-0284-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023]
Abstract
Prescription opioids such as oxycodone are highly effective analgesics for clinical pain management, but their misuse and abuse have led to the current opioid epidemic in the United States. In order to ameliorate this public health crisis, the development of effective pharmacotherapies for the prevention and treatment of opioid abuse and addiction is essential and urgently required. In this study, we evaluated-in laboratory rats-the potential utility of VK4-116, a novel and highly selective dopamine D3 receptor (D3R) antagonist, for the prevention and treatment of prescription opioid use disorders. Pretreatment with VK4-116 (5-25 mg/kg, i.p.) dose-dependently inhibited the acquisition and maintenance of oxycodone self-administration. VK4-116 also lowered the break-point (BP) for oxycodone self-administration under a progressive-ratio schedule of reinforcement, shifted the oxycodone dose-response curve downward, and inhibited oxycodone extinction responding and reinstatement of oxycodone-seeking behavior. In addition, VK4-116 pretreatment dose-dependently enhanced the antinociceptive effects of oxycodone and reduced naloxone-precipitated conditioned place aversion in rats chronically treated with oxycodone. In contrast, VK4-116 had little effect on oral sucrose self-administration. Taken together, these findings indicate a central role for D3Rs in opioid reward and support further development of VK4-116 as an effective agent for mitigating the development of opioid addiction, reducing the severity of withdrawal and preventing relapse.
Collapse
|
11
|
Dissociation between morphine-induced spinal gliosis and analgesic tolerance by ultra-low-dose α2-adrenergic and cannabinoid CB1-receptor antagonists. Behav Pharmacol 2019; 29:241-254. [PMID: 29481424 DOI: 10.1097/fbp.0000000000000377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-term use of opioid analgesics is limited by tolerance development and undesirable adverse effects. Paradoxically, spinal administration of ultra-low-dose (ULD) G-protein-coupled receptor antagonists attenuates analgesic tolerance. Here, we determined whether systemic ULD α2-adrenergic receptor (AR) antagonists attenuate the development of morphine tolerance, whether these effects extend to the cannabinoid (CB1) receptor system, and if behavioral effects are reflected in changes in opioid-induced spinal gliosis. Male rats were treated daily with morphine (5 mg/kg) alone or in combination with ULD α2-AR (atipamezole or efaroxan; 17 ng/kg) or CB1 (rimonabant; 5 ng/kg) antagonists; control groups received ULD injections only. Thermal tail flick latencies were assessed across 7 days, before and 30 min after the injection. On day 8, spinal cords were isolated, and changes in spinal gliosis were assessed through fluorescent immunohistochemistry. Both ULD α2-AR antagonists attenuated morphine tolerance, whereas the ULD CB1 antagonist did not. In contrast, both ULD atipamezole and ULD rimonabant attenuated morphine-induced microglial reactivity and astrogliosis in deep and superficial spinal dorsal horn. So, although paradoxical effects of ULD antagonists are common to several G-protein-coupled receptor systems, these may not involve similar mechanisms. Spinal glia alone may not be the main mechanism through which tolerance is modulated.
Collapse
|
12
|
Randesi M, Contoreggi NH, Zhou Y, Rubin BR, Bellamy JR, Yu F, Gray JD, McEwen BS, Milner TA, Kreek MJ. Sex Differences in Neuroplasticity- and Stress-Related Gene Expression and Protein Levels in the Rat Hippocampus Following Oxycodone Conditioned Place Preference. Neuroscience 2019; 410:274-292. [PMID: 31071414 DOI: 10.1016/j.neuroscience.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Prescription opioid abuse is a serious public health issue. Recently, we showed that female and male Sprague-Dawley rats acquire conditioned place preference (CPP) to the mu opioid receptor agonist oxycodone. Anatomical analysis of the hippocampus from these rats unveiled sex differences in the opioid system in a way that would support excitation and opiate associative learning processes especially in females. In this study, we examined the expression and protein densities of opioid, plasticity, stress and related kinase and signaling molecules in the hippocampus of female and male rats following oxycodone CPP. Oxycodone CPP females have: a) increases in ARC (activity regulated cytoskeletal-associated protein)-immunoreactivity (ir) in CA3 pyramidal cells; b) decreases in Npy (neuropeptide Y) gene expression in the medial hippocampus but higher numbers of NPY-containing hilar interneurons compared to males; c) increases in Crhr2 (corticotropin releasing factor receptor 2) expression in CA2/3; d) increases in Akt1 (AKT serine/threonine kinase 1) expression in medial hippocampus; and e) decreases in phosphorylated MAPK (mitogen activated protein kinase)-ir in CA1 and dentate gyrus. Oxycodone CPP males have: a) increases in Bdnf (brain derived-neurotrophic factor) expression, which is known to be produced in granule cells, relative to females; b) elevated Mapk1 expression and pMAPK-ir in the dentate hilus which harbors newly generated granule cells; and c) increases in CRHR1-ir in CA3 pyramidal cell soma. These sex-specific changes in plasticity, stress and kinase markers in hippocampal circuitry parallel previously observed sex differences in the opioid system after oxycodone CPP.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Julia R Bellamy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| |
Collapse
|
13
|
Reich B, Zhou Y, Goldstein E, Srivats SS, Contoreggi NH, Kogan JF, McEwen BS, Kreek MJ, Milner TA, Gray JD. Chronic immobilization stress primes the hippocampal opioid system for oxycodone-associated learning in female but not male rats. Synapse 2019; 73:e22088. [PMID: 30632204 DOI: 10.1002/syn.22088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022]
Abstract
In adult female, but not male, Sprague Dawley rats, chronic immobilization stress (CIS) increases mossy fiber (MF) Leu-Enkephalin levels and redistributes delta- and mu-opioid receptors (DORs and MORs) in hippocampal CA3 pyramidal cells and GABAergic interneurons to promote excitation and learning processes following subsequent opioid exposure. Here, we demonstrate that CIS females, but not males, acquire conditioned place preference (CPP) to oxycodone and that CIS "primes" the hippocampal opioid system in females for oxycodone-associated learning. In CA3b, oxycodone-injected (Oxy) CIS females relative to saline-injected (Sal) CIS females exhibited an increase in the cytoplasmic and total densities of DORs in pyramidal cell dendrites so that they were similar to Sal- and Oxy-CIS males. Consistent with our earlier studies, Sal- and Oxy-CIS females but not CIS males had elevated DOR densities in MF-CA3 dendritic spines, which we have previously shown are important for opioid-mediated long-term potentiation. In the dentate gyrus, Oxy-CIS females had more DOR-labeled interneurons than Sal-CIS females. Moreover, Sal- and Oxy-CIS females compared to both groups of CIS males had elevated levels of DORs and MORs in GABAergic interneuron dendrites, suggesting capacity for greater synthesis or storage of these receptors in circuits important for opioid-mediated disinhibition. However, more plasmalemmal MORs were on large parvalbumin-containing dendrites of Oxy-CIS males compared to Sal-CIS males, suggesting a limited ability for increased granule cell disinhibition. These results suggest that low levels of DORs in MF-CA3 synapses and hilar GABAergic interneurons may contribute to the attenuation of oxycodone CPP in males exposed to CIS.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Conditioning, Classical
