1
|
Sylvester E, Yi W, Han M, Deng C. Exercise intervention for preventing risperidone-induced dyslipidemia and gluco-metabolic disorders in female juvenile rats. Pharmacol Biochem Behav 2020; 199:173064. [PMID: 33127383 DOI: 10.1016/j.pbb.2020.173064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023]
Abstract
Risperidone use in children and adolescents is associated with the development of metabolic disorders including increased accumulation of body fat, dyslipidemia, and glucose and insulin metabolism dysregulation. As pharmacological interventions are often limited in their ability to treat a range of side-effects, this study aimed to evaluate the effectiveness of daily voluntary exercise intervention to prevent metabolic side-effects induced by risperidone in juveniles. Thirty-two juvenile female Sprague Dawley rats were treated with risperidone (0.9 mg/kg; b.i.d; n = 16) or vehicle (0.3 g cookie dough pellet; n = 16). These rats were then assigned to a sedentary or voluntary exercise intervention (three hours daily access to running wheels) group (n = 8/group) for a period of four weeks. An intra-peritoneal glucose tolerance test was performed after three weeks of risperidone treatment and exercise intervention to assess glucose tolerance. During the exercise intervention, risperidone-treated rats ran significantly less than vehicle-treated rats. Risperidone treatment of sedentary rats resulted in significantly increased white adipose tissue, fasting triglyceride and fasting insulin compared to vehicle-treated sedentary rats. Exercise intervention of risperidone-treated rats prevented significant increases in these metabolic parameters compared to risperidone-treated sedentary rats. These results support voluntary exercise as an effective mitigator of metabolic side-effects associated with risperidone treatment in juvenile rats. Dyslipidemia and dysregulation of glucose and insulin metabolism are significant risk factors for morbidities and mortality later in life, therefore a focus on strategies to mitigate these adverse effects is critical. Our findings support clinical trials in exercise intervention to prevent metabolic disorders associated with antipsychotic medication in children and adolescents.
Collapse
Affiliation(s)
- Emma Sylvester
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Weijie Yi
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Mei Han
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
2
|
Moe AAK, Scott JG, Burne TH, Eyles DW. Neural changes induced by antipsychotic administration in adolescence: A review of studies in laboratory rodents. J Psychopharmacol 2016; 30:771-94. [PMID: 27413140 DOI: 10.1177/0269881116654776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adolescence is characterized by major remodelling processes in the brain. Use of antipsychotic drugs (APDs) in adolescents has increased dramatically in the last 20 years; however, our understanding of the neurobiological consequences of APD treatment on the adolescent brain has not kept the same pace and significant concerns have been raised. In this review, we examined currently available preclinical studies of the effects of APDs on the adolescent brain. In animal models of neuropsychiatric disorders, adolescent APD treatment appears to be protective against selected structural, behavioural and neurochemical phenotypes. In "neurodevelopmentally normal" adolescent animals, a range of short- and long-term alterations in behaviour and neurochemistry have been reported. In particular, the adolescent brain appears to be sensitive to long-term locomotor/reward effects of chronic atypical APDs in contrast with the outcomes in adults. Long-lasting changes in dopaminergic, glutamatergic and gamma-amino butyric acid-ergic systems induced by adolescent APD administration have been observed in the nucleus accumbens. A detailed examination of other potential target regions such as striatum, prefrontal cortex and ventral tegmental area is still required. Through identification of specific neural pathways targeted by adolescent APD treatment, future studies will expand the current knowledge on long-term neural outcomes which are of translational value.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - James G Scott
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia Discipline of Psychiatry, School of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
3
|
Atypical antipsychotics and effects on feeding: from mice to men. Psychopharmacology (Berl) 2016; 233:2629-53. [PMID: 27251130 DOI: 10.1007/s00213-016-4324-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/15/2016] [Indexed: 12/22/2022]
Abstract
RATIONALE So-called atypical antipsychotics (AAPs) are associated with varying levels of weight gain and associated metabolic disturbances, which in patients with serious mental illness (SMI) have been linked to non-compliance and poor functional outcomes. Mechanisms underlying AAP-induced metabolic abnormalities are only partially understood. Antipsychotic-induced weight gain may occur as a result of increases in food intake and/or changes in feeding. OBJECTIVE In this review, we examine the available human and preclinical literature addressing AAP-related changes in feeding behavior, to determine whether changes in appetite and perturbations in regulation of food intake could be contributing factors to antipsychotic-induced weight gain. RESULTS In general, human studies point to disruption by AAPs of feeding behaviors and food consumption. In rodents, increases in cumulative food intake are mainly observed in females; however, changes in feeding microstructure or motivational aspects of food intake appear to occur independent of sex. CONCLUSIONS The findings from this review indicate that the varying levels of AAP-related weight gain reflect changes in both appetite and feeding behaviors, which differ by type of AAP. However, inconsistencies exist among the studies (both human and rodent) that may reflect considerable differences in study design and methodology. Future studies examining underlying mechanisms of antipsychotic-induced weight gain are recommended in order to develop strategies addressing the serious metabolic side effect of AAPs.
