1
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
2
|
Disruption of prepulse inhibition is associated with compulsive behavior severity and nucleus accumbens dopamine receptor changes in Sapap3 knockout mice. Sci Rep 2021; 11:9442. [PMID: 33941812 PMCID: PMC8093235 DOI: 10.1038/s41598-021-88769-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Obsessive compulsive disorder (OCD) is associated with disruption of sensorimotor gating, which may contribute to difficulties inhibiting intrusive thoughts and compulsive rituals. Neural mechanisms underlying these disturbances are unclear; however, striatal dopamine is implicated in regulation of sensorimotor gating and OCD pathophysiology. The goal of this study was to examine the relationships between sensorimotor gating, compulsive behavior, and striatal dopamine receptor levels in Sapap3 knockout mice (KOs), a widely used preclinical model system for OCD research. We found a trend for disruption of sensorimotor gating in Sapap3-KOs using the translational measure prepulse inhibition (PPI); however, there was significant heterogeneity in both PPI and compulsive grooming in KOs. Disruption of PPI was significantly correlated with a more severe compulsive phenotype. In addition, PPI disruption and compulsive grooming severity were associated with reduced dopamine D1 and D2/3 receptor density in the nucleus accumbens core (NAcC). Compulsive grooming progressively worsened in Sapap3-KOs tested longitudinally, but PPI disruption was first detected in high-grooming KOs at 7 months of age. Through detailed characterization of individual differences in OCD-relevant behavioral and neurochemical measures, our findings suggest that NAcC dopamine receptor changes may be involved in disruption of sensorimotor gating and compulsive behavior relevant to OCD.
Collapse
|
3
|
Kraeuter AK, Mashavave T, Suvarna A, van den Buuse M, Sarnyai Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology (Berl) 2020; 237:1397-1405. [PMID: 31993694 DOI: 10.1007/s00213-020-05467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE Impaired cerebral glucose metabolism is a core pathological feature of schizophrenia. We recently demonstrated that a ketogenic diet, causing a shift from glycolysis to ketosis, normalized schizophrenia-like behaviours in an acute N-methyl-D-aspartate (NMDA) receptor antagonist model of the illness. Ketogenic diet produces the ketone body, β-hydroxybutyrate (BHB), which may serve as an alternative fuel source in its own right without a strict dietary regime. OBJECTIVE We hypothesized that chronic administration of BHB replicates the therapeutic effects of ketogenic diet in an acute NMDA receptor hypofunction model of schizophrenia in mice. METHODS C57Bl/6 mice were either treated with acute doses of 2 mmol/kg, 10 mmol/kg, or 20 mmol/kg BHB or received daily intraperitoneal injections of 2 mmol/kg BHB or saline for 3 weeks. Behavioural testing assessed the effect of acute challenge with 0.2 mg/kg MK-801 or saline on open field behaviour, social interaction, and prepulse inhibition of startle (PPI). RESULTS Acute BHB administration dose-dependently increased BHB plasma levels, whereas the 2 mmol/kg dose increased plasma glucose levels. The highest acute dose of BHB supressed spontaneous locomotor activity, MK-801-induced locomotor hyperactivity and MK-801-induced disruption of PPI. Chronic BHB treatment normalized MK-801-induced hyperlocomotion, reduction of sociability, and disruption of PPI. CONCLUSION In conclusion, BHB may present a novel treatment option for patients with schizophrenia by providing an alternative fuel source to normalize impaired glucose metabolism in the brain.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Tadiwa Mashavave
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Aditya Suvarna
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Maarten van den Buuse
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia.
