1
|
Jiang H, Zhang J, Li Q, Zhou Y. Integrating network pharmacology and bioinformatics to explore the mechanism of Xiaojian Zhongtang in treating major depressive disorder: An observational study. Medicine (Baltimore) 2024; 103:e39726. [PMID: 39312335 PMCID: PMC11419523 DOI: 10.1097/md.0000000000039726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. The traditional Chinese medicine compound Xiaojian Zhongtang (XJZT) has a good therapeutic effect on MDD, but the specific mechanism is not clear. The aim of this study is to explore the molecular mechanism of XJZT in the treatment of MDD through network pharmacology and bioinformatics. The traditional Chinese medicine system pharmacology database was used to screen the chemical components and targets of XJZT, while the online Mendelian inheritance in man, DisGeNET, Genecards, and therapeutic target database databases were used to collect MDD targets and identify the intersection targets of XJZT and MDD. A "drugs-components-targets" network was constructed using the Cytoscape platform, and the STRING was used for protein-protein interaction analysis of intersecting targets. Gene Ontology and Kyoto encyclopedia of genes and genomes analysis of intersecting targets was performed using the DAVID database. Obtain serum and brain transcriptome datasets of MDD from the gene expression omnibus database, and perform differentially expressed genes, weighted gene co-expression network analysis, gene set enrichment analysis, and receiver operating characteristic analysis. A total of 127 chemical components and 767 targets were obtained from XJZT, among which quercetin, kaempferol, and maltose are the core chemical components, and 1728 MDD targets were screened out, with 77 intersecting targets between XJZT and MDD. These targets mainly involve AGE-RAGE signaling pathway in diabetic complexes, epidermal growth factor receptor tyrosine kinase inhibitor resistance, and HIF-1 signaling pathway, and these core targets have strong binding activity with core components. In addition, 1166 differentially expressed genes were identified in the MDD serum transcriptome dataset, and weighted gene co-expression network analysis identified the most relevant gene modules (1269 genes), among which RAC-alpha serine/threonine-protein kinase (AKT1), D(4) dopamine receptor (DRD4), and kynurenine 3-monooxygenase (KMO) were target genes for the treatment of MDD with XJZT, these 3 genes are mainly related to the ubiquitin-mediated proteolysis, arachidonic acid (AA) metabolism, and Huntington disease pathways, and the expression of AKT1, DRD4, and KMO was also found in the MDD brain transcriptome dataset, which is significantly correlated with the occurrence of MDD. We have identified 3 key targets for XJZT treatment of MDD, including AKT1, KMO, and DRD4, and they can be regulated by the key components of XJZT, including quercetin, maltose, and kaempferol. This provides valuable insights for the early clinical diagnosis and development of therapeutic drugs for MDD.
Collapse
Affiliation(s)
- Huaning Jiang
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jian Zhang
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Quan Li
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yanyan Zhou
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
3
|
Namballa HK, Dorogan M, Gudipally AR, Okafor S, Gadhiya S, Harding WW. Discovery of Selective Dopamine Receptor Ligands Derived from (-)-Stepholidine via C-3 Alkoxylation and C-3/C-9 Dialkoxylation. J Med Chem 2023. [PMID: 37421373 DOI: 10.1021/acs.jmedchem.3c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
We evaluated C-3 alkoxylated and C-3/C-9 dialkoxylated (-)-stepholidine analogues to probe the tolerance at the C-3 and C-9 positions of the tetrahydroprotoberberine (THPB) template toward affinity for dopamine receptors. A C-9 ethoxyl substituent appears optimal for D1R affinity since high D1R affinities were observed for compounds that contain an ethyl group at C-9, with larger C-9 substituents tending to decrease D1R affinity. A number of novel ligands were identified, such as compounds 12a and 12b, with nanomolar affinities for D1R and no affinity for either D2R or D3R, with compound 12a being identified as a D1R antagonist for both G-protein- and β-arrestin-based signaling. Compound 23b was identified as the most potent and selective D3R ligand containing a THPB template to date and functions as an antagonist for both G-protein- and β-arrestin-based signaling. Molecular docking and molecular dynamics studies validated the D1R and D3R affinity and selectivity of 12a, 12b, and 23b.
Collapse
Affiliation(s)
- Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Michael Dorogan
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Ashok R Gudipally
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
| | - Sunday Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, 410011 Nsukka, Enugu State, Nigeria
- Center for Biomedical Research, New York, New York 10065, United States
| | - Satishkumar Gadhiya
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
4
|
Jiang A, Wang L, Lu JYD, Freeman A, Campbell C, Su P, Wong AHC, Liu F. Sex Differences in Dopamine Receptor Signaling in Fmr1 Knockout Mice: A Pilot Study. Brain Sci 2021; 11:brainsci11111398. [PMID: 34827397 PMCID: PMC8615700 DOI: 10.3390/brainsci11111398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Fragile X syndrome (FXS) is an X-chromosome-linked dominant genetic disorder that causes a variable degree of cognitive dysfunction and developmental disability. Current treatment is symptomatic and no existing medications target the specific cause of FXS. As with other X-linked disorders, FXS manifests differently in males and females, including abnormalities in the dopamine system that are also seen in Fmr1-knockout (KO) mice. We investigated sex differences in dopamine signaling in Fmr1-KO mice in response to L-stepholidine, a dopamine D1 receptor agonist and D2 receptor antagonist. We found significant sex differences in basal levels of phosphorylated protein kinase A (p-PKA) and glycogen synthase kinase (GSK)-3β in wild type mice that were absent in Fmr1-KO mice. In wild-type mice, L-stepholidine increased p-PKA in males but not female mice, decreased p-GSK-3 in female mice and increased p-GSK-3 in male mice. Conversely, in Fmr1-KO mice, L-stepholidine increased p-PKA and p-GSK-3β in females, and decreased p-PKA and p-GSK-3β in males.