Collapse
|
4
|
Lian J, De Santis M, He M, Deng C. Risperidone-induced weight gain and reduced locomotor activity in juvenile female rats: The role of histaminergic and NPY pathways. Pharmacol Res 2015; 95-96:20-6. [DOI: 10.1016/j.phrs.2015.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 01/05/2023]
|
5
|
Volpato AM, Zugno AI, Quevedo J. Recent evidence and potential mechanisms underlying weight gain and insulin resistance due to atypical antipsychotics. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35:295-304. [PMID: 24142093 DOI: 10.1590/1516-4446-2012-1052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/20/2012] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Atypical antipsychotics (AAPs) promote obesity and insulin resistance. In this regard, the main objective of this study was to present potential mechanisms and evidence concerning side effects of atypical antipsychotics in humans and rodents. METHOD A systematic review of the literature was performed using the MEDLINE database. We checked the references of selected articles, review articles, and books on the subject. RESULTS This review provides consistent results concerning the side effects of olanzapine (OL) and clozapine (CLZ), whereas we found conflicting results related to other AAPs. Most studies involving humans describe the effects on body weight, adiposity, lipid profile, and blood glucose levels. However, it seems difficult to identify an animal model replicating the wide range of changes observed in humans. Animal lineage, route of administration, dose, and duration of treatment should be carefully chosen for the replication of the findings in humans. CONCLUSIONS Patients undergoing treatment with AAPs are at higher risk of developing adverse metabolic changes. This increased risk must be taken into account when making decisions about treatment. The influence of AAPs on multiple systems is certainly the cause of such effects. Specifically, muscarinic and histaminergic pathways seem to play important roles.
Collapse
Affiliation(s)
- Ana Maria Volpato
- Universidade do Extremo Sul Catarinense, Laboratory of Neurosciences, CriciúmaSC, Brazil
| | | | | |
Collapse
|
6
|
Singh KP, Tripathi N, Singh MK. Effect of Gestational Exposure to Novel Antipsychotics on Body Weight Gain in Rats. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2014. [DOI: 10.1007/s40009-014-0225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Varela FA, Der-Ghazarian T, Lee RJ, Charntikov S, Crawford CA, McDougall SA. Repeated aripiprazole treatment causes dopamine D2 receptor up-regulation and dopamine supersensitivity in young rats. J Psychopharmacol 2014; 28:376-86. [PMID: 24045880 PMCID: PMC5673084 DOI: 10.1177/0269881113504016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aripiprazole is a second-generation antipsychotic that is increasingly being prescribed to children and adolescents. Despite this trend, little preclinical research has been done on the neural and behavioral actions of aripiprazole during early development. In the present study, young male and female Sprague-Dawley rats were pretreated with vehicle, haloperidol (1 mg/kg), or aripiprazole (10 mg/kg) once daily on postnatal days (PD) 10-20. After 1, 4, or 8 days (i.e. on PD 21, PD 24, or PD 28), amphetamine-induced locomotor activity and stereotypy, as well as dorsal striatal D2 receptor levels, were measured in separate groups of rats. Pretreating young rats with aripiprazole or haloperidol increased D2 binding sites in the dorsal striatum. Consistent with these results, dopamine supersensitivity was apparent when aripiprazole- and haloperidol-pretreated rats were given a test day injection of amphetamine (2 or 4 mg/kg). Increased D2 receptor levels and altered behavioral responding persisted for at least 8 days after conclusion of the pretreatment regimen. Contrary to what has been reported in adults, repeated aripiprazole treatment caused D2 receptor up-regulation and persistent alterations of amphetamine-induced behavior in young rats. These findings are consistent with human clinical studies showing that children and adolescents are more prone than adults to aripiprazole-induced side effects, including extrapyramidal symptoms.
Collapse
Affiliation(s)
- Fausto A. Varela
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Taleen Der-Ghazarian
- Department of Psychology, California State University, San Bernardino, CA, USA,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ryan J. Lee
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Sergios Charntikov
- Department of Psychology, California State University, San Bernardino, CA, USA,Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Cynthia A. Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA
| | | |
Collapse
|
8
|
Abstract
The second-generation antipsychotic drug olanzapine has become a widely prescribed drug in the treatment of schizophrenia and bipolar disorder. Unfortunately, its therapeutic benefits are partly outweighed by significant weight gain and other metabolic side effects, which increase the risk for diabetes and cardiovascular disease. Because olanzapine remains superior to other antipsychotic drugs that show less weight gain liability, insight into the mechanisms responsible for olanzapine-induced weight gain is crucial if it is to be effectively addressed. Over the past few decades, several groups have investigated the effects of olanzapine on energy balance using rat models. Unfortunately, results from different studies have not always been consistent and it remains to be determined which paradigms should be used in order to model olanzapine-induced weight gain most accurately. This review summarizes the effects of olanzapine on energy balance observed in different rat models and discusses some of the factors that appear to contribute to the inconsistencies in observed effects. In addition it compares the effects reported in rats with clinical findings to determine the predictive validity of different paradigms.