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
4
|
Kraeuter AK, Archambault N, van den Buuse M, Sarnyai Z. Ketogenic diet and olanzapine treatment alone and in combination reduce a pharmacologically-induced prepulse inhibition deficit in female mice. Schizophr Res 2019; 212:221-224. [PMID: 31405622 DOI: 10.1016/j.schres.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
We used the acute NMDA receptor hypoactivity model of schizophrenia in mice to compare the efficacy of a long-term ketogenic diet and a commonly used antipsychotic, olanzapine, and to explore the interaction between these treatments. We found that a ketogenic diet in female mice was as effective as olanzapine to diminish MK-801-induced disruption of prepulse inhibition (PPI). Furthermore, combination of the diet with olanzapine treatment resulted in a similar effect compared to either treatment alone. These results suggest that ketogenic diet can be used effectively together with antipsychotics drugs over an extended period.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Nadia Archambault
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Maarten van den Buuse
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; School of Psychology and Public Health, LaTrobe University, Bundoora, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
5
|
Kraeuter AK, van den Buuse M, Sarnyai Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res 2019; 206:244-250. [PMID: 30466960 DOI: 10.1016/j.schres.2018.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023]
Abstract
Recent transcriptomic, proteomic and metabolomics studies have highlighted an abnormal cerebral glucose and energy metabolism as one of the potential pathophysiological mechanisms of schizophrenia. This raises the possibility that a metabolically-based intervention might have therapeutic value in the management of schizophrenia, a notion supported by our recent results that a low carbohydrate/high-fat therapeutic ketogenic diet (KD) prevented a variety of behavioural abnormalities induced by pharmacological inhibition of NMDA glutamate receptors. Here we asked if the beneficial effects of KD can be generalised to impaired prepulse inhibition of startle (PPI), a translationally validated endophenotype of schizophrenia, in a pharmacological model in mice. Furthermore, we addressed the issue of whether the effect of KD is linked to the calorie-restricted state typical of the initial phase of KD. We fed male C57BL/6 mice a KD for 7 weeks and tested PPI at 3 and 7 weeks, in the presence and absence of a significant digestible energy deficit, respectively. We used an NMDA receptor hypo-function model of schizophrenia induced by acute injection of dizocilpine (MK-801). We found that KD effectively prevented MK-801-induced PPI impairments at both 3 and 7 weeks, irrespective of the presence or absence of digestible energy deficit. Furthermore, there was a lack of correlation between PPI and body weight changes. These results support the efficacy of the therapeutic KD in a translational model of schizophrenia and furthermore provide evidence against the role of calorie restriction in its mechanism of action.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Maarten van den Buuse
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; School of Psychology and Public Health, LaTrobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
6
|
Shay DA, Vieira-Potter VJ, Rosenfeld CS. Sexually Dimorphic Effects of Aromatase on Neurobehavioral Responses. Front Mol Neurosci 2018; 11:374. [PMID: 30374289 PMCID: PMC6196265 DOI: 10.3389/fnmol.2018.00374] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/21/2018] [Indexed: 01/16/2023] Open
Abstract
Aromatase is the enzyme responsible for converting testosterone to estradiol. In mammals, aromatase is expressed in the testes, ovaries, brain, and other tissues. While estrogen is traditionally associated with reproduction and sexual behavior in females, our current understanding broadens this perspective to include such biological functions as metabolism and cognition. It is now well-recognized that aromatase plays a vital lifetime role in brain development and neurobehavioral function in both sexes. Thus, ongoing investigations seek to highlight potentially vital sex differences in the role of aromatase, particularly regarding its centrally mediated effects. To characterize the role of aromatase in mediating such functions, effects of aromatase inhibitor (AI) treatments on humans and animal models have been determined. Aromatase knockout (ArKO) mice that systemically lack the enzyme have also been employed. Humans possessing mutations in the gene encoding aromatase, CYP19, have also provided critical insight into how aromatase affects brain function in a possible sex-dependent manner. A better understanding of how AIs, used to treat breast cancer and other clinical conditions, may detrimentally affect neurobehavioral responses will likely promote development of future therapies to combat these effects. Herein, we will provide a critical review of the current knowledge of sex differences in aromatase regulation of various neurobehavioral functions. Although many species have been used to better understand the functions of aromatase, this review focuses on rodent models and humans. Critical gaps in our present understanding of this area will be considered, and important future research directions will be discussed.