Collapse
Affiliation(s)
- Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
| | - Le Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
| | - Justin Y. D. Lu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
| | - Amy Freeman
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
| | - Charlie Campbell
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
| | - Albert H. C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
- Department of Pharmacology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (A.J.); (L.W.); (J.Y.D.L.); (A.F.); (C.C.); (P.S.); (A.H.C.W.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
5
|
Chen L, Ru Q, Xiong Q, Zhou M, Yue K, Wu Y. The Role of Chinese Herbal Therapy in Methamphetamine Abuse and its Induced Psychiatric Symptoms. Front Pharmacol 2021; 12:679905. [PMID: 34040537 PMCID: PMC8143530 DOI: 10.3389/fphar.2021.679905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to control intake, and strong drug cravings. It is also likely to cause psychiatric impairments, such as cognitive impairment, depression, and anxiety. Because the specific neurobiological mechanisms involved are complex and have not been fully and systematically elucidated, there is no established pharmacotherapy for METH abuse. Studies have found that a variety of Chinese herbal medicines have significant therapeutic effects on neuropsychiatric symptoms and have the advantage of multitarget comprehensive treatment. We conducted a systematic review, from neurobiological mechanisms to candidate Chinese herbal medicines, hoping to provide new perspectives and ideas for the prevention and treatment of METH abuse.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Ahn S, Nesbit MO, Zou H, Vacca G, Axerio-Cilies P, Van Sung T, Phillips AG. Neural bases for attenuation of morphine withdrawal by Heantos-4: role of l-tetrahydropalmatine. Sci Rep 2020; 10:21275. [PMID: 33277581 PMCID: PMC7718916 DOI: 10.1038/s41598-020-78083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
Severe withdrawal symptoms triggered by cessation of long-term opioid use deter many individuals from seeking treatment. Opioid substitution and α2-adrenergic agonists are the current standard of pharmacotherapy for opioid use disorder in western medicine; however, each is associated with significant complications. Heantos-4 is a non-opioid botanical formulation used to facilitate opioid detoxification in Vietnam. While ongoing clinical use continues to validate its safety and effectiveness, a mechanism of action accounting for these promising effects remains to be specified. Here, we assess the effects of Heantos-4 in a rat model of morphine-dependence and present evidence that alleviation of naloxone-precipitated somatic withdrawal signs is related to an upregulation of mesolimbic dopamine activity and a consequent reversal of a hypodopaminergic state in the nucleus accumbens, a brain region implicated in opioid withdrawal. A central dopaminergic mechanism is further supported by the identification of l-tetrahydropalmatine as a key active ingredient in Heantos-4, which crosses the blood–brain barrier and shows a therapeutic efficacy comparable to its parent formulation in attenuating withdrawal signs. The anti-hypodopaminergic effects of l-tetrahydropalmatine may be related to antagonism of the dopamine autoreceptor, thus constituting a plausible mechanism contributing to the effectiveness of Heantos-4 in facilitating opioid detoxification.
Collapse
Affiliation(s)
- Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Maya O Nesbit
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Haiyan Zou
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Giada Vacca
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Peter Axerio-Cilies
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada.
| |
Collapse
|
7
|
Nesbit MO, Phillips AG. Tetrahydroprotoberberines: A Novel Source of Pharmacotherapies for Substance Use Disorders? Trends Pharmacol Sci 2020; 41:147-161. [PMID: 31987662 DOI: 10.1016/j.tips.2019.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Tetrahydroprotoberberines (THPBs) are a class of compounds that target both dopamine D1 and D2 families of receptors, making them attractive candidates for treating substance use disorder (SUD). The binding of some THPBs to serotonin and adrenergic receptors, in addition to dopamine receptors, gives rise to complex pharmacological profiles. Significant progress has been made over the last decade in examining these compounds for their therapeutic potential. Here, we evaluate recent discoveries relating to the neural mechanism and therapeutic effects of THPBs, focusing on compounds that have shown promise in animal models of SUD and preliminary clinical studies. Advancements in structure-activity relationship studies and in silico modeling of THPB binding to dopamine receptors have facilitated the synthesis of novel THPBs with enhanced therapeutic properties and provide insights regarding use of the THPB scaffold to serve as a template for innovative drug designs.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Zhao W, Liu M, Shen C, Liu H, Zhang Z, Dai W, Liu X, Liu J. Differentiation, chemical profiles and quality evaluation of five medicinal Stephania species (Menispermaceae) through integrated DNA barcoding, HPLC-QTOF-MS/MS and UHPLC-DAD. Fitoterapia 2019; 141:104453. [PMID: 31857178 DOI: 10.1016/j.fitote.2019.104453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 01/02/2023]
Abstract
Stephania species is one of the alkaloid-rich genus of the family Menispermaceae. Most plants of the genus Stephania possess medicinal value, whose main components are alkaloids. However, the non-medical species are often mistakenly used as herbs because of the difficulty in identification of the species. A systematic method which involved the combination of DNA barcoding, HPLC-QTOF-MS/MS and UHPLC was established for differentiation, chemical profiles and quality evaluation of medicinal Stephania species. Firstly, twenty batches of Stephania species samples were classified into five Stephania species by DNA barcoding. Secondly, 114 alkaloids including 22 tetrahydroprotoberberines, 13 protoberberines, 27 aporphines, 13 benzylisoquinolines, 12 hasubanans, 3 morphines and 24 other alkaloids were clearly or tentatively identified. Thirdly, thirteen representative components were simultaneously detected by UHPLC-DAD to characterize the differences of chemical compositions among five Stephania species. In conclusion, this method was comprehensive and effective for identification, chemical profiles and quality evaluation of medicinal Stephania species. It will provide a basis for holistic quality evaluation of medicinal Stephania species.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Manyu Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chen Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hanqing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhentang Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
9
|
Dopamine D 1 receptor agonists inhibit lung metastasis of breast cancer reducing cancer stemness. Eur J Pharmacol 2019; 859:172499. [PMID: 31242439 DOI: 10.1016/j.ejphar.2019.172499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
The leading causes of death in breast cancer patients are disease recurrence and metastasis. Growing evidence has suggested that metastasis possibly originates from cancer stem-like cells (CSCs). Previous studies indicated dopamine decreased CSC frequency through activating dopamine D1 receptor pathway. Hence, this study explored the efficacy of two dopamine D1 receptor agonists in lung metastasis of breast cancer and the preliminary mechanism. The two dopamine D1 receptor agonists, fenoldopam (FEN) and l-stepholidine (l-SPD), performed well in decreasing lung metastasis in 4T1 breast cancer model. And the cGMP in the primary tumor was significantly elevated while cAMP mildly elevated in FEN and l-SPD dosing groups. CSC markers (CD44+/CD24- and ALDH+) and MMP2 in 4T1 primary tumor were repressed after dopamine D1 receptor agonist administration while E-cadherin up-regulated. FEN and l-SPD also inhibited cancer stemness and cell motility in vitro, and the inhibitory effects could be reversed by dopamine D1 receptor antagonist SCH23390. Besides, FEN impacted the white blood cell increase caused by breast cancer disease showing decreased neutrophils but increased lymphocytes. Drug safety was verified in aspects of body weight, organ index and tissue section. In conclusion, dopamine D1 receptor agonists FEN and l-SPD showed efficacy in inhibiting metastasis along with good safety in breast cancer, thus providing an alternative for anti-metastasis therapy in the future. Furthermore, this study also indicates that dopamine D1 receptor may be a possible target for metastatic breast cancer treatment and even other cancers at a late stage.
Collapse
|
10
|
The Neuroprotective Effect of L-Stepholidine on Methamphetamine-Induced Memory Deficits in Mice. Neurotox Res 2019; 36:376-386. [PMID: 31201732 DOI: 10.1007/s12640-019-00069-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Repeated methamphetamine (METH) exposure can cause severe neurotoxicity to the central nervous system, and lead to memory deficits. L-Stepholidine (L-SPD) is a structurally identified alkaloid extract of the Chinese herb Stephania intermedia, which elicits dopamine (DA) D1-type receptors partial agonistic activity and D2-type receptors antagonistic activity. In this study, we investigated the effect of L-SPD on METH-induced memory deficits in mice and its underlying mechanisms. We found that repeated exposure to METH (10 mg/kg, i.p., once per day for 7 consecutive days) impaired memory functions in the novel object recognition experiment. Pretreatment of L-SPD (10 mg/kg, i.p.) significantly improved METH-induced memory deficits in mice. Meanwhile, the protein expression of dopaminergic D2 receptors in hippocampus area was significantly increased by repeated METH exposure, while the protein expression of dopamine transporter (DAT) was significantly reduced. Additionally, the protein expression of phospho-protein kinase A (p-PKA) was significantly increased by repeated METH exposure. The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation 1 (HCN1) channel, which was a key regulator of memory functions and could be regulated by p-PKA, was also significantly increased by repeated METH exposure. These changes caused by METH could be prevented by L-SPD pretreatment. Therefore, our data firstly showed that pretreatment of L-SPD exhibited the protective effect against METH-induced memory deficits, possibly through reducing METH-induced upregulation of dopaminergic pathway and HCN1 channels.