- Dendrites/metabolism
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Female
- Interneurons/metabolism
- Male
- Oxycodone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Repetition Priming
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Sudarshan S Srivats
- Integrated Medical Program, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
14
|
Ryan JD, Zhou Y, Contoreggi NH, Bshesh FK, Gray JD, Kogan JF, Ben KT, McEwen BS, Jeanne Kreek M, Milner TA. Sex Differences in the Rat Hippocampal Opioid System After Oxycodone Conditioned Place Preference. Neuroscience 2018; 393:236-257. [PMID: 30316908 PMCID: PMC6246823 DOI: 10.1016/j.neuroscience.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Although opioid addiction has risen dramatically, the role of gender in addiction has been difficult to elucidate. We previously found sex-dependent differences in the hippocampal opioid system of Sprague-Dawley rats that may promote associative learning relevant to drug abuse. The present studies show that although female and male rats acquired conditioned place preference (CPP) to the mu-opioid receptor (MOR) agonist oxycodone (3 mg/kg, I.P.), hippocampal opioid circuits were differentially altered. In CA3, Leu-Enkephalin-containing mossy fibers had elevated levels in oxycodone CPP (Oxy) males comparable to those in females and sprouted in Oxy-females, suggesting different mechanisms for enhancing opioid sensitivity. Electron microscopy revealed that in Oxy-males delta opioid receptors (DORs) redistributed to mossy fiber-CA3 synapses in a manner resembling females that we previously showed is important for opioid-mediated long-term potentiation. Moreover, in Oxy-females DORs redistributed to CA3 pyramidal cell spines, suggesting the potential for enhanced plasticity processes. In Saline-injected (Sal) females, dentate hilar parvalbumin-containing basket interneuron dendrites had fewer MORs, however plasmalemmal and total MORs increased in Oxy-females. In dentate hilar GABAergic dendrites that contain neuropeptide Y, Sal-females compared to Sal-males had higher plasmalemmal DORs, and near-plasmalemmal DORs increased in Oxy-females. This redistribution of MORs and DORs within hilar interneurons in Oxy-females would potentially enhance disinhibition of granule cells via two different circuits. Together, these results indicate that oxycodone CPP induces sex-dependent redistributions of opioid receptors in hippocampal circuits in a manner facilitating opioid-associative learning processes and may help explain the increased susceptibility of females to opioid addiction acquisition and relapse.
Collapse
Affiliation(s)
- James D Ryan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States.
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Farah K Bshesh
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 Doha, Qatar
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Konrad T Ben
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
15
|
Neelakantan H, Holliday ED, Fox RG, Stutz SJ, Comer SD, Haney M, Anastasio NC, Moeller FG, Cunningham KA. Lorcaserin Suppresses Oxycodone Self-Administration and Relapse Vulnerability in Rats. ACS Chem Neurosci 2017; 8:1065-1073. [PMID: 28107783 DOI: 10.1021/acschemneuro.6b00413] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Opioid use disorder (OUD) is a major public health problem. High relapse rates and poor treatment retention continue to pose major challenges in OUD treatment. Of the abused opioids, oxycodone is well described to maintain self-administration and evoke the durable conditioned responses ("cue reactivity") that result from pairing of opioid-related stimuli (e.g., paraphernalia) with repeated abuse. Serotonin (5-HT) neurotransmission, particularly through the 5-HT2C receptor (5-HT2CR), regulates psychostimulant reward and cue reactivity, and in the present experiments, we investigated the hypothesis that the selective 5-HT2CR agonist lorcaserin, which is approved by the United States Food and Drug Administration (FDA) for the treatment of obesity, will suppress oxycodone self-administration and oxycodone-associated cue reactivity in rats. We found that lorcaserin inhibited oxycodone intake, an effect blocked by the selective 5-HT2CR antagonist SB242084. Lorcaserin also decreased responding for the discrete cue complex ("cue reactivity") previously associated with delivery of oxycodone (i.e., stimulus lights, infusion pump sounds) in both abstinence and extinction-reinstatement models. The selected dose range of lorcaserin (0.25-1 mg/kg) does not overtly alter spontaneous behaviors nor operant responding on inactive levers in the present study. Taken together, the ability of lorcaserin to reduce the oxycodone self-administration and decrease cue reactivity associated with relapse highlights the therapeutic potential for lorcaserin in the treatment of OUD.
Collapse
Affiliation(s)
- Harshini Neelakantan
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Erica D. Holliday
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Robert G. Fox
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sonja J. Stutz
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sandra D. Comer
- New
York State Psychiatric Institute Division on Substance Use Disorders, Columbia University, New York, New York 10032, United States
| | - Margaret Haney
- New
York State Psychiatric Institute Division on Substance Use Disorders, Columbia University, New York, New York 10032, United States
| | - Noelle C. Anastasio
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - F. Gerard Moeller
- Institute
for Drug and Alcohol Studies and Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Kathryn A. Cunningham
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
16
|
Naloxone blocks the aversive effects of electrical stimulation of the parabrachial complex in a place discrimination task. Neurobiol Learn Mem 2016; 136:21-27. [DOI: 10.1016/j.nlm.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 01/02/2023]
|
17
|
Mazid S, Hall BS, Odell SC, Stafford K, Dyer AD, Van Kempen TA, Selegean J, McEwen BS, Waters EM, Milner TA. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiol Stress 2016; 5:37-53. [PMID: 27981195 PMCID: PMC5145913 DOI: 10.1016/j.ynstr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron dendrites one-hour after oxycodone (3 mg/kg, I.P.) administration compared to saline administration in CIS females. These data indicate that DORs redistribute within CA3 pyramidal cells and dentate hilar GABAergic interneurons in a sexually dimorphic manner that would promote activation and drug related learning in males after AIS and in females after CIS. Females have more near-plasmalemmal DORs in pyramidal CA3 dendrites than males. Acute stress in males relocates DORs in CA3 & GABA dendrites to promote activation. Chronic stress in females relocates DORs in GABA dendrites in females to promote activation. Chronic stress in males relocates DORs in GABA dendrites opposite of females. DOR-stress relocation may contribute to sexually dimorphic effects on drug related learning.