Collapse
Affiliation(s)
- Dusti A Shay
- Nutrition and Exercise Physiology, University of Missouri Columbia, MO, United States
| | | | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri Columbia, MO, United States.,Department of Biomedical Sciences, University of Missouri Columbia, MO, United States
| |
Collapse
|
7
|
Fitzgerald ML, Pickel VM. Adolescent isolation rearing produces a prepulse inhibition deficit correlated with expression of the NMDA GluN1 subunit in the nucleus accumbens. Brain Struct Funct 2018; 223:3169-3181. [PMID: 29779156 PMCID: PMC6626533 DOI: 10.1007/s00429-018-1673-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Adolescence is a transition period during which social interaction is necessary for normal brain and behavior development. Severely abnormal social interactions during adolescence can increase the incidence of lifelong psychiatric disease. Decreased prepulse inhibition (PPI) is a quantifiable hallmark of some psychiatric illnesses in humans and can be elicited in rodents by isolation rearing throughout the adolescent transition period. PPI is a measure of sensorimotor gating in which the nucleus accumbens (Acb) is crucially involved. The Acb is comprised of core and shell subregions, which receive convergent dopaminergic and glutamatergic inputs. To gain insight into the neurobiological correlates of adolescent adversity, we conducted electron microscopic immunolabeling of dopamine D1 receptors (D1Rs) and the GluN1 subunit of glutamate NMDA receptors in the Acb of isolation-reared (IR) adult male rats. In all animals, GluN1 was primarily located in dendritic profiles, many of which also contained D1Rs. GluN1 was also observed in perisynaptic glia and axon terminals. In IR rats compared with group-reared controls, GluN1 density was selectively decreased in D1R-containing dendrites of the Acb core. Across all animals, dendritic GluN1 density correlated with average percent PPI, implicating endogenous expression of NMDA receptors of the Acb as a possible substrate of the PPI response. These results suggest that adolescent isolation dampens NMDA-mediated excitation in direct (D1R-containing) output neurons of the Acb, and that these changes influence the operational measure of PPI.
Collapse
Affiliation(s)
- Megan L Fitzgerald
- Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
- New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - Virginia M Pickel
- Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Interaction of Brain-Derived Neurotrophic Factor Val66Met genotype and history of stress in regulation of prepulse inhibition in mice. Schizophr Res 2018; 198:60-67. [PMID: 28864281 DOI: 10.1016/j.schres.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism results in reduced activity-dependent BDNF release and has been implicated in schizophrenia. However, effects of the polymorphism on functional dopaminergic and N-methyl-d-aspartate (NMDA) receptor-associated activity remain unclear. We used prepulse inhibition, a measure of sensorimotor gating which is disrupted in schizophrenia, and assessed the effects of acute treatment with the dopamine receptor agonist, apomorphine (APO), and the NMDA receptor antagonist, MK-801. We used adult humanized hBDNFVal66Met 'knockin' mice which express either the Val/Val, Val/Met or Met/Met genotype. An interaction of BDNF with stress was modelled by chronic young-adult treatment with corticosterone (CORT). At 1 or 3mg/kg, APO had no effect in Val/Val mice but significantly reduced PPI at the 100ms inter-stimulus interval (ISI) in Val/Met and Met/Met mice. However, after CORT pretreatment, APO significantly reduced PPI in all genotypes similarly. At 0.1 or 0.25mg/kg, MK-801 significantly disrupted PPI at the 100ms ISI independent of genotype or CORT pretreatment. There were differential effects of APO and MK-801 on PPI at the 30ms ISI and startle between the genotypes, irrespective of CORT pretreatment. These results show that the BDNF Val66Met Val/Met and Met/Met genotypes are more sensitive than the Val/Val genotype to the effect of APO on PPI. A history of stress, here modelled by chronic CORT administration, increases effects of APO in Val/Val mice.