Collapse
|
9
|
Olanzapine depot formulation in rat: a step forward in modelling antipsychotic-induced metabolic adverse effects. Int J Neuropsychopharmacol 2014; 17:91-104. [PMID: 23919889 DOI: 10.1017/s1461145713000862] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rats are used as animal models in the study of antipsychotic-induced metabolic adverse effects, with oral drug administration yielding hyperphagia, weight gain and, in some cases, lipogenic effects. However, the rapid half-life of these drugs in rats, in combination with development of drug tolerance after a few weeks of treatment, has limited the validity of the model. In order to prevent fluctuating drug serum concentrations seen with daily repeated administrations, we injected female rats with a single intramuscular dose of long-acting olanzapine formulation. The olanzapine depot injection yielded plasma olanzapine concentrations in the range of those achieved in patients, and induced changes in metabolic parameters similar to those previously observed with oral administration, including increased food intake, weight gain and elevated plasma triglycerides. Moreover, the sensitivity to olanzapine was maintained beyond the 2-3 wk of weight gain observed with oral administration. In a separate olanzapine depot experiment, we aimed to clarify the role of hypothalamic AMP-activated protein kinase (AMPK) in olanzapine-induced weight gain, which has been subject to debate. Adenovirus-mediated inhibition of AMPK was performed in the arcuate (ARC) or the ventromedial hypothalamic (VMH) nuclei in female rats, with subsequent injection of olanzapine depot solution. Inhibition of AMPK in the ARC, but not in the VMH, attenuated the weight-inducing effect of olanzapine, suggesting an important role for ARC-specific AMPK activation in mediating the orexigenic potential of olanzapine. Taken together, olanzapine depot formulation provides an improved mode of drug administration, preventing fluctuating plasma concentrations, reducing handling stress and opening up possibilities to perform complex mechanistic studies.
Collapse
|
10
|
Chronic olanzapine administration in rats: Effect of route of administration on weight, food intake and body composition. Pharmacol Biochem Behav 2013; 103:717-22. [DOI: 10.1016/j.pbb.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/10/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
11
|
Davey KJ, O'Mahony SM, Schellekens H, O'Sullivan O, Bienenstock J, Cotter PD, Dinan TG, Cryan JF. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 2012; 221:155-69. [PMID: 22234378 DOI: 10.1007/s00213-011-2555-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/21/2011] [Indexed: 12/13/2022]
Abstract
RATIONALE Atypical antipsychotic drugs (AAPDs) such as olanzapine have a serious side effect profile including weight gain and metabolic dysfunction, and a number of studies have suggested a role for gender in the susceptibility to these effects. In recent times, the gut microbiota has been recognised as a major contributor to the regulation of body weight and metabolism. Thus, we investigated the effects of olanzapine on body weight, behaviour, gut microbiota and inflammatory and metabolic markers in both male and female rats. METHODS Male and female rats received olanzapine (2 or 4 mg/kg/day) or vehicle for 3 weeks. Body weight, food and water intake were monitored daily. The faecal microbial content was assessed by 454 pyrosequencing. Plasma cytokines (tumour necrosis alpha, interleukin 8 (IL-8), interleuin-6 and interleukin 1-beta (IL-1β)) as well as expression of genes including sterol-regulatory element binding protein-1c and CD68 were analysed. RESULTS Olanzapine induced significant body weight gain in the female rats only. Only female rats treated with olanzapine (2 mg/kg) had elevated plasma levels of IL-8 and IL-1β, while both males and females had olanzapine-induced increases in adiposity and evidence of macrophage infiltration into adipose tissue. Furthermore, an altered microbiota profile was observed following olanzapine treatment in both genders. CONCLUSIONS This study furthers the theory that gender may impact on the nature of, and susceptibility to, certain side effects of antipsychotics. In addition, we demonstrate, what is to our knowledge the first time, an altered microbiota associated with chronic olanzapine treatment.
Collapse
Affiliation(s)
- Kieran J Davey
- Alimentary Pharmabiotic Centre, Laboratory of Neurogastroenterology, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wampers M, Hanssens L, van Winkel R, Heald A, Collette J, Peuskens J, Reginster JY, Scheen A, De Hert M. Differential effects of olanzapine and risperidone on plasma adiponectin levels over time: results from a 3-month prospective open-label study. Eur Neuropsychopharmacol 2012; 22:17-26. [PMID: 21511441 DOI: 10.1016/j.euroneuro.2011.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/31/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022]
Abstract
Second-generation antipsychotics (SGA), especially clozapine and olanzapine, are associated with an increased metabolic risk. Recent research showed that plasma adiponectin levels, an adipocyte-derived hormone that increases insulin sensitivity, vary in the same way in schizophrenic patients as in the general population according to gender, adiposity and metabolic syndrome (MetS). The aim of the present study was to investigate whether different SGAs differentially affect plasma adiponectin levels independent of body mass index (BMI) and MetS status. 113 patients with schizophrenia (65.5% males, 32.3years old) who were free of antipsychotic medication were enrolled in this open-label prospective single-center study and received either risperidone (n=54) or olanzapine (n=59). They were followed prospectively for 12weeks. Average daily dose was 4.4mg/day for risperidone and 17.4mg/day for olanzapine. Plasma adiponectin levels as well as fasting metabolic parameters were measured at baseline, 6weeks and 12weeks. The two groups had similar baseline demographic and metabolic characteristics. A significant increase in body weight was observed over time. This increase was significantly larger in the olanzapine group than in the risperidone group (+7.0kg versus +3.1kg, p<0.0002). Changes in fasting glucose and insulin levels and in HOMA-IR, an index of insulin resistance, were not significantly different in both treatment groups. MetS prevalence increased significantly more in the olanzapine group as compared to the risperidone groups where the prevalence did not change over time. We observed a significant (p=0.0015) treatment by time interaction showing an adiponectin increase in the risperidone-treated patients (from 10,154 to 11,124ng/ml) whereas adiponectin levels decreased in olanzapine treated patients (from 11,280 to 8988ng/ml). This effect was independent of BMI and the presence/absence of MetS. The differential effect of antipsychotic treatment (risperidone versus olanzapine) on plasma adiponectin levels over time, independent of changes in waist circumference and antipsychotic dosing, suggests a specific effect on adipose tissues, similar to what has been observed in animal models. The observed olanzapine-associated reduction in plasma adiponectin levels may at least partially contribute to the increased metabolic risk of olanzapine compared to risperidone.