Collapse
|
11
|
Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands. Bioorg Med Chem 2019; 27:2100-2111. [DOI: 10.1016/j.bmc.2019.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 04/06/2019] [Indexed: 01/11/2023]
|
12
|
Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules 2018; 23:molecules23082087. [PMID: 30127324 PMCID: PMC6222385 DOI: 10.3390/molecules23082087] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a debilitating mental illness which involves three groups of symptoms, i.e., positive, negative and cognitive, and has major public health implications. According to various sources, it affects up to 1% of the population. The pathomechanism of schizophrenia is not fully understood and current antipsychotics are characterized by severe limitations. Firstly, these treatments are efficient for about half of patients only. Secondly, they ameliorate mainly positive symptoms (e.g., hallucinations and thought disorders which are the core of the disease) but negative (e.g., flat affect and social withdrawal) and cognitive (e.g., learning and attention disorders) symptoms remain untreated. Thirdly, they involve severe neurological and metabolic side effects and may lead to sexual dysfunction or agranulocytosis (clozapine). It is generally agreed that the interactions of antipsychotics with various neurotransmitter receptors are responsible for their effects to treat schizophrenia symptoms. In particular, several G protein-coupled receptors (GPCRs), mainly dopamine, serotonin and adrenaline receptors, are traditional molecular targets for antipsychotics. Comprehensive research on GPCRs resulted in the exploration of novel important signaling mechanisms of GPCRs which are crucial for drug discovery: intentionally non-selective multi-target compounds, allosteric modulators, functionally selective compounds and receptor oligomerization. In this review, we cover current hypotheses of schizophrenia, involving different neurotransmitter systems, discuss available treatments and present novel concepts in schizophrenia and its treatment, involving mainly novel mechanisms of GPCRs signaling.
Collapse
Affiliation(s)
- Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
13
|
Hicks C, Huang P, Ramos L, Nayak SU, Caro Y, Reitz AB, Smith GR, Lee DYW, Rawls SM, Liu-Chen LY. Dopamine D1-Like Receptor Agonist and D2-Like Receptor Antagonist (-)-Stepholidine Reduces Reinstatement of Drug-Seeking Behavior for 3,4-Methylenedioxypyrovalerone (MDPV) in Rats. ACS Chem Neurosci 2018; 9:1327-1337. [PMID: 29597343 DOI: 10.1021/acschemneuro.7b00510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Psychostimulant reinforcement is mediated by stimulation of both dopamine (DA) D1-like and D2-like receptors, suggesting that pharmacotherapy agents with a dual DA receptor mechanism may be useful for managing psychostimulant abuse. (-)-Stepholidine (L-SPD) is a Chinese herbal extract that functions as a D1-like receptor agonist and D2-like receptor antagonist. L-SPD has been shown to attenuate the reinforcing effects of heroin; however, its effects on the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) have not been examined. The current study determined the effects of L-SPD on reinstatement of MDPV-seeking behavior in the drug intravenous self-administration (IVSA) and conditioned place preference (CPP) paradigms. To determine whether the effects of L-SPD were specific to psychostimulant reinforcement, we also examined its effects on sucrose-seeking behavior. Using a locomotor activity assay, we tested the locomotor effects of L-SPD, as well as its effects on MDPV-induced hyperactivity. The results of a battery of in vitro binding and functional assays confirmed that L-SPD functioned as a D1-like receptor agonist and D2-like receptor antagonist. In behavioral experiments, L-SPD dose-dependently attenuated cue plus MDPV-primed reinstatement of MDPV-seeking behavior in the IVSA model. The highest dose of L-SPD also attenuated MDPV-primed reinstatement of MDPV CPP, as well as cue-induced reinstatement of sucrose-seeking. L-SPD had no significant locomotor effects, and did not modulate the robust hyperactivity induced by MDPV. The current findings show for the first time a robust reinstatement effect with MDPV, which can be reduced by L-SPD. These results establish a role for DA receptors in drug-seeking behavior for MDPV.
Collapse
Affiliation(s)
- Callum Hicks
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Peng Huang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Linnet Ramos
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Sunil U. Nayak
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Yohanka Caro
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Allen B. Reitz
- Fox Chase
Chemical Diversity Center, Doylestown, Pennsylvania 18902, United States
| | - Garry R. Smith
- Fox Chase
Chemical Diversity Center, Doylestown, Pennsylvania 18902, United States
| | - David Y.-W. Lee
- Bio-Organic and Natural Products Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, United States
| | - Scott M. Rawls
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
14
|
Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018; 47:1592-1637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
15
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
16
|
Activation of D1R/PKA/mTOR signaling cascade in medial prefrontal cortex underlying the antidepressant effects of l-SPD. Sci Rep 2017. [PMID: 28630404 PMCID: PMC5476681 DOI: 10.1038/s41598-017-03680-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric disorder characterized by diverse symptoms. Although several antidepressants can influence dopamine system in the medial prefrontal cortex (mPFC), but the role of D1R or D2R subtypes of dopamine receptor during anti-depression process is still vague in PFC region. To address this question, we investigate the antidepressant effect of levo-stepholidine (l-SPD), an antipsychotic medication with unique pharmacological profile of D1R agonism and D2R antagonism, and clarified its molecular mechanisms in the mPFC. Our results showed that l-SPD exerted antidepressant-like effects on the Sprague-Dawley rat CMS model of depression. Mechanism studies revealed that l-SPD worked as a specific D1R agonist, rather than D2 antagonist, to activate downstream signaling of PKA/mTOR pathway, which resulted in increasing synaptogenesis-related proteins, such as PSD 95 and synapsin I. In addition, l-SPD triggered long-term synaptic potentiation (LTP) in the mPFC, which was blocked by the inhibition of D1R, PKA, and mTOR, supporting that selective activation of D1R enhanced excitatory synaptic transduction in PFC. Our findings suggest a critical role of D1R/PKA/mTOR signaling cascade in the mPFC during the l-SPD mediated antidepressant process, which may also provide new insights into the role of mesocortical dopaminergic system in antidepressant effects.