Collapse
Affiliation(s)
- Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Baila S Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Shannon C Odell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Khalifa Stafford
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Andreina D Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Jane Selegean
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
18
|
Collins D, Reed B, Zhang Y, Kreek MJ. Sex differences in responsiveness to the prescription opioid oxycodone in mice. Pharmacol Biochem Behav 2016; 148:99-105. [PMID: 27316549 DOI: 10.1016/j.pbb.2016.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
Over-prescription and increased nonmedical use of oxycodone has become a major concern. Despite its increased use, preclinical data concerning oxycodone's effects are still limited, especially in rodent models. To address this, we examined oxycodone's effects on place preference, locomotor activation, corticosterone levels, and thermal analgesia across a range of doses (between 0.3 and 10mg/kg) in gonadally intact, adult male and female C57BL/6J mice. Males and females showed oxycodone-induced conditioned place preference and did not show significant between-sex differences in their place preference behavior. During both CPP conditioning sessions and open field assay, locomotor activity was increased by 1, 3, and 10mg/kg oxycodone in females and by 3 and 10mg/kg oxycodone in males. Plasma corticosterone levels were higher in females (compared to males) at baseline as well as following acute oxycodone injection and open field testing. The time course of oxycodone-induced analgesia was similar in males and females, however the total antinociceptive effect (AUC0-120min) was larger in males compared to females at the highest dose tested (10mg/kg). Taken together, these data suggest that male and female mice are modestly different in their responses to oxycodone.
Collapse
Affiliation(s)
- Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| | - Brian Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
19
|
Vassoler FM, Wright SJ, Byrnes EM. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring. Neuropharmacology 2015; 103:112-21. [PMID: 26700246 DOI: 10.1016/j.neuropharm.2015.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA.
Collapse
Affiliation(s)
- Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA.
| | - Siobhan J Wright
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| |
Collapse
|
20
|
Seip-Cammack KM, Shapiro ML. Behavioral flexibility and response selection are impaired after limited exposure to oxycodone. Learn Mem 2014; 21:686-95. [PMID: 25403457 PMCID: PMC4236414 DOI: 10.1101/lm.036251.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022]
Abstract
Behavioral flexibility allows individuals to adapt to situations in which rewards and goals change. Potentially addictive drugs may impair flexible decision-making by altering brain mechanisms that compute reward expectancies, thereby facilitating maladaptive drug use. To investigate this hypothesis, we tested the effects of oxycodone exposure on rats in two complementary learning and memory tasks that engage distinct learning strategies and neural circuits. Rats were trained first in either a spatial or a body-turn discrimination on a radial maze. After initial training, rats were given oxycodone or vehicle injections in their home cages for 5 d. Reversal learning was tested 36 h after the final drug exposure. We hypothesized that if oxycodone impaired behavioral flexibility, then drug-exposed rats should learn reversals more slowly than controls. Oxycodone exposure impaired spatial reversal learning when reward contingencies changed rapidly, but not when they changed slowly. During rapid reversals, oxycodone-exposed rats required more trials to reach criterion, made more perseverative errors, and were more likely to make errors after correct responses than controls. Oxycodone impaired body-turn reversal learning in similar patterns. Limited exposure to oxycodone reduced behavioral flexibility when rats were tested in a drug-free state, suggesting that impaired decision-making is an enduring consequence of oxycodone exposure.
Collapse
Affiliation(s)
- Katharine M Seip-Cammack
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew L Shapiro
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
21
|
Raffa RB, Taylor R, Pergolizzi JV. Sequestered naltrexone in sustained release morphine or oxycodone – a way to inhibit illicit use? Expert Opin Drug Saf 2013; 13:181-90. [DOI: 10.1517/14740338.2013.841136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Davis M, Goforth HW, Gamier P. Oxycodone combined with opioid receptor antagonists: efficacy and safety. Expert Opin Drug Saf 2013; 12:389-402. [PMID: 23534906 DOI: 10.1517/14740338.2013.783564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION A mu receptor antagonist combined with oxycodone (OXY) may improve pain control, reduce physical tolerance and withdrawal, minimizing opioid-related bowel dysfunction and act as an abuse deterrent. AREAS COVERED The authors cover the use of OXY plus ultra-low-dose naltrexone for analgesia and the use of sustained-release OXY plus sustained-release naloxone to reduce the opioid bowel syndrome. The authors briefly describe the use of sustained-release OXY and naltrexone pellets as a drug abuse deterrent formulation. Combinations of ultra-low-dose naltrexone plus OXY have been in separate trials involved in patients with chronic pain from osteoarthritis and idiopathic low back pain. High attrition and marginal differences between ultra-low-dose naltrexone plus OXY and OXY led to discontinuation of development. Prolonged-release (PR) naloxone combined with PR OXY demonstrates a consistent reduction in opioid-related bowel dysfunction in multiple randomized controlled trials. However, gastrointestinal side effects, including diarrhea, were increased in several trials with the combination compared with PR OXY alone. Analgesia appeared to be maintained although non-inferiority to PR OXY is not formally established. There were flaws to trial design and safety monitoring. Naltrexone has been combined with OXY in individual pellets encased in a capsule. This combination has been reported in a Phase II trial and is presently undergoing Phase III studies. EXPERT OPINION Due to the lack of efficacy the combination of altered low-dose naltrexone with oxycodone should cease in development. The combination of sustained release oxycodone plus naloxone reduces constipation with a consistent benefit. Safety has been suboptimally evaluated which is a concern. Although the drug is commercially available in several countries, ongoing safety monitoring particularly high doses would be important.
Collapse
Affiliation(s)
- Mellar Davis
- Taussig Cancer Institute, Cleveland Clinic, Harry R. Horvitz Center for Palliative Medicine, Department of Solid Tumor Oncology, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
23
|
Effect of yohimbine stress on reacquisition of oxycodone seeking in rats. Psychopharmacology (Berl) 2012; 222:247-55. [PMID: 22249360 DOI: 10.1007/s00213-012-2640-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022]
Abstract
RATIONALE Stress, a powerful precipitant of drug seeking during abstinence, may also accelerate the return to pathological patterns of intake after initial instances of drug reuse. OBJECTIVE To explore the effect of stress on a learning process underlying relapse, this study assessed the effect of yohimbine on reacquisition of oxycodone seeking. METHODS One hundred thirty-two male Sprague-Dawley rats underwent place conditioning with oxycodone (2 mg/kg, SC; ×6 days), extinction (vehicle × 6 days), and reconditioning with 0, 0.25, 2, or 5 mg/kg oxycodone (2 days). Yohimbine (0, 2.5, or 5 mg/kg, IP) was administered 30 min prior to reconditioning. RESULTS Pretreatment with 2.5 mg/kg yohimbine increased, while 5 mg/kg yohimbine decreased, reacquisition of oxycodone-induced place preference. A follow-up study (n = 30) further indicated that the effect of yohimbine was specific to reacquisition. CONCLUSION The observation that yohimbine can enhance reacquisition of oxycodone seeking supports the hypothesis that stress can facilitate learning processes involved in the unfolding of relapse.