Collapse
Affiliation(s)
- Martien Wampers
- University Psychiatric Centre Catholic University Leuven, Campus Kortenberg, Kortenberg, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heal DJ, Gosden J, Jackson HC, Cheetham SC, Smith SL. Metabolic consequences of antipsychotic therapy: preclinical and clinical perspectives on diabetes, diabetic ketoacidosis, and obesity. Handb Exp Pharmacol 2012:135-64. [PMID: 23129331 DOI: 10.1007/978-3-642-25761-2_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Antipsychotic drugs, particularly second-generation antipsychotics (SGAs), have reduced the burden to society of schizophrenia, but many still produce excessive weight gain. A significant number of SGAs also act directly to impair glycemic control causing insulin resistance, impaired glucose tolerance and type 2 diabetes, and also rarely diabetic ketoacidosis (DKA). Schizophrenia itself is almost certainly causal in many endocrine and metabolic disturbances, making this population especially vulnerable to the adverse metabolic consequences of treatment with SGAs. Hence, there is an urgent need for a new generation of antipsychotic drugs that provide efficacy equal to the best of the SGAs without their liability to cause weight gain or type 2 diabetes. In the absence of such safe and effective alternatives to the SGAs, there is a substantial clinical need for the introduction of new antipsychotics without adverse metabolic effects and new antiobesity drugs to combat these metabolic side effects. We discuss the adverse metabolic consequences of schizophrenia, its exacerbation by a lack of social care, and the additional burden placed on patients by their medication. A critical evaluation of the animal models of antipsychotic-induced metabolic disturbances is provided with observations on their strengths and limitations. Finally, we discuss novel antipsychotic drugs with a lower propensity to increase metabolic risk and adjunctive medications to mitigate the adverse metabolic actions of the current generation of antipsychotics.
Collapse
|
14
|
Boyda HN, Procyshyn RM, Tse L, Wong D, Pang CC, Honer WG, Barr AM. Intermittent treatment with olanzapine causes sensitization of the metabolic side-effects in rats. Neuropharmacology 2011; 62:1391-400. [PMID: 21376062 DOI: 10.1016/j.neuropharm.2011.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/14/2011] [Accepted: 02/21/2011] [Indexed: 12/17/2022]
Abstract
The second generation antipsychotic drugs are effective treatments for psychotic disorders. Many of these compounds, including the drug olanzapine, have been associated with metabolic side-effects, including weight gain, impaired glucose tolerance and insulin resistance, which increase the risk of developing cardiometabolic disorders. Rodent models of olanzapine-induced metabolic side-effects have been used to study the physiology of these effects, but only at a single time point after drug treatment. The purpose of the present study was to examine longitudinal changes with chronic antipsychotic drug treatment. Adult female rats were treated with either olanzapine (15 mg/kg) or vehicle for five consecutive days each week, followed by a 48 h washout period. Animals were then challenged with either olanzapine (15 mg/kg) or vehicle, and fasting glucose and insulin values were recorded, as well as glucose clearance in the glucose tolerance test. Treatment with olanzapine was continued for 10 weeks, with weekly tests of metabolic indices. Rats treated acutely with olanzapine showed both glucose dysregulation and insulin resistance; for the group treated during the week with olanzapine, these effects did not change by the end of ten weeks of treatment. However, in the group of animals challenged only once per week with olanzapine, the metabolic side-effects markedly intensified with the passage of time, whereby glucose intolerance and insulin resistance increased significantly compared to both baseline values and all other treatment groups. This previously unreported sensitization phenomenon represents a novel finding that may have clinical implications for patients receiving intermittent antipsychotic drug dosing or with variable adherence to treatment.
Collapse
Affiliation(s)
- H N Boyda
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, B.C., Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
La Merrill M, Birnbaum LS. Childhood obesity and environmental chemicals. THE MOUNT SINAI JOURNAL OF MEDICINE, NEW YORK 2011; 78:22-48. [PMID: 21259261 PMCID: PMC3076189 DOI: 10.1002/msj.20229] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Childhood and adolescent rates of obesity and overweight are continuing to increase in much of the world. Risk factors such as diet composition, excess caloric intake, decreased exercise, genetics, and the built environment are active areas of etiologic research. The obesogen hypothesis, which postulates that prenatal and perinatal chemical exposure can contribute to risk of childhood and adolescent obesity, remains relatively underexamined. This review surveys numerous classes of chemicals for which this hypothesis has been explored. We focus on human data where they exist and also discuss the findings of rodent and cell culture studies. Organochlorine chemicals as well as several classes of chemicals that are peroxisome proliferator-activated receptor agonists are identified as possible risk factors for obesity. Recommendations for future epidemiologic and experimental research on the chemical origins of obesity are also given.