Collapse
|
17
|
Lins BR, Marks WN, Phillips AG, Howland JG. Dissociable effects of the d- and l- enantiomers of govadine on the disruption of prepulse inhibition by MK-801 and apomorphine in male Long-Evans rats. Psychopharmacology (Berl) 2017; 234:1079-1091. [PMID: 28180960 DOI: 10.1007/s00213-017-4540-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Abstract
RATIONALE The search for novel antipsychotic drugs to treat schizophrenia is driven by the poor treatment efficacy, serious side effects, and poor patient compliance of current medications. Recently, a class of compounds known as tetrahydroprotoberberines, which includes the compound d,l-govadine, have shown promise in preclinical rodent tests relevant to schizophrenia. To date, the effect of govadine on prepulse inhibition (PPI), a test for sensorimotor gating commonly used to assess the effects of putative treatments for schizophrenia, has not been determined. OBJECTIVES The objective of the present study was to determine the effects of each enantiomer of govadine (d- and l-govadine) on PPI alone and its disruption by the distinct pharmacological compounds apomorphine and MK-801. METHODS Male Long-Evans rats were treated systemically with d- or l-govadine and apomorphine or MK-801 prior to PPI. The PPI paradigm employed here included parametric manipulations of the prepulse intensity and the interval between the prepulse and pulse. RESULTS Acute MK-801 (0.15 mg/kg) significantly increased the startle response to startle pulses alone, while both MK-801 and apomorphine (0.2 mg/kg) significantly increased reactivity to prepulse-alone trials. Both MK-801 and apomorphine disrupted PPI. In addition, d-govadine alone significantly disrupted PPI in the apomorphine experiment. Pretreatment with l-, but not d-, govadine (1.0 mg/kg) blocked the effect of apomorphine and MK-801 on PPI. Treatment of rats with l-govadine alone (0.3, 1.0, 3.0 mg/kg) also dose-dependently increased PPI. CONCLUSIONS Given the high affinity of l-govadine for dopamine D2 receptors, these results suggest that further testing of l-govadine as an antipsychotic is warranted.
Collapse
Affiliation(s)
- Brittney R Lins
- Department of Physiology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Wendie N Marks
- Department of Physiology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John G Howland
- Department of Physiology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
18
|
Levo-Tetrahydroberberrubine Produces Anxiolytic-Like Effects in Mice through the 5-HT1A Receptor. PLoS One 2017; 12:e0168964. [PMID: 28085967 PMCID: PMC5234788 DOI: 10.1371/journal.pone.0168964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/10/2016] [Indexed: 12/02/2022] Open
Abstract
Tetrahydroprotoberberines (THPBs) are isoquinoline alkaloids isolated from the Chinese herb Corydalis yanhusuo. In the present study, we performed competitive binding assays to examine the binding of l-THBr to neurotransmitter receptors known to be involved in sedation, hypnosis and anxiety. Our results show that l-THBr does not interact with GABAergic receptors but has binding affinities for dopamine and serotonin receptors. In addition, cAMP and [35S]GTPγS assays were used to determine the agonist or antagonist properties of l-THBr at dopamine (D1, D2) or serotonin (5-HT) receptors. Our results show that l-THBr displays D1 and D2 antagonist and 5-HT1A agonist properties. Moreover, l-THBr-treated rodents exhibit anxiolytic-like effects in the light/dark box and elevated plus-maze tests, and the anxiolytic effect of l-THBr can be reduced by WAY-100635, a selective 5-HT1A receptor antagonist. Our results suggest that l-THBr may produce potent anxiolytic-like effects mainly through serotonin receptors.
Collapse
|
19
|
Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. Expert Rev Neurother 2016; 17:553-560. [DOI: 10.1080/14737175.2017.1268531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Athan Spiros
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Patrick Roberts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| |
Collapse
|
20
|
Madapa S, Gadhiya S, Kurtzman T, Alberts IL, Ramsey S, Reith M, Harding WW. Synthesis and evaluation of C9 alkoxy analogues of (-)-stepholidine as dopamine receptor ligands. Eur J Med Chem 2016; 125:255-268. [PMID: 27688181 DOI: 10.1016/j.ejmech.2016.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 01/01/2023]
Abstract
Tetrahydroprotoberberine alkaloids have shown interesting polypharmacological actions at dopamine receptors and are a unique template from which to mine novel molecules with dual selective actions at D1 and D3 receptors. Such compounds will be valuable to evaluate as anti-cocaine therapeutics. Towards that eventual goal, we engaged an SAR study in which a series of C9 alkoxy analogues of the D1/D2/D3 ligand (-)-stepholidine that possessed or lacked a C12 bromo functionality, were synthesized and evaluated for affinity at dopamine D1, D2 and D3 receptors. We found that the analogues are generally selective for the D1 receptor. Small n-alkoxy substituents (up to 4 carbons in length) were generally well tolerated for high D1 affinity but such groups reduced D3 affinity. In the case of C12 brominated analogues, C9 alkoxylation also had little effect on D1 affinity for the smaller alkoxy groups, but reduced D2 and D3 affinities significantly. C12 bromination tends to increase D1 receptor selectivity. A number of compounds were identified that retain affinity for D1 and D3 receptors but lack D2 receptor affinity. Among them, compound 22a was found to be a selective D1/D3 dual antagonist (Ki = 5.3 and 106 nM at D1 and D3 receptors). Docking studies performed on the analogues at the D3 receptor revealed a number of interactions that are important for affinity including a critical N - Asp110 salt bridge motif, H-bonds to Ser192 and Cys181 and hydrophobic interactions between the aryl rings and Phe106 and Phe345. The analogues adopt an orientation in which ring A is located in the orthosteric binding site while the C9 alkoxy substituents attached to ring D project into the secondary binding pocket of the D3 receptor.
Collapse
Affiliation(s)
- Sudharshan Madapa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| | - Satishkumar Gadhiya
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA
| | - Thomas Kurtzman
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, NY 10468, USA
| | - Ian L Alberts
- Department of Natural Sciences, LaGuardia Community College, City University of New York, New York, NY 11101, USA
| | - Steven Ramsey
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, NY 10468, USA
| | - Maarten Reith
- Department of Psychiatry, New York University, New York, NY 10016, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Ph.D. Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA; Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
21
|
Hao DC, Yang L. Drug metabolism and disposition diversity of Ranunculales phytometabolites: a systems perspective. Expert Opin Drug Metab Toxicol 2016; 12:1047-65. [DOI: 10.1080/17425255.2016.1201068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Da Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Ling Yang
- Pharmaceutical resource discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
22
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
23
|
Gadhiya SV, Hu C, Harding WW. An alternative synthesis and x-ray crystallographic confirmation of (-)-stepholidine. Tetrahedron Lett 2016; 57:2090-2092. [PMID: 27152055 PMCID: PMC4852479 DOI: 10.1016/j.tetlet.2016.03.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A formal enantioselective synthesis of (-)-stepholidine that provides an alternative preparation of key lactone intermediate 2 is described. The stereostructure of (-)-stepholidine prepared via this method was confirmed by x-ray diffraction.