Collapse
|
9
|
Impact of aromatase absence on murine intraocular pressure and retinal ganglion cells. Sci Rep 2018; 8:3280. [PMID: 29459742 PMCID: PMC5818491 DOI: 10.1038/s41598-018-21475-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
We hypothesize that aromatase, an enzyme that regulates estrogen production, plays a significant role in the control of intraocular pressure (IOP) and retinal ganglion cells (RGCs). To begin to test our hypothesis, we examined the impact of aromatase absence, which completely eliminates estrogen synthesis, in male and female mice. Studies were performed with adult, age-matched wild type (WT) and aromatase knockout (ArKO) mice. IOP was measured in a masked fashion in both eyes of conscious mice at 12 and 24 weeks of age. Retinas were obtained and processed for RGC counting with a confocal microscope. IOP levels in both 12- and 24-week old female ArKO mice were significantly higher than those of age- and sex-matched WT controls. The mean increase in IOP was 7.9% in the 12-week-, and 19.7% in the 24-week-old mice, respectively. These changes were accompanied by significant 9% and 7% decreases in RGC numbers in the ArKO female mice, relative to controls, at 12- and 24-weeks, respectively. In contrast, aromatase deficiency did not lead to an increased IOP in male mice. There was a significant reduction in RGC counts in the 12-, but not 24-, week-old male ArKO mice, as compared to their age- and sex-matched WT controls. Overall, our findings show that aromatase inhibition in females is associated with elevated IOP and reduced RGC counts.
Collapse
|
10
|
van den Buuse M, Low JK, Kwek P, Martin S, Gogos A. Selective enhancement of NMDA receptor-mediated locomotor hyperactivity by male sex hormones in mice. Psychopharmacology (Berl) 2017; 234:2727-2735. [PMID: 28674745 DOI: 10.1007/s00213-017-4668-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/29/2017] [Indexed: 01/03/2023]
Abstract
RATIONALE Altered glutamate NMDA receptor function is implicated in schizophrenia, and gender differences have been demonstrated in this illness. OBJECTIVES This study aimed to investigate the interaction of gonadal hormones with NMDA receptor-mediated locomotor hyperactivity and PPI disruption in mice. RESULTS The effect of 0.25 mg/kg of MK-801 on locomotor activity was greater in male mice than in female mice. Gonadectomy (by surgical castration) significantly reduced MK-801-induced hyperlocomotion in male mice, but no effect of gonadectomy was seen in female mice or on amphetamine-induced locomotor hyperactivity. The effect of MK-801 on prepulse inhibition of startle (PPI) was similar in intact and castrated male mice and in ovariectomized (OVX) female mice. In contrast, there was no effect of MK-801 on PPI in intact female mice. Forebrain NMDA receptor density, as measured with [3H]MK-801 autoradiography, was significantly higher in male than in female mice but was not significantly altered by either castration or OVX. CONCLUSIONS These results suggest that male sex hormones enhance the effect of NMDA receptor blockade on psychosis-like behaviour. This interaction was not seen in female mice and was independent of NMDA receptor density in the forebrain. Male sex hormones may be involved in psychosis by an interaction with NMDA receptor hypofunction.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute, Parkville, VIC, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia. .,The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.