Collapse
|
24
|
Effects of combined opioids on pain and mood in mammals. PAIN RESEARCH AND TREATMENT 2012; 2012:145965. [PMID: 22550575 PMCID: PMC3324919 DOI: 10.1155/2012/145965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/02/2012] [Indexed: 11/22/2022]
Abstract
The authors review the opioid literature for evidence of increased analgesia and reduced adverse side effects by combining mu-opioid-receptor (MOR) agonists, kappa-opioid-receptor (KOR) agonists, and nonselective low-dose-opioid antagonists (LD-Ant). We tested fentanyl (MOR agonist) and spiradoline (KOR agonist), singly and combined, against somatic and visceral pain models. Combined agonists induced additive analgesia in somatic pain and synergistic analgesia in visceral pain. Other investigators report similar effects and reduced tolerance and dependence with combined MOR agonist and KOR agonist. LD-Ant added to either a MOR agonist or KOR agonist markedly enhanced analgesia of either agonist. In accordance with other place-conditioning (PC) studies, our PC investigations showed fentanyl-induced place preference (CPP) and spiradoline-induced place aversion (CPA). We reduced fentanyl CPP with a low dose of spiradoline and reduced spiradoline CPA with a low dose of fentanyl. We propose combined MOR agonist, KOR agonist, and LD-Ant to produce superior analgesia with reduced adverse side effects, particularly for visceral pain.
Collapse
|
25
|
Potentiation of brain stimulation reward by morphine: effects of neurokinin-1 receptor antagonism. Psychopharmacology (Berl) 2012; 220:215-24. [PMID: 21909635 PMCID: PMC3484369 DOI: 10.1007/s00213-011-2469-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. OBJECTIVE This study was conducted to measure the effects of opioid and NK1R blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation method. METHODS Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ(0)) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0-17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0-17.0 mg/kg) and L-703,606 (1.0-17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.1-1.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 min before morphine (1.0-10.0 mg/kg) or saline. RESULTS Morphine dose-dependently decreased θ(0) (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ(0); 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ(0) or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine, and 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ(0) or MAX. CONCLUSIONS The decrease in θ(0) by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids.
Collapse
|
26
|
|
27
|
Oberlin BG, Bristow RE, Heighton ME, Grahame NJ. Pharmacologic dissociation between impulsivity and alcohol drinking in high alcohol preferring mice. Alcohol Clin Exp Res 2010; 34:1363-75. [PMID: 20491739 PMCID: PMC3967789 DOI: 10.1111/j.1530-0277.2010.01220.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Impulsivity is genetically correlated with, and precedes, addictive behaviors and alcoholism. If impulsivity or attention is causally related to addiction, certain pharmacological manipulations of impulsivity and/or attention may affect alcohol drinking, and vice versa. The current studies were designed to explore the relationship among impulsivity, drinking, and vigilance in selectively bred High Alcohol Preferring (HAP) mice, a line that has previously demonstrated both high impulsivity and high alcohol consumption. Amphetamine, naltrexone, and memantine were tested in a delay discounting (DD) task for their effects on impulsivity and vigilance. The same drugs and doses were also assessed for effects on alcohol drinking in a 2-bottle choice test. METHODS HAP mice were subjected to a modified version of adjusting amount DD using 0.5-second and 10-second delays to detect decreases and increases, respectively, in impulsive responding. In 2 experiments, mice were given amphetamine (0.4, 0.8, or 1.2 mg/kg), naltrexone (3 and 10 mg/kg), and memantine (1 and 5 mg/kg) before DD testing. Another pair of studies used scheduled access, 2-bottle choice drinking to assess effects of amphetamine (0.4, 1.2, or 3.0 mg/kg), naltrexone (3 and 10 mg/kg), and memantine (1 and 5 mg/kg) on alcohol consumption. RESULTS Amphetamine dose-dependently reduced impulsivity and vigilance decrement in DD, but similar doses left alcohol drinking unaffected. Naltrexone and memantine decreased alcohol intake at doses that did not affect water drinking but had no effects on impulsivity or vigilance decrement in the DD task. CONCLUSIONS Contrary to our hypothesis, none of the drugs tested here, while effective on either alcohol drinking or impulsivity, decreased both behaviors. These findings suggest that the genetic association between drinking and impulsivity observed in this population is mediated by mechanisms other than those targeted by the drugs tested in these studies.
Collapse
Affiliation(s)
- Brandon G. Oberlin
- Stark Neuroscience Institute, Program in Medical Neuroscience, Indiana University School of Medicine, 402 N Blackford St., Indianapolis, IN 46202, USA, Voice: (317) 278-8456, FAX: (317) 274-6756
| | - R. Evan Bristow
- Dept. of Psychology, Miami University, 90 N. Patterson Avenue, Oxford, OH 45056, USA, Voice: (513) 529-2400, FAX: (513) 529-2420
| | - Meredith E. Heighton
- Dept. of Psychology, Indiana University Purdue University at Indianapolis (IUPUI), 402 N Blackford St., Indianapolis, IN 46202, USA, Voice: (317) 278-8456, FAX: (317) 274-6756
| | - Nicholas J. Grahame
- Associate Professor, Dept. Psychology, Indiana University Purdue University at Indianapolis (IUPUI), 402 N Blackford St., Indianapolis, IN 46202, USA, Voice: (317) 274-0194, FAX: (317) 274-6756
| |
Collapse
|
28
|
Tompkins DA, Lanier RK, Harrison JA, Strain EC, Bigelow GE. Human abuse liability assessment of oxycodone combined with ultra-low-dose naltrexone. Psychopharmacology (Berl) 2010; 210:471-80. [PMID: 20386884 PMCID: PMC2878387 DOI: 10.1007/s00213-010-1838-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/20/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Prescription opioid abuse has risen dramatically in the United States as clinicians have increased opioid prescribing for alleviation of both acute and chronic pain. Opioid analgesics with decreased risk for abuse are needed. OBJECTIVE Preclinical and clinical studies have shown that opioids combined with ultra-low-dose naltrexone (NTX) may have increased analgesic potency and have suggested reduced abuse or dependence liability. This study addressed whether addition of ultra-low-dose naltrexone might decrease the abuse liability of oxycodone (OXY) in humans. MATERIALS AND METHODS This double-blind, placebo-controlled study systematically examined the subjective and physiological effects of combining oral OXY and ultra-low NTX doses in 14 experienced opioid abusers. Seven acute drug conditions given at least 5 days apart were compared in a within-subject crossover design: placebo, OXY 20 mg, OXY 40 mg, plus each of the active OXY doses combined with 0.0001 and 0.001 mg NTX. RESULTS The methods were sensitive to detecting opioid effects on abuse liability indices, with significant differences between all OXY conditions and placebo as well as between 20 and 40 mg OXY doses on positive subjective ratings (e.g., "I feel a good drug effect" or "I like the drug"), on observer- and participant-rated opioid agonist effects, and on a drug-versus-money value rating. There were no significant differences or evident trends associated with the addition of either NTX dose on any abuse liability indices. CONCLUSIONS The addition of ultra-low-dose NTX to OXY did not decrease abuse liability of acutely administered OXY in experienced opioid abusers.