Collapse
|
16
|
van der Zwaal EM, Luijendijk MC, Evers SS, la Fleur SE, Adan RA. Olanzapine affects locomotor activity and meal size in male rats. Pharmacol Biochem Behav 2010; 97:130-7. [DOI: 10.1016/j.pbb.2010.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/17/2010] [Accepted: 05/06/2010] [Indexed: 11/28/2022]
|
17
|
Mishra AC, Mohanty B. Lactational exposure to atypical antipsychotic drugs disrupts the pituitary-testicular axis in mice neonates during post-natal development. J Psychopharmacol 2010; 24:1097-104. [PMID: 20080927 DOI: 10.1177/0269881109348162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Olanzapine (OLNZ) and risperidone (RISP), two widely prescribed drugs for post-partum psychosis, transfer through milk to the neonates. Hence, neonates are susceptible to their adverse side effects. In the present study, the pituitary-testicular axis of lactationally exposed mice neonates (PND 28) was examined to evaluate the reproductive adverse effects. Testicular histopathology, immunocytochemistry and morphometric analysis of pituitary PRL (prolactin) and LH (luteinizing hormone) cells and plasma hormonal (PRL, LH and testosterone) levels were the various end points studied. Significantly regressed testes, reduced seminiferous tubules with disrupted germ-cell alignment, spermatogonial exfoliation into the tubule lumens and sparse sperms in the lumens were observed. PRL-immunointensity and plasma levels were elevated, whereas immunoreactivity and plasma levels of LH were decreased. Plasma testosterone levels were also decreased. The hypogonadism thus observed might be mediated by drug-induced hyperprolactinemia, which further inhibited secretions of LH and testosterone. Age may be the factor which made the neonates vulnerable to the PRL elevation by OLNZ which otherwise causes transient elevation in adults and is considered safe. The adverse impact was persistent until adulthood with higher doses of both of the drugs as evident by the analysis of testicular weight, histology and hormonal profiles of post-pubertal mice (PND 63) lactationally exposed as neonates.
Collapse
Affiliation(s)
- Akash C Mishra
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | | |
Collapse
|
18
|
Mishra AC, Mohanty B. Effect of lactational exposure of olanzapine on body weight of mice: a comparative study on neonates of both the sexes during post-natal development. J Psychopharmacol 2010; 24:1089-96. [PMID: 19164496 DOI: 10.1177/0269881108100775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adverse impact of atypical antipsychotic drugs on body weight of adult and juvenile groups has been well-documented both at clinical and preclinical investigations. However, studies on impact of drug on body weight during fetal or neonatal development received little attention. The present study is the first-ever preclinical investigation demonstrating the effect of lactational exposure of olanzapine (4, 8, and 10 mg/kg) and risperidone (1 and 2 mg/kg), two widely prescribed antipsychotics, on body weight of mice neonates. Body weight gain was observed with both the drugs, although a sex-related differential response was noted. In olanzapine-exposed female neonates, the weight gain was more with the highest dose. Male neonates showed a reverse trend, i.e. the highest gain with the lowest dose. Female neonates exposed to risperidone also showed significant, but less gain as compared to their olanzapine-exposed counterparts. Risperidone-exposed male neonates showed little body weight gain. Waist-to-hip ratio and plasma prolactin level were measured to explain the reason behind the body weight gain, but there were deviations with respect to drug and sex. The body weight gain may be the overall manifestations of drug-induced endocrine and metabolic dysregulations.
Collapse
Affiliation(s)
- A C Mishra
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | | |
Collapse
|
19
|
Hyperphagia and increased meal size are responsible for weight gain in rats treated sub-chronically with olanzapine. Psychopharmacology (Berl) 2009; 203:693-702. [PMID: 19052729 DOI: 10.1007/s00213-008-1415-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Atypical antipsychotic-induced weight gain is a significant impediment in the treatment of schizophrenia. OBJECTIVES In a putative model of antipsychotic drug-induced weight gain, we investigated the effects of sub-chronic olanzapine on body weight, meal patterns, the expression of genes encoding for hypothalamic feeding-related neuropeptides and the contribution of hyperphagia to olanzapine-induced weight gain in rats. MATERIALS AND METHODS In experiment 1, female rats received either olanzapine (1 mg/kg, p.o.) or vehicle, twice daily for 7 days, while meal patterns were recorded. At the end of the treatment regimen, we measured the levels of hypothalamic messenger RNAs (mRNAs) encoding neuropeptide-Y (NPY), hypocretin/orexin (HCRT), melanin concentrating hormone and pro-opiomelanocortin. NPY and HCRT mRNA levels were also assessed in a separate cohort of female rats treated acutely with olanzapine (1 mg/kg, p.o.). In experiment 2, we investigated the effect of a pair-feeding paradigm on sub-chronic (1 mg/kg, p.o.) olanzapine-induced weight gain. RESULTS In experiment 1, sub-chronic olanzapine increased body weight, food intake and meal size. Hypothalamic neuropeptide mRNA levels were unchanged after both acute and sub-chronic olanzapine treatment. In experiment 2, the restriction of food intake to the level of vehicle-treated controls abolished the sub-chronic olanzapine-induced increase in body weight. CONCLUSIONS Hyperphagia mediated by drug-induced impairments in satiety (as evidenced by increased meal size) is a key requirement for olanzapine-induced weight gain in this paradigm. However, olanzapine-induced hyperphagia and weight gain may not be mediated via alterations in the expression of the feeding-related hypothalamic neuropeptides examined in this study.