| | - Jac Kee Low
- Mental Health Research Institute, Parkville, VIC, Australia.,School of Nursing and Midwifery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Perrin Kwek
- Mental Health Research Institute, Parkville, VIC, Australia
| | - Sally Martin
- Mental Health Research Institute, Parkville, VIC, Australia
| | - Andrea Gogos
- Mental Health Research Institute, Parkville, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Sex-specific alterations in behavioral and cognitive functions in a “three hit” animal model of schizophrenia. Behav Brain Res 2015; 284:85-93. [DOI: 10.1016/j.bbr.2015.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 02/08/2023]
|
12
|
Rahimi Darabad R, Suzuki T, Richards SM, Jakobiec FA, Zakka FR, Barabino S, Sullivan DA. Does estrogen deficiency cause lacrimal gland inflammation and aqueous-deficient dry eye in mice? Exp Eye Res 2014; 127:153-60. [PMID: 25084452 DOI: 10.1016/j.exer.2014.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/24/2023]
Abstract
Researchers have proposed that estrogen deficiency will lead to a Sjögren's syndrome (SjS)-like lacrimal gland inflammation, aqueous tear deficiency and dry eye. The purpose of this study was to determine whether this proposal is correct. Lacrimal glands were obtained from adult, age-matched wild type (WT) and aromatase knockout (ArKO) mice, in which estrogen synthesis is completely eliminated. Tissues were also obtained from autoimmune MRL/Mp-lpr/lpr (MRL/lpr) mice as inflammation controls. Tear volumes in WT and ArKO mice were measured and glands were processed for molecular biological and histological evaluation. Our results demonstrate that estrogen absence does not lead to a SjS-like inflammation in lacrimal tissue or to an aqueous-deficient dry eye. There was no upregulation of genes associated with inflammatory pathways in lacrimal glands of male or female ArKO mice. Such inflammatory activity was prominent in autoimmune MRL/lpr tissues. We also found no evidence of inflammation in lacrimal gland tissue sections of estrogen-deficient mice, and tear volumes of ArKO males were actually increased as compared to those WT controls. Interestingly, our study did show that estrogen absence influences the expression of thousands of lacrimal gland genes, and that this impact is sex- and genotype-specific. Our findings demonstrate that estrogen absence is not a risk factor for the development of SjS-like lacrimal gland inflammation or for aqueous-deficient dry eye in mice.
Collapse
Affiliation(s)
- Raheleh Rahimi Darabad
- Schepens Eye Research Institute, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomo Suzuki
- Schepens Eye Research Institute, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Stephen M Richards
- Schepens Eye Research Institute, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Frederick A Jakobiec
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Fouad R Zakka
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Stefano Barabino
- Schepens Eye Research Institute, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| |
Collapse
|
13
|
Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol 2014; 171:4595-619. [PMID: 24697577 DOI: 10.1111/bph.12710] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive-compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories.
Collapse
Affiliation(s)
- N Kokras
- Department of Pharmacology, Medical School, University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, University of Athens, Greece
| | | |
Collapse
|
14
|
Zhao YY, Li JT, Wang XD, Li YH, Huang RH, Su YA, Si TM. Neonatal MK-801 treatment differentially alters the effect of adolescent or adult MK-801 challenge on locomotion and PPI in male and female rats. J Psychopharmacol 2013; 27:845-53. [PMID: 23863926 DOI: 10.1177/0269881113497613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder and is typically "triggered" by subsequent insults in life. The N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) induces locomotor hyperactivity and prepulse inhibition (PPI) deficits, which can mimic the schizophrenia phenotype. In this experiment, we assessed whether neonatal exposure to MK-801 (postnatal days 5-14) could induce sensitization to both hyperactivity and PPI deficit caused by later-life acute MK-801 treatment during adolescence or adulthood. Our results showed that the hyperactivity induced by an acute MK-801 challenge was enhanced in male and female rats after neonatal MK-801 treatment. Notably, in the PPI test, adult female rats neonatally exposed to MK-801 exhibited a significantly greater reduction in PPI in response to acute MK-801 administration, whereas male rats receiving neonatal MK-801 treatment expressed attenuated PPI disruption in adulthood. Our data indicate that a combination of neonatal and later-life NMDA receptor blockades could induce sensitization in the locomotor activity of both sexes in adolescence and adulthood. In addition, a sex difference was observed in the effects of this treatment regime on PPI.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Key Laboratory of Mental Health, Ministry of Health, Peking University Institute of Mental Health, Peking University, Beijing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Manning EE, van den Buuse M. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci 2013; 7:92. [PMID: 23781174 PMCID: PMC3679473 DOI: 10.3389/fncel.2013.00092] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/26/2013] [Indexed: 12/30/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH) users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous (HET) mutant mice has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and wildtype (WT) littermates were treated during young adulthood with METH and, following a 2-week break, prepulse inhibition (PPI) was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH) disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine (APO) or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioral endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behavior. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the disorder.