Collapse
Affiliation(s)
- David Andrew Tompkins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ryan K. Lanier
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph A. Harrison
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C. Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George E. Bigelow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Molecular assays for characterization of alternatively spliced isoforms of the u opioid receptor (MOR). Methods Mol Biol 2010; 617:421-35. [PMID: 20336438 DOI: 10.1007/978-1-60327-323-7_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mu-opioid receptor (MOR) belongs to a family of heptahelical G-protein-coupled receptors (GPCRs). Studies in humans and rodents demonstrated that the OPRM1 gene coding for MOR undergoes extensive alternative splicing afforded by the genetic complexity of OPRM1. Evidence from rodent studies also demonstrates an important role of these alternatively spliced forms in mediating opiate analgesia via their differential signaling properties. MOR signaling is predominantly G(ia) coupled. Release of the alpha subunit from G-protein complex results in the inhibition of adenylyl cyclase/cAMP pathway, whereas release of the betagamma subunits activates G-protein-activated inwardly rectifying potassium channels and inhibits voltage-dependent calcium channels. These molecular events result in the suppression of cellular activities that diminish pain sensations. Recently, a new isoform of OPRM1, MOR3, has been identified that shows an increase in the production of nitric oxide (NO) upon stimulation with morphine. Hence, there is a need to describe molecular techniques that enable the functional characterization of MOR isoforms. In this review, we describe the methodologies used to assay key mediators of MOR activation including cellular assays for cAMP, free Ca(2+), and NO, all of which have been implicated in the pharmacological effects of MOR agonists.
Collapse
|
30
|
Naloxone's pentapeptide binding site on filamin A blocks Mu opioid receptor-Gs coupling and CREB activation of acute morphine. PLoS One 2009; 4:e4282. [PMID: 19172190 PMCID: PMC2628740 DOI: 10.1371/journal.pone.0004282] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/22/2008] [Indexed: 11/30/2022] Open
Abstract
Chronic morphine causes the mu opioid receptor (MOR) to switch its coupling from Gi/o to Gs, resulting in excitatory signaling via both Gαs and its Gβγ dimer. Ultra-low-dose naloxone (NLX) prevents this switch and attenuates opioid tolerance and dependence. This protective effect is mediated via a high-affinity interaction of NLX to a pentapeptide region in c-terminal filamin A (FLNA), a scaffolding protein interacting with MOR. In organotypic striatal slice cultures, we now show that acute morphine induces a dose-dependent Go-to-Gs coupling switch at 5 and 15 min that resolves by 1 hr. The acute Gs coupling induced by 100 µM morphine was completely prevented by co-treatment with 100 pM NLX, (+)NLX, or naltrexone (NTX), or their pentapeptide binding site (FLNA2561–2565), which we show can act as a decoy for MOR or bind to FLNA itself. All of these co-treatments presumably prevent the MOR–FLNA interaction. Since ultra-low-dose NTX also attenuates the addictive properties of opioids, we assessed striatal cAMP production and CREB phosphorylation at S133. Correlating with the Gs coupling, acute morphine induced elevated cAMP levels and a several-fold increase in pS133CREB that were also completely blocked by NLX, NTX or the FLNA pentapeptide. We propose that acute, robust stimulation of MOR causes an interaction with FLNA that allows an initially transient MOR–Gs coupling, which recovers with receptor recycling but persists when MOR stimulation is repeated or prolonged. The complete prevention of this acute, morphine-induced MOR–Gs coupling by 100 pM NLX/NTX or 10 µM pentapeptide segment of FLNA further elucidates both MOR signaling and the mechanism of action of ultra-low-dose NLX or NTX in attenuating opioid tolerance, dependence and addictive potential.
Collapse
|
31
|
Kitanaka N, Kitanaka J, Hall FS, Tatsuta T, Morita Y, Takemura M, Wang XB, Uhl GR. Alterations in the levels of heterotrimeric G protein subunits induced by psychostimulants, opiates, barbiturates, and ethanol: Implications for drug dependence, tolerance, and withdrawal. Synapse 2008; 62:689-99. [PMID: 18566973 DOI: 10.1002/syn.20543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuronal adaptations have been found to occur in multiple brain regions after chronic intake of abused drugs, and are therefore thought to underlie drug dependence, tolerance, and withdrawal. Pathophysiological changes in drug responsiveness as well as behavioral sequelae of chronic drug exposure are thought to depend largely upon the altered state of heterotrimeric GTP binding protein (G protein)-coupled receptor (GPCR)-G protein interactions. Responsiveness of GPCR-related intracellular signaling systems to drugs of abuse is heterogeneous, depending on the types of intracellular effectors to which the specific Galpha protein subtypes are coupled and GPCR-G protein coupling efficiency, factors influenced by the class of drug, expression levels of G protein subunits, and drug treatment regimens. To enhance understanding of the molecular mechanisms that underlie the development of pathophysiological states resulting from chronic intake of abused drugs, this review focuses on alterations in the expression levels of G protein subunits induced by various drugs of abuse. Changes in these mechanisms appear to be specific to particular drugs of abuse, and specific conditions of drug treatment.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Terashvili M, Wu HE, Schwasinger ET, Hung KC, Hong JS, Tseng LF. (+)-Morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat. Eur J Pharmacol 2008; 587:147-54. [PMID: 18448094 PMCID: PMC2566855 DOI: 10.1016/j.ejphar.2008.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/08/2008] [Accepted: 03/10/2008] [Indexed: 11/18/2022]
Abstract
An unbiased conditioned place preference paradigm and the microdialysis technique was used to evaluate the effect of (+)-morphine pretreatment on the conditioned place preference produced by (-)-morphine and the increased release of the dopamine produced by mu-opioid ligand endomorphin-1, respectively, in the posterior nucleus accumbens shell of the male CD rat. (-)-Morphine (2.5-10 microg) microinjected into the posterior nucleus accumbens shell dose-dependently produced the conditioned place preference. Pretreatment with (+)-morphine (0.1-10 pg) given into the posterior accumbens shell for 45 min dose-dependently attenuated the conditioned place preference produced by (-)-morphine (5 microg) given into the same posterior accumbens shell. However, higher doses of (+)-morphine (0.1 and 1 ng) were less effective in attenuating the (-)-morphine-produced conditioned place preference. Thus, like given systemically, (+)-morphine given into the posterior nucleus accumbens shell also induces a U-shaped dose-response curve for attenuating the (-)-morphine-produced conditioned place preference. Microinjection of mu-opioid agonist endomorphin-1 (1-10 microg) given into the ventral tegmental area dose-dependently increased the release of the extracellular dopamine in the posterior nucleus accumbens shell in the urethane-anesthetized rats. The increased dopamine caused by endomorphin-1 (10 microg) was completed blocked by the (+)-morphine (10 pg) pretreatment given into ventral tegmental area. It is concluded that (+)-morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated increase of extracellular dopamine in the posterior nucleus accumbens shell of the rat.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Emma T. Schwasinger
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kuei-Chun Hung
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Leon F. Tseng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
33
|
Leri F. Co-administration of opioid agonists and antagonists in addiction and pain medicine. Expert Opin Pharmacother 2008; 9:1387-96. [DOI: 10.1517/14656566.9.8.1387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Largent-Milnes TM, Guo W, Wang HY, Burns LH, Vanderah TW. Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling. THE JOURNAL OF PAIN 2008; 9:700-13. [PMID: 18468954 DOI: 10.1016/j.jpain.2008.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 02/04/2008] [Accepted: 03/07/2008] [Indexed: 12/30/2022]
Abstract
UNLABELLED Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. PERSPECTIVE The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting why a mu-opioid agonist may have reduced efficacy in the nerve-injured state. These data present a novel approach to neuropathic pain therapy.