Collapse
Affiliation(s)
- Satishkumar V Gadhiya
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York 10065, USA; Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York 10016, USA
| | - Chunhua Hu
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square, New York 10003, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York 10065, USA; Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York 10016, USA; Ph.D. Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York 10016, USA
| |
Collapse
|
24
|
L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis 2015; 6:e1965. [PMID: 26539912 PMCID: PMC4670924 DOI: 10.1038/cddis.2015.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/04/2022]
Abstract
It is accepted that amyloid β-derived diffusible ligands (ADDLs) have a prominent role in triggering the early cognitive deficits that constitute Alzheimer's disease (AD). However, there is still no effective treatment for preventing or reversing the progression of the disease. Targeting α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor trafficking and its regulation is a new strategy for AD early treatment. Here we investigate the effect and mechanism of L-Stepholidine (L-SPD), which elicits dopamine D1-type receptor agonistic activity, while acting as D2-type receptor antagonist on cognition and synaptic plasticity in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice, and hippocampal cultures or slices treated with ADDLs. L-SPD could improve the hippocampus-dependent memory, surface expression of glutamate receptor A (GluA1)-containing AMPA receptors and spine density in hippocampus of APP/PS1 transgenic mice. L-SPD not only rescued decreased phosphorylation and surface expression of GluA1 in hippocampal cultures but also protected the long-term potentiation in hippocampal slices induced by ADDLs. Protein kinase A (PKA) agonist Sp-cAMPS or D1-type receptor agonist SKF81297 had similar effects, whereas PKA antagonist Rp-cAMPS or D1-type receptor antagonist SCH23390 abolished the effect of L-SPD on GluA1 trafficking. This was mediated mainly by PKA, which could phosphorylate serine residue at 845 of the GluA1. L-SPD may be explored as a potential therapeutic drug for AD through a mechanism that improves AMPA receptor trafficking and synaptic plasticity via activating D1/PKA signaling pathway.
Collapse
|
25
|
Meade JA, Free RB, Miller NR, Chun LS, Doyle TB, Moritz AE, Conroy JL, Watts VJ, Sibley DR. (-)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling. Psychopharmacology (Berl) 2015; 232:917-30. [PMID: 25231919 PMCID: PMC5234683 DOI: 10.1007/s00213-014-3726-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 01/11/2023]
Abstract
RATIONALE (-)-Stepholidine is a tetrahydroberberine alkaloid that is known to interact with dopamine receptors and has also been proposed as a novel antipsychotic agent. Its suggested novelty lies in the fact that it has been proposed to have D1-like receptor agonist and D2-like receptor antagonist properties. Thus, it might be effective in treating both positive and negative (cognition) symptoms of schizophrenia. However, its activity on specific dopamine receptor subtypes has not been clarified, especially with respect to its ability to activate D1-like receptors. OBJECTIVES We wished to examine the affinity and functional activity of (-)-stepholidine at each of the human dopamine receptor subtypes expressed in a defined cellular environment. METHODS D1-D5 dopamine receptors were stably expressed in cell lines and their interactions with (-)-stepholidine were examined using radioligand binding and various functional signaling assays. Radioligand binding assays were also performed using bovine striatal membranes. RESULTS (-)-Stepholidine exhibited high (nM) affinity for D1 and D5 receptors, somewhat lower (two- to four-fold) affinity for D2 and D3 receptors, and low micromolar affinity for D4 receptors. Functionally, (-)-stepholidine was ineffective in activating G protein-mediated signaling of D1-like and D2 receptors and was also ineffective in stimulating β-arrestin recruitment to any dopamine receptor subtype. It did, however, antagonize all of these responses. It also antagonized D1-D2 heteromer-mediated Ca(2+) mobilization. Radioligand binding assays of D1-like receptors in brain membranes also indicated that (-)-stepholidine binds to the D1 receptor with antagonist-like properties. CONCLUSIONS (-)-Stepholidine is a pan-dopamine receptor antagonist and its in vivo effects are largely mediated through dopamine receptor blockade with potential cross-talk to other receptors or signaling proteins.
Collapse
Affiliation(s)
- Julie A Meade
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 5625 Fishers Lane, Room 4S-04, Bethesda, MD, 20892-9405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bala M, Verma PK, Kumar N, Singh B. Direct Waste-Free Synthesis of Amides from Nonactivated Carboxylic Acids and Amines: Application to the Synthesis of Tetrahydroisoquinolines. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2014.984853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Manju Bala
- Academy of Scientific and Innovative Research, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Natural Product Chemistry & Process Development Division, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Praveen Kumar Verma
- Academy of Scientific and Innovative Research, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Natural Product Chemistry & Process Development Division, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Neeraj Kumar
- Natural Product Chemistry & Process Development Division, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Bikram Singh
- Academy of Scientific and Innovative Research, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Natural Product Chemistry & Process Development Division, CSIR Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
27
|
Desgrouas C, Taudon N, Bun SS, Baghdikian B, Bory S, Parzy D, Ollivier E. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:537-563. [PMID: 24768769 DOI: 10.1016/j.jep.2014.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stephania rotunda Lour. (Menispermaceae) is an important traditional medicinal plant that is grown in Southeast Asia. The stems, leaves, and tubers have been used in the Cambodian, Lao, Indian and Vietnamese folk medicine systems for years to treat a wide range of ailments, including asthma, headache, fever, and diarrhoea. AIM OF THE REVIEW To provide an up-to-date, comprehensive overview and analysis of the ethnobotany, phytochemistry, and pharmacology of Stephania rotunda for its potential benefits in human health, as well as to assess the scientific evidence of traditional use and provide a basis for future research directions. MATERIAL AND METHODS Peer-reviewed articles on Stephania rotunda were acquired via an electronic search of the major scientific databases (Pubmed, Google Scholar, and ScienceDirect). Data were collected from scientific journals, theses, and books. RESULTS The traditional uses of Stephania rotunda were recorded in countries throughout Southeast Asia (Cambodia, Vietnam, Laos, and India). Different parts of Stephania rotunda were used in traditional medicine to treat about twenty health disorders. Phytochemical analyses identified forty alkaloids. The roots primarily contain l-tetrahydropalmatine (l-THP), whereas the tubers contain cepharanthine and xylopinine. Furthermore, the chemical composition differs from one region to another and according to the harvest period. The alkaloids exhibited approximately ten different pharmacological activities. The main pharmacological activities of Stephania rotunda alkaloids are antiplasmodial, anticancer, and immunomodulatory effects. Sinomenine, cepharanthine, and l-stepholidine are the most promising components and have been tested in humans. The pharmacokinetic parameters have been studied for seven compounds, including the three most promising compounds. The toxicity has been evaluated for liriodenine, roemerine, cycleanine, l-tetrahydropalmatine, and oxostephanine. CONCLUSION Stephania rotunda is traditionally used for the treatment of a wide range of ailments. Pharmacological investigations have validated different uses of Stephania rotunda in folk medicine. The present review highlights the three most promising compounds of Stephania rotunda, which could constitute potential leads in various medicinal fields, including malaria and cancer.