Collapse
|
20
|
Amato D, Stasi MA, Borsini F, Nencini P. Haloperidol both prevents and reverses quinpirole-induced nonregulatory water intake, a putative animal model of psychogenic polydipsia. Psychopharmacology (Berl) 2008; 200:157-65. [PMID: 18597076 DOI: 10.1007/s00213-008-1229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Polydipsia is a severe complication of long-term schizophrenia and, despite its unknown pathogenesis, is empirically treated with typical or atypical antipsychotics. In the rat, nonregulatory water intake is induced by repeated administration of amphetamine-like compounds or by the D2/3 agonist, quinpirole. OBJECTIVE This study is aimed at determining the potential activity of antipsychotic compounds with different affinities for D2 receptors in preventing and/or reversing quinpirole-induced polydipsia. MATERIALS AND METHODS Male Sprague-Dawley rats were treated with five injections of quinpirole (0.5 mg/kg i.p.) to induce polydipsia. The oral effects of haloperidol, olanzapine, clozapine, and ST2472 on QNP-induced polydipsia were analyzed in the following two schedules. In the preventive schedule, haloperidol (0.2, 0.4, and 0.8 mg/kg), olanzapine (1.5, 3, and 6 mg/kg), ST2472 (1 and 2 mg/kg), and clomipramine (5, 10, and 20 mg/kg) were given in combination with quinpirole from day 1 to day 5. In the reversal schedule, rats showing quinpirole-induced polydipsia on the third day received haloperidol (0.4 mg/kg), olanzapine (1.5 and 3 mg/kg), clozapine (10, 20, and 40 mg/kg), ST2472 (1, 2, 5, and 10 mg/kg), and clomipramine (5, 10, and 20 mg/kg) before quinpirole on days 4 and 5. RESULTS Haloperidol both prevented and reversed quinpirole-induced polydipsia, whereas olanzapine and ST2472 only reversed it. Clomipramine prevented but did not reverse quinpirole-induced polydipsia, and clozapine did not reverse it either. CONCLUSIONS We suggest that, once developed, polydipsia is governed by dopaminergic D2 mechanisms. In contrast, either an increase in the serotoninergic tone or an inhibition of D2 receptors can modulate the development of quinpirole-induced excessive drinking.
Collapse
Affiliation(s)
- Davide Amato
- Department of Human Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | | | | | | |
Collapse
|
21
|
Fell MJ, Neill JC, Anjum N, Peltola LM, Marshall KM. Investigation into the influence of a high fat diet on antipsychotic-induced weight gain in female rats. J Psychopharmacol 2008; 22:182-6. [PMID: 18308803 DOI: 10.1177/0269881107082287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atypical antipsychotic drug therapy may result in substantial weight gain, increased adiposity and the promotion of metabolic abnormalities. The mechanism(s) which underlie such effects remain unclear. Previous studies in our laboratory have demonstrated significant weight gain in female rats maintained on a standard laboratory diet after sub-chronic administration of olanzapine and risperidone, but not ziprasidone. The aim of this paper is to investigate the effect of antipsychotic drugs on body weight, ingestive behaviour and adiposity in female rats with access to a high fat diet. Adult female rats given free access to a high fat diet received either olanzapine (2 mg/kg), risperidone (0.5 mg/kg), ziprasidone (2.5 mg/kg) or vehicle for 28 days. Body weight, food and water intake in addition to intra-abdominal fat deposition were assessed. Olanzapine initially increased body weight but by the end of the study olanzapine animals appeared to have lost weight compared to the vehicle-treated group. Olanzapine-induced reductions in body weight were accompanied by a significant hypophagia during weeks 3 and 4. Risperidone increased body weight during week 1 only and reduced intake of a high fat diet during weeks 3 and 4. Ziprasidone was without effect on indices of body weight and ingestive behaviour. There were no effects of antipsychotic drugs on intra-abdominal fat deposition. Access to a diet high in fat attenuated weight gain induced by olanzapine and risperidone in female rats.