Collapse
Affiliation(s)
- Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
35
|
Wang HY, Frankfurt M, Burns LH. High-affinity naloxone binding to filamin a prevents mu opioid receptor-Gs coupling underlying opioid tolerance and dependence. PLoS One 2008; 3:e1554. [PMID: 18253501 PMCID: PMC2212716 DOI: 10.1371/journal.pone.0001554] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/10/2008] [Indexed: 12/05/2022] Open
Abstract
Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [3H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [3H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A2561-2565 as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A2561-2565 abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor–Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, New York, USA.
| | | | | |
Collapse
|
36
|
Grimm JW, Manaois M, Osincup D, Wells B, Buse C. Naloxone attenuates incubated sucrose craving in rats. Psychopharmacology (Berl) 2007; 194:537-44. [PMID: 17628789 PMCID: PMC2881196 DOI: 10.1007/s00213-007-0868-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/20/2007] [Indexed: 12/23/2022]
Abstract
RATIONALE Cue-induced craving precedes drug relapse and contributes to eating disorders. Opiate antagonists have been demonstrated to be effective at reducing cravings for drugs and food. Craving, as defined as responding for a stimulus previously associated with a reward, increases, or incubates, over forced abstinence in an animal model of relapse. OBJECTIVES This paper aims to determine anticraving effects of the opiate antagonist, naloxone, on the incubation of sucrose craving. METHODS 106 male Long-Evans rats lever pressed for 10% sucrose solution 2 h/day for 10 days. On either day 1 or 30 of forced abstinence, rats responded in extinction for 6 h and then were injected (ip) with either saline or naloxone (0.001, 0.01, 0.1, 1, or 10 mg/kg). The rats then responded for 1 h for presentation of a tone + light cue previously presented with every sucrose delivery during self-administration training. RESULTS The rats responded more in extinction and following saline on day 30 vs day 1 (an incubation of craving). Except for a trend for a decrease in responding following 10 mg/kg on day 1, naloxone was primarily effective on day 30. On day 30, naloxone significantly reduced responding at all doses except for 0.1 mg/kg. CONCLUSIONS The time-dependent increase in sensitivity to an opiate antagonist is consistent with time-dependent changes in the opiate system following forced abstinence from sucrose. These changes may partly underlie the incubation of sucrose craving. In addition, these findings could be used to support the use of naloxone as an anticraving medication in protracted abstinence.
Collapse
Affiliation(s)
- Jeffrey W Grimm
- Department of Psychology, Western Washington University, Bellingham, WA 98225-9089, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Oxytrex (Pain Therapeutics, Inc.) is an oral opioid that combines a therapeutic amount of oxycodone with an ultra-low dose of the antagonist naltrexone. Animal data indicate that this combination minimizes the development of physical dependence and analgesic tolerance while prolonging analgesia. Oxytrex is in late-stage clinical development by Pain Therapeutics for the treatment of moderate-to-severe chronic pain. To evaluate the safety and efficacy of the oxycodone/naltrexone combination, three clinical studies have been conducted, one in healthy volunteers and the other two in patients with chronic pain. The putative mechanism of ultra-low-dose naltrexone is to prevent an alteration in G-protein coupling by opioid receptors that is associated with opioid tolerance and dependence. Opioid agonists are initially inhibitory but become excitatory through constant opioid receptor activity. The agonist/antagonist combination of Oxytrex may reduce the conversion from an inhibitory to an excitatory receptor, thereby decreasing the development of tolerance and physical dependence.
Collapse
Affiliation(s)
- Lynn R Webster
- Lifetree Clinical Research and Pain Clinic, Salt Lake City, Utah, USA.