Collapse
Affiliation(s)
- Camille Desgrouas
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France; UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | | | - Sok-Siya Bun
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Beatrice Baghdikian
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Sothavireak Bory
- Faculté de Pharmacie, Université des Sciences de la Santé, no. 73, Monivong Blvd, Daun Penh, Phnom Penh, Cambodia.
| | - Daniel Parzy
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Evelyne Ollivier
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| |
Collapse
|
28
|
l-Stepholidine, a Naturally Occurring Dopamine D1 Receptor Agonist and D2 Receptor Antagonist, Attenuates Methamphetamine Self-Administration in Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amr.998-999.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the problems associated with the escalation in methamphetamine (METH) use, the identification of more effective treatment strategies is essential. l-stepholidine (l-SPD) is an alkaloid extract of the Chinese herb Stephania intermedia with dopamine D1 receptor partial agonistic and D2 receptor antagonistic dual actions. The unique pharmacological profile of l-SPD suggests that l-SPD may be effective for the treatment of METH addiction. The aim of this study was to characterize the effect of l-SPD on METH self-administration on a fixed-ratio 1 schedule. We found that 5 and 10 mg/kg of l-SPD attenuated METH self-administration behavior. These results demonstrate that l-SPD which possesses dual actions on dopamine D1 and D2 receptors, attenuates METH self-administration on a fixed-ratio 1 schedule.
Collapse
|
29
|
Lapish CC, Ahn KC, Chambers RA, Ashby DM, Ahn S, Phillips AG. Selective effects of D- and L-govadine in preclinical tests of positive, negative, and cognitive symptoms of schizophrenia. Neuropsychopharmacology 2014; 39:1754-62. [PMID: 24476944 PMCID: PMC4023149 DOI: 10.1038/npp.2014.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
Abstract
There is a critical need to develop novel pharmacotherapeutics capable of addressing the positive, negative, and cognitive symptoms of schizophrenia. Building on recent studies with a racemic mixture of the synthetic tetrahydroprotoberberine, D,L-Govadine, we isolated the D- and L-stereoisomers and employed a battery of behavioral, neurochemical, and electrophysiological procedures to assess their individual therapeutic potential. Rodent models predictive of antipsychotic efficacy and those that model positive symptoms were employed and we found that L-Govadine, but not D-Govadine, improved these measures. Pretreatment with either stereoisomer during CS pre-exposure prevented the disruption of latent inhibition by amphetamine. Moreover, pretreatment with either stereoisomer also improved deficits in social interaction in the neonatal ventral hippocampal lesioned rat. Improved cognitive performance in two different prefrontal cortex-dependent tasks was observed with D-, but not L-Govadine, which strongly suggests that the D-steroisomer may be an effective cognitive enhancer. Alterations in dopamine efflux were also assessed and L-Govadine increased dopamine efflux in both the prefrontal cortex and nucleus accumbens. However, D-Govadine only increased dopamine efflux in the prefrontal cortex and not in the nucleus accumbens. Electrophysiological studies confirmed that L-Govadine is a DA-D2 antagonist, whereas D-Govadine shows no appreciable physiological effects at this receptor. Collectively these data show that L-Govadine performs well on measures predictive of antipsychotic efficacy and rodent models of positive symptoms through antagonism of DA-D2 receptors, whereas D-Govadine improves impairments in compromised memory function in delayed response tasks possibly through selective increases in DA efflux in the frontal cortex.
Collapse
Affiliation(s)
- Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA,Department of Psychology, Indiana University-Purdue University Indianapolis, LD 124, 402 N. Blackford St, Indianapolis, IN 46202-3275, USA, Tel: +317 274 6931, Fax: +317 274 6756, E-mail:
| | - Kee-Chan Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - R Andrew Chambers
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donovan M Ashby
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Gresack JE, Seymour PA, Schmidt CJ, Risbrough VB. Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology (Berl) 2014; 231:2189-97. [PMID: 24363077 PMCID: PMC4017785 DOI: 10.1007/s00213-013-3371-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 11/21/2013] [Indexed: 01/06/2023]
Abstract
RATIONALE Inhibitors of phosphodiesterase 10A (PDE10A), an enzyme highly expressed in medium spiny neurons of the mammalian striatum, enhance activity in direct (dopamine D1 receptor-expressing) and indirect (D2 receptor-expressing striatal output) pathways. The ability of such agents to act to potentiate D1 receptor signaling while inhibiting D2 receptor signaling suggest that PDE10A inhibitors may have a unique antipsychotic-like behavioral profile differentiated from the D2 receptor antagonist-specific antipsychotics currently used in the treatment of schizophrenia. OBJECTIVES To evaluate the functional consequences of PDE10A inhibitor modulation of D1 and D2 receptor pathway signaling, we compared the effects of a PDE10A inhibitor (TP-10) on D1 and D2 receptor agonist-induced disruptions in prepulse inhibition (PPI), a measure of sensorimotor gating disrupted in patients with schizophrenia. RESULTS Our results indicate that, in rats: (1) PDE10A inhibition (TP-10, 0.32-10.0 mg/kg) has no effect on PPI disruption resulting from the mixed D1/D2 receptor agonist apomorphine (0.5 mg/kg), confirming previous report; (2) Yet, TP-10 blocked the PPI disruption induced by the D2 receptor agonist quinpirole (0.5 mg/kg); and attenuated apomorphine-induced disruptions in PPI in the presence of the D1 receptor antagonist SCH23390 (0.005 mg/kg). CONCLUSIONS These findings indicate that TP-10 cannot block dopamine agonist-induced deficits in PPI in the presence of D1 activation and suggest that the effect of PDE10A inhibition on D1 signaling may be counterproductive in some models of antipsychotic activity. These findings, and the contribution of TP-10 effects in the direct pathway on sensorimotor gating in particular, may have implications for the potential antipsychotic efficacy of PDE10A inhibitors.
Collapse
Affiliation(s)
- Jodi E. Gresack
- Dept. Psychiatry, University of California San Diego, La Jolla, CA
,To whom correspondence should be addressed: Jodi E. Gresack, Ph.D., Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, Phone: 212-327-8870, Fax: 212-327-7888,
| | | | | | - Victoria B. Risbrough
- Dept. Psychiatry, University of California San Diego, La Jolla, CA
,Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| |
Collapse
|
31
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
32
|
Rao NP, Remington G. Investigational drugs for schizophrenia targeting the dopamine receptor: Phase II trials. Expert Opin Investig Drugs 2013; 22:881-94. [DOI: 10.1517/13543784.2013.795945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
A preclinical assessment of d.l-govadine as a potential antipsychotic and cognitive enhancer. Int J Neuropsychopharmacol 2012; 15:1441-55. [PMID: 22071247 DOI: 10.1017/s146114571100157x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetrahydroprotoberberines (THPBs) are compounds derived from traditional Chinese medicine and increasing preclinical evidence suggests efficacy in treatment of a wide range of symptoms observed in schizophrenia. A receptor-binding profile of the THPB, d.l-govadine (d.l-Gov), reveals high affinity for dopamine and noradrenaline receptors, efficacy as a D2 receptor antagonist, brain penetrance in the 10-300 ng/g range, and thus motivated an assessment of the antipsychotic and pro-cognitive properties of this compound in the rat. Increased dopamine efflux in the prefrontal cortex and nucleus accumbens, measured by microdialysis, is observed following subcutaneous injection of the drug. d.l-Gov inhibits both conditioned avoidance responding (CAR) and amphetamine-induced locomotion (AIL) at lower doses than clozapine (CAR ED50: d.l-Gov 0.72 vs. clozapine 7.70 mg/kg; AIL ED50: d.l-Gov 1.70 vs. clozapine 4.27 mg/kg). Catalepsy is not detectable at low biologically relevant doses, but is observed at higher doses. Consistent with previous reports, acute d-amphetamine disrupts latent inhibition (LI) while a novel finding of enhanced LI is observed in sensitized animals. Treatment with d.l-Gov prior to conditioned stimulus (CS) pre-exposure restores LI to levels observed in controls in both sensitized animals and those treated acutely with d-amphetamine. Finally, possible pro-cognitive properties of d.l-Gov are assessed with the spatial delayed win-shift task. Subcutaneous injection of 1.0 mg/kg d.l-Gov failed to affect errors at a 30-min delay, but decreased errors observed at a 12-h delay. Collectively, these data provide the first evidence that d.l-Gov may have antipsychotic properties in conjunction with pro-cognitive effects, lending further support to the hypothesis that THPBs are a class of compounds which merit serious consideration as novel treatments for schizophrenia.