Collapse
Affiliation(s)
- M J Fell
- School of Pharmacy, University of Bradford, UK.
| | | | | | | | | |
Collapse
|
22
|
Comparative effects of olanzapine and ziprasidone on hypophagia induced by enhanced histamine neurotransmission in the rat. Behav Pharmacol 2008; 19:121-8. [DOI: 10.1097/fbp.0b013e3282f62c66] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zuo J, Liu Z, Ouyang X, Liu H, Hao Y, Xu L, Lu XH. Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:387-97. [PMID: 17935847 DOI: 10.1016/j.pnpbp.2007.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/08/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
Antipsychotic treatment during pregnancy is indicated when risk of drug exposure to the fetus is outweighed by the untreated psychosis in the mother. Although increased risk of congenital malformation has not been associated with most available antipsychotic drugs, there is a paucity of knowledge on the subtle neurodevelopmental and behavioral consequences of prenatal receptor blockade by these drugs. In the present study, antipsychotic drugs, sulpiride (SUL, a selective D2 receptor antagonist) and risperidone (RIS, a D2/5HT2 receptor antagonist) were administered to pregnant Sprague-Dawley dams from gestational day 6 to 18. Both RIS and SUL prenatal exposed rats had lower birth body weights compared to controls. RIS exposure had a significant main effect to retard body weight growth in male offspring until postnatal day (PND) 60. Importantly, water maze tests revealed that SUL prenatal exposure impaired visual cue response in visual task performance (stimulus-response, S-R memory), but not place response as reflected in hidden platform task (spatial memory acquisition and retention). In addition, prenatal SUL treatment reduced spontaneous activity as measured in open field. Both behavioral deficits suggest that SUL prenatal exposure may lead to subtle disruption of striatum development and related learning and motor systems. RIS exposure failed to elicit deficits in both water maze tasks and increased rearing in open field test. These results suggest prenatal exposure to SUL and RIS may produce lasting effects on growth, locomotion and memory in rat offspring. And the differences may exist in the effects of antipsychotic drugs which selectively block dopamine D2 receptors (SUL) as compared to second generation drugs (RIS) that potently antagonize serotonin and dopamine receptors.
Collapse
Affiliation(s)
- Jing Zuo
- Institute of Mental Health, the second Xiang-Ya hospital, Central South University, Changsha, Hunan, 410011, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Cooper GD, Harrold JA, Halford JCG, Goudie AJ. Chronic clozapine treatment in female rats does not induce weight gain or metabolic abnormalities but enhances adiposity: implications for animal models of antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:428-36. [PMID: 17933447 DOI: 10.1016/j.pnpbp.2007.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/09/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
The ability of clozapine to induce weight gain in female rats was investigated in three studies with progressively lowered doses of clozapine. In an initial preliminary high dose study, clozapine at 6 and 12 mg/kg (i.p., b.i.d.) was found to induce weight loss. In a subsequent intermediate dose study, we obtained no evidence for clozapine-induced weight gain despite using identical procedures and doses of clozapine (1-4 mg/kg, i.p., b.i.d.) with which we have observed olanzapine-induced weight gain, hyperphagia, enhanced adiposity and metabolic changes [Cooper G, Pickavance L, Wilding J, Halford J, Goudie A (2005). A parametric analysis of olanzapine-induced weight gain in female rats. Psychopharmacology; 181: 80-89.]. Instead, clozapine induced weight loss without alteration in food intake and muscle mass or changes in levels of glucose, insulin, leptin and prolactin. However, these intermediate doses of clozapine enhanced visceral adiposity and elevated levels of adiponectin. In a final study, low doses of clozapine (0.25-0.5 mg/kg, i.p, b.i.d.) induced weight loss. These data demonstrate that clozapine-induced weight gain can be much more difficult to observe in female rats than olanzapine-induced weight gain. Moreover, these findings contrast with clinical findings with clozapine, which induces substantial weight gain in humans. Clozapine-induced enhanced adiposity appears to be easier to observe in rats than weight gain. These findings, along with other preclinical studies, suggest that enhanced adiposity can be observed in the absence of antipsychotic-induced weight gain and hyperphagia, possibly reflecting a direct drug effect on adipocyte function independent of drug-induced hyperphagia [e.g. Minet-Ringuet J, Even P, Valet P, Carpene C, Visentin V, Prevot D, Daviaud D, Quignard-Boulange A, Tome D, de Beaurepaire R (2007). Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Molecular Psychiatry; 12: 562-571.]. These and other findings which show that the results of studies of antipsychotic treatment in animals do not always mimic clinical findings have important implications for the use of animal models of antipsychotic-induced weight gain. With regard to weight gain the results obtained appear to depend critically on the experimental procedures used and the specific drugs studied. Thus such models are not without limitations. However, they do consistently demonstrate the ability of various antipsychotics to enhance adiposity.
Collapse
Affiliation(s)
- G D Cooper
- School of Psychology, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
25
|
Neuroleptics and animal models: feasibility of oral treatment monitored by plasma levels and receptor occupancy assays. J Neural Transm (Vienna) 2008; 115:745-53. [PMID: 18193153 DOI: 10.1007/s00702-007-0004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
The administration of neuroleptics in animal models has been extensively reported and plays an important role in the study of schizophrenia. Our study was designed to address the following questions: (1) Is it possible to achieve steady-state receptor occupancy levels administering neuroleptics in drinking water? (2) Is there an appropriate dose to obtain clinically comparable receptor occupancies? (3) Is there a correlation between plasma drug levels and receptor occupancy? Thus, we tested three neuroleptic drugs administered in drinking water for 7 days. Plasma drug levels were measured, and in vivo receptor occupancy assays were performed in order to determine peak and trough dopamine D(2) receptor occupancies in striatal brain samples. Overall, our study indicates that in rodents the administration of appropriate doses of haloperidol and olanzapine in drinking water achieves receptor occupancies comparable to the clinical occupancy levels, but this appears not to be the case for clozapine.