| |
Collapse
|
38
|
Crain SM, Shen KF. Naloxone rapidly evokes endogenous kappa opioid receptor-mediated hyperalgesia in naïve mice pretreated briefly with GM1 ganglioside or in chronic morphine-dependent mice. Brain Res 2007; 1167:31-41. [PMID: 17692296 DOI: 10.1016/j.brainres.2007.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 11/22/2022]
Abstract
Low-dose naloxone-precipitated withdrawal hyperalgesia is a reliable indicator of physical dependence after chronic morphine treatment. A remarkably similar long-lasting (>3-4 h) hyperalgesia is evoked by injection of a low dose of naloxone (10 microg/kg, s.c.) in naïve mice after acute pretreatment with the glycolipid, GM1 ganglioside (1 mg/kg) (measured by warm-water-immersion tail-flick assays). GM1 treatment markedly increases the efficacy of excitatory Gs-coupled opioid receptor signaling in nociceptive neurons. Co-treatment with an ultra-low-dose (0.1 ng/kg, s.c.) of the broad-spectrum opioid receptor antagonist, naltrexone or the selective kappa opioid receptor antagonist, nor-binaltorphimine, blocks naloxone-evoked hyperalgesia in GM1-pretreated naïve mice and unmasks prominent, long-lasting (>4 h) inhibitory opioid receptor-mediated analgesia. This unmasked analgesia can be rapidly blocked by injection after 1-2 h of a high dose of naltrexone (10 mg/kg) or nor-binaltorphimine (0.1 mg/kg). Because no exogenous opioid is administered to GM1-treated mice, we suggest that naloxone may evoke hyperalgesia by inducing release of endogenous bimodally acting opioid agonists from neurons in nociceptive networks by antagonizing putative presynaptic inhibitory opioid autoreceptors that "gate" the release of endogenous opioids. In the absence of exogenous opioids, the specific pharmacological manipulations utilized in our tail-flick assays on GM1-treated mice provide a novel bioassay to detect the release of endogenous bimodally acting (excitatory/inhibitory) opioid agonists. Because mu excitatory opioid receptor signaling is blocked by ultra-low doses of naloxone, the higher doses of naloxone that evoke hyperalgesia in GM1-treated mice cannot be mediated by activation of mu opioid receptors. Co-treatment with ultra-low-dose naltrexone or nor-binaltorphimine may selectively block signaling by endogenous GM1-sensitized excitatory kappa opioid receptors, unmasking inhibitory kappa opioid receptor signaling, and converting endogenous opioid receptor-mediated hyperalgesia to analgesia. Co-treatment with kelatorphan stabilizes putative endogenous opioid peptide agonists released by naloxone in GM1-treated mice, so that analgesia is evoked rather than hyperalgesia. Acute treatment of chronic morphine-dependent mice with ultra-low-dose naltrexone (0.1 ng/kg) results in remarkably similar rapid blocking of naloxone (10 microg/kg)-precipitated withdrawal hyperalgesia and unmasking of prominent opioid analgesia. These studies may clarify complex mechanisms underlying opioid physical dependence and opioid addiction.
Collapse
Affiliation(s)
- Stanley M Crain
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave. Bronx, NY 10461, USA.
| | | |
Collapse
|
39
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
40
|
Ballantyne JC, LaForge SK. Opioid dependence and addiction during opioid treatment of chronic pain. Pain 2007; 129:235-255. [PMID: 17482363 DOI: 10.1016/j.pain.2007.03.028] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 02/22/2007] [Accepted: 03/23/2007] [Indexed: 11/23/2022]
Abstract
Throughout the long history of opioid drug use by humans, it has been known that opioids are powerful analgesics, but they can cause addiction. It has also been observed, and is now substantiated by multiple reports and studies, that during opioid treatment of severe and short-term pain, addiction arises only rarely. However, when opioids are extended to patients with chronic pain, and therapeutic opioid use is not confined to patients with severe and short-lived pain, compulsive opioid seeking and addiction arising directly from opioid treatment of pain become more visible. Although the epidemiological evidence base currently available is rudimentary, it appears that problematic opioid use arises in some fraction of opioid-treated chronic pain patients, and that problematic behaviors and addiction are problems that need to be addressed. Since the potentially devastating effects of addiction can substantially offset the benefits of opioid pain relief, it seems timely to reexamine addiction mechanisms and their relevance to the practice of long-term opioid treatment for pain. This article reviews the neurobiological and genetic basis of addiction, its terminology and diagnosis, the evidence on addiction rates during opioid treatment of chronic pain and the implications of biological mechanisms in formulating rational opioid treatment regimes.
Collapse
Affiliation(s)
- Jane C Ballantyne
- Division of Pain Medicine, Massachusetts General Hospital Pain Center, Boston, MA 02114, USA Harvard Medical School, Boston Massachusetts, USA Finnish Genome Center, The University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
41
|
Wu HE, Schwasinger ET, Terashvili M, Tseng LF. dextro-Morphine attenuates the morphine-produced conditioned place preference via the sigma(1) receptor activation in the rat. Eur J Pharmacol 2007; 562:221-6. [PMID: 17335800 PMCID: PMC1936970 DOI: 10.1016/j.ejphar.2007.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/11/2007] [Accepted: 01/30/2007] [Indexed: 11/18/2022]
Abstract
An unbiased conditioned place preference paradigm was used to evaluate the effect of dextro-morphine on the morphine-produced reward in male CD rats. Morphine sulfate (1-10 mg/kg) given intraperitoneally dose-dependently produced the conditioned place preference. Pretreatment with dextro-morphine at a dose from 0.1 to 3 microg/kg given subcutaneously dose-dependently attenuated the morphine-produced conditioned place preference. However, dextro-morphine at a higher dose 100 microg/kg did not affect the morphine-produced conditioned place preference. Thus, dextro-morphine pretreatment induces a U-shaped dose-response curve for attenuating the morphine-produced conditioned place preference. The attenuation of the morphine-produced conditioned place preference was reversed by the pretreatment with the sigma(1) receptor antagonist BD1047 (N-[2-(3,4-Dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide. dextro-Morphine or BD1047 given alone did not affect the baseline place conditioning. It is concluded that dextro-morphine attenuated the morphine-produced conditioned place preference via the sigma(1) receptor activation.
Collapse
Affiliation(s)
- Hsiang-en Wu
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| | - Emma T. Schwasinger
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| | - Maia Terashvili
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| | - Leon F. Tseng
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| |
Collapse
|
42
|
Wang HY, Burns LH. Gbetagamma that interacts with adenylyl cyclase in opioid tolerance originates from a Gs protein. ACTA ACUST UNITED AC 2006; 66:1302-10. [PMID: 16967511 DOI: 10.1002/neu.20286] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously demonstrated that chronic morphine induces a change in G protein coupling by the mu opioid receptor (MOR) from Gi/o to Gs, concurrent with the instatement of an interaction between Gbetagamma and adenylyl cyclase types II and IV. These two signaling changes confer excitatory effects on the cell in place of the typical inhibition by opioids and are associated with morphine tolerance and dependence. Both signaling changes and these behavioral manifestations of chronic morphine are attenuated by cotreatment with ultra-low-dose naloxone. In the present work, using striatum from chronic morphine-treated rats, we isotyped the Gbeta within Gs and Go heterotrimers that coupled to MOR and compared these to the Gbeta isotype of the Gbetagamma that interacted with adenylyl cyclase II or IV after chronic morphine treatment. Isotyping results show that chronic morphine causes a Gs heterotrimer associated with MOR to release its Gbetagamma to interact with adenylyl cyclase. These data suggest that the switch to Gs coupling by MOR in response to chronic morphine, which is attenuated by ultra-low-dose opioid antagonist cotreatment, leads to a two-pronged stimulation of adenylyl cyclase utilizing both Galpha and Gbetagamma subunits of the Gs protein novel to this receptor.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th Street and Convent Avenue, New York, New York 10031, USA.