Collapse
|
34
|
Ghosh A, Chakraborty K, Mattoo SK. Newer molecules in the treatment of schizophrenia: A clinical update. Indian J Pharmacol 2011; 43:105-12. [PMID: 21572641 PMCID: PMC3081445 DOI: 10.4103/0253-7613.77334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/07/2010] [Accepted: 01/12/2011] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a heterogeneous psychiatric disorder in which multiple neurotransmitter systems have been implicated. Increased and decreased dopamine transmission in the subcortical meso-limbic and meso-cortical systems is closely linked to the “positive” and “negative” symptoms of schizophrenia, respectively. Important roles have also been found for serotonin and acetylcholine, both of which are closely linked to dopamine. An abnormality in glutamate functioning involving N-methyl-D-aspartic acid as well as other receptor subtypes may underlie the dopamine dysfunction observed in schizophrenia. Since the discovery of chlorpromazine in 1952, researchers have been developing new molecules targeting various neurotransmitter systems to maximize their efficacy and tolerability. The advancements in molecular genetics have opened up new horizons to manipulate the post-receptor protein cascade and gene expression. Although the magic-wand still eludes us, the newer molecules hold a lot of promise in this condition.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh - 160 012, India
| | | | | |
Collapse
|
35
|
Creed-Carson M, Oraha A, Nobrega JN. Effects of 5-HT2A and 5-HT2C receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats. Behav Brain Res 2011; 219:273-9. [DOI: 10.1016/j.bbr.2011.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/06/2011] [Accepted: 01/16/2011] [Indexed: 11/26/2022]
|
36
|
Albizu L, Moreno JL, González-Maeso J, Sealfon SC. Heteromerization of G protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2011; 9:636-50. [PMID: 20632964 DOI: 10.2174/187152710793361586] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
Because G protein-coupled receptors (GPCRs) are numerous, widely expressed and involved in major physiological responses, they represent a relevant therapeutic target for drug discovery, particularly regarding pharmacological treatments of neurological disorders. Among the biological phenomena regulating receptor function, GPCR heteromerization is an important emerging area of interest and investigation. There is increasing evidence showing that heteromerization contributes to the pharmacological heterogeneity of GPCRs by modulating receptor ontogeny, activation and recycling. Although in many cases the physiological relevance of receptor heteromerization has not been fully established, the unique pharmacological and functional properties of heteromers are likely to lead to new strategies in clinical medicine. This review describes the main GPCR heteromers and their implications for major neurological disorders such as Parkinson's disease, schizophrenia and addiction. A better understanding of molecular mechanisms underlying drug interactions related to the targeting of receptor heteromers could provide more specific and efficient therapeutic agents for the treatment of brain diseases.
Collapse
Affiliation(s)
- Laura Albizu
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
37
|
Perreault ML, O'Dowd BF, George SR. Dopamine receptor homooligomers and heterooligomers in schizophrenia. CNS Neurosci Ther 2010; 17:52-7. [PMID: 21199449 DOI: 10.1111/j.1755-5949.2010.00228.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades the dopamine D2 receptor has been undoubtedly the most widely studied dopamine receptor for the therapeutic treatment of schizophrenia, as the majority of antipsychotics exhibit antagonism at this receptor. However, the cognitive symptoms of the disorder are mostly resistant to the majority of available antipsychotic treatments and, as a result, there is a critical need to develop novel therapies that ameliorate all symptoms. The recognition that dopamine receptors, such as all G protein-coupled receptors (GPCRs), exist as oligomeric complexes has provided new avenues for drug design in the search for novel therapies. Furthermore, that it is now known that dopamine receptors can form heteromers, such as the dopamine D1-D2 receptor heteromer, with pharmacology and function distinct from its constituent receptors, has significantly expanded the range of potential drug targets. The aim of this review is to discuss the therapeutic relevance of these dopamine receptor oligomers to schizophrenia and to address the potential value of dopamine receptor heteromers in the search for new therapeutic strategies.
Collapse
|
38
|
Bradford AM, Savage KM, Jones DNC, Kalinichev M. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacology (Berl) 2010; 212:155-70. [PMID: 20676613 DOI: 10.1007/s00213-010-1938-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
Abstract
RATIONALE We evaluated locomotor hyperactivity induced in BALB/C mice by an N-methyl-D-aspartate receptor antagonist MK-801 as an assay for the detection of antipsychotic drugs. OBJECTIVES We assessed the effects of antipsychotic drugs to validate the assay (study 1), selective dopamine and serotonin ligands for pharmacological characterisation of the model (study 2) and a number of compounds with efficacy in models of schizophrenia to understand the predictive validity of the model (study 3). METHODS Adult males (n = 9/group) were pretreated with a test compound, habituated to locomotor activity cages before receiving MK-801 (0.32 mg/kg) and activity recorded for a further 75 or 120 min. In study 1, we tested haloperidol, clozapine, olanzapine, risperidone, ziprasidone, aripiprazole, sertindole and quetiapine. In study 2, we tested SCH23390 (D(1) antagonist), sulpiride (D(2)/D(3) antagonist), raclopride (D(2)/D(3) antagonist), SB-277011 (D(3) antagonist), L-745,870 (D(4) antagonist), WAY100635 (5-HT(1A) antagonist), 8-OH-DPAT (5-HT(1A) agonist), ketanserin (5-HT(2A)/5-HT(2C) antagonist) and SB-242084 (5-HT(2C) antagonist). In study 3, we tested xanomeline (M(1)/M(4) receptor agonist), LY379268 (mGluR2/3 receptor agonist), diazepam (GABA(A) modulator) and thioperamide (H(3) receptor antagonist). RESULTS All antipsychotics suppressed MK-801-induced hyperactivity in a dose-dependent and specific manner. The effects of antipsychotics appear to be mediated via dopamine D(1), D(2) and 5-HT(2) receptors. Xanomeline, LY379268 and diazepam were active in this assay while thioperamide was not. CONCLUSIONS MK-801-induced hyperactivity in BALB/C mice model of positive symptoms has shown predictive validity with novel compounds acing at M(1)/M(4), mGluR2/3 and GABA(A) receptors and can be used as a screening assay for detection of novel pharmacotherapies targeting those receptors.