Collapse
Affiliation(s)
- Elizabeth E Manning
- Behavioural Neuroscience Laboratory, The Florey Institute of Neuroscience and Mental Health Melbourne, VIC, Australia
| | | |
Collapse
|
16
|
Wu Y, Hill R, Gogos A, van den Buuse M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience 2013; 239:67-83. [DOI: 10.1016/j.neuroscience.2012.10.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
|
17
|
Darabad RR, Suzuki T, Richards SM, Jensen RV, Jakobiec FA, Zakka FR, Liu S, Sullivan DA. Influence of aromatase absence on the gene expression and histology of the mouse meibomian gland. Invest Ophthalmol Vis Sci 2013; 54:987-98. [PMID: 23233261 DOI: 10.1167/iovs.12-10992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We hypothesize that aromatase, an enzyme that controls estrogen biosynthesis, plays a major role in the sex-related differences of the meibomian gland. To begin to test this hypothesis, we examined the influence of aromatase absence, which completely eliminates estrogen production, on glandular gene expression and histology in male and female mice. METHODS Meibomian glands were obtained from adult, age-matched wild-type (WT) and aromatase knockout (ArKO) mice. Tissues were processed for histology or the isolation of total RNA, which was analyzed for differentially expressed mRNAs by using microarrays. RESULTS Our results show that aromatase significantly influences the expression of more than a thousand genes in the meibomian gland. The nature of this effect is primarily sex-dependent. In addition, the influence of aromatase on sex-related differences in gene expression is predominantly genotype-specific. However, many of the sex-related variations in biological process, molecular function, and cellular component ontologies, as well as in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, are remarkably similar between WT and ArKO mice. The loss of aromatase activity has no obvious effect on the histology of meibomian glands in male or female mice. CONCLUSIONS Our findings demonstrate that aromatase has a significant impact on gene expression in the meibomian gland. The nature of this influence is sex-dependent and genotype-specific; however, many of the sex-related variations in gene ontologies and KEGG pathways are similar between WT and ArKO mice. Consequently, it appears that aromatase, and by extension estrogen, do not play a major role in the sex-related differences of the mouse meibomian gland.
Collapse
Affiliation(s)
- Raheleh Rahimi Darabad
- Schepens Eye Research Institute, Department of Ophthalmology, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Macêdo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, Hyphantis TN, McIntyre RS, Quevedo J, Carvalho AF. Effects of alpha-lipoic acid in an animal model of mania induced by D-amphetamine. Bipolar Disord 2012; 14:707-18. [PMID: 22897629 DOI: 10.1111/j.1399-5618.2012.01046.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Oxidative stress and neurotrophic factors are involved in the pathophysiology of bipolar disorder (BD). Alpha-lipoic acid (ALA) is a naturally occurring compound with strong antioxidant properties. The present study investigated ALA effects in an amphetamine-induced model of mania. METHODS In the reversal protocol, adult mice were first given d-amphetamine (AMPH) 2 mg/kg, intraperitoneally (i.p.) or saline for 14 days. Between days 8 and 14, the animals received ALA 50 or 100 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention paradigm, mice were pretreated with ALA, Li, or saline prior to AMPH. Locomotor activity was assessed in the open-field task. Superoxide dismutase (SOD) activity, reduced glutathione (GSH), and thiobarbituric acid-reactive substance (TBARS) levels were evaluated in the prefrontal cortex (PFC), hippocampus (HC), and striatum (ST). Brain-derived neurotrophic factor (BDNF) levels were measured in the HC. RESULTS ALA and Li prevented and reversed the AMPH-induced increase in locomotor activity. PREVENTION MODEL: ALA and Li co-administration with AMPH prevented the decrease in SOD activity induced by AMPH in the HC and ST, respectively; ALA and Li prevented GSH alteration in the HC and TBARS formation in all brain areas studied. REVERSAL MODEL: ALA reversed the decrease in SOD activity in the ST. TBARS formation was reversed by ALA and Li in all brain areas. Furthermore, ALA reversed AMPH-induced decreases in BDNF and GSH in the HC. CONCLUSIONS Our findings showed that ALA, similarly to Li, is effective in reversing and preventing AMPH-induced behavioral and neurochemical alterations, providing a rationale for the design of clinical trials investigating ALA's possible antimanic effect.