| | | |
Collapse
|
43
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
44
|
Sabino V, Cottone P, Koob GF, Steardo L, Lee MJ, Rice KC, Zorrilla EP. Dissociation between opioid and CRF1 antagonist sensitive drinking in Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2006; 189:175-86. [PMID: 17047935 DOI: 10.1007/s00213-006-0546-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE The role of positive vs negative ethanol reinforcement in ethanol intake of Sardinian alcohol-preferring (sP) rats is unclear. OBJECTIVES To test the hypothesis that spontaneous ethanol self-administration of sP rats was sensitive to the opioid receptor antagonist naltrexone, whereas withdrawal-induced, but not spontaneous, ethanol self-administration would be sensitive to corticotropin-releasing factor(1) (CRF(1)) antagonists, implicating differential roles for positive and negative reinforcement, respectively. METHODS Male sP rats operantly (FR1, 30 min/day) self-administered ethanol (10% v/v) until responding stabilized. One group (n=11) was made ethanol dependent through intermittent ethanol vapor exposure. Both nondependent (n = 10) and dependent rats received the CRF(1) antagonist LWH-63 (5, 10, and 20 mg/kg, s.c.). Separate nondependent sP rats (n = 10) received the opioid antagonist naltrexone (16, 50, 150, and 450 microg/kg, s.c.). Finally, CRF(1) antagonists (MJL-1-109-2, LWH-63, and R121919) were studied for their actions on home-cage ethanol drinking in nondependent sP rats (n = 6-8/group) under continuous, limited-access, or stressed conditions. RESULTS Naltrexone potently reduced ethanol self-administration in nondependent sP rats. LWH-63 reduced heightened ethanol self-administration of vapor-sensitive, dependent sP rats. CRF(1) antagonists did not reduce ethanol intake in nondependent sP rats. R121919 (10 mg/kg, s.c.) retained antistress activity in sP rats, blunting novelty stress-induced suppression of ethanol intake. CONCLUSIONS Spontaneous ethanol self-administration of sP rats was opioid dependent with CRF(1) receptors implicated in withdrawal-induced drinking. Opioid and CRF(1) receptors play different roles in ethanol reinforcement and perhaps the ethanol addiction cycle. Such distinctions may apply to subtypes of alcoholic patients who differ in their motivation to drink and ultimately treatment response.
Collapse
Affiliation(s)
- Valentina Sabino
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Leri F, Burns LH. Ultra-low-dose naltrexone reduces the rewarding potency of oxycodone and relapse vulnerability in rats. Pharmacol Biochem Behav 2005; 82:252-62. [PMID: 16182352 DOI: 10.1016/j.pbb.2005.08.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/06/2005] [Accepted: 08/10/2005] [Indexed: 11/22/2022]
Abstract
Ultra-low-dose opioid antagonists have been shown to enhance opioid analgesia and alleviate opioid tolerance and dependence. Our present studies in male Sprague-Dawley rats assessed the abuse potential of oxycodone+ultra-low-dose naltrexone (NTX) versus oxycodone alone. The lowest NTX dose (1 pg/kg/infusion), but not slightly higher doses (10 and 100 pg/kg/infusion), enhanced oxycodone (0.1 mg/kg/infusion) intravenous self-administration, suggesting a reduced rewarding potency per infusion. During tests of reinstatement performed in extinction conditions, co-self-administration of any of these three NTX doses significantly reduced drug-seeking precipitated by priming injections of oxycodone (0.25 mg/kg, s.c.), a drug-conditioned cue, or foot-shock stress. During self-administration on a progressive-ratio schedule, animals self-administering oxycodone (0.1 mg/kg/infusion)+NTX (1 pg/kg/infusion) reached a "break-point" sooner and showed a trend toward less responding compared to rats self-administering oxycodone alone (0.1 mg/kg/infusion). In the final experiment, the addition of ultra-low-dose NTX (10 pg/kg, s.c.) enhanced the acute stimulatory effect of oxycodone (1 mg/kg, s.c.), as well as locomotor sensitization produced by repeated oxycodone administration (7 x 1 mg/kg, s.c.). In summary, this work shows that ultra-low-dose NTX co-treatment augments the locomotor effects of oxycodone as it enhances opioid analgesia, but reduces oxycodone's rewarding potency and subsequent vulnerability to relapse.
Collapse
Affiliation(s)
- Francesco Leri
- Department of Psychology, University of Guelph (Guelph, ON), Canada N1G 2W1.
| | | |
Collapse
|
46
|
Chindalore VL, Craven RA, Yu KP, Butera PG, Burns LH, Friedmann N. Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs Analgesia: A Randomized, Controlled Trial of Oxytrex. THE JOURNAL OF PAIN 2005; 6:392-9. [PMID: 15943961 DOI: 10.1016/j.jpain.2005.01.356] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 01/18/2005] [Indexed: 11/24/2022]
Abstract
UNLABELLED Oxytrex is a novel drug that combines oxycodone with ultralow-dose naltrexone, an opioid antagonist. Ultralow-dose opioid antagonists have been demonstrated to enhance and prolong opiate analgesia and alleviate opioid tolerance and withdrawal in rodents. This 3-week, Phase II clinical trial assessed safety and analgesic efficacy of Oxytrex in patients with moderate to severe pain from osteoarthritis. Patients with a pain score > or =5 received placebo, oxycodone 4 times a day (qid), Oxytrex qid, or Oxytrex twice a day (bid). All active treatment groups received the same total daily dose and dose escalation of oxycodone starting at 10 and ending at 40 mg/day. Importantly, the Oxytrex bid group received a lower daily dose of naltrexone than Oxytrex qid (0.002 vs 0.004 mg/day). Oxytrex bid produced a 39% reduction in pain intensity, which was significantly greater than that of placebo (P < .001), oxycodone qid (P = .006), and Oxytrex qid (P = .003). Oxytrex bid was also superior to placebo in quality of analgesia (P = .002), duration of pain control each day (P = .05), patients' global assessments (P = .04), and the Western Ontario and MacMaster Universities Osteoarthritis Index total score (P = .03). The incidence of side effects was comparable between active treatments. In this Phase II dose-ranging study, Oxytrex bid demonstrated greater pain relief with a more convenient dosing schedule compared to oxycodone qid. PERSPECTIVE Preclinical data have shown ultralow-dose opioid antagonists to enhance and prolong opioid analgesia while reducing analgesic tolerance and physical dependence. Recent molecular pharmacology data show a mechanism of action to be the prevention of aberrant G protein coupling by opioid receptors that underlies opioid tolerance and dependence.
Collapse
|