Collapse
|
26
|
Fell MJ, Anjum N, Dickinson K, Marshall KM, Peltola LM, Vickers S, Cheetham S, Neill JC. The distinct effects of subchronic antipsychotic drug treatment on macronutrient selection, body weight, adiposity, and metabolism in female rats. Psychopharmacology (Berl) 2007; 194:221-31. [PMID: 17581744 DOI: 10.1007/s00213-007-0833-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Treatment with some antipsychotic drugs may result in excessive body weight gain which can have detrimental effects on patient compliance, morbidity and mortality. The aim of the present study was to investigate the effect of atypical antipsychotic drugs on dietary macronutrient selection, body weight, body composition and biochemical parameters related to obesity in female rats. MATERIALS AND METHODS Forty pair-housed, adult female hooded-Lister rats (250 +/- 5 g) were habituated to three diets containing principally protein, fat, or carbohydrate in a home cage self-selection paradigm. Olanzapine (2 mg/kg), risperidone (0.5 mg/kg), ziprasidone (2.5 mg/kg), or vehicle was injected intraperitoneally once daily for 22 days; food selection, water intake, and body weight were recorded daily, while body composition and plasma hormones (insulin, glucose, nonesterified free fatty acid, total cholesterol, glycerol, triacylglycerol, leptin, and prolactin) were analyzed at the end of the study. RESULTS Only olanzapine significantly increased body weight and food intake. Macronutrient selection was significantly altered after olanzapine and risperidone treatment (increased protein and decreased fat preference). Only olanzapine increased carcass fat content. Locomotor activity was significantly reduced in all treatment groups. Both olanzapine and risperidone significantly increased plasma prolactin. Olanzapine was without effect on any other biochemical parameter measured. Ziprasidone significantly reduced plasma leptin and nonsignificantly reduced NEFA, while risperidone significantly reduced fasting plasma glucose. CONCLUSION This study supports our previous work demonstrating weight gain and increased feeding behavior induced by olanzapine and could have important implications for enhancing our understanding of the mechanisms by which olanzapine and other atypical antipsychotics induce weight gain in the clinic.
Collapse
Affiliation(s)
- M J Fell
- Bradford School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kalinichev M, Rourke C, Jones DNC. Body weights and plasma prolactin levels in female rats treated subchronically with ziprasidone versus olanzapine. Behav Pharmacol 2006; 17:289-92. [PMID: 16572006 DOI: 10.1097/00008877-200605000-00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In a putative animal model of antipsychotic drug-induced weight gain, female rats received either vehicle, ziprasidone (2.0, 6.0, 10 mg/kg) or olanzapine (2.0 mg/kg), orally, twice daily, for 7 days. Body weights were assessed daily and prolactin assayed at the end of the regimen. Ziprasidone caused significant weight gain, as did olanzapine, while stimulating distinct patterns of prolactin secretion. Thus, assessment of body weight provides only limited predictive validity in differentiating between weight gain-inducing and weight-neutral drugs.
Collapse
Affiliation(s)
- Mikhail Kalinichev
- Schizophrenia and Bipolar Disorders - In Vivo Biology, Psychiatry CEDD, GlaxoSmithKline PLC, New Frontiers Science Park, Harlow, Essex, UK.
| | | | | |
Collapse
|
28
|
Lin EJD, Lee NJ, Slack K, Karl T, Duffy L, O'brien E, Matsumoto I, Dedova I, Herzog H, Sainsbury A. Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats. Neuropharmacology 2006; 51:1129-36. [PMID: 16919686 DOI: 10.1016/j.neuropharm.2006.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/05/2006] [Accepted: 07/06/2006] [Indexed: 11/22/2022]
Abstract
Antipsychotic drugs have been used effectively for the treatment of schizophrenia symptoms, but they are often associated with metabolic side effects such as weight gain and endocrine disruptions. To investigate the possible mechanisms of antipsychotic-induced metabolic effects, we studied the impact of chronic administration of a typical antipsychotic drug (haloperidol) and an atypical antipsychotic (risperidone) to male rats on food intake, body weight, adiposity, and the circulating concentrations of hormones and metabolites that can influence energy homeostasis. Chronic (28days) haloperidol administration had no effect on food intake, weight gain or adiposity in male rats, whereas risperidone treatment resulted in a transient reduction in food intake and significantly reduced body weight gain compared to vehicle-treated control rats. Whereas neither antipsychotic had any effect on serum lipid profiles, glucose tolerance or the circulating concentrations of hormones controlled by the hypothalamo-pituitary-thyroid (free T4), -adrenal (corticosterone), -somatotropic (IGF-1), or -gonadotropic axes (testosterone), haloperidol increased circulating insulin levels and risperidone increased serum glucagon levels. This finding suggests that haloperidol or risperidone induce distinct metabolic effects. Since metabolic disorders such as obesity and type 2 diabetes mellitus represent serious health issues, understanding antipsychotic-induced endocrine and metabolic effects may ultimately allow better control of these side effects.
Collapse
Affiliation(s)
- En-Ju D Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|