Collapse
Affiliation(s)
- Danielle S Macêdo
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arad M, Weiner I. Abnormally rapid reversal learning and reduced response to antipsychotic drugs following ovariectomy in female rats. Psychoneuroendocrinology 2012; 37:200-12. [PMID: 21723667 DOI: 10.1016/j.psyneuen.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/18/2011] [Accepted: 06/02/2011] [Indexed: 12/24/2022]
Abstract
Epidemiological and clinical life cycle studies indicate that favorable illness course and better response to antipsychotic drugs (APDs) in women with schizophrenia are positively correlated with estrogen levels. Accordingly, the estrogen hypothesis of schizophrenia proposes a neuroprotective role of estrogen in women vulnerable to schizophrenia. Previously we demonstrated in the rat that low levels of estrogen induced by ovariectomy led to disruption of latent inhibition (LI) reflecting impairment of selective attention, a core deficit of schizophrenia. LI disruption was reversed by 17β-estradiol and the atypical APD clozapine, whereas the typical APD haloperidol was ineffective unless co-administered with 17β-estradiol. Here we aimed to extend these findings by testing ovariectomized rats in another selective attention task, discrimination reversal. Ovariectomy led to a loss of selective attention as manifested in abnormally rapid reversal. The latter was normalized by high dose of 17β-estradiol (150 μg/kg) and clozapine (2.5mg/kg), but not by haloperidol (0.1mg/kg) or lower doses of 17β-estradiol (10 and 50 μg/kg). However, co-administration of haloperidol with 17β-estradiol (50 μg/kg) was effective. In sham rats low 17β-estradiol (10 μg/kg) produced rapid reversal, while high 17β-estradiol (150 μg/kg), haloperidol alone, or haloperidol-17β-estradiol combination reduced reversal speed. Clozapine did not affect reversal speed in sham rats. These results strengthen our previous results in suggesting that schizophrenia-like attentional abnormalities as well as reduced response to APDs in female rats are associated with low level of gonadal hormones. In addition, they support the possibility that estrogen may have an antipsychotic-like action in animal models.
Collapse
Affiliation(s)
- Michal Arad
- Department of Psychology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
20
|
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12:251-318. [PMID: 22367921 PMCID: PMC3357439 DOI: 10.1007/7854_2011_195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.
Collapse
Affiliation(s)
- Susan B. Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
21
|
Chavez C, Gogos A, Hill R, Van Sinderen M, Simpson E, Boon WC, van den Buuse M. Differential effect of amphetamine on c-fos expression in female aromatase knockout (ArKO) mice compared to wildtype controls. Psychoneuroendocrinology 2011; 36:761-8. [PMID: 21093158 DOI: 10.1016/j.psyneuen.2010.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
Estrogen may be involved in psychosis by an interaction with central dopaminergic activity. Aromatase knockout mice are unable to produce estrogen and have been shown to display altered behavioural responses and effects of the dopamine releaser, amphetamine. This study investigates the effect of gonadal status on amphetamine-induced c-fos expression in the brains of female aromatase knockout and wildtype mice. Six groups of mice were treated intraperitoneally with saline or 5mg/kg amphetamine. Fos immunoreactivity was assessed in the cingulate cortex, caudate putamen and nucleus accumbens. Aromatase knockout mice showed markedly reduced amphetamine-induced Fos immunoreactivity compared to wildtype mice. However, the amphetamine response was restored in aromatase-knockout mice after ovariectomy, which reduced this effect in wildtype controls. Estrogen supplementation reversed the effect of ovariectomy in wildtype mice but had no additional significant effect in aromatase-knockout mice. These results indicate that mechanisms involved in amphetamine-induced c-fos expression are altered in aromatase knockout mice and that the primary hormone involved in this effect is not estrogen, but may be another factor released from the ovaries, such as an androgen. These results provide new insight into the effect of gonadal hormones on amphetamine induced c-fos expression in this mouse model of estrogen deficiency. These results could be important for our understanding of the role of sex steroid hormones in psychosis.
Collapse
Affiliation(s)
- Carolina Chavez
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, Parkville, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
van den Buuse M, Ruimschotel E, Martin S, Risbrough VB, Halberstadt AL. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia. Neuropharmacology 2011; 61:209-16. [PMID: 21501627 DOI: 10.1016/j.neuropharm.2011.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 01/15/2023]
Abstract
Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
23
|
Sex-dependent antipsychotic capacity of 17β-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males. Neuropsychopharmacology 2010; 35:2179-92. [PMID: 20613719 PMCID: PMC3055319 DOI: 10.1038/npp.2010.89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI) model of schizophrenia that 17β-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to extend the characterization of the antipsychotic action of 17β-estradiol (10, 50 and 150 μg/kg) by testing its capacity to reverse amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie, reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with two but not five tone-shock pairings. In both sexes, amphetamine (1 mg/kg) and MK-801 (50 μg/kg) produced disruption (under weak conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17β-estradiol at 50 and 150 μg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17β-estradiol also reversed MK-induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX females but not in intact females. These findings indicate that in the LI model, 17β-estradiol exerts a clear-cut antipsychotic activity in both sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of anti-negative/cognitive symptoms.
Collapse
|
24
|
Bender C, de Olmos S, Bueno A, de Olmos J, Lorenzo A. Comparative analyses of the neurodegeneration induced by the non-competitive NMDA-receptor-antagonist drug MK801 in mice and rats. Neurotoxicol Teratol 2010; 32:542-50. [DOI: 10.1016/j.ntt.2010.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
25
|
Mignogna P, Viggiano D. Brain distribution of genes related to changes in locomotor activity. Physiol Behav 2010; 99:618-26. [PMID: 20138074 DOI: 10.1016/j.physbeh.2010.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 11/19/2009] [Accepted: 01/26/2010] [Indexed: 02/09/2023]
Abstract
The relationship between genes and behavior, and particularly the hyperactive behavior, is clearly not linear nor monotonic. To address this problem, a database of the locomotor behavior obtained from thousands of mutant mice has been previously retrieved from the literature. Data showed that the percent of genes in the genome related to locomotor hyperactivity is probably more than 1.56%. These genes do not belong to a single neurotransmitter system or biochemical pathway. Indeed, they are probably required for the correct development of a specific neuronal network necessary to decrease locomotor activity. The present paper analyzes the brain expression pattern of the genes whose deletion is accompanied by changes in locomotor behavior. Using literature data concerning knockout mice, 46 genes whose deletion was accompanied by increased locomotor behavior, 24 genes related to decreased locomotor behavior and 23 genes not involved in locomotor behavior (but important for other brain functions) have been identified. These three groups of genes belonged to overlapping neurotransmitter systems or cellular functions. Therefore, we postulated that a better predictor of the locomotor behavior resulting from gene deletion might be the brain expression pattern. To this aim we correlated the brain expression of the genes and the locomotor activity resulting from the deletion of the same genes, using two databases (Allen Brain Atlas and SymAtlas). The results showed that the deletion of genes with higher expression level in the brain had higher probability to be accompanied by increased behavioral activity. Moreover the genes that were accompanied by locomotor hyperactivity when deleted, were more expressed in the cerebral cortex, amygdala and hippocampus compared to the genes unrelated to locomotor activity. Therefore, the prediction of the behavioral effect of a gene should take into consideration its brain distribution. Moreover, data confirmed that genes highly expressed in the brain are more likely to induce hyperactivity when deleted. Finally, it is suggested that gene mutations linked to specific behavioral abnormalities (e.g. inattention) might probably be associated to hyperactivity if the same gene has elevated brain expression.
Collapse
Affiliation(s)
- Pasquale Mignogna
- Department of Health Sciences, University of Molise, Campobasso, 86100, Italy
| | | |
Collapse
|