Collapse
Affiliation(s)
- Andrea M Bradford
- Biology Department, Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline plc, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK
| | | | | | | |
Collapse
|
39
|
Guo Y, Zhang H, Chen X, Cai W, Cheng J, Yang Y, Jin G, Zhen X. Evaluation of the antipsychotic effect of bi-acetylated l-stepholidine (l-SPD-A), a novel dopamine and serotonin receptor dual ligand. Schizophr Res 2009; 115:41-9. [PMID: 19744833 DOI: 10.1016/j.schres.2009.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/30/2009] [Accepted: 08/01/2009] [Indexed: 02/04/2023]
Abstract
Bi-acetylated l-stepholidine (l-SPD-A), a novel derivate of l-stepholidine (l-SPD), possesses a pharmacological profile of D(1)/5-HT(1A) agonism and D(2) antagonism. In the present study, we examined the potential antipsychotic effect of l-SPD-A in a phencyclidine (PCP)-induced rat model of schizophrenia. Pretreatment with l-SPD-A blocked acute PCP-induced hyperlocomotion and reversed prepulse inhibition (PPI) deficits. Chronic l-SPD-A administration (i.p., 10mg/kg/day for 14 days) improved social interaction and novel object recognition impairments in rats that were pretreated with PCP (i.p., 5mg/kg/day for 14 days). Moreover, in a conditioned avoidance response (CAR) test, l-SPD-A, with either i.p. or oral administration, significantly decreased active avoidance without affecting the escape response of rats. Importantly, compared to that of the parent compound l-SPD, l-SPD-A showed stronger suppression of CARs. Lastly, using a [(35)S]GTPgammaS binding assay, we demonstrated that l-SPD-A improved impaired dopamine D(1) receptor function in the prefrontal cortex (PFC) in chronic PCP-treated rats. Taken together, these results indicate that l-SPD-A was not only effective against the hyperactivity, but also improved the sensorimotor gating deficit, social withdrawal and cognitive impairment in an animal model of schizophrenia. The present data suggest that l-SPD-A, a potential neurotransmitter stabilizer, is a promising novel candidate drug for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Yang Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun Y, Dai J, Hu Z, Du F, Niu W, Wang F, Liu F, Jin G, Li C. Oral bioavailability and brain penetration of (-)-stepholidine, a tetrahydroprotoberberine agonist at dopamine D(1) and antagonist at D(2) receptors, in rats. Br J Pharmacol 2009; 158:1302-12. [PMID: 19788498 DOI: 10.1111/j.1476-5381.2009.00393.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE (-)-Stepholidine has high affinity for dopamine D(1) and D(2) receptors. The aims of the present study were to examine the oral bioavailability and brain penetration of (-)-stepholidine and to gain understanding of mechanisms governing its transport across the enterohepatic barrier and the blood-brain barrier. EXPERIMENTAL APPROACH The pharmacokinetics of (-)-stepholidine was studied in rats and microdialysis was used to measure delivery to the brain. These studies were supported by biological measurement of unbound (-)-stepholidine. Membrane permeability was assessed using Caco-2 cell monolayers. Metabolite profiling of (-)-stepholidine in rat bile and plasma was performed. Finally, in vitro metabolic stability and metabolite profile of (-)-stepholidine were examined to compare species similarities and differences between rats and humans. KEY RESULTS Orally administered (-)-stepholidine was rapidly absorbed from the gastrointestinal tract; two plasma concentration peaks were seen, and the second peak might result from enterohepatic circulation. Due to extensive pre-systemic metabolism, the oral bioavailability of (-)-stepholidine was poor (<2%). However, the compound was extensively transported across the blood-brain barrier, demonstrating an AUC (area under concentration-time curve) ratio of brain : plasma of approximately 0.7. (-)-Stepholidine showed good membrane permeability that was unaffected by P-glycoprotein and multidrug resistance-associated protein 2. In vitro (-)-stepholidine was metabolized predominantly by glucuronidation and sulphation in rats and humans, but oxidation of this substrate was very low. CONCLUSIONS AND IMPLICATIONS Although (-)-stepholidine exhibits good brain penetration, future development efforts should aim at improving its oral bioavailability by protecting against pre-systemic glucuronidation or sulphation. In this regard, prodrug approaches may be useful.
Collapse
Affiliation(s)
- Yan Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Baeyens JM, Del Pozo E. Antagonism by haloperidol and its metabolites of mechanical hypersensitivity induced by intraplantar capsaicin in mice: role of sigma-1 receptors. Psychopharmacology (Berl) 2009; 205:21-33. [PMID: 19326101 PMCID: PMC2695546 DOI: 10.1007/s00213-009-1513-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 03/01/2009] [Indexed: 02/03/2023]
Abstract
RATIONALE We evaluated the effects of haloperidol and its metabolites on capsaicin-induced mechanical hypersensitivity (allodynia) and on nociceptive pain induced by punctate mechanical stimuli in mice. RESULTS Subcutaneous administration of haloperidol or its metabolites I or II (reduced haloperidol) dose-dependently reversed capsaicin-induced (1 microg, intraplantar) mechanical hypersensitivity of the hind paw (stimulated with a nonpainful, 0.5-g force, punctate stimulus). The order of potency of these drugs to induce antiallodynic effects was the order of their affinity for brain sigma-1 (sigma(1)) receptor ([(3)H](+)-pentazocine-labeled). Antiallodynic activity of haloperidol and its metabolites was dose-dependently prevented by the selective sigma(1) receptor agonist PRE-084, but not by naloxone. These results suggest the involvement of sigma(1) receptors, but discard any role of the endogenous opioid system, on the antiallodynic effects. Dopamine receptor antagonism also appears unlikely to be involved in these effects, since the D(2)/D(3) receptor antagonist (-)-sulpiride, which had no affinity for sigma(1) receptors, showed no antiallodynic effect. None of these drugs modified hind-paw withdrawal after a painful (4 g force) punctate mechanical stimulus in noncapsaicin-sensitized animals. As expected, the control drug gabapentin showed antiallodynic but not antinociceptive activity, whereas clonidine exhibited both activities and rofecoxib, used as negative control, showed neither. CONCLUSION These results show that haloperidol and its metabolites I and II produce antiallodynic but not antinociceptive effects against punctate mechanical stimuli and suggest that their antiallodynic effect may be due to blockade of sigma(1) receptors but not to dopamine receptor antagonism.
Collapse
Affiliation(s)
- José M. Entrena
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
- Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada Spain
| | - Enrique J. Cobos
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
- Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada Spain
| | - Francisco R. Nieto
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
| | - Cruz M. Cendán
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
| | - José M. Baeyens
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
| | - Esperanza Del Pozo
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
| |
Collapse
|
42
|
Panetta R, Greenwood MT. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov Today 2008; 13:1059-66. [DOI: 10.1016/j.drudis.2008.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/21/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022]
|
43
